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Discrete-event dynamic systems:
The strictly convex case

R.A. Cuninghame-Green and P. Butkovié

School of Mathematics and Statistics, The University of Birmingham,
Birmingham BI5 2TT, United Kingdom

Given the observed output g; of a discrete-event system, a classical problem is to
find a matrix realisation g; = cA’b with A of least possible dimension. When the sequence
gj is convex and ultimately 1-periodic, a linear-time algorithm suffices to construct such
a realisation over the algebra (R, max, +). When the transient is strictly convex, this
realisation is minimal-dimensional.
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1. Introduction

A classical problem is the following. An unknown system emits a sequence
of (real-number) signals
G={gl=0...

at discrete time intervals; find an economical mathematical description of the system,
given only this observed sequence.

Approaches to the problem split according to hypotheses as to the underlying
process. A substantial amount of theory has been devoted to the case where the
process 1s assumed to be describable through the state vector x(j) € K" of the system
at time j =0, 1, 2,...; change of state is described through a linear transformation

(P x(j+1)=Ax(), =x(0)=5, (1.1)
where A € RV b € R"*! and the state is observed through an observation vector
¢ e RV .

gi=c ®x(J). (1.2)

In this case, the observed g; are called Markov parameters and the task is to find A,
b and c. Any A, b, ¢ satisfying (1.1) and (1.2} is called a realisation of the system.
Clearly, there are many trivial realisations, but for an economical description, we
seck A, b, ¢ of least possible dimension n — a minimum-dimensional realisation of the
discrete-event system emitting G.
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‘When the underlying process is of a physical nature, the algebra in (1.1}, (1.2)
is conventional linear algebra, describing superpositions and interactions of mechanical,
electrical or other physical signals, and the analysis follows well-known classical
lines [2]. However, in some synchronous processes of production of information
technology, it has been known for some time [3,4} that an appropriate mathematical
description is obtained using equations (1.1}, (1.2) when the underlying scalar algebra
is max-algebra in which the operation of addition is replaced by max(x,y) and
multiplication is replaced by x + y. Several substantial studies of the properties of this
algebraic system exist [5,13], and the advent of flexible manufacturing systems and
computer networking has brought about a recent resurgence of international interest.

In [10], Olsder posed the minimum-dimensional realisation problem for systems
based on max-algebra. His solution method used a field-embedding to make a
transformation from max-algebra to normal linear algebra, solving the realisation
problem and transforming back to max-algebra. To ﬂIustrate his method, Olsder
considered the particular sequences

3,585,124, 16%,... (1.3)
5 8 114,153, 194, ... (1.4)

The method is computationally rather complex, involving the inversion of matrices
whose elements are rational functions; several pages of algebra may be necessitated
by even quite small problems.

Olsder’s realisation problem has attracted a lot of interest recently, but for the
moment it remains unclear whether an exact algorithmic procedure of polynomial
complexity can be found for the general case. We discuss aspects of this question in
section 3.

However, the particular examples (1.3), (1.4), and others used in related
expositions, actually belong to a special class. Figure 1 shows the linear interpolate
of (1.3). Since only the values at discrete time instants are relevaant, the function
depicted in figure 2 will also suffice, and as a maximum of two (not three) linear
functions needs fewer parameters to specify. We present an algorithm of linear-time
complexity to construct the parametrically most economical such function. Being
piecewise linear and convex, it has a simple representation in max-algebra. It is then
a simple matter to convert this to a realisation of the form (1.1), (1.2).

For a subclass which contains Olsder’s examples (1.3), (1.4), we prove that
the resulting realisation 1s minimum-dimensional.

2. Basic definitions

Consider the triple M:
M=(R, ®,®),
where x@® y = max(x, ),

1@y=x+y.
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Figure 1.
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Figure 2.
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We call this system max-algebra and may readily verify that it has the following
properties:

1B P=(xDy @z

x@y=y@Dux,
x®(H®z)=(xBy) @z,
x@y=y®x,
@ (yDP)=xQ@yBx®g
x&0=x,
xDx=ux

Axiom systems of this nature are studied in detail in e.g. [5,13], where they
are used as a starting point for a theory of linear algebra. Frequently, a conventional
element —es is adjoined, to play the role of a zero. This gives certain algebraic
advantages but introduces problems of its own, and in the present work we shall
avoid this. All algebra will be finite.

The r-fold “product” of an element x with itself will be written as a “power”™

N = x@x®@...®x (r-times).

Evidently, x*? is more familiarly denoted rx, so we may consistently introduce zero
and negative exponents with the definitions

£ = 0,
ALy g—— (r > 0).
We can now define a “division” operation inverse to the operation “®” by

x/fy=x®@y L.

Being motivated by the fact that x) = rx for integer r, we define

x® = gx
for all x, a € R. Clearly,
x(“) -~ a(x). (2.1)

To complete the notation, we need a “sigma” and “pi” to denote iterated “sums” and
“products” of indexed expression in max-algebra. Thus, for given terms &,,...,&,,

© £; denotes & ®... @&,

£; denotes £ ®..@¢,.

2
ﬁ@
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We extend @, ® to matrices in the usual way:

If A =(a;), B = (by;) are suitably-dimensioned real matrices, then A @ B = (a; ® b;)
and A @ B = (¢;;), where

Gij = ze ay, ® by;, forall i,j.
k

If A is a square matrix, then A®? (r> 1 natural) will stand for the iterated
product
ABDAR..®A.
r-times
Finally, « ® A = (¢ ® a;;) for € ER.

Let A; denote the jth column of the matrix A (j=1, 2,...,n). The columns of
A are called linearly dependent if

® <]
jel jevV

for some A;,..., A, €R, UUVC {12, .nl; UNV=G, U, V2D
Let n= 1 be an integer and let P, (resp. P, F;) denote the set of all (resp.
even, odd) permutations of the set {1, 2,...,n}. If 7€ PF,, we define

e
W(A, 7[) = H Ai (i) s

i=]

per(A) = 3 © w(A, ),

Ter,
ap(A) = {7 € F,; w(A, m) = per(A)},
ap® (A) = ap(A) N B,
ap” (A) = ap(A) N £, .

Note that for a given matrix A, the task of finding # € F,, maximising w{A, ), is the

classical assignment problem [12] and thus ap{A) is the set of optimal solutions to
this problem.

3. DEDS and their realisations
Let G be a sequence of real numbers
{g J }}“:0

and let A e R*™**, c e R, b e R™! be such that
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gi=c®AV®b (j=0,1,..),

where by convention A% ® b =b.

Then G is said to be produced by a discrete-event dynamic system (briefly
system or DEDS) and the triple (A, b, ¢) is called a realisation of the system of
dimension n.

PROBLEM FORMULATION

Given a sequence produced by a DEDS, find a realisation of the least dimension.

Such a realisation will be called a minimal-dimensional realisation (abbreviation
MDR) of the DEDS.

Since our algebra is finite, it fol}ows from [3, theorem 27-9] that every sequence
G = {g;};=o produced by a DEDS is ultimately p-A-periodic, i.e. there exist A €R
and non-negative integers p, jy such that

girp =& ®AP), forall j= jy.

Clearly, each such sequence is fully described by its first jy + 1 terms, p and
A. The value of p is called the period of the system. If j, is the smallest natural
number possessing the above property, then {g J,-}}'."= o 1s called the transient of G.
Given the sequence {g;}:_q, we denote

b:41} &1 Er
81 &2 8t

H =" T for =012,
8 Br+1 B2y

We shall require the following known results:

THEOREM 3.1

If a realisation of dimension n exists for the system producing {g;};L,, then
for all » = n the matrix H, has linearly dependent columns.
Proof

Follows from the results in [10]. |

THEOREM 3.2

A necessary and sufficient condition that a square matrix B have linearly
dependent columns is

ap*(B)# @ and ap (B) = J. (3.1)
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Proof
See [9,11. O

It was shown in [1] that checking (3.1) is polynomially equivalent to the
problem of deciding the existence of an even cycle in a digraph. Some more information
on this subject can be found in [&].

However, we shall deal only with a special case for which checking (3.1) can
be done in linear time.
THEOREM 3.3

If ap*(H,) = & or ap~(H,) = & for some r > 0, then there is no realisation of

dimension r or less for the system producing {g;}/Z,.

Proof

Follows immediately from theorems 3.1 and 3.2, (It may also be derived from
the results in [7] and [8].). O

The sequence {g;};, will be called convex if g;,,—g;=g;—g;_; for all
ji=1,2,
EXAMPLE 1
Consider the sequeﬁce
7,4,2,1,1,2,4,8,12,....

Here, jo=6, p=1, A=4 and the transient is 7,4, 2, 1, 1, 2, 4. The sequence
is convex.
Evidently,

7
‘H—(7)H*7 K Hy =14
0 - ’ 1*4 2’ 2_2

R . B LN
= N
S
I
L~ |
o T - e -
N o= =N

R

and it is not difficult to verify that ap(H3) = {id} and hence ap™(H;) = &J. By theorem 3.3,
there is no realisation of order 3 or less,

In order to make the set ap(H,) more transparent, it is helpful to transform H,
by adding suitable constants to rows and columns {which does not change the set of
optimal solutions to the assignment problem) so that the resulting matrix 4 is non-
posmve and w(H,, &) = 0 for some g € Ps. Then, evidently, ap(H,4) = ap( Hy)={ne P,
w(Hj, 0) =0}. In our example (as indeed for every Hankel matrix), it suffices to
subtract from each row and column half of its diagonal element.



52 R.A. Cuninghame-Green, P. Butkovié, Discrete-event dynamic systems

In this way, we transform

7 4 2 1 1

4 2 1 1 2

Hy=[2 1 1 2 4

1 1 2 4 8

(1 2 4 8 12
to the matrix

0 - -2 -3 -¥]
-2 0 -1 -2 -5
Ro=| -2 —f o -} -4
-y -2 -+ o0 0
% s -3 0 o

A, indicates that ~
ap™ (Hy4) = (id},

ap™(Hy) = (1) ° (2)o(3) o (4 5)}.

Hence, we cannot exclude the existence of a realisation of order 4.

The principles of the method we propose for finding an MDR of such a
sequence are in fact very straightforward and, before beginning a detailed justification,
it may be helpful to consider figure 2 again. The graph shown is the upper envelope
of the two linear functions 2j + 3 and 4j + 1/2, i.e.

gy=max(2j+ 3, 4j + 1/2).
In the notation of max-algebra, this is |
g =320 @ ()e4Y

If we allowed the use of the “zero” element —o», so that “diagonal” matrices could
be defined in which all off-diagonal entries equal —ee, we could at once rewrite this
in the form

gj=c®AU) @ b,
where

c=(3, 1/2), A =diag(2,4), b=(0,0)".

Our work in section 4 is to show how this construction may be implemented without
use of —eo, by taking sufficiently small finite off-diagonal elements. In section 5, we
discuss the minimal-dimensionality of the resulting realisation.
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4, A special case and its realisation

Assume that the sequence G = {g;};_, produced by the DEDS meets the following
two requirements (4.1) and (4.2):

G is ultimately 1-A-periodic, i.e.
gi+1=4®g; (4.1)

for all j 2 j, and some natural j, and real A; the transient of G is strictly convex, i.e.

8i+1 — &5 > &j ~ &j-1 (4.2)

forallj=1,2,....j5

Note that both (1.3), (1.4) and the sequence of example 1 satisfy (4.1), (4.2).
It is clear that every sequence satisfying (4.1), (4.2) is convex.

We show now how, given a sequence G satisfying (4.1), (4.2), one can find
a realisation of the DEDS producing G.

Suppose { gJ}J o is a sequence satisfying (4.1), (4.2) Wlth transient {g;
Set N=1+[j,/2] and let p(x) (s =0, 1,...,N - 1) be a real function of one varlable
corresponding to the line determined by the points [25, g,.] and [2s + 1, g, ] in the
plane, i.e.

p.x(-x) = (g23+1 — 825 )x+ (25 + 1)g2s - Q'SgZH-]- (4.3)

It is a matter of routine verification that for arbitrary r, s € {0, 1,...,N — 1} we have

Po(25) = g9 P25 + 1) = gog 1y p(x) Sp(x), 1f 25 Sx <25 + 15 and p(x) Spy_;(x)
lf X 2_}‘0

THEQOREM 4.1
Let {g;};=o be a sequence Satisfyiﬂg (4.1), (4.2), po(x),....py_,{x) be defined
by.(4.3), and p(x) = max _, _1Ps{x). Then
p(j) =g; forall j =0,4,2,...

= PN-1 (]) for all j 2][]

Proof
Follows straightforwardly from the foregoing discussion. O

Given any matrix A = [a,,], the element in position (s, t) of A% will be denoted
[AY],,. Thus, [AD], = ay,.

THECREM 4.2

Given natural numbers N, f;, and N real numbers k; < ... £ ky, there exists an
N x N matrix A with the following properties:
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AP w =k =T 14Dy (G=12,..), (4-4)

t

(AP =k =TT 1ADY, (G =ldos s=L. N). (45)

t

Proof
Define A =[ay] by a,=k, (s=1,...,N); ag=0 (s,t=1,...,N; s # 1), where
8 =k /kPh, (4.6)
Since 8=ky ® (k,/ k)Y < ky, the definition of A implies
ay Sky (s,6=1,...,N) (4.7)

Now, for any J, s, 1; [AU)],, is of the form

] (3]
AV, = 37 ay ©...@ ay, (4.8)
Fo.h

the @-summands being j-fold @-products.
From (4.7), (4.8):

(ADY, <k (=120 8t=1,...,N). (4.9)
For the case s =t =N, (4.8) shows that
[AD |y 2apy ® ... @ayy =k’ (=12,..),

which, together with (4.9), proves (4.4).

Suppose that the j-fold ®-product which determines the value of (4.8) constains
u non-diagonal and j — u diagonal elements from A (where u obviously depends on
s, t and may equal zero or j). Then from the way A was defined,

A, <60 @ kY™ = kD @ (ky/ fly )i =D, (4.10)

where clearly u =1 if s #¢. Now, to prove (4.5), assume j < fg.
If s#¢, then #> 1, so jou 2 and (4.10) implies

4D, <k <ad < 300y ®.. @ ay =[AD),, (41D

e foh
which implies

A = TP, G=L.,jess=1L...,N). (4.12)
1=1,..,N
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However, if s = ¢ in (4.8), then u may be zero, in which case the product determining
(4.8) must be a, ® ... ® a,, and we have

(AP = o, (4.13)

Otherwise, ¥ =1 and the argument leading to (4.11) may be repeated with

§ =1, again implying (4.13). Clearly, (4.12), (4.13) together imply (4.5). O
THEOREM 4.3

Let G = {g;};_, be a sequence satisfying (4.1), (4.2) and define for s =1,...,N:

ky = g25-1 — £25-25
cg = (28 —1)gog 0 — (25 — 2)g25-1-

Then {A, b, ¢) is a realisation of the DEDS producing G, when ¢ ={c;,...,cy),
b=(0,...,07, and 4 is as in theorem 4.2.

Proof
Let pg(x),..., py-1{x), p(x) be as in theorem 4.1. By choice of b,

c®ADBb=Y® @AV, ©b =Y ¢, ® YO 4D, (414)
!

5,1 §

When j <j,, (4.14) equals (by (4,5)

I

3 @k = max (e, + jk,)

. s=1..,N
= max peq1(j)
s=I1,..,N
=  max  ps())
s=0,... N1

= p(j}=g; by theorem 4.1.

Now suppose j>jy. For any s (1<s<N), let P be the j-fold ®-product which
determines the value of Y.¥[AY )]M. Then either P is of the form

P = ks(j) < k§j°) ® k}vj—jn),

or P contains 1 2 1 non-diagonal and {j — u) diagonal elements, whence, as in (4.10)
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P<sW @™
<@k since #21 and & < ky
= k) @ k770 by the definition of &

< kU @ k) since k; < k;.
In any event, then,

328y %140, <% ¢, @ kU0 ® k{0
! by

§

— klgwlj_jo) ® Zea e, ® (jo)(k.;)
¥

= ky " @ pljp)

= kl(\{-_j“) ® py_1{jo) by theorem 4.1
=k @ cy @ kHY

=cy ® k%}")

= oy ® jl)

= py-10J). (4.15)
On the other hand, )

cy ® Z@ [AD ]y = cy ® & (using (4.4))
! =y ® jO)
= py-1())- (4.16)
Clearly, (4.15) and (4.16) show that, for j > jo, (4.14) is just py._(j), which equals
p(j) when j 2 j; by theorem 4.1. Hence, for all j,
c®AV ®b=p(j)=g;. O
EXAMPLE 1 (continued)

Using theorem 4.2, we easily find a realisation (4, b, ¢) of the DEDS producing

the sequence
7,4,2,1,1,2,4,8,12,... .

Here, N=1+[6/2] =4 and
cg =1 gg-0-g1= 7,
Ca =3g2 —2g3 = 4,
€3 =584 —4gs = -3,
cg =T8¢ —6g7  =-20;
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ki =4-7 = -3,
ky=1-2 = -1
ky = 2-1 = 1,
ky=8—4 = 4,
§ = 6(-3)—5.4=-38.

Hence,

-3 -38 -38 -38
- 38 -1 —-38 -138 r
A= _38 _18 1 _ag |’ c=(7,4,-3,-20), b=(0,0,0,0)".
—38 -38 -138 4
Since we have already shown that no realisation of dimension 3 or less exists,
we conclude that this is a minimal-dimensional realisation.

5. Minimeality of the dimension

In this section, we show that the Hankel matrix corresponding to a convex
sequence offers an easy way of checking the criterion given by theorem 3.3. This will
enable us to prove that the realisation described in theorem 4.3 is always minimal-
dimensional.

PROPOSITION 5.1
If G = {g;}7.¢ 18 convex, then
Zi+k — 8 S8j+k+e —Lj+e forall j k620 (5.1

Proof
Straightforward. |

PROPOSITION 5.2

Suppose that G = {g;};%g is convex and H, = (a;), where a;;=g;,;2
((,j=1,2,...). Then .
Qrn+l + ysls = aps + Ap i1, n+1 (52)

forallr,5=1,2,...,0+1.

Proof
Straightforward, on setting fj=r+s5s—-2,k=n-s+1,2=n—-r+1 (in (5.1)).
O
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If 7 is a permutation of the set S and §* is a subset of § such that #(i) €5’
for all i €5, then 7n]lS’ denotes the permutation of the set S induced by 7.

PROPOSITION 5.3

Suppose that G = {g;};=¢ is convex and ZEF, |, #(A(n + 1)) #n+ 1.
(a) If
w(Hy, id) < w(H,, 7), (5.3)
then

w(H,_1,idy<w(H,_;,0), forsome c €P,, o#id (5.4)

(b) If (5.3) is strict, then also (5.4) is strict.

Proof :
Suppose mn+ 1) =3, w(r)=n+1, r £s.

(a) Set @ e P, as follows:

T(r)=s,
Tn+1D)=n+1,
TG =xnG) forall i#r, i#n+1.

By proposition 5.2, we then have
W(Hn’f) - w(H,, ) = a, + nil,n+41 ~ Grn+l — Apels =20
and taking ¢ = 7 |{l, 2,...,n}, we obtain
W(Hn—ls O-) = W(Hnsﬁ) ~ Dp41.n+1

2 W(Hn= 7':) - an+1,n+1
2 W(Hn:id) —dpil,n+l

= w(l,_1,id)
and o # id.
(b) It suffices to follow the lines of the proof of (a) in which the last inequality
would be strict, [}
THEOREM 5.1

Suppose that G = {g;};=¢ is convex. Then for all n=0, 1, 2,... there holds
(@) ideap(f,),
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and (for n21)

(b) if ap(Ho) = ap(H)) = ... = ap(H,_;) = (id} and ap(H,) # {id), then ap(H,,)

={id, (1} e (2)e...o(n—1) e (n,n+ 1)}.

FProof
(a} For n =0, the assertion is trivial; for n > 1, we have gy + g, = 2g; because

g2— 8128 — go follows from convexity of G. We now proceed by induction.
Suppose n > 1, id €ap(H;), (j=0,...,n—1) and that

w(H,,id) < w(H,,T)
for some n€F,, |, T#id

First we show that #(w(r + 1) zn+ L. g+ D=r,a(N=n+1 {1 <r<n+ 1),
then for ¥ € P, defined by

7(r) = 1,
Trn+D)=n+l,

AE)=a(Dforal i#r, itn+],

there holds (by proposition 5.2, setting s = r):

W(Hns 7_5) - W(Hns 75) =ty T Antln+l ~ 9rn+l ~ Gn+lr 20
and hence o= T |{1,2,...,n} satisfies

w(H, 1,0)=w(H,,T)—a,,1,,4
2 w(H,, @)~ Gpi1,n+1
>w(H,,id) - ap 1,01
=w(H,_y,id),
which contradicts the induction hypothesis. Therefore, n(m(n + 1)) # n + 1. Now the
statement follows from proposition 5.3(b) and the induction hypothesis.

(b) Suppose « € ap(H,,), w# id. Then n(n + 1) # n + 1 because otherwise for
c=ml{1,2,...,n} we would have

o #id,
w(H, 1, G) =w(H,,m)~ Apit,n+1 = w(H,,id) — Anyln+l = W(Hn—]’id)

and thus o€ap(H,_,), a contradiction.

If m{m(n + 1)) #n + 1, then proposition 5.3(a) yields a contradiction with the
assumption ap(H,_,) = {id}. Hence, we may assame that #(n+ D=7, 2(r)=n+ 1,
r<n. We show that r=n. '
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First notice that
m(iy=1i forall i#r, i#n+]

for, otherwise taking T € F 41,
E(ry=r,

Tn+D=nr+1,
g()=n{) forall i#r, i#n+l,

we would have (by proposition 5.2, setting 7 =)

W(Hn’ f) - W(Hn$x) 2 09

implying, by optimality of =, w(H,.T} = w(H,,n) = w(H,,id) and w(H,_

(5.5)

I’G)

= w(H,_y,id), ¢ # id for ¢ = % |{1,2,...,n}, which contradicts ap(#,) = {id}.

Now, from (5.5), and the optimality of 7 and id,

A, n+l T Ayl = Gy T dpatlntls
or, equivalently,

28n+r-1 = 82r-2 + 82n»

which can also be writien as
Z2n — 8n4r-1 = En+r-1— 82r-2-

It follows from the convexity of G that

v

gan — B2n-1 En+r-1— 8n+r-2-

82n-1 " B2n-2 Bn+r-2 — En+r-3-

Y

v

En+r 7 Bn+r-1 82r-1— 82r-2-

But (5.8) implies that all inequalities in (5.9) must be satisfied as equations.

At the same time

82n — 8201 2 82n—t — Ban-2 2.2 Ent+r — Brnar-i

2 gn+r-1 ~ En+r-2 2.2 B2r-1 — B2r-2-

which yields that all left- and right-hand side values in (5.9) are equal.
Specifically,

Zar — 82r—1 7 &2-1 7 82r-2>»
or

B2, + 82r-2 = 282,-1

(5.6)

5.7

(5.8)

(5.9)
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and
Gralrel T @y = Aryy T Arryl.

Hence, if r < n, then ap(H,) # {id} because for c=(1) o (2)o...0(r—1o(r,r+ 1)

we have
w(H,, ) =w(H,, id).

Hence, i(r + D) =n, a(n)=n+1. 0

COROLLARY 1 OF THEOREM 5.1

Let n2 1 be an integer and G = {g;};_, be convex. Then n = min{r; ap(H,) # {id}}
if and only if » is the smallest natural number satisfying

Ban t 822 = zgn—l- (510)
O
Taken in conjunction with theorem 3.3, relation (5.10) gives an easy criterion

for checking the first linear dependence of columns in the Hankel matrices, and hence
excluding the existence of low-order realisations. We illustrate this now.

EXAMPLE 1 (continued)

We have
G=1{7,4,2,1,1,2,4,8,12,...}.

Checking (5.10) forn=1,2,3, 4

T+2 %8
24+1#2,
1+ 4 %4,
4 +12 =16,

This simple calculation confirms our earlier conclusion that there is no realisation
of dimension less than 4 of the system producing G.

COROLLARY 2 OF THEOREM 5.1

Let G = {g;};_o be a sequence satisfying (4.1) and (4.2). Then the realisation
of the DEDS producing G described in theorem 4.2 is minimal-dimensional.

Proof

The realisation in theorem 4.2 is of dimension N = 1 + [j,/2]. Tt follows from
(4.1}, (4.2) that the smallest natural number » satisfying (5.10) is %( Jo 4+ 2) (f jp is
even) Or %( Jo +3) (if jyis odd). Using theorem 3.3 and corollary 1 of theorem 5.1,
we obtain that there is no realisation of order less than 1+ [j,/2]. ]
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EXAMPLE 2

For the sequence (1.3), we obtain

Jo=2, A=4, N=2
ki =2, ky=4, &=0,
c1 =3, ¢y =172,

and hence (A, b, ¢) is an MDR of the DEDS producing (1.3), where

=(3,1/2), A= 20 b=(0,00T
C_(x ): - 041 _(’)

EXAMPLE 3

For the sequence ( 1.4), we obtain

Jo=2, A=4, N=2,
3 2
c=(531), A:[2 4}, b=(0,0T.

6. Postscript

In a practical situation, the instant jy at which the transient is deemed to have
finished is essentially a matter of empirical judgement. If the process indeed satisfies
conditions (4.1), (4.2), then this can be determined by sequential testing in real time
with an amount of calculation which depends only linearly on the length of the
transient, and the same is true of the computation of the parameters c,, k, and 6.
Hence, the proposed method constitutes a linear-time algorithm for constructing an
MDR for a DEDS producing a Markov-parameter sequence which is strictly convex
in the sense of (4.1), (4.2).

1t is clear that the construction works also for any sequence which is convex
and ultimately 1-A-periodic, though the foregoing proof of minimality of dimension
is no longer valid. Nevertheless, we conjecture that a suitable modification of the
argument will show that the procedure produces an MDR in this case also.

Finally, we note that the piecewise-linear functions involved in the construction
are actually maxpolyromials. For a full account of such functions, the reader is
referred to {6]. Maxpolynomials may be regarded as giving in their own right a
mathematical realisation of convex sequences which are ultimately 1-A-periodic, and
the ideas of the present paper may be adapted as a way of finding the most economical
such description for such a sequence.
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