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Solution of Systems of Linear Extrema! Equations

PETER BUTKOVIC

1. Introduction

In many recent papers (some of them see in references) there are considered
“linear” models where the sign 4+ represents in fact not only addition but other binary
operation like maximum or minimum of two numbers, union or symmetric difference
of two sets and other. The role of multiplication can be, of course, also different,
¢.g. minimum or addition of two numbers, Latin muitiplication etc. A survey of the
most often searched structures one can find e.g. in [5]. Some applications in industry
are given for example in [2] and [3].

In this article we shall investigate only cases when + is maximum (or minimum)
and multiplication plays its own role. In accordance with [7] the corresponding linear
systems of equations we shall call linear extremal systems. The systematic theory
of such a model will not be presented here and only some useful properties of these
systems will be given.

We shall distinguish three types of linear extremal systems: {I) all unknowns
are at the same side of equations; (IT} the unknowns are divided into two groups the
members of the first group being on the left-hand side of each equation and the un-
knowns of the second one together with an absolute term being on the right-hand
sides, respectively; (III) unknowns and absolute terms are on both sides but in every
equation at most on one side.

In all three types we suppase coefficients and absolute terms to be nonnegative.
Evidently, type (I) is a special case of type (II) which is a special case of type (11r).
It can be shown {see | 1]) that the last type is general enough, i.e. every system of linear
extremal equations and inequalities can be transformed by means of stack variables
to the type (I1).

Clearly, in current linear situations it is not necessary to distinguish the three
types mentioned above. But in our case solutions of those types are rather different.

2. Formalisation

We shall use the following notation. Let g, m, n be natural numbers. Then O =
={1,2,.,q, M={1,2, . ,m}, N={1,2,.., n}. Everywhere X, Y, ... are real
column vectors. X7 denotes the transposition of a vector X. Further we denote:

M, = {X| X" =[X,...X,],X;20 forall jeN},
M = {X|XeW, X;>0 forall jeN},
XoY=maxX;Y;,

JjeN
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XoY=minX,Y,, forall X,Yec,.

Jei
Supposing A is a nonnegative matrix of the type {a, n) we denote by A, the i-th
row vector and A’ the j-th column vector of the matrix A (for all ie Q, jeN),
Assume X e M, We define A 6 X, A o X as follows:
(AoXjemMm,, (AoX);,=A0X, for icQ,
(AoX)em,, (AoX),=A,0X, for icQ.
If moreover € = (C', C%,..., C'} is a nounegative matrix of the type {n, 1) then
A 5 C is such a matrix of the type (g, I) that (A6 C) = A 5 C/.
Partial ordering on 9, will be defined as usual:
X=Y if X;27, forall jeN,
and
X<Y if X;<7; forall jeN.

From the elementary properties of the operation & recall that for X, YeWi and
nonnegative matrix A

(1) XY implies AGX<AGY.
Now suppose
X=[X,X,. X, em,,

Y =Y, Y, .. Y[Tem,.
We define X @ Y, X @' Y as follows:

X@YeW,, (X@Y), =max{X, V) forall jeN,
X@'Ye,, (X@'Y),=min{X, ¥} forall jeN.

For an arbitrary real number o = 0 we denote by «X the vector [aX |, aX,, ...
. o:X,,]T.

Let L = (L) and R = (R,;) be nonnegative matrices of types (g, m) and (g, n),
respectively, B ¢ MR, The three types of linear cxtremal systems may be now written
as follows,
® LsX =B,
4y LoX=RoY®B,

(1) LoX=RoX&B m-= nLyR; =0 forall ie@, jeN.

In all three types the signs & and & may be replaced by o and @’, respectively,

All relevant properties of the system (I) are well known and described for exam-
plein [7], [8],[9]. But the types (1f) and (III) according to author’s knowledge were
not treated yet with exception of [1] and partly of [6].

We shall detive some basic properties of types (II) and (111} by means of known
properties of the system (I},
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3. A conjugate

Now suppose X e M, and A be a positive matrix of the type (9. n). We denote
by X~ the vector from the set M, defined by the following relation:

1
X );=—, jeN
(X7, x
and by A" positive matrix of the type (g, 1) defined as follows
1
(Ak)f_,':_ for ie Q,‘]'EN.
Ajj
Let L, R be positive matrices of the types (g, »), (g, m) respectively and B e M),
We define the sets S and 87 as follows:

S = {(ﬁ) € i["z:-+rn
s‘ = {(3)659?:_“"

The statement of the next theorem follows immediately from results in (8]

L6X=R6Y@B},

Lo U= R‘QV@'B_}.

Theorem 1. Under the assumptions made about L, R, B it holds: X e 8 if and
only if X" 8§~

4. Basic properties of the system (I)

In what follows it will be useful to utilize well known properties of the system (I)
We shall now briefly show some of them. For proofs and related problems sce e.g.

[7]. [8], [3].

We suppose L to have only nonzero columns. We denote for all JeN

Q;={ieQiL, = I?anLk,.},

X, =

and "X =["X,..,"X],
max L, ;
ke
P= {Xeiﬂi”]A()X: B} .
According to reasons given in [7] we assume in next theorems B e 2)32; and there-
fore in the following three theorems without loss of generality B = 1 T LN
The last vector will be denoted further by 1.

The;n-em 2. P = #if and only if

() Ug =2. ’

JjelN
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Theorem 3. If P & 0 then

a} “XeP,

b) XM, is an element of P if and only if X < ~X and for the set N =
={jeN|X; = "X it holds

UQ;=Q-

JeNy
Theorem 4, ~ X is the unique solution of (I) if and only if the system
(3) {Q;]jenN}
is a minimal covering of Q, i.e. (3) covers ( but its every proper subsystem does not,

Definition. A nonnegative matrix L = (L;;) of the type (g, n) is said to have the
i-th row covered if there exists an index k e N so that

Ly=maxL,.
reQ

By means of this concept we can interpret Theorem 2 by words: The system (I)
has a solution if and only if the mairix L has all rows covered.

This enables us to formulate the solvability condition for the system (I) in the
case when B is an arbitrary positive vector by the next statement.

Corollary of Theorem 2. The system (I) has a solution if and only if the matrix
created by means of multiplication of the i-th row of matrix L by 1 /B, foreachie Q,
has all rows covered.

The mentioned matrix can be, naturally, written in the form

diag {D;, Dy, ..., D}ok; D,=—, icQ.

13

Note that in the last expression the sign 6 might be replaced by the obvious
product of two maitrices.

5. A basic property of the system (I1I)

Now we shaw a property of (IlI} in a certain sense similar to that of system {1},
For an arbitrary X e M, and for all j e N we denote

OHX;) = {ie Q| LyX; = max L X,},
keN
%) ={ieQ|L,0X=8B),
OMX ) = {ie QN Q%) | Ry;X; = max R;X,} .
kel
Evidently, if X is a solution of (III) then
(4) UoHX,) = 2= Q"X v U o'(x)).
JeN jeN
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The opposite, however, does not hold. A counterexample: For X = [1, 1" there is

(o) =3 xel)

Theorem 5. If ~X is a solution of (I1I) then every vector X e i, X £ ~ X such
that the set

but (4) is true.

N, ={jeN|X,= "X}
satisfies the next condition is also a solution of (III):

UoHx)=0=0\X)ul 0% ("X).

jely JeNy

The proof follows immediately from assumptions and has the same background
as proofs made in {7] concerning the system (D).

6. Uniqueness of sofution
In this part we give a sufficient condition for the solution of the system (1II)
to be unigue.
In the remaining parts of the article we shall use continually this notation:

E(X)=L&X.

E{(X) means the i-th component of the vector E(X).
First we shall assume B e 9%, i.e. without loss of generality B =1

Theorem 6. Let B = 1 and ~ X e M, be a vector satisfying
5 Ro X<1.

Then ~ X is the unique solution of (II) if and only if ~ X is the unique solution of
the system

(6) LoX=1.

Proof. First suppose ~ X not to be the unique solution of {6). It follows then from
Theorem 3 that there exists a solution of the system (6) in each neighbourhood of ~X.
However,

T=1{ZeM,|ROZ <1}

is an open set in M, Thus there exists a neighbourhood of ~ X being a subset of T.
An arbitrary solution of (6) lying in this neighbourhood (different from ~X) is evi-
dently another solution of (III). Hence ~ X is not the unique solution of (6).

Tt remains to prove the opposite statement. Suppose = X tobe the unigue solution
of (6) (this implics ~X to be a sofution of (111)). According to Theorem 4 it means
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— 111

1

max Ly;
ke

and that’s why the condition R 6 ~X < 1 implies

X, =

R..
—— <1 forall ie,jeN,
max Ly;
keQ
or
Ry; . ,
(7) — <1 forall icQ,jeN, keQ;.

Ly;

In order to get a contradiction suppose ¥ + ~ X, Y € M, be also a solution of (ITI).
Then evidently E(Y) = 1 and E(Y) % T (according to the fact that ~ X is the unique

solution of (6)). That’s why there exists 7, € O satisfying E, (¥) > 1. Let j,,j, €N
be such indices that

(8) L

(Note i, € Q;..) Since Ry,;,"X;, < 1 we get owing to (8)

iu"lyjl = Eil(Y) = Rl'u'z Y:fl > 1.

Y, > "X,
Take an arbitrary 1, € Q.
Hence
EEZ(Y) 2 LY, > Ly X, =1
Recall L;jR;; = 0 for all ic Q, jeN. Thus (8) implies L, ;,
J1 % J». From (7} it follows that
R.

i1da <1
L

= 0 and consequently

iziz
and thus R, . ¥, < L, . Y.

i1j2*da t2jz2 " j2

Let jy € N be such an index that

Eiz(Y) = Rizfayja (>1) 4

Again there is j; + j, and for iy e Q,

Lizjzyjz = Rizisyjs < LiaiaYJ': .
By the same way we find indices j,, js, jo, .. {ju F j5 * js + ...) and i3, ia,
8o that it holds iy € Q;,,i5€ Q;,, ... and L;,;;, ¥, = R

i1t
< LisiJYja = R53f4Y.f4 < Li4i4Y:iq = Rl'-u"sYJ's =

Evidently, there exists an index j, so that

win¥n < LonYn <R

J2 i2j2- f2a = iziaY:fa =<

Jo = Ji
for some ke {1,2,...,v — 2} .

407



Hence we get
L

itk ij <R va

fw-1,Ju

what implies
L

ek

< R;

To—1,Ju

and contradicts iye 0, = Q. and (7), QED.

Now it is easy to give similar sufficient condition in a more general case, when
BeM, I B =0,0,..., 0]" then the system (II1) evidently cannot have unique non-

trivial solution and we may assume without Joss of generality that all positive com-
ponents stand before all zero ones.

Denote as usual A(1, 2, ..

» k) the submatrix of matrix A consisting of its first k
TOWS.

Corollary of Theorem 6. Let in the’system (III) be

By=B,=..=B=1,
Bk+1":Bk+2="':Bg=0:
lsk=g,

~X be a solution of (I1I) and suppose ~X to be the unique solution of the system

L(1,2,..,k) 6 X =1
and

R(L,2,...k)o"X<1.

Then ~ X is the unique solution of the system (IIT}.

7. An associate problem

Further we shall deal with (II). Everywhere we suppose matrices L, R to be

positive and B e E!R: .+ We can associate with (I} a corresponding “homogeneous’”
system '

(1V) LoX=Toz
where T is a matrix of the type (g, m + 1} with columns

RLR? .., R™ B
and

Z = [le Z2s R ] Z;r1+l]T *

Thus solutions of (IV) are vectors from M, .me1 and the veclor [0,0,...,0] is
always its (trivial) solution.

Theorem 7. System {II) has 2 solution if and only if the corresponding system
(IV) has a nontrivial solution.
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Proof. If [X,, X, ..., X, ¥i5..0s Y] " ds & solution of (TF) then [X, X,, ..., X
Y., .., Yy 117 is a nontrivial solution of (IV).

%: - Now suppose [Xy, ... X Z1, ...y Zws, ' 1o be a salution of (IV). Then due to
- the positivity of L and T there is E(X) ¢ M. If there would be Z,,, ; = O then every
: vector [Xy. ..o XpZy, o Z, Zy oy |7, Z,,, | being an arbitrary number from the
" ‘ interval

0, min 5
e 'BI'

is obviously also a solution of (1V). Hence without loss of generality we may assume
Zory > 0.

Since e-multiple of a solution of {IV) for every o > 0 is also a solution of (1)
we have that the vector
1 1
(X4 o on X0 Zhy o s Zpay |7
L1

G

i a solution of (IV). But this implies that the vector

1

(X5 oo X Zayns Z,]

m+1
is a solution of (IT), QED.

Note that the just presented proof shows also how to find a solution of (II)
if a solution of (IV}) is known.

8. Solution of the system (IV)

In this section we shall deal with the following problems:

FProblem 1. Decide whether the system (IV) has a solution.

Problem 2. If the answer on the first question is positive find at least one solution
of (IV).

First of all notice that if a nonzero vector [X,,.., X, Z,, ..., Z,,, 1" is solution
of (IV) then the vector

EX)=LoX=Toz
is an element of M, (due to positivity of L and T),

This implies according to Corollary of Theorem 2 that the matrices

diag —l—,...,—l— oL and diag —L,...,i oT
Fo E, : E, E

q

have all rows covered. The opposite holds trivially, too, Hence we have the next
assertion.,
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Theorem 8. The system (IV) has a nontrivial solution if and only if there exist
positive numbers Dy, ..., Dy such that matrices

diag {Dy, ..., Dy 0 L and diag {Dy, ... D,j 0T
have all rows covered.

Definition. Let L and T be matrices with g rows. (Ordered) g-tuple
(Dy, Dy, ..., D) of positive numbers is called an LT g-tuple if both matrices

diag (D1, ..., Dgj oL and diag{Dy,.., Df 0 T

have all rows covered.

Thus the task to solve the system (IV) means to find an LT g-tuple (Dy, ... D)
Then it remains to solve two systems of the type (D):

(diag {D, ... D,y 0 L)3 X = I
and
(diag {Dy, .., D0 T)0Z = 1.

Remark 1. If (Dy, ..., Dg) is an LT g-tuple then obviously (¢Dy, ... aD,).
o > 0is also an LT g-tuple. That’s why we may always put one of D; equal to a con-
stant (say 1).

In what follows we concentrate our effort on the explanation of the following
two facts:

A. To every permutation of the set 0 there carresponds a set of “significant™ g-tuples
of positive numbers. This set has at most (n+m+ 1)2" ! elements.

B. For every nontrivial solution of the system (IV) therc exists 2 permutation of the

set ¢ and a significant g-tuple corresponding to this permutation which is an LT
g-tuple.

After showing these facts it will suffice for the solution of both problems men-
tioned in the beginning of this section to test all significant g-tuples of gach permu-
tation of the set Q to be LT g-tuples.

Definition. Significant g-tuple corresponding to a permutation {ig, ... i,) of
the set O is every g-tuple (Dy, ... Dq) of positive numbers satisfying the following
conditions:

D, =1

i
and for every s = 2, 3,..., g there exists either an index j € N such that

D.L;= max D;ly;

)
k=1,...,5—%

or an index j € M such that

D,T,; = max DTy

k=1,..,8—1
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Remark 2. It follows irnmediately from this definition that the number of signi-
ficant g-tuples corresponding to a permutation lies in the interval

(9) Ay(n 4+ m+ 1170

Hence the number of all significant g-tuples of the system (1V) is not greater
than
gl(n+m+ 1771,
Example 1,
X, ®2X, =3Z, @4Z, ® 5Z,,
5X, @6X, =772, @ 8Z, ®9Z,.

Here we have g = 2, n = 2, m = 2,

12 345
L%(s 6)’ T"(? 8 9)'
For the permutation (i, f,) = (1, 2) we get (2 + 3)27! = Svarioussignificant couples:

(L), (1Y), (L), (1,3), (1,5). The reader can easy verify that if we join to this
system the third equation

10X, @ 11X, = 127, @ 13Z, @ 147,

then the new system will have exactly (2 + 3)3‘1 = 25 different significant triples
corresponding to the permutation (1, 2, 3).

Note that the lower bound in (9) can be reached if, for example, the row vectors
of both matrices L and T are created by the same vector.

Theorem 9. If the system (IV) has a nontrivial solution then there exists a per-
mutation (1, i,, ..., iq} of the set O such that at least one significant g-teple corres-
ponding to this permutation is an LT g-tuple.

Proof. Suppose
[XL’ AR} an zl: LR ZJ)|+‘]]T
be # solution of (IV) and D; = 1/E{X} for all ie Q. Hence (D, ..., D,) is an LT
g-tuple and we may assume {according to what has been remarked) D, = 1, Put
iy = 1, "Dy = D, and take f§, the least positive number f§ such that

(Dy, Dy, ..., BD,)

retains an LT g-tuple. It means for all & < f§, there exisls an uncovered (“critical”)
row either in the matrix

diag {D,, aD,, ..., oD, & L
or in the matrix

diag {Dy, aD,,...,aD )BT .

We take an arbitrary among critical rows (say with the Jeast indexj and denote
its index by i,. Naturally, there must exist either an index j e N with property
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BzDizLiu‘ = LU
or an index j € M with propexty
ﬁZDizTizj = le-
Denote
_‘Diz = ﬁzDiz .

Further take f§, the least positive number B such that

(Dla IBD27 LR ﬁZDi;_’ ey ﬁDq)

retains an LT g-tuple and take i; the least index among those of critical rows. Ob-
viously, there must again exist either an index j e N with property

ByD;,Li,; = max (Ly, BaDiLiys)
or an index j € M with property

ﬁ3Di3Ti3j = max (le1 JGZDizTijJ) .
Denote '
_Df3 = ﬁSDi3'

Repeat this procedure until we obtain i,. It follows from the construction pre-
sented above that the g-tuple ("D, "Dy ’Dq) is one of significant g-tuples
carresponding to the permutation

(L, iy, oo By)
at the same time being an LT g-tuple, QED.

‘The theorem we have just proved enables us to test whether (1V) is soluble via
testing the significant g-tuples corresponding to all permutations of the type (1, i, ...
..o, ig) of the set Q to be LT g-tuples. If no significant g-tuple would be an LT g-tuple
then according to this theorem the system (IV) has only trivial salotion. If some signi-
ficant g-tuple would be an LT g-tuple then it determines a solution of (IV) by the
technique mentioned in the beginning of this section.

These conclusions can be summarized in the following algorithm. The anthor
is aware of the fact that the importance of this algorithm is only theoretical (with the
exception of very small dimensions). The aim, Twowever, is to creaie a iheoretical
basis for further research.

9. The algorithm and an example

Algorithm

1. For every permutation (L, iz, ... i ) of the set { test all g-tuples {8y, Bas .-
.o ) satisfying following refations to be LT g-tuples:
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ﬁ]_:l,

It

BeQ,

[FY)

{ﬁlLi]j _}'EM},
%) 7

, PiTi;
]EN}U{ T

[
z lBFILJ),_] Zeaﬁh"rlhl ?
ﬁqEQq: A=1 jEN w k=1 ijEM>‘.
Lr,,j igi ‘
|

2. If there exists an LT g-tuple (1, Bss ..., B,) among g-tuples tested sub 1 then
the system (IV) has nontrivial solutions and one of them can be found by the successi-
ve solution (by the technique of Section 4) of two systems:

(diag {1, s, .., Bl L) 6 X =1,
(diag {1, 8,, o BdoToZ=1,
If such an LT g-tuple does not exist then the system (IV) has only trivial solution.

Example 2.
X ®5X, =3Z, ®5Z, ®27,,
22X, @3X, =62, & Z,® Z,,
X, ®2X, =272, B3Z,® Z,.

Here we have n =2, m = 2, g = 3,

15 352
L=[23]|, T=(611
12 231

Firstly we test significant triples corresponrding to the permutation (1,2, NP =1

ﬁZ = H ﬁ3e{%:§)2:%}>
B =3, Brefd 3,22 5).

The values of #; corresponding 1o fi, & {2, 5} would be useless 1o compute because
the first row cannot be covered for these values of B,. One can easy verify that none
of significant triples given above is an LT triple.

But take the permutation (2,3, 1). Computing one by one its significant triples
we find out that (1, 1, 2) is an LT triple.

That’s why the system has nontrivial solutions and one of them can Be found by
the successive solution of systems:

Wit pojm
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X, ®5X,
2X, ®3X, =1,
21X, ® 4X,

1l
.

Ii
et

and
32, ® 32, P 2Ly =

62, @& Z, D Z3
421 @622 @223= ]..

ool
—
- -

Thus solution of the given sysiem is e.g. vector

[’%: %5 %) %5 %]T o

10. System (IV) with ¢ = 2

Tt is not necessary to use the general procedure described in previous sections
in order to solve system (IV) with g = 2, i.e. the system of two linear extremal equa-
tions of the type (IV).

Next assertion gives a fundamental information about solutions of such systems.

Theorem 10. Let in (IV) be g = 2. Then
(a) it has a nontrivial solution if and only if

G = <min£23, maxL—z‘-‘> M <minﬁ—j, max—Tﬁ> +=0;
jeN Ly jen Ly jen Ty jen Ty

(b) the couple (1, D) is an LT couple if and only if
(10) DeD.

Proof.
(a) Denote .
¥ ={[1,E]"e Wiy | (AXeMm,) (L E* = L& X},
@ = {[LE]"e M; |(3Ze m,.,)((LE]'=T2 Z).

Obviously, the system has a nontrivial solution if and only if & o 2 + 0.
It remains to show: [1, E]" € & if and only if

Ly -
Ee <mm 221 max Iﬂ>
jen Ly; jen Lo
and [1, E]" € # if and oaly if
_ . T,.
Ee <mm LY . max »ﬁ'> .
jen Ty ey Ty
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We show only the first equivalence because the proof of the second one can be
carried out by the same steps and differs from the first only in denotation.

Denote
L' = (L;) = diag {1, E""} o L.
Assuming

i,
E > max =%
- jex Ly
we get forall je N

I..
Ly<2=1,="L
Lay

1j
1)
and thus L’ has the second row nat covered.
Similarly if E < max (L,;{L,;) we get for all je N
JenN
Ly > I

and thus in this case L’ has the first row not covered. In both cases the wanted con-
clusion follows immediately from the Corollary of Theorem 2.

Finally, let
; L. .
Ee <min Ly , max 2J> .
jev Ly, jen Ly;

Then there exist indices j,, j, € N (not necessary different) for which it holds

< Ex T
Llj] Llj'z
Hence
L
’ _ 2J1 y
Ly, = = Ly, =Ly,
E
and

L, =L, <Z%_7

172 1ja =

But this implies L' has both rows covered and it follows again from the Corollary
of Theorem 2 that there exists a vector X e Wi, with properly

LaX=1]1,E|".
The assertion (b) follows immediately from the assertion (a) if we take in mind
that (1, D) is an LT couple if and only if [1, D7 e & ~ @, QED.

At last two remarks:

1. The structure of the last system studied is not very complicated and it is not
difficult to give formulas expressing all solutions of this system,
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2. According to the part (b) of the last theorem it would be possible to simplify
the algorithm described in the foregoing section by testing only those g-tuples {#,,
B1s .. B,) the components f8; of which fulfil the condition (10} related to the system
of two extremal linear equations the first of which is the ® sum of equations with
indices 1, i, ..., i;—; and the second one isthe i ~th equation. This reduction, however,
is useful only from the practical point of view and does not create any theoretical
saving of computational work.,
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Resumé
RIESENIE SUSTAV LINEARNYCH EXTREMALNYCH ROVNIC
Peter Butkovié

“lanok nadvizuje na prace [11, {71, [8], [9], ¥ ktorych boli zavedené a sktmané sistavy
extremalnych rovnic,

Autor rozlifuje tri zdkladné typy tychto sistav. Vychadzajic zo zndmych vlastnosti I. typu
st odvodené vlastnosti sistav 2. a 3. typu.

Stistavam 2. typu sii priradené zod povedajiice homogénne sfistavy a pomaceu nich je sformu-
lovany a dokazany algoritmus, ktory a) rozhoduje, 2i mé ststava riefenie, b) ak riefenie existuje,
tak najde aspoii jeden vektor, ktory je riefenim sdsiavy. :

ZvI43 sa popisuje mnoFina riefeni sistav dvoch extremélnych rovnic.
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