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Abstract

Le_l us 'dcnote a@b=max(a.b) and a®b=a+b for a,he Ru [—==] andcxtend
ihis pair of operations to matrices and vectors in the same way as in cmwen[innavl' fi m' r
algebwa. We present a polynomial algorithm for fnding all essential terms of the e
characteristic maxpelynomial xa(x) = per{A @ x @ [} of malrices A wil‘h culites I
Qu {‘—w]. In the cases when all lerms are essential this algorithm also ':nlx-';-q the o
I'nll.nwmg problem: Given an nxn wabtrix A and ke (L, ... n] ﬁ;td ‘lhf' nv%ﬁﬁnl
optimal value for the assignment problem over all kx k [ninc‘ipn]‘ subm:ur-icr'.::-;nf ;\

W . - - H H H
Keywards: max-algebra, chatacteristic maxpatynoemial, assignment problem

| Introduction

A wide class Of, problems in different research areas, like graph theory, automata
theory, scheduIn}g theory etc. can be expressed using an altractive ft‘)rl;\lll'\li(‘ll(l (
!angua-g'e. by setting up an algebra of, say, real numbers in which the o wr':liom
of addition and multiplication are replaced by the selection of the |n-a;{lin‘1:|m ni’
the two numbers and arithimeticsl addition, respectively. Monngmphls 1L {2}
and [9]‘ can be, used as a comprehensive puide in this field. Among. other ;m'm'
works in the field are {3}, [5], and [6]. Specifically, significant elfart II:;‘: helejl
devoted (o huilding up a theory similar to that of linear algebra, for ilwl"mce t::
study s?!sr_ems of linear equations [R], eigenvalue problems ind‘e.pemh.:n(ce |:'u k
regularity and dimension. 1t lurns owd that there is only a [I‘ain barricr se 1'1;"1;'lul
these concepts and combinatorial propertics ol mairices. Tepen

———
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Letus denote a @ b=max(a,b) and a®b=a+b for a,be R=R U {—eo}.
The itcrated product a @ a ® ... ® a, in which the letter a appears k-times will
be denoted by a™. Let us extend the pair of operations (8, ®) to matrices and
vectars in the same way as in conventional linear algebra. That is if A = (ay),

B = (by) and C=(cy) are malrices or vectors over R of compaltible sizes then
wewrite C=A @B if cy=a;®by forall i,j and C=A@B if

Cy = ):f?aik ®by; for all 1, .

For any set X and positive integer n the symbol X(n, n) will denote the set of
all nxn matrices over X. The letter 1 stands for a square matrix of an
appropriate order whose diagonal entries are 0 and off-diagonal ones are — oo,
Principal submatrix of A=(ay) e _ﬁ (n, n) is as usual any matrix of the form

ai,i, ai.i: ailik
g, A, Ay
g, By, T A,

where 1<), <ip< ... <iy<n. This matrix will be denoted by A(iy, iz ..., ix).
The permanent of A= (ay) € R (n, n) is defined as an analogue of the classical
one:

pcr(A) = Z:EP_ w(A,n)

where P, stands for the set of all permutations of the set N= {1, ..., n} and
@
w(A, 1) = [ IieNai,x[i) .

Iin conventional notation per(A) = max Zaimm , which is the optimal value of
*EeN

the classical assignment problem. There are a nuinber of efficient solution

methods for finding per{A), one of the best known is the Hungarian method of

computational complexity o).

Characteristic maxpolynomial of A = (ay) € R (0, n) has been defined in [4] as

Aa(x) = per (A @ x @ 1), that is the permancnt of the matrix

a”EBx a9 ay,
321 ﬂ-n @K e aln
) dpq annG)x

It follows from this definition that ga(x) is of the form
(LY So @B ®x)D ... D (5, ®x™ D ™

ar, briefly &, .8 ®x" where 8,=0 and, by convention, x* =0,

Xa(x) by convention. Note that XA(x) may reduce to just x

Caleulating cssential ferms of a characteristic maxpolyioniinl 230
Example 1.1
Let A be the matrix
13 2
0 4 1
250
Then
T x 3 2
¥alx)=perl 0 4@x I =
2 5 O x
={1 @x)®(4®x)®(0®x)®(3® 1@DD2Q0R5 D
@ r(%*8)(4Ei-)x)®2)€B((l Bx}® 1 ®5)(—B(3®O®(O®x)):
=x ' PIR VDR DS. B

[t has been proved in [4] that for k = 0.1, ...n-1

| m
(1.2) b= Zueﬂwpcr(B)

‘\Svhere N(A) is the set of all principal submatrices of A of order n- k. Tence
Bn_ per(A) and 8, = max(a, as, .. .. Ay). Obviously, 8, = — e ilal

€ B{A) have per(B)=- oo in which case the term §, @ x™ i omilied from
™, for instance if
Xax) itiol , ance if
:Ij - ea forall i2j. For the method presented in this paper it will be essential
‘:, now the sma[lgst valurl: of k for which §, is finite (“the lowest order term'"}

e will answer this question in Section 2. ‘
The characteristic maxpolynomial ¢ 1.1) written using conventional rmtafion is

Ya(x) = max {80, 8; + x, &, + 2x, Sy +3x, .8,y (n~ Iy nx}

Henc.e Xalx) is the upper envelope of n+ | linear fur :
function, If for some ke {0, ...,0)

(kt ® i
B xM< 35 @x®

then the terin 8, ® x™ is called inessenti
Figures 1 and 2). Hence

ctions and Thus a convex

al, otherwise it is called essential (see

0 = 320 8 @x®

holds i * s ¢ i
m(:d‘;bfo'r all x E R if § .® X7 Is inessential, and therefore inessential terms

N y be tgnorf:‘d .If Xa(x) is considered as a function. In Figure 1 helow all teirig
of a characteristic maxpolynomial of a : )

3 X '] "]']“.ix T "d 1 ;I” e e55 i ]
b : ' . 1 C d] EW ‘e € C
A i ], al C..Clllhl.

appears in Figure 2 but the quadratic term is here inessential
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Aalx)

Figure 2

Figure |

This paper is motivated by the fact that although per(B) can easily be found for
any matrix B, &, cannot be compulted from (1.2) efficiently since the number of

n
matrices in B(A) is (k

Another molivation is retated to the following two combinatorial optimisation
problems:

OPTIMAL AP-SUBMATRIX (OAPSM): Given a matrix Ae R (n, n) and
ke (!, ..., n}, find the biggest optimal assignment problem value over all kxk

submatrices of A,
OPTIMAL AP-PRINCIPAL SUBMATRIX (PRINCIPAL OAPSM): Given a

matrix A€ R (n, n) and ke {1, ..., n}, find the biggest optimal assignnent
problem value over all k x k principal submatrices of A.

Although it is not dilficult to solve OAPSM [7], to the authars knowledge no
polynomial method is known for PRINCIPAL OAPSM. n Section 4 we will
present a polynomial methed for finding all essential terms of a characteristic
maxpolynomial. It follows from ( 1.2) that in the case when all terms in the
characieristic maxpolynomial are essential this method solves also PRINCIPAL

OAPSM in polynomial time.

2 Finding the lowest order term in the characteristic maxpelynomial

As has been mentioned before, for the main result of this paper it will be
important to know the lowest order term of the characteristic max polynomial,

[ - -

Calculaling esseniial terms of a charcteristic mixpatynomial M

Theorem 2.1

Let A=(ap) e R (n,n). Then 1 =x" if i

- = (8, , ). AlX)=x"" iTand only if the digraph D = (N. B
ts acyclic where N= {1 ....n}E={(.]))ay is finite}. - l i
Proof

If D contains a cycle, say (iy, ..., iy}, then per(Afi, ..., i =

ﬂ'fﬁz _Hli:ij ‘I‘...'*‘aiii[ > — oo ﬂ]l(] 50 6“,,;‘ 'iS ﬁlli‘c-

Conversely, if &, is finite for some ke[0, 1, ... . n— | } then there is

B e (A} such that per{B)} > - co, say B=Afi|,...,i,4). Let n bea
permutation .of (i1, oy dna) with w(m, BY = per(B) and let & be any of the
cycles to which #n decomposes, say o = {1y o0 Jo) where

- | {jl!'--!jrlgiil--»-sin-k}-
wen all of Ay Qg0 5, are finite and thus (i, ..., j) isacyclein D. B

Due to Theo-rem 2.1 we may assume in what follows that ya(x) = x*, that is
%a(X) contains at least one term of order less than n.
Let us now denote by Ay, the smallest finite element of the matrix A and by

Amns the biggest element of A. Also denote § = min(0, nA,;) and 6 =
max(0, 1A ). H
Theorem 2.2

[ X {8 [he ])Olﬂ! m ‘Vh'ch t - - ¥
wo dl“(_[e“t ferms I[Ol” X hd\c l ¢ sa value
Q) XA(- ) the same IU

{2.1) Xz & - 8.

Proof

Suppose that 8, + rxy =0, + 5%y forsome r.ge (0,1 ....n}, r>s Then
(2.2) {r—s)xp= 8 —8§,

and. clearly, 8 # —eo. I Ay S0 then (see ( 1.2)) 5,2 (1~ $)A i > 1A, =
i Awin 20 then 8,2 (0 —5)Amin 20 = §. Hence §,> & and by asimilar

H
=]

argument one can prove that & < 3. Therefore (2.2 yields (r—-s)xp=2 & - &

and (2.1) now follows since r—s>0 and § — §<0.
a 0

Let us denote § - 3 by &*
Corollary
If 8, ®x™® s the lowest order term in

: ! (x) then k= 6" —
and G = Y A(8*) ~k&*. X Xal0") —gald*- 1)
Proof

Bv Theorem 7 7 . =8 0™ v ail v © 8% TTanon ~ 84y . 99 1a
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Note that the task of finding the lowest order term in a characteristic
maxpolynomial is equivalent 1o (he task of finding the maximal value of k for
which there is a k x k principal submatrix B with finite per(B). By replacing
— oo by 1 and finite elements by O it is easily seen that this is equivalent to the
following combinatorial problem: Givena 0— 1 mattix A, find the maximal
value of k for which A contains a kxk principal submatrix with k
independent zeros (that is k zeros no two of which are taken either from the
same row or the same column).

i should also be noted that if 3 is finite then some of B, ..ry Oy May still be
— oo For instance for cvery matrix of the form

[} & —oo
—0o  —DO -
" —o0 —00

where the dols indicate finite elements, By is finite (pamely ajz+an+ aq) but
8, = - oo (since the permanent of each of the three principal submatrices of

order 2 is — o).

Example 2.1
et A be the mairix
3 -4 1
cea 7 —w
a0 —eo

Then Amax:?‘; Aminr*:_4: §:— 12, SZ 9, o =-—121,

3 -4 1 3 -4 1
wa (B%) =per| —eo 2 —eo =16, 04 =)=~ 2 - =—17
~w 0 21 —co 0 =22

Hence for the lowest order term k = 1 and S =-16+21=5.
Tt is easily verified that YA() =3 @) DO ® My .

3 An estimate
In what follows we will restrict our attention to matrices whose finite entries are

all integers. Note however, that the method we will develop will be readily
applicable to matrices with rational entries since if B is a matrix obtained from

A by multiplying each cntry by a constant, say ¢, we have that xa(x) = cXalX) .

Therefore the task of finding the characteristic maxpolynomial for a rational
matrix can be converted to the same task for integer matrices by multiplying all
entrics by a common multiple of all denominators appeating in the matrix.

We denote 2w {—=} by 7.

" .
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Theorem 3.1

Let Ae ?J(n, n} and x and x' be two different points in each of which two of
the terms in xa(x) have equal value, Then

(3.1 Ix—x’l>L.
)

Proof

Suppose that x is the point of intersection of 8, ® x™ and &, ® xX™ (h>m)

& X X, 15 lh p(_" rsection Ul 5 Qg" 1 c"ld 5 ® X 1> .
ln([ X, # (5] nt 0{ mie 1 i ! -

X =

6, -9, 5}——6i

VX =
bh—m i—j
and so

(32) x—x]= (=), ~8,)~(h—-m)(8, ~8,)
(h—m)(i-}) -

f\l] {inite entries of A are integers, thus the numerator in ( 3.2) is a non-zero
integer, hence at least 1. At the same time, h—m <n,i—j<n and sn

1 . .
2;;2—. Equality would imply (sce the denominator of { 3.2)) that

Ix.—x’

l - . 0 . v .

— 1 =1, = I - n Wh[(.h ase the aumeralor tu to zere ol ¥! N

1 1 n,m Ci ms A ), A COnir |d|(:“[)ll
a]l[[ SD(B']):IU“D s .

4 The method

Here we present a method for finding all essential terms of the characteristic

]naxl’olynu“”dl Uj a glVCli matrnx l'!i = (ﬂ ) € Z (n ") ihﬂt S i T “] dl[l & SDEC
3 1 3 R
Ul [} 1 0 g 3 I.‘ {

[31] 3+

Yalx) = zleﬁﬁi Qx®
fo.r all xe R. Recall that due to the results of Section 2 it may be assumed
without loss of geverality that xa(x) contains at least one term other than =™
and that the lowest order term is known.
The method is based on the foliowing two simple observations:
O[:‘I]l is easy o cv_alunte— x,\(.i) for any particular valne X since (his tagk is
cmclt y that of finding the optimal value (or the assignment problem for the
matrix A®@¥ L '
02: M x is a point of interseciion of two lerus of ¥a(x) then by Theorem 3.1
the interval (a, b) where a= x— ]— = X ]

(a, b) X and b=X + - does not contain other

n 1 N




I B. Butkovic and L. Murlill
244

terms passing through ¥ @ if alf three points (a, x,\(a))‘, (X, (% )'), (b, ')(A(b)).
belong to one line then this line corresponds to the unique essenllell] term passing
throngh ¥ ; if they don’t belong lo the same line then they determine two
essential terms intersecting at X .

Algovithm ESSENTIAL TERMS o
CInput: A= (ag) € Z (n, n) and the lowest order term of xa(x),say kx+ 0.
Output: The set K of all essential terms of galx) .
<l> K(NOWN) := { kx+ 8, nx}
C(OUNTER) =2 _
Q(UEBUE) := {(kx+ 0, nx)}
<2> If Q=@ thenstop ) ,
Take any (kx + 8, k'x +8) e Q, Q=Q - {(kx + 8, kKx+97]
o 8-0
TRk : i
3> Compute xa(¥) and check whether it is equal to k¥ + & for some
kx + & € K. 1f yes, then goto <2>else goto <d>.
1
<4> a=%- —l— bi=% + 5

n}1 n

IF xa(%) # — (afad + 2a(b) then goto <6> else go to <5>.
2

<5> Kuew == —12— n? {xalb) —xafa))

6m:\:lf = XA( X)- krmw X
Q = Q U [( KpewX + 5m-.wn kx + 6). kx+de K]
K=K U {Knewk + 8m‘.w }
C=C+1
If C=n+ 1 then stop else go o <2> , ~
6> Knew()) = 08 AN = ZACE D Kaew(2) = 07 (XA(X) = Xal2))
Boew(D) = AALK) ~ ke (). X (i=1,2)
Q = Q o {(kucw(i)x + 8ﬂcw(i), kx + 5), i=1,2; kx + be K}
K= KU Kewlix + Bunlifii=1,2 }
C:=0C+2
If C=n-+1 then stop else go to <2>

Theorem 4.1

Algorithm ESSENTIAL TERMS is carrect and its compulaﬁonal complexity is

o).
Proof .
Correctness: Upon termination of the algorithm either C=n+1or Q=0 In
the first case correctness is trivial and we prove it in the second case_by

Calculating esscntial ters of a chaacteristic maxpolynonsial 245

two lines whose value al x is ya{x). llence we can assume that ai 1lie
termination of the algorithm

(4.1) Aalx) = F(x) Torail xeX.

We need o prove that y.(x) =I(x) forall xe R. Clearly, xa(x) = [i(x) for all
xe R, Suppose that the strict inequality holds for some xe R, hence also over

some interval. This interval is bounded since tlie [irst and Iast lines of yA(x) are
in K.

Suppose that (a, b) is a maximal such interval, that is
(4.2) xalx}) > F(x) for all xe(a, b},

Aala) = F(a),
2a() = F(b).
(Note that yA(x) may consist of more than one line over (a, b).)
Set ky = max {k; kx + de K, ka + & = F(a)}.
ky =min [k; kx + §ie K, kb + 8, = T{b))
and let z be the point of intersection of the lines kx + By, and kyx +8, ., that is

ak —ak
z=-———- (see Figure 3).
kl - kz

Since F(x) < xa(x) < ﬂ%'fl(i‘l(

—&

x—a)+F(a) for xe(a, b), we have

- Ii(b) —F{a)

kq 5 - By substituting Tor F(a) and F(b) and using simple
—-a
manipulations we get
&, -8
a2 B 7.
kl - kz

We can similarly derive that z <b. Butthen xa(z) > F(z) by (4.2}, a
contradiction to ( 4.1) since ze X,

Computational complexity: It is easily seen that the individual steps <1> to <6>
in the algorithm have the following complexities: O(1), O(1}, O(n™), O(n),
O(n), O(n) (we assume here that the values of xa(a), xa(b) and Aal X)) are
stored and thus they are calculated only once per iteration). One run of the loap
<2> lo <6> is therefore O(n'). A new pair of lines appears in Q only if af least
one of the lines has been accepted as a new essential term. QOne lerm cannot he

. I
accepted as an essential term more than once (sece <A=yand each of — n(n + Y
2

or less points of intersection of up to n + 1 lines will be processed at most once.
Hence the number of iterations is O(n?) and the computational complexily
bound follows, ' 2]
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kgK + akz
-
a 7 b X
Figure 3
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Polynomial algorithm for linear matrix period
in max-plus algebra
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Summary

Linear periodicity abrices i ] i i i

li F periodicity of mabrices in inax-plog algebra is studied. 1t is proved Lt

(.)m .'lnn‘d.r factor matrix and Lhe linear period of a mabrix A can he compniled in

. ) N [ ! . CR— - . . . L

- (1' )lllmm, l];/l is d‘]ll‘l().‘xf. linear periodic. Compulalion of Ue coordingle linear

periog pt*.r(u'-j) for given indices 4,7 € n is shown 1o be NP dard, Furlher
Ll = e 4 - - . ’ ' T

: polynomial algorithm is described, which decides whelher a given malrix

is alinosl linear periodie, il the matrix Tulfils a condition of ncomparability

[or tr;vmi strongly connected components. general, this probleny is N
contplite,

keywords: lincar malbrix periodd, max-phis algebra, NP-complelenoss
1 Introduction

Diserete dynamic systems . I aic l

arele yna ENE l.(.m.“' anil ()l.']](,l E:.lgcifln.l(, slrncloves are oflen sbieiod
llfam‘[j max-plus or max-min madrix operations and digraphs [2, 13, 16]. 1
the ruax-min matrix theory, the convergenc todici ki
e phacmin ;; p .I ury, the convergence and periodicily of maliices were
stadied in [1, 14] wnd by olher authors, Polynowial algorithms and A
completeness resulls for madrix and orbit periods in mas min algebea are pre
ery N . r . 3 - - . . B h
senled in [5, G, 7). Polynomial algorithms lor computing Ll malbriy period in
max-phus algebra, are described in [3, 4, 11, 12).

f’\.Ill()!'t‘ general notion of a linear malrix period in imax-plus algehra was
.'-,l-llr.llt‘(! i [8l. An afgorithn Tor computing. the value of e linear mal rix
;)t'rmrl fclal‘ a grven malrix A will slrongly connectod digraph was presenled
[‘ ‘.v']‘. \ l1 5 i N . . - . . . - ) .
] leﬂ ]0 thuwn,Jl.hd.I. Lhe problem of Tincar periosdicily of matriees i -
tas algebra is -¢. e, i e ogencral o T8
Phis algebra is NP-complete, in the gencral case, In [9, 10}, more eflicient




