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1. Introduction

In some of recent papers the extremal algebra and related structures have been
treated, see e.g. [1]—[3], [5]—[13]. They deal particularly with the systems of linear
equations over these structures. For example,  [6], [10] and [12] the systems
of “one-sided” linear equations are considered, moreover in [12] the numerical
methods for the solution of the corresponding linear programs are developed. Iterative
techniques for the solution of the systems of ‘“‘two-sided” linear equations (or,
shorily two-sided systems) in some special cases are derived in [7}. The problem
of eigenvectors of a given matrix might be, of course, also considered as a problem
of the solution of the two-sided systems in a special case. This problem was solved
in[3], (6], [8], [10], [ 1], [13]. The general two-sided systems as well as the minimiz-
ation of isotone functions over their solutions sets have been treated in [1], and
in [2] there are given necessary conditions for the existence of nomntrivial solutions
of the homogencous two-sided systems.

The aim of this paper is to present a method for finding all solutions of the two-
sided systems. It is an analogue of finding all solutions of the system of linear in-
equalities in the classical linear algebra by the successive elimination of inequalities
(cf. [47). The analogy is more evident if the idea of extremal sign of numbers intro-
duced in [9] is used. However, this technique is avoided here because it is not very
familiar.

2. Econemic motivations

1. The first motivation is based on ideas treated in [5]. In industrial processes
it often occurs that the machines do not work independently. There may happen,
for example, that some of the machines produce semiproducts which will be used
in the next cycle of activity by another machines.

Suppose that n machines act in the way described above and that a; J-(r) is the
activity duration of the j-th machine for the i-th machine in the r-th cycle, for all

Li=12...1 and natural numbers r. Denoting the starting time of the -th cycle
of the machine i by x{(r) we get the following system of relations:
(1) x{r + 1) = max (x,(r) + a (P o 2, (7) + anlr)) s

i=1...n.

Writing x @ y instead of max (x, y) and x @ y instead of x + ¥, (1) becomes
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xfr + 1) = j:nzlﬁ ai(r) ® ()

or, using the obvious matrix notation:

(2) . x(r + 1) = A(r) ® x(r}).
One can easily check that there holds an “gctivity equation’:
(3) x(r + 1) = C(r) ® x(1),

where C(r) = AU) @ A(r - ) ® ... ® A(l).
Suppose that another system of n machines acts by the same way and that its
activity equation is

y(s + 1) = D(s) ® ¥(1).

Problem: When have the machines of each system to start their first cycle
to reach that every corresponding pair of machines start at the same time their #-th
and s-th cycle, respectively?

In the algebraic terminology we have to find a nontrivial solution (if it exists}
of the following system of equations:

() Cex=DQy,
where we have denoted to simplify €(») by C, D(s) by D, x(1} by x and y(1) by y.

11. Now we use the motivation described in [10]. Suppose that the systems S,
S, will work in one of m mades (it is not known in which one). Both systems consist
of 1 and k subsystems, respectively. The breakdown of an arbitrary subsystem in-
fluenices the work of the whole system in such a way that the breakdown of the j-th
subsystem of Sy, resp. S in the i-th mode causes with the probability a,;, resp. by;
the breakdown of the system S; and S, respectively. We have to find out whether
it is possible to determine the breakdown probabilities Xy, .o Xy Y15 - Vi of the
subsystems such that the breakdown probabilities of S; and S, will be equal in
whichever mode they will work. This demand leads to the system of equations

(5) max a;x; = max byy;; 1= 1.enm;
J=1lu.,n F= 1,k

which is of the same type as (4) denoting max (x,y) by x @ yand x.y by x @ y.
3, Definitions and basic properties

Let (G, ®, =) bea nontrivial, commutative, linearly ordered group. Its neutral
element will be denoted by 1. Let

G° = Gu {0},
where 0 is the adjoined element and extend & and = on G° in such a way that
a®0=0®a=0 foral aeGY,

az=0 forall aeG”.

204



Define a binary operation @ on G° by the formula
a @b =max(a,b) forall a, beG°.

The triple (GO, @, ®) will be called cxtremal algebra. The symbol ¢ > bfora, be G°
means that « = band a + b.

Supposing m, n = 1 to be integers we denote the set of all (m, 1) matrices over
an arbitrary set S by S(m, n). The set S(mm, 1) will be denoted shortly by §,, and its
elements will be called vectors. Extend @, ® and Z on matrices over G° by the ob-
vious way. If A e G°(m, n) then the element of A in its i-th row and j-th column
will be denoted (A),; and its i-th row by A;. The symbol AT means the transposition
of the matrix A and the matrices (incl. vectors) each element of which is 0 wili be
denoted by 0. Many properties of matrices over an extremal algebra may be
derived from the results presented in [6], [7], [10], [12], [13]. Let us mention some
of them useful in our further considerations. Suppose that &, I, m, n = 1 are given
integers. Then the following formulas hold:

(6) ARBRC)=(A®B)®C forall AecGI),
Bc G, m), CeG’m,n};
(7) ARB@®C)=(A®B)®(A®C) forall AeG'k 1),
B,CcG'(I,m);
(8) AceG(m,n), XeGl— {0} =>A®XeG,.

4. Homogeneous system of two-sided linear equations

Suppose that an integer n = | as well as ay, ..., a, by, .0, Dy € G° are given.
The equation
Q L]
= i=

J

is called two-sided linear equation. Let, moreover, an integer m = 1 as well as the
matrices A, B € G°(m, n) be given. In what follows we shall denote the set 1,2,....m}
resp. {1,2,...,n} by M and N, respectively. Consider the system of two-sided
linear equations

YA, ®x; =) 0(B); ®@x;ieM,

JeN JeN
or, in the vector-matrix notation

(10) ARx=B®x.

This system is said to be homogeneous. Denote its solution set by S. There is always
0 e S and this vector will be called trivial solution of (10}.

Proposition 1: If x,y € S and a, be G then
aRxpb®yesS.
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Proof: The assertion follows immediately from (7).

Proposition 2: For a given equation (9) there exists an integer w = 1 and
a matrix T € G°(n, w) such that the solution set of (9) is equal to

{T®z|zeGy}.
Proposition 2 will be proved in the next section.

Proposition 3: For a given system (10) there exists an integer w = 1 and a matrix
T e G%n, w) such that
S={T®z|zeG)}.

The matrix T from Proposition 2, resp. Proposition 3 is said to be the matrix
of generators of the equation {9) and the system (10), respectively.

Proof: We may write the system (10)in the form

A ®x=B ®x,
A,®x=B, ®x,

A,® x =B, ® x.
Define the matrices Ty, Ty, ..., T, and Ry, ..., R, over G° as follows:
1° R, = T, € G%(n, w,) is the matrix of generators of the equation
A ®x=B ®x.
2° Suppose that the matrices

T, e G°(n, wy), R, € G%n, wy),
T, e G'(wy, wy), R, e G%(n, wy),

:l'i_l € G(wi—z, wi—q), Ry €Gn,woy),
(iz 2) are defined. Then T, will be the matrix of generators of the equation
(11) (Ai &® Ri—i) VY = (Bi @ Ri—l) ®Y.

The number of columns of T, denote by w;. Thus, T;e G°(w,_, w;). Set R, =
=R_,®T,.
We shall show that R,, is the matrix we are looking for, i.e. that

S={Rm®z|zeG° 1.

Wm

Note, at first, that R, =T, @ T, ® ... @ T,.

i} Let x&S. Then A; ® x = B; ® x and thus according to Proposition 2
there exists 2/ e G5 such that

(12) x=T,®zD.

Hence,
A, (T, ®z")=B,® (T, @z").
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But due to (6) the last equality can be written as
(A, ®@R)®z" = (B, ® R)) ® 2z
and from Proposition 2 applied on (11) with i = 2 we have that there exists zf?'
satisfying
2D =T, ® 2
Thus, using (12) we get
x=(T,®@T,)®z% =R, ® z¥,
Onme can easily verify by induction that there exists 2™ e G}, such that
x =R, ® ™,
ii) Let, conversely, z € Gﬂ,m and take an arbitrary i e M. We have to prove that
A®R,®2z)=8,0R,®12).
But from (6) we deduce that it soffices to check the relation
(A QR_)®T,®(T,,®..0T,®z) =
=B,AR_ )T, ®(T,, ®...0T,®z)

which holds true because T; is the matrix of generators of the equation (11), QED.
5. The proof of Proposition 2

Iemmal. Leta, b, c, de G% g > b. Then
[xeG’|a@x@Dc=b@x@d} ={xeG|a@xBc=d}.

Proof. Let a @ x B c=b®@x®d. Suppose x + 0 (otherwise the proof is
trivial). It is easy to verify thatthen a @ x > b @ x andthus e @ x @ ¢ > b ® x.
This yields that ¢« @ x @ ¢ = d.

let a@®@x@Dec—=d Hence dZa®@x=2bh®x and thus d=5s& x @ d,
QED.

We say that an equation is equivalent to another equation if their solution sets
are equal. An eguation (9) is said to be in the standard form if for all j e N there
holds

(13) a; % b;= min(a,, b)) = 0.

According to Lemma 1 every equation (9)is equivalent to an equation in the standard
form. Thus, we may assume without loss of generality that for the coefficients in (9)
the implication {13) is true. This situation can be described schematically as follows

(0,...,0,2,...,e, €y, a,(},...,O)@x =
= (O,...,O,e,..., e,0,...,0,b,..., b)@x.

This scheme corresponds to the partition of the index set N into four subsets:
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I:{jEN|(fj=bj:O}’ J:{jEN|GJ~=bj:|:O}’
K={jeN|a;>b}, L=1{jeN|b;>a}.
Let us define the following system of vectors:

e N7 forall iel, where

n.

=(el,...,e
=0, if j+1,
=1, if j=1i;
ri={(ri,..,r})0 forall ieJ, where
r=0, if j4i,
=at=b]t, if j=1i; ?
sU= (5., BT forall keK, leL, where !
st=0, i je{kl}, '

=q ', if j=k,

=bt, if j=1I;
P = (P, T forall ieJ, heK u L, where
rt =y, i jEh,
=a;', if j=hek,
=&k ',if j=helL;
stlh = (et B forall keK, leL, he LuK — {k, I}, where

spth =8yt i j+h, “
=a, ', if j=heK -1k}, l

=h', if j=heL-{1}.
Lemma 2. The equation (9) has a nontrivial solution if and only if f U J U K x

x L&+ 0.

Proof. 1 u J U K x L+ 0 then there exists at east one of the vectors e’, ie;
or rl,ie J;ar s, ke K; | € L; everyone of which is a (nontrivial) solution of (9).

If, on the other hand, I J UK x L=0 then I = J =0 and with respect
to the facts that

TUJUKGUL=N#+@¢ and KnL=90
thereiseither N = Kand L= 0Qor N = Land K = §.

In the first case we get from (9):

maxa, ® x; =0
iel
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end a; > 0 for all i e N, what implies that the unique solution of (9) is ¢. The second
case can be treated by the same way, QED.

Note that the systems (4}, resp. (5) can be regarded as special cases of the system
(10) in each equation of which there is J = @ taking

(G, ®, 2)=9 =(R, +, =
and %, = (R", ., 2),

respzctively, where R is the set of reals, R* is the set of positive reals and = is the
obvious order of these sets.

Proposition 2 will be proved if we show that ye G® is a solution of (9) if and
only if it can be written in the form

(14)
y = ZEBEI ® ei ('B ZGBQI ® ri @ Zﬂaaksi’ ® sk-l @ Zﬂagi-ﬁ ® rl’vir @ Zﬂ)akvlsh ® skti-h ,
iel ieJ kekK e kek
leL hekuL leL
heLoK - (k1)

where &', o', 6", o™, 0" ¢ G°. Namely, if the sums do not exist then J u J U K x
X L= and according to Lemma 2 there is S = {0}. But then it suffices to take
an arbitrary integer w > 1 and T = 0 G°(n, w).

It is not difficult to see that all vectors e/, iel;t/, jeJ; & keK, le L; ri*
ieJ,heKuL;s"™ keK, leL he LUK — {k, I} are solutions of (9) and thus,
according to Proposition 1, every linear combination of these vectors is also a solu-
tion of (9). It remains to show that every solution of (9} can be expressed as a linear
combination of the mentioned vectors. Let x = (x,, ..., x,)" € 5. We shall distin-
guish three cases (at least one of which has to oceur) denoting by » = ¥ %2, ® x; =

— Zebi ® x,: ieN

feN
1°y =0,
040 and (Jed)v=a,®@x=b;® x;,
3°v+0 and (feK)(3gel)lv=a,®@x =b,® x,
I{] the first case there must be x; = 0 for all i € J U K v L. Hence it suffices to
take &' = x; for all i e/ and all other coefficients equal to 0.

CaseZ”.Nowthereisai =b; > OandforallieNag, ® x; £ vand b; ® x, < v,
implying

(1) a;'®a;®x; <x; and
b'® b, ®x; =x; forall jeN.
Take g = x, forall iel,
o' =a;® x; forall ieJ,
o' =a, ® x, forall hek,
= b, @ x, forall helL
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and @' for all ieJ — {j}, he K U Las well as all other coefficients equal to 0.

Let y be the vector defined by (14) and take an arbitrary f e I. Then

V=22 Qe = Qe =x01=x.

fel

Take te J — {j}. Then

ye= 2% @@ )% e = ®a @0=a,®x,@a

et heKuL

because here t€ K u L and ¢ + j. Further,

y; = Qj ® aj—l @® Z@Qi-h & T'j: o) 2691'.11 & fj —

heK hel,

=x;05%,®x®a4 " @Y% ®x b " =X,

ek heL

due to (15). Take re K. Then

_ ih Jdak IR S 0.t Wet
Y= 200" @ =30 @ M = @ =

ie] heK
heKOL
-1 B
=a,®x,a, =x,.

By the same way it can be shown that y, = x, for ¢ € L.
Case 3° Here a;, b, > 0 and for all i € N there is

(16) a;' ®a; ®x; = x; and
b'®b®x = x,.
Take now g =x; forall iel,
¢'=a,®x; forall ield,
o’ =a, @x;=b,®x,,
ol = g, @ x,, if heK

=b,@x,, if hel

and all other coefficients equal to 0. Let again y be the vector defined by (14) and take

an arbitrary tel. Then

i i t t
=2 Qe ='®@e¢ =x&1:=x,.

iel

Let te J. Then
yr=Z®Qi®J'§=Qt®a:1 :ﬂ;®x:®a;1:xt-

ief
Let teK — {f}. Then

* i R g )]
y':a_fﬂ®s{g® ZGB ﬂ-fyr®s{ql:
heKul—{f g}

=0 @ =a,@x,®a," = x,
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because 1 ¢ {f, g}. Further,

f ) g g
yf:Ufg®S§g® E@ O.J"gr®sj":9ﬁ=
heKwL —{f-g}

=4, %, Qa;'® Y® 0,0x0a' =x,

heKwL—{fg}

due to (16). The subcase ¢ € L can be proved analogically, QED.

6. Non-homogeneous systems of linear equations

Consider the system

(17) ARxPec=B@x@d,
where A, B € G%m, n); ¢, d e Gy and the “corresponding” homogeneous system
(18) A cg®z=(B,d)®z

(written block—wise). The following assertion describes a trivial fact about solutions
of these systems.

Proposition 4: Let x € Gy. Then x is a solution of (17) if and only if the vector
(’D (written block-wise} is a solution of (18).

This enabies us to use the method derived above in order to solve the non-
homogeneous systems of linear equations; for details see numerical Examples 3 and 4.
Naturaily, there may occur that (18) has a nontrivial solution, while (17) has no
solution. The following Proposition gives a sufficient condition to avoid such a situa-
t1om.

Proposition 5: Let A @ Be G(m, n) and ¢ ® de G,. Then (17) is solvable
if and only if (18) has a nontrivial solution.

Proof: Let x € G§ be a solution of (17). Then the vector z = (T)is a (nontrivial)
solution of (18).

Let z = (zy, ..., Z,44) € Goy; — {0} be a solution of (18). Firstly we show
that without loss of generality we may assume z,,; € G. Suppose z,4; = 0 and let
v = (vy, ..., 9,)" € G be the vector defined by the formula

(A,c)®@z=v=(B,d)®=x.
Then there holds
v=vy®dvy=(A@B cad®z
and thus, according to (8) and due to the assumptions we get that v € G, This yields
that g € G, where
g = min{c; ® d;)~" ® v;.

ieM
But the last formula implies that ¢; ® ¢ = v, and d;, ® g £ v, for all ie M and
hence the vector y = (zy, ..., 7,, q)" is also a solution of (18).
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According to Proposition | the vector
-1 -1 -1 T
zn+1 ® Y= (2rr+1 ® Z1s tr zu+I ® Zus l)

Is a solution of (18), too, what implies that the vector (z,; !, ® i 2 ® 7, )t
Is a solution of (17), QED.

7. Numerical examples

i general, but in Some cases it may be founded by a practically good limit (c.g. for
the problem of eigenvectors).

Example 1. Consider the System (10) with

320 301
A=[002], B=(10>
213 013

Here m = n = 3 and for the first equation there is J - 0,J = {1},K = {2}, L={3)
and thus '

o= (40,007,
$*3 = (0, 4, 1),
r? = (11, 0)F; rt.3 = &0, 47, implying that
104

13
0

T, =R, = and w; = 4,

= )
— O e

0
0
Further we find out that
A ®R, =(0,0,2) @R, = (0,2,0,2),
B: ®R, = (1,0,2) ® R, = (3.2, 1,2).
Hence for the equation

(A2®R1)®y=(Bz®R1)®y
weget! =0 J = 24LK=9 1= {l,_3} and thus
r* =(0,4,0,00"; ¢ _ (0,0,0, 17,
= B40,07; 2220y 3 0
rh=(3,0,0,4)7; 43 - (0,0,3, 1T,
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g

)

implying that

0Lt1i11
R,=T,®T,=[|404%+303] and w, = 06.
P i 44l

We see that fourth and the sixth column of R, are equal and the third one is the sum
of the first and the fifth. Therefore it suffices to take instead of R, the matrix

1\

ﬂ.
1
2z
Then we find out that for the system
(A, OR)®Y=(B,®R})®Y
thereisf = ¢, J = {1,2},K = {3,4}, L= ®and thus
o =(2,0,0,07; 2 =(0,%0, 0)",
P13 = (3,0,5,00; 1t =(3004)",

3 = (0,445,075 >t =(0304)7,

0%
R, =40

v

M= N

implying that

i
0544134
R, =R, ®T;=|503%30] and Wy = 0.
1111413
333 3 3 3

After deleting the dependent columns (the 4-th and the 5-th) and multiplying the
others by appropriate constants we conclude that x js a solution of (10} if and only
if it satisfies the relation
0163
x=11090}|® z,
2342

where z is an arbitrary elemeat of Gj.
Example 2. Consider the system (10) with
A = 21  B= 61 .
12 i0
Here m = n = 2 and for the first equation we have [ = @, J = 2LK={1},L=0
and thus

2 =(0, 1) = (4,1), implying that

R, =T, = : and w\ =2
5 1 11 1= 2.
Further we compute that

A, ®R; =(2,2); B, ® R, =(0,1).
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Henée, in the equation
(A2® R1)®Y=(Bz® R1)®Y

thereis I = J = L= 0, K = {1, 2} and thus, according to Lemma 2 the considered
system has only trivial solution.

Remark. In [6] a procedure called «7-test has been developed which can be used
to delete columns of the matrix being Hnear combinations of some of the other
columns,

Example 3. Take the system (17) with

32 30 o\ 1
A=1{00|, B=l10], e=[2), d=1[2
21 01 3 3

We see that the system treated in Example 1 is just the corresponding homogeneous
*1

-

system. Hence we deduce that all solutions x = ( ) of (17) are of the form

23

N 0163\ |z
(xz)_(1090 PN

Zy

NN

where z4, 25, 25, 2, are arbitrary elements of G° satisfying
(19) 202, B30 ®4IR 2 2@z, = 1.

Since (19) is solvable (the set of all solutions of (19} can be found by methods given
in [6] or in {12]), we conclude that (17) is solvable.

Example 4. Letin (17) be

a0 oG e () «-()

For the corresponding homogeneous system we find out that R, = (0, 1, 0)" and thus
all its solutions are of the form (0, z, 0), z € G°. Since among these solutions there
does not exist anyone with the last component equal to 1, we conclude that (17)
is not solvable.
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Souhrn

ELIMINACNA METODA PRE NAJDENIE VSETKYCH RIESEN{
SUSTAVY LINEARNYCH ROVNIC
NAD EXTREMALNOU ALGEBROU

Peter Butkovit, Gdbor Hegediis

V Glanku sa dokazuje, ¥e tak ako v linearnej algebre pre kaZd homogénnu sustavu lipear-
nych rovnic nad extremilnou algebrou existuje konenid mnofina vektorov (generdtorov),
ktorgj linearny obal sa rovnd mnoZine riefeni takefto siistavy.

Popisuje sa spdsob, ktorym mo¥no mnofinu generdtorov ndjst a vyuZif ju na explicitné
vyjadrenie v¥etkych riedeni Tubovolnej (nehomogénnej) sistavy linedrnych rovnic.
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