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ON PROPERTIES OF SOLUTION SETS OF EXTREMAL LINEAR PROGRAMS

P. Butkovié
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Nam. Febr. vitazstva 9
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Czechoslovakia

Two sided systems of linear extremal equations are intro-
duced. The aim is to show an idea of reduction which may be
useful in decision-making whether the system is solvable or
not and in finding at least one its solution {jf it exists).
Finally, it is shown how this reduction could be used in
order to solve extremally linear programs over solution

sets of the introduced systems.

INTRODUCTTON

In some recent papers formally Tinear optimization problems and systems are con-

sidered. The operations of addition and multipiication are replaced by a pair of

abstract binary operations possessing often two typical properties:

a} the extremality of at Teast one of the operations (i.e. the result of the
eperation équa]s one of the two operands);

b) the invertibility of at most one of the operations.

The research has been partially concentrated on systems of extremally Tinear
equations with variables on the same side of constraint relations as well as on
linear programs over their solution sets. Methods for solving these problems
have been developed at a rather high level, see e.g. [4], [8], [9]. Another
subarea is the theory of eigenproblems treated, for example, in [31. 4], 171,
[8], [17]. Under some assumptions concerning the binary operations effective
algorithms have been derived, too. Some related questions have been also treated,
Tike Tlinear dependence ([6], [4], [1]), or geometrical aspects {[10], {1]).
Exhaustive survey of the research resuits was made in monographies [4] and [17].
Same economical metivations can be found in [4] and {8].

If the addition is nat an invertible operation then, of course, two sided systems
of Tinear eguations cannot be transformed on systems with all variables on the
same side. The task of solving such systems seems to be sufficiently more dif-
ficult than that of solving one sided systems. Some steps in order o solve
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The aim of this paper is to present one idea of a reduction process which might
be helpful in solving general two sided extremally linear systems as well as
Tinear programs over their solution sets. The main resuit lies in the fact that
a finite subset of the solution set can be explicitly described and that's why

it can be used in order io find out whether the system is solvable. Though, the
significance of this result is mainly theoretical because of the low computational
efficiency of the obtained procedure, it can be used in order to solve systems of
small dimensions. Many open problems remain to be solved and some directions for
future research are to be found in Conclusions.

EXTREMAL ALGEBRA

Let S be an arbitrary set. An operation

i $S=x5=+9§
is said to be extremai if

a2l b ={a,b}
for all a,b e S.

let 7,4 be extremal operations: § x §S + 5. MWe say that © is complementary to A
if

a#bimplies a3 b #aab
for all a,b € S.

Complementarity is, clearly, a symmetric relation.

Let E be an arbitrary set. The triple E= [E, (JL'.!, 0] is called extremal algebra
if:
& ExE-L
a tExE+E
and the following assumptions are fulfiiled:
ke 7, o are associative and commutative; ]
2% (a By b)ec=1(asec) (0 (boc), for all a,b,c e E;
3° there exists a neutral element 0 e £ with respect to (4);
8° () is extremal;
5° o satisfies exactly one of the follewing conditions:
{5a): (EN{D}.o) 15 a group with the neutral element T # 0
{the inverse of an element a will be denoted as usual
by a_1),
(58): o is extremal and complementary to @
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The symbol @ < b means a ¢ b and a #£ b.

Remark: It follows from the definition of the extremal aigebra that a o 0 = 0
for all a e E.  This assertion is a trivial corollary of 3% and 59 in the case
(58), and is readily proved by contradiction in the case (5a}.

Recall now some elementary properties of an extremal algebra E:

ax0foraitact (n

(5a) satisfied, c # D and a <b implyase c<be ¢ (2)
a(fh bescifandonlyifaccandb < c (3)

2@ ¢b impliesaoccsbhboc (4)

(58) satisfied and a e b =cimply ascand b » ¢ {5)
(58) satisfied implies a o (a {¥) b} = a (6)

Lemma 1: tet k,t e E, k » £t. Then
a) a {£) k=b (& tif and only if a (¥) k = b,
b) a®t=b@t1mp11‘esa@k=‘b®k.

Lemma 2: Let 5(¢) be satisfied and kot e E, k > t. Thenk o x (F) a = £ ox @b
if and only if k o x (%) a = b for all a,b,x e E.

We verify only Lemma 2.

Assume x # 0 otherwise the assertion is trivial. Together with (2) it yields
tex(Mb=kox (Hazkox>toex, hence t « x () b = b.

Supposingb=kux@a;kox>toxweget
b (#) tex=b, gD,

SYSTEMS OF EXTREMAL EQUATIONS

We denote E_ = £ x ... x E. Elements of E_ will he called vectors.

n-o L= n Meewors
n

e can extend the operaticns (¥, o and the relation < in a natural way to mat-

rices and vectors over E (denoting the product by s}. The symbol XT means the

transposition of the vector X,

The fallowing properties of these operations will be used later (A,B,D are mat-
rices and X,Y,Z column vectors of the appropriate type):
A< B fmplies A () D¢B @ D . (7)
and A€Dg B 0D, (8)
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Yo Zimplies X' 5 Y < X' &2
and A e Y < Agl. {10)
One can easily verify also the inequality

n N~
U z@xja Iy, ()
j=t J=1

having denoted X = (x1,...,xn]T and Y = (y1,...,yn)T. IT A= (aij)’ B = (b
are matrices of the same type then A < B denotes the fact that

31j

)
< bij
for all i and j.

Let us write a general system of extremal eguations in the form:

A ey @ - a@ sy @ (12)
where
A(S) = (agj}), s = 1,2 are matrices of the type (q.n} over [;
pls) - (b%s},...,bgs])T €Eps = 1.2
Xe En‘

let us denote by M the set of all solutions of the system {12} and further
Jd=1{1,2,...,n},
0=1{1,2,...,0}.

In what folliows we suppose without 3oss of generality that
gtl) ¢ g(2)

Due to Lemma 1 we may assume
22 6L smpries b{1) - o,
Systems {12} possessing this property are said to be in standard form.

Thus there are only two possibilities for constant terms in each equation of the
system in the standard form:

either b(l) = b(z)
i i
or 0= bg]) # bgz)_

The equations with the secornd property play a slightly more important role in the
following parts of the paper and we denote
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This set will be called characteristic set of the system {12}.

Evidently, the following three propositions are equivalent:
1° 0en

0 =

Q=9

3l - 502,

T

For simplicity we denote the vector B(z) = B“) @ B(Z) by B = (b] ’bZ""’bq) .

REDUCTION OF THE SET M TO A FINITE SUBSET

The foliowing two ideas will be used in order to soive the system (12) and some

optimization problems under these constraints.

(I) For every variable X; there exists a finite set ("set of relevant Tevels")
at least one element of which is the value of the j-th component of some
X &M whenever M # f. '

(II} Putting Xy = ij e b for any J & J we transform the system (12) to a system
of the same type with n-1 variables. Naturally, some of the eguations may
turn to identities.

We denote for all i e 0 and j & J:

Sij = {r e Qolagg) >0 & ai}) o b;] z agg) = b;1} in the case (5a)
S, ={re( |a(]) > b_} in the case {bg)}
J o' rj T r )

Definition: The foilowing sets are called sets of relevant Tevels:

_ (-1 (1) - o 1) )
Ry = {b; o (aij ) ay > 0&ieq, & é;k Sip = Q!

if (ba) is true and QO £ B,

Ry = ][ E@ b‘] if (58} is true and Q_ # B,

J : i o
N J

Ry = 0 if 0, = 0.

Due to the fact (II} we are able to denote by

M(xj] = xj], sz = sz,...) resp.

X, = X. , X. = X. ,...} resp.
QD( Jq I3 Jo Jo ) P
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X, =X

j( i i sz ) (J e NGysdpsnd)

. 5.,
Ja

the set of solutions, the characteristic set and sets of relevant levels of the

system arising from (12) putting successively x., = X. , X. = X. ,..
J PR PN Y

respectively.

Definition: B(M) is the set of all ¥ = (i],...,in)T e M for which there exists a
permutation (j1""’jn} of J satisfying

(13)

Theorem 1: M # B if and only if B(M) # 2.

In order to prove this theorem we show by means of some Lemmas that every X e M
can be reduced to a vecter with properties of a certain type. These reductions
will enable us to find an element of B(M) we are loaking for.

Denote by Ai the i-th row vector of the matrix A.
Note that for i e Qo there is always (supposing X € M)

M 2 x b 50, (14)

Definition: Let X= M. The vector red{X} = p(X) = X is called reduction of the
vector X if

®

o) = T by« (4 2071 in the case (5a) and o # 8,
i€l
"0
®
s(X} = § by in the case (58) and Q, +0,
1EQD
e(X) =0 it g, = 8.
me3:mtx=(ﬁ“”mMTew

a) If (5¢) is satisfied then p(¥) < 1.

(+)

bY If (58) is satisfied then o(X) ¢ ¥  «x..
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Proof: The a) follows immediately from (3) and {14).

"
b) Let E(:)hi = by. Then according to (5} and (17} we have
iel
0 . -
it) + )
o) = by« Al s e R0 i@, 5@,
RSN = R =R

Lemma 4: Let X ¢ M. Then

a) red(X) g X

b) red(X) e M

¢) O£ %= red(X) > {3k e Q)AL s X = by).

Proof: The first assertion follows easily from Lemma 3 and (5). We show now the
b). Consider only the case when QO #F0i.e. p{X) > 0. It is to be shown

A rearn) @ b4 = alB) < ey @ bi2 (15)

for all i e Q.
First suppose i e Qo‘ ’

i) In the case (50) p(X) = 1 implies the assertion immediately. If p(X) < 1 then

2)

Agi)? X > bi hence Ag1)s X = A€ = ¥ and

1

?)

A$1) = red(X) = AE © red(X). - {16)

At the sane tine Al < red(x) - ¥ Dy @V oo e 8 5,

oyt (LD o %) = b.. This yields that (16) is in fact the same as .
(15}.
N

py

i1) In the case (58) there is p(X)} = ¥ b, and

JeQ, d

AEI) = red(X) = p(X} < (AEE) e X) = oX) - (AEZ) =X @ by -

@
= MBS redx) @ by ¥ C"bJ. = Al e red(x) @ b,
ieq,
{recall (6}).

Now suppose 1 & N0y, 17 ALV x = al®) < X - b, then (15) follows immediately

If A}
and in the case when Ar]) = X b, AQZ) = X« bi we get (15) appiying {%) to the

i ER
inequality in a}.

c) Recall that 0 # X = red(X) implies q, # 9.
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.
e _ _
Tl = I byo (AgX)T = by o (A=X)7) for same ke Q.
iel
0
ii) In the case (58)
X = red(X) gives for all t & J using (5) and {11)

s ]
_ _ i _ 1) {(n
xp = o{X) e x, < p(X) = ¥ b. = b, ¢ alllz ¥} a:l e
t t ieQO i k k jed kj
®) @
e ¥ X € ¥ Xj = X
jed jed
Specially, for t = m we get
1
X € p(X) ¢ Aé )E X g X

a1 2 %, qep.

and hence p(X) K

Lemma 5: IfQ # X e M and Y = red(X) = (yl,...,yn)T then there exists k e Q0 and
t e J satisfying the following conditions:

i S, = , 17
DRV (17)
vp = by o (alh ™, (18)

in the case (5¢),

ii) 5.=10_, (19}
% . _
@
Y= b= L by, (20
IeQO

in the case (5g).

Proof: i) The existence of Yi satisfying (18) follows immediately from Lemma 4
because red{red(X)) = red{X).

It remains to show (17). Let k be the index from Lemma 4, ¢). Then for all j e J
there is

M. y_
akj o yj £ Ak < Y = bk (21}
and hence those j e J for which > 0 satisfy the inequality
(1),-3
Yj € (akj )y = bk'
Take an arbitrary i e Qo‘ Then

0<b_i\<.!\“)6‘f:a.(])c Y

i ih
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TN 0.
Moreover, supposing Bep > 0 we get using (21)

13,-1
b’i = (3( ))

1),-1
W ey < fh™ e n,

kh

(1) _ -1 {1 -1 .
an bi ¥ A’ © bk and thus i e Skh‘

ii) The existence of Y¢ satisfying (20) follows from the fact that relations

(Zy . oy o all oy 2 o1
bk~§bk®Ach-Ak LX—akhcxh

hold and imply Xp 2 bk. Hence ¥y = bk = Xy = bk'
At Tast we show (19). let i e QG. Then there exists an index h & J satisfying

alld.

ih'© Yn ® by
and thus ag;) > bi’ i.e. ie Sh’ QED.

The proof of Theorem 1 follows immediately from the following Lemma being in fact
a corcllary of Lemma 5.

Lemma 6: For every X € M there exists a vector Y e B{M) satisfying the inequality:
Y& X. {22)

Proof: First of all notice that B{{0}) = {0}.

Let 0 £ % e M and red(x) = XU o (x{D, . k(THT,

exists k e J with property

Bccording to Lemma 5 there

(1}
Xk € Rk'
Assume for simplicity k = n. This yields
L1 1 1,7 1
X = oD T e = w1y,
Denote Yo © xg]) and X(Z) = red(i(])) = (x%z), ,xg?%)T.

it follows again from Lemma 5 that there exists k e J with property

xéz} e Rk(xn = xé]}) and suppose now k = n - |. Thus

{2 z 23\ T 1 2

X( ) - (x% ),...,xg_%) a M(xn = x% ), Xpo1 = xg_%).
Take

Yol © xg?% and X{3} = red(i(z)).
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satisfying {22} due to the assertions a) and b) of Lemma 4, QED.

The following numerical example will illustrate the reduction process used in the
proof of Lemma 6.

Example 1: Consider E = [R+, max, .| where R is the set of non-negative reals.

The vector X = (3,5,4)T is a sclution of the system (written as well as all other
in the standard form)

2 3 1 X4 0 1T 3 3 X 5

Z 1 0 X | 6 01 1\\ %o 6

2 2 1/° Pho )V 3 e 2/)“ ®|

X X3

3 0 3 3 4 2 1 3
Here J = (1,2,31, Q= {1,2,3,4), 0, = (1,30 and (&l < X5 e q) = 015,10,
Therefore p{X) = %% (:) f% = %, X(]) = red(X) = (1, %3 gJT. One can verify
immediately from definitions that % € R2 and thus j1 =2, ¥y, = gu Consequently

- I
X(]) = {1, %JT is a solution of the system arising by putting Xy = ga

2 1 5 1 3 5

X~| X-I -
2 0 6 9 1 n 6
2 1 X3 ® 10/3/7\ 3 2 xg | & 10/3
33 o/ Mg 1073

Now, Qu(x, = 5/3) = (41, o(x\')) = (10/3)74 = 576,

k) = ved(X) < (576, 10795 10/9 € Ry (x, = 5/3), 4, = 3, v, - 20 and the

J ]
- 2
vector X(Z) = (5/6) is a sclution of the system

2 s 5 1 5

2 6 0 6

5 (x] + = T (x]) +
2 10/3 3 10/3
3 10/3 4 10/3

Now, Qg(xy = 5/3, x3 = 10/9) = B, o(x\?)) = 0, 13 = red(¥(®) = (0), 3, - 1.

5 10,7
yj3 =0eRy(xy =7y x5 = 5] As aresult, ¥ = (0, 5, o) e B(M).

OPTIMIZATION

Definition: A function f: En = E 15 said to be isotane if
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As a corollary of Lemma 6 we have that for every isotone function f: En + E
there is

inf £(X) = inf £{X) = min £{X).
XeM XeB(M) XeB(M)

We summarize all results in

Theorem 2: Let f: E, ~ E be an isotone function and let the solution set M of
the system (12) be nonempty. Then a) there exists min f(X), and b) min f(X} =
XeM Xe M

min  f{X).
XeB(M)

The set B(M) can be helpful in solving extremally linear programs because the

function (:)
u 7
) eE

C = (c],...,c n

n
is isotone due to (9).

Thus, Theorem 2 enables us to use the following procedure in order to solve
extremally Yinear programs:

To find out for every permutation {j]=j2=""jn) of the set J whether some of
vectors {i],iz,...,in)T satisfying (13) are at the same time elements of M.

i) If no (or if even does not exist any vector satisfying (13)) then according
to Theorem 1 there s M = f.

ii} If yes then compile B(M).

According to Theorem 2 it remains to find the optimal value on the finite set
B(M).

This procedure is used in the following example.

Example 2: Let E be the same.as in Example 1. Consider the system of eguations

11 2 x]\ 0N /31 0 X (2
30 05 x, .@ko m(o 2 1 J={ %, {® (23)
T 0 1 X5 3 0 1 0 Xq \3

This system is,as well as &3l other systems of equations in this example, in the
standard form.

Here J = Q = {1,2,31, 0, = (1,23,
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Rps Rl

= il) for a1l Xy e Ry and Ry(xy = Xy, X3 = X3) for all X, e Ry and
Xq € R3 X

X’
I
(x1 = 1). It follows immediately from the definitions that R1 = {2, %}.

a) Putting X = 2 we get from (23):

1 2 XE (0‘ (] G\ (xg\ [/'6\.\1
ils = © 16,
SEHEIORERREEI

{1,2). One can now easily verify that R3(x] = 2) = {6,3}.

Here Qo(x1 =)

31) Putting Xq = 6 we have
1 0 T3 12
2|z (xy) (06 ]= 0) 5 {x,) (2] 6
1 0 0 6

and thus QU(X1 = Z, Xq = 6) = {1,31, Rz{x1 =2, Xq = By = {12}, It remains to
verify that (2,12,6)T ¢ M.

az) Putting x4 = 3 we have
/1 ' 'a\ ‘1 /6
Kz 5 (x,) @(0;[0 s (%)) ® ks\
o \3/ \1, 3/

and thus Qo{x1 =2, x3=3) = {21, Rz{x] =2, X3 = 3} = {3}, We see that

(2,3,3]T is not only a vector satisfying (13) but also an element of M and there-
fore (2,3,3)1 € B(M).

b) Putting Xy = % we get

12 0 RN

- X2 ( _ XZ ;
00“<x3)®1:21“x3@1/
0 1 3/ \1 o 3

Here O (xq = 5) = (1), Ry(xq = 3} - (1.

Putting Xq = 1 we have

B ra 1 2
(o) (1)) 0]

1 - -~
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and is an element of M, therefore (%,0,1)T e B(M).

Let us take now the permutation {2,3,1). We find out that R, = {2} and putting
Xy = 2 we get from {23):

1 2i(x] !,2\_ 3 AN 2\
30ox2@.__‘0)-01ex3)® 4)
UNRVARR 3/ \o oo 3

and thus Qo(x2 =2) = 2, R3(x2 =2} = B

For other permutations the following results can be obtajned: Permutation (1,2,3)

- 1 -
R-I = {2, j}: Rz(x] = 2)

(6,3}, Rylxq = 2, x, = 6) = B,

= 2, %, = 3) = (3, (2,3,3) W,

i

3¢%

2)

1
Rolxq = 3) = (21 Rylxy =30 %5 p.

Permutation (2,1,3):

4 4 T
R, = {21, R1(x2 =2) = {g}s R3(x2 =2, Xy = 3) {23, (§,2,2) e M.

Permutation {3,1,2)
T

I
—
w

1
R3 = {1}, R](XB = .l} = {‘3‘}: Kz(XS X] = §) = {01, ('3‘3051) e M.

Permutation {3,2,1):

Hence we deduce that

BN - €(2,3.3)7, (o)) (G.2,2)T)

and since this set has a minimum we may assert that even for every isotone
function f: R; » RY there is

nin £(X) = £(3,0.1),

XeM

where M is the solution set of the system (23).

CONCLLUSTONS

The procedure for solving two sided extremally linear systems provided by the just
presented theary has to be considered as one of the first attempts to overcome the
problem in a general case. Future research would be perhaps useful in cne of the
followina directions:
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2. To investigate properties of systems mentioned above by means of the theory
of matroids,

3. To determine connecticns with polymatroids.

4. To transform {at least in special cases) two sided sysiems onto one sided
ones using results described in [4].

5. To try to build a theory analogical to that of classical linear programming.
Some attempts {using extremally convex sets and their "extreme points") have
been made ir [1]. See also {10}, In particular, under which additional
assumptions would hold an analogy with the first assertion of Theorem 2 for
an arbitrary extremally convex set M? This would be ons but not the only
generalization of the results presented in this paper.
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