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On certain properties of the system
of linear extremal equations

PETER BUTKQVIC

1. Introduction

In the article [2] the terms “extremal vector space” and “‘extremal linear equa-
tion’” were introduced. Properties of these objects are investigated in [1], [2], [3],

[4]-

In this article the concept of system of linear extremal equalions is extended,
Using the results of [1] a possible way to introduce the concept of the independence
of vectors with respect to the system of linear extremal equations as well as the concept
of the dimension of the extremal vector space with respect to the system of linear

extremal equations is shown,

2. Notation and basic concepts

In this article X, Y. Z, W are real column vectors, X" denotes the transposition
of a vector X,
Let us denote:

§={1,2,....m},

Nm{l.z,...,n},

M, = {X|XT=[X,.... X;], X; 20 forall jeN},
My = {X|XeM,, X;>0 forall jeN},

X"0Y = max X,Y, forall X Ye¥R,.
JeN

Supposing A is a nonnegative matrix of the type (m, n), we denote by A, the
i-th row vector of the matrix A.
Assume X e M,. We define A 0 X as follows:

(AOX)eM,, (A0X),=A,0X Tor ieS.
Assume
X=[Xn.uX) €M, ¥Y=[Y...,Y%] eW,.

We define X @ Y as follows;
72 ‘ X@YeM,, (XBY), =max(X,, ;) forall jeN.




For an a'}bitrary real number 2 2 0 we denote by « o X the vector [aX,, ..., aX,].
Partial ordering on ¥, will be defined as usual:

XY if X;8Y; for jeN.
XzY if X;z7Y; lor jeN.

A system of relations of the form:

AN X @B = Al X @C,
(@) AN g X @ B < ACY A X @ C |
o AV 5 X @ g = ABD 5 XD ch

~

where AU are nonnegative matrices of the type {(m;, n) fori =1,2,3;j =1,2and
B CWeM  fori=1,2, 3 is called a system of extremal linear equations and
inequalities, )

if A, B are real matrices of the type (m, n), A = (4;;), B = (B;;) we denote by
A * B such a matrix € = (C,) that

C,'j*_—AuBU- for all iES,jEN. .
It was shown in [1] that the system (a) can be transformed to the form
{b) (AtD)ﬁX=(AtD')6X$B,

where B ¢ MR_: A, D, D’ are matrices of the type {m, n); A is nonnegative; D = (Dy)).
D' = (Dj,) are zero-one matrices with the property:

DIJ"*‘D;":‘I fOl‘al] !'ES‘jEN.

3. Extremal convex sets

Definition 1.
Let X, Y ¢, The set

U(X. Y) = {ZE

W@ feDMN[x @B =1&Z=xoXDPoY]} .

s called an extremal abscissa determined by points X, Y.

Definition 2

A sel M < M, is said 1o be extremal convex if U{X, ¥) € M for all X, ¥ € A.
Definition 3.

A point Z of an extremal convex set M is called an extreme point of M il

Z¢U(X, Y)forall X, YeM X+ Z4Y.
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According to these definitions W1, and @ are extremal convex sets and [0, .. L
e M, is the only extreme point of the set M,

Lemma.

Let X, Ye M, and Ze U(X,Y).
Theneither ZzZ Xor Z 2 Y.

Proof:
Let |
zzat*XH)ﬁaY; avﬁé&“@ﬁ:]'
Hence either @ = | or 8 = |. |
In the case 2 = I there is
Z,=max(X.pBY,)2 X, forall jeN
and therefore Z = X.

Analogically for = 1, ' QED.
Supposing M is a convex set we denote by &(M) the set of all extreme points of
the set M. '

Theorem 1.

Suppose M < M, is an nonempty closed and extremal convex set. Then §(M) %
+ 0.

Proof:

If' the set M fulfils the conditions mentioned above, we can define the vector
Z=1[z,...., Z,J" by induction as follows:

i) Z, =min{t{[t, 1,...., 1, )T e M},
if) Zy=min{t|[Z). Zs o Zjo i a1 E MY

Vector Z defined in this way is evidently an element of the set M.

Suppose Z¢E(M). Then Z=ac X @ ReY; 0, f20; a@P=1; X, YeM,
X+ Z+VY.

Without loss of generality (according to Lemma) we can assume that Z 2 X.
Then there exists an index j € N such that

Z,>X;.
Let
k=min{jeN|Z;> X}}.

Thus for j < k, jeN (if k> 1) is Z; = X, and therefore X = [Z,...., Z;-1
Xy oon X, JTeM. ‘
If £ = 1, then '
X =[Xy ..o X, eM.

74 But then X, < Z, contradicts the definition of vector Z QED.
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It was proved in [1] that the set of all solutions X e M, of the system (b) is an
extremal convex set, Further we shall denote this set by M. :

4. Extreme points of the set M

In the following parts of the article we suppose M £

.

Let us denote the number of elements of an arbitrary finite set K by IK .

Supposing A is a nonnegative matrix of the type (m, n) we denote by A" ihe
j-th column vector of the matrix A. Let L= {ii i) ENand ji <jp <. < N
Supposing X = [X,. .-, X, JF € M, we denote by X(L) the vector

[X)0 Xy oo Xp ] €Dy
and
A(L} = (.‘l”'), AYD AUul)‘

Definition 4.

We say that the system {b) satisfies the non-degeneracy assumption if for every
set L € N such that
|L| = m

the sysiem of extremal linear equations
(b-L) (A(L) » D(L)) 0 X(L) = (A(L)+ D'(L)) 0 X(L) @ B
has at most one solution.

Supposing X e M, we denote

P(X)={jeN|X;>0}.
The following two theorems were proved in [1].
Theorem 2.

If the system (b) satisfies the non-degeneracy assumption and We M is a vector
such that |P(W)| £ m then W e &(M).
Theorem 3.

If WeM is a vector such that [P(W)| > m then there exist vectors ¥, Ze M,
Y+ W 3 Zand real numbers o, § 2 0, a @ f = 1 such that

Weao¥®poZ (i WEHM)).
5. The independence of vectors with respect to the system

of linear extremal equations

Throughout this section we shall assume that in the system {b) there is

BeWl, . - 15

-
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Definition 5.

| The system of vectors
(5) {AVem,|jeL}.

L € N is said to be independent with respect to the system (b} il there exisis a set [/
c N, Ll =9, IL’[ = 0 such that for H = Lu L the system

{b-H) (A(H)« D(H)) 6 X(H) = (A(H)s D'(H))o X(H)® B

has exactly one solution (in M, h = |H]).

b) The system of vectors (S) is said to be dependent with respect to (b) if it i
not independent in relation to {(b).

It is easy to sec that every subsystem of the system of vectors independent wiy
respect to (b) is also independent with respect to (b).

Let Z e M,. In the proof of the following theorem let us write:

E(Z)y=(A+D)o Z,

E(Z) = [E(2), EX2), .-, EL2)]",
L(Z)={jeN|AyD,Z; = E(Z)} forall ieS,
R(Z)=1{jeN|A,;D;Z; = E(Z)} forall ieS.

Theorem 4.

|Ll > m, L € N implies that the system of vectors (S} is dependent with respect
to (b).
Proof:

Suppose H is an arbitrary set satisfying the condition L€ H € N. It has to be
shown that the corresponding system (b-H) has either no solution or at least two
solutions. Let Z e M, (where h = |H|) be a solution of (b). Hence, h 2 [L| > m.
There is evidently E(Z) = B therefore E(Z)e M. :

Now we shall consider two cases.

a) Assume P(Z) + H. Let, for example, Z; = 0. Then

(VieS)(j¢ L{Z)u R(Z)].
Wriling
A= min h_;(:_'.') > 0
isP(AU)) AU

we see that the vector
[ZI' ey ZJ"I’ ;.., ZJ_H, wauy Zﬂ]1

(different from Z) is also the solution of (b).

b) Assume P(Z) = H. Hence |P(Z)| = H > m. Let W = [W,, ..., W,]" is such
a veclor that ‘ :
' W,=2; forall jeH

g

(
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and
W_,-=D forall jeN — H.

It is easy to see that W e M. Since |P(W)| > m according to Theorem 3 there
exist vectors X,YeM and «, feB, such that X = WY, W=ac XD Y,
a®f = 1. 1fthere wereo = Oor § = Othen W = Yor W = X, respectively, There-
fore « > O and f§ > 0. Hence W, = 0 implies X; = Y, = 0. But it means that X(H)
and Y(H) are also solutions of (b-H), different from Z. This completes the proof.

Theorem 4 shows that the greatest number of vectors independent with respect
to (b) is less than or equal to m.

Definition 6.

The greatest number of vectors independent with respect to (b) is called a di-
mension of the extremal vector space 9, with respect to the system (b). We denote
this dimension by r,(M,,).

It was mentioned above that

(B, = m.

Theorem 5.

Suppose the system (b} satisfies the non-degeneracy assumption. Then r(M,) =
= mif and only if M = 0.

Proof:

Let M =+ Q. Since M is closed and exiremal convex subset of W1, then according
to Theorem I there is &(M) + 0. Let, for example, Z € {(M). It lollows from Theorem
2 that |P(Z)| < m. We take a set L= N such that P(Z) < Land |L| = m. Hence
Z(L) is the solution of the system (b-L). Owing to the non-degeneracy assumption
this system has exactly one solution. It means that the system (S) is independent with
respect to (b). Hence r,(M,) = m.

Further, if r,(,) = m there must exist a set L S N, |L| = m such that the sy-
slem (S) is independent with respect to (b). It means that the system has exactly one
solution, We denote it by Z(L). Then the vector Y = [¥,, ..., ¥,]" where

YJ=Z, forall jelL
and

Y, =0 forall jeN—L
is the solution of (b) and therefore M = 0.
This completes the proof.
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Resumé

NIEKTORE VLASTNOSTI SUSTAV LINEARNYCH
EXTREMALNYCH ROQVNIC

Peter Buthovié

V pracach 2], [3), [4] bol zavedeny pojem extremdlneho vekiorového priestoru a sistayy
extremilnych rovnic a nerovnosti. V tomto &lénku sa roziiruje pojem sistava extremdlnych

rovnic a nerovrost.

V analdgii s metddami linedrneho pregramovania sa vybuduji niektoré pojmy (extremdlne
konvexnd mnoZina, krajné body extremilne konvexnej mnoZiny, predpoklad nedegenericie),

Vysledky prace [1) tykajdce sa charakteristiky krajnych bodov extremiine konvexnej mnoi-
ny sa pouZijii na vytvorenie pojmu nezdvislosti vektorov vzhladom k sistave extremtlnych rovnic,
Pomocou 1oho je tie? definovany rozmer extremalneho vektorového priestaru vzhladom k siislave

extremidlnych rovnic,
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