
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Operations Research Letters 36 (2008) 623–627

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Finding a bounded mixed-integer solution to a system of dual
network inequalities
P. Butkovič
School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

a r t i c l e i n f o

Article history:
Received 13 August 2007
Accepted 25 April 2008
Available online 17 May 2008

Keywords:
Eigenvector
Dual network inequalities
Max-algebra

a b s t r a c t

We show that usingmax-algebraic techniques it is possible to generate the set of all solutions to a system
of inequalities xi − xj ≥ bij, i, j = 1, . . . , n using n generators. This efficient description enables us to
develop a pseudopolynomial algorithm which either finds a bounded mixed-integer solution, or decides
that no such solution exists.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

This papers deals with the systems of inequalities of the form

xi − xj ≥ bij (i, j = 1, . . . , n) (1)

where B = (bij) ∈ Rn×n. In [19] the matrix of the left-hand side
coefficients of this system is called the dual network matrix. It is
the transpose of the constraint matrix of a circulation problem
in a network (such as the maximum flow or minimum-cost flow
problem) and inequalities of the form (1) therefore appear as dual
inequalities for this type of problems. These facts motivate us to
call (1) the system of dual network inequalities (SDNI). The aim of
this paper is to show that using standardmax-algebraic techniques
it is possible to generate the set of all solutions to (1) (which is
of size n2

× n) using n generators (Theorem 2.3). This description
enables us then to find a bounded mixed-integer solution to the
following system of dual network inequalities (BMISDNI), or to
decide that there is no such solution:

xi − xj ≥ bij (i, j ∈ N)

uj ≥ xj ≥ lj (j ∈ N)

xj integer (j ∈ J)

where u = (u1, . . . , un)
T, l = (l1, . . . , ln)T ∈ Rn and J ⊆ N =

{1, . . . , n} are given. Note that without loss of generality uj and lj
may be assumed to be integer for j ∈ J. This type of inequalities
have been studied for instance in [19] where it has been proved
that a related mixed-integer feasibility question is NP-complete.
For similar problems see also [15,17].

E-mail address: p.butkovic@bham.ac.uk.

We will show that in general, the application of max-algebra
leads to a pseudopolynomial algorithm for solving BMISDNI.
However, an explicit solution is proved in the casewhenB is integer
(but still a mixed-integer solution is wanted). This implies that
BMISDNI can be solved using O(n3) operations. Note that when
J = ∅ then BMISDNI is polynomially solvable since it is a set of
constraints of a linear program. When J = N and B is integer
then BMISDNI is also polynomially solvable since the matrix of the
system is totally unimodular [16].

2. All solutions to SDNI

The system

xi − xj ≥ bij (i, j ∈ N)

is equivalent to

max
j∈N

(
bij + xj

)
≤ xi (i ∈ N).

If we denote u ⊕ v = max(u, v) and u ⊗ v = u + v for u, v ∈

R := R ∪ {−∞} then this reads
∑

⊕

j∈N bij ⊗ xj ≤ xi for i ∈ N
or (if we extend the operations ⊕ and ⊗ to matrices and vectors),
equivalently

B ⊗ x ≤ x. (2)

Being motivated by this observation we first summarize some
basic concepts and results of max-algebra and thenwe present our
main results.

By max-algebra we understand the analogue of linear algebra
developed for the pair of operations (⊕, ⊗), extended to matrices
and vectors. That is if A = (aij), B = (bij) and C = (cij) arematrices
of compatible sizes with entries from R, we write C = A ⊕ B if

0167-6377/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.orl.2008.04.004

Author's personal copy

624 P. Butkovič / Operations Research Letters 36 (2008) 623–627

cij = aij ⊕ bij for all i, j and C = A ⊗ B if cij =
∑

⊕

k aik ⊗ bkj =

maxk(aik + bkj) for all i, j. If α ∈ R then α ⊗ A =
(
α ⊗ aij

)
. If α ∈ R

then the symbol α−1 stands for −α.
The following isotonicity lemma is easily verified:

Lemma 2.1. If A ∈ Rn×n and x, y ∈ Rn then x ≤ y implies
A ⊗ x ≤ A ⊗ y.

The letter I will stand for any square matrix whose diagonal
entries are 0 and off-diagonal entries are−∞. If A is an n×nmatrix
and k is a positive integer then the iterated product A⊗A⊗· · ·⊗A
in which the symbol A appears k-times will be denoted by Ak and
A∗

= I ⊕ A ⊕ A2
⊕ · · · ⊕ An. Any set of the form

{A ⊗ z; z ∈ Rn
}

is a finitely generated max-algebraic linear subspace (sometimes
also called amaxcone) whose essentially unique basis can be found
efficiently [7].

Given A = (aij) ∈ Rn×n the symbol DA denotes the associated
digraph, that is the arc-weighted digraph (N, E, w) where E ={
(i, j) ; aij > −∞

}
and w (i, j) = aij for all (i, j) ∈ E. If π =

(i1, . . . , ip) is a path in DA then we denotew(π, A) = ai1 i2 +ai2 i3 +

· · ·+aip−1 ip if p > 1 and−∞ if p = 1. The number p−1 is called the
length of π and w(π, A) the weight of π . It can be easily seen that
Ak is thematrix of greatest weights of paths of length k between all
pairs of nodes in DA. If i1 = ip but p > 1 then π is called a cycle; it
is called positive if w(π, A) > 0.

Max-algebra has been studied by many authors and the reader
is referred to [14,1] or [4] formore information aboutmax-algebra,
see also [9–11,18,20,8,13,12,2,3,5].

A basic problem in max-algebra, motivated for instance by
the efforts to solve synchronisation problems in some industrial
processes [9,1] is:

EIGENVECTOR [EV]: Given A ∈ Rn×n find all x ∈ Rn
, x 6=

(−∞, . . . ,−∞)T such that A ⊗ x = λ ⊗ x for some λ ∈ R.
EV has been studied since 1960s and can now be efficiently

solved [10,11,8,1,14,4]. It is known that an n × n matrix may have
up to n eigenvalues. The set of eigenvectors corresponding to a
particular eigenvalue is a finitely generated max-algebraic linear
subspace.

In this paper we only discuss finite (real matrices) but most of
the results can be extended to matrices over R. If A = (aij) ∈

Rn×n then A has a unique (max-algebraic) eigenvalue equal to the
maximum cycle mean (notation λ(A)) of the associated digraph,
that is

λ(A) = max
ai1 i2 + ai2 i3 + · · · + aip−1 ip

p

where the maximisation is taken over all p-tuples of indices from
N , and p = 1, 2, . . . , n. All eigenvectors are finite and the set of
eigenvectors can easily be described. It follows from the definition
of λ(A) that λ(A) ≤ 0 means that there are no positive cycles in
DA. It is known [1,14] that in this case A∗ is the matrix of greatest
weights of paths between all pairs of nodes in DA with added zero
entries on the diagonal. This matrix can be found using standard
O(n3) algorithms such as Floyd–Warshall’s [16].

For A ∈ Rn×n and µ ∈ R we denote

Sol(A, µ) = {x ∈ Rn
; A ⊗ x ≤ µ ⊗ x}.

Theorem 2.1 ([6], Cor.2.9). If A ∈ Rn×n and µ ∈ R then

1. Sol(A, µ) 6= ∅ if and only if λ(A) ≤ µ.

2. If Sol(A, µ) 6= ∅ then

Sol(A, µ) = {(µ−1
⊗ A)∗ ⊗ z; z ∈ Rn

}.

Remark 2.1. It is known that Sol(A, µ) is actually the set of (max-
algebraic) eigenvectors of the matrix

I ⊕ µ−1
⊗ A.

Max-algebra also works with dual operations: u⊕
′ v =

min(u, v) and u⊗
′ v = u ⊗ v for u, v ∈ R (the operators ⊗ and

⊗
′ coincide for reals). The conjugate of a square matrix A = (aij) is

A]
= (−aji).

Theorem 2.2 ([9]). If A ∈ Rn×n, b ∈ Rn and z ∈ Rn then

A ⊗ z ≤ b if and only if z ≤ A]
⊗

′ b.

Corollary 2.1. If A ∈ Rn×n and v ∈ Rn then A ⊗
(
A]

⊗
′ v
)

≤ v and
(by isotonicity) A⊗z ≤ A⊗

(
A]

⊗
′ v
)
for every z satisfying A⊗z ≤ v.

We can now use Theorems 2.1 and 2.2 to describe all solutions
to SDNI. In (2) we obviously have µ = 0 and B plays the role of
A. For simplicity we denote Sol(B, 0) by Sol(B). We start with an
immediate transcription of Theorem 2.1.

Theorem 2.3. If B ∈ Rn×n then

1. Sol(B) 6= ∅ if and only if λ(B) ≤ 0.
2. If Sol(B) 6= ∅ then

Sol(B) = {B∗
⊗ z; z ∈ Rn

}.

Hence the set of all solutions to SDNI is a finitely generatedmax-
algebraic linear subspace.

Corollary 2.2. The set of all solutions x to SDNI satisfying x ≤ u is{
B∗

⊗ z; z ≤
(
B∗
)]

⊗
′ u
}

and if this set is non-empty then the vector B∗
⊗
(
(B∗)] ⊗

′ u
)
is the

greatest element of this set. Hence the inequality

l ≤ B∗
⊗

((
B∗
)]

⊗
′ u
)

is necessary and sufficient for the existence of a solution to SDNI
satisfying l ≤ x ≤ u.

Proof. It follows from (2) and Theorem 2.3 part 2. that solutions
to SDNI are exactly the vectors of the form B∗

⊗ z, z ∈ Rn.
Therefore solutions to SDNI satisfying x ≤ u are exactly the vectors
B∗

⊗ z, B∗
⊗ z ≤ u. By Theorem 2.2 this means the same as

B∗
⊗ z, z ≤ (B∗)] ⊗

′ u and the first part follows. For the second
part realise that B∗

⊗
(
(B∗)] ⊗

′ u
)
is by Corollary 2.1 the greatest

solution to SDNI satisfying x ≤ u. �

3. Solving BMISDNI

We start by another corollary to Theorem 2.3.

Corollary 3.1. A necessary condition for BMISDNI to have a solution
is that λ(B) ≤ 0. If this condition is satisfied then the BMISDNI is
equivalent to finding a vector z ∈ Rn such that

l ≤ B∗
⊗ z ≤ u

and(
B∗

⊗ z
)
j integer for j ∈ J.

Remark 3.1. Recall that λ(B) ≤ 0 means there is no positive cycle
in DB and in what follows we will assume that this condition is
satisfied.

Author's personal copy

P. Butkovič / Operations Research Letters 36 (2008) 623–627 625

Theorem 3.1. Let A ∈ Rn×n, b ∈ Rn and J ⊆ N. Let b̃ be defined by

b̃j =
⌊
bj
⌋

for j ∈ J,

b̃j = bj for j 6∈ J.

Then the following are equivalent:

1. There exists a z ∈ Rn such that l ≤ A ⊗ z ≤ b and

(A ⊗ z)j integer for j ∈ J.

2. There exists a z ∈ Rn such that l ≤ A ⊗ z ≤ b̃ and

(A ⊗ z)j integer for j ∈ J.

3. There exists a z ∈ Rn such that l ≤ A ⊗ z ≤ A ⊗

(
A]

⊗
′ b̃
)
and

(A ⊗ z)j integer for j ∈ J.

Proof. 1. H⇒ 2.: If (A ⊗ z)j ≤ bj and (A ⊗ z)j is integer then
(A ⊗ z)j ≤

⌊
bj
⌋

= b̃j by the definition of the integer part.
2. H⇒ 1.: b̃j =

⌊
bj
⌋

≤ bj for j ∈ J by definition and the
statement follows.

2. H⇒ 3.: If A ⊗ z ≤ b̃ then by Theorem 2.2 z ≤ A]
⊗

′ b̃ and by
isotonicity (Lemma 2.1) A ⊗ z ≤ A ⊗

(
A]

⊗
′ b̃
)

.

3. H⇒ 2.: By Corollary 2.1 A ⊗

(
A]

⊗
′ b̃
)

≤ b̃ and so if

A ⊗ z ≤ A ⊗

(
A]

⊗
′ b̃
)
then also A ⊗

(
A]

⊗
′ b̃
)

≤ b̃. �

Theorem 3.1 enables us to compile the following algorithm.

Algorithm 3.1. BMISDNI
Input: B ∈ Rn×n, u, l ∈ Rn and J ⊆ N
Output: x satisfying the BMISDNI conditions or an indication

that no such vector exists.

[1] A := B∗, x := u
[2] xj :=

⌊
xj
⌋
for j ∈ J

[3] z := A]
⊗

′ x, x := A ⊗ z
[4] If l � x then stop (no solution)
[5] If l ≤ x and xj integer for j ∈ J then stop else go to [2]

Theorem 3.2. AlgorithmBMISDNI is correct and requires O(n3
+n2L)

operations of addition, maximum, minimum, comparison and integer
part, where

L =

∑
j∈J

(
uj − lj

)
.

Proof. If the algorithm terminates at step [4] then there is no
solution by the repeated use of Theorem 3.1.

The sequence of vectors x constructed by this algorithm is non-
increasing by Corollary 2.1 and hence x = A ⊗ z ≤ u if it
terminates at step [5]. The remaining requirements of the BMISDNI
are satisfied explicitly due to the conditions in step [5].

Computational complexity: The calculation of B∗ is O(n3) [16].
Each run of the loop [2]–[5] is O(n2). In every iteration at least one
component of xj, j ∈ J decreases by one and the statement now
follows from the fact that all xj range between lj and uj. �

Example 3.1. Let

B =

(
−2 2.7 −2.1

−3.8 −1 −5.2
1.6 3.5 −3

)

u = (5.2, 0.8, 7.4)T, J = {1, 3} (l is not specified). The algorithm
BMISDNI will find:

A = B∗
=

(0 2.7 −2.1
−3.6 0 −5.2
1.6 4.3 0

)
x = (5, 0.8, 7)T,

z = A]
⊗

′ x =

(0 3.6 −1.6
−2.7 0 −4.3
2.1 5.2 0

)
⊗

′ x =

(4.4
0.8
6

)
x = A ⊗ z = (4.4, 0.8, 6)T.

Now x1 6∈ Z so the algorithm continues by another iteration:
x = (4, 0.8, 6)T,

z = A]
⊗

′ x = (4, 0.8, 6)T

and

x = A ⊗ z = (4, 0.8, 6)T,

which is a solution to the BMISDNI (provided that l ≤ x) since
x1, x3 ∈ Z (otherwise there is no solution).

4. Solving BMISDNI for integer matrices

In this section we prove that a solution to the BMISDNI can be
found explicitly if B is integer.

The following will be useful:

Theorem 4.1. Let A ∈ Zn×n, b ∈ Rn and A⊗ x = b for some x ∈ Rn.
Let J ⊆ N and b̃ be defined by

b̃j =
⌊
bj
⌋

for j ∈ J

b̃j = bj for j 6∈ J.

Then there exists an x̃ ∈ Rn such that

A ⊗ x̃ ≤ b̃

and(
A ⊗ x̃

)
j = b̃j for j ∈ J.

Proof. Let k ∈ J be such that bk 6∈ Z. Since bk = maxj∈N
(
akj + xj

)
,

the set

Sk = {s; aks + xs > bbkc}

is non-empty and xs 6∈ Z for every s ∈ Sk since A is integer.
Let x(1) be the vector defined by x(1)

j =
⌊
xj
⌋

for j ∈ Sk and
x(1)
j = xj otherwise. Clearly x(1)

≤ x and so A ⊗ x(1)
≤ A ⊗ x

by Lemma 2.1. Let r ∈ N be such that maxj∈N
(
arj + xj

)
∈ Z

(if any). Then ars + xs < maxj∈N
(
arj + xj

)
for all s ∈ Sk since

xs 6∈ Z. Therefore maxj∈N

(
arj + x(1)

j

)
= maxj∈N

(
arj + xj

)
. At the

same time maxj∈N

(
akj + x(1)

j

)
= bbkc yielding that the number of

indices r such that maxj∈N

(
arj + x(1)

j

)
= bbrc has increased by at

least one compared to x. If there is still an index k ∈ J such that
Sk 6= ∅ then we repeat this construction and obtain x(2), x(3),
Since the number of indices r for which maxj∈N

(
arj + xj

)
∈ Z

increases at every step, this process stops after a finite number
of steps with a vector x̃ satisfying the conditions in the theorem
statement. �

Author's personal copy

626 P. Butkovič / Operations Research Letters 36 (2008) 623–627

Corollary 4.1. Under the assumptions of Theorem 4.1 and using the
same notation, if x̄ = A]

⊗
′ b̃ then

A ⊗ x̄ ≤ b̃

and

(A ⊗ x̄)j = b̃j for j ∈ J.

Proof. The inequality follows fromCorollary 2.1. Let x̃be the vector
described in Theorem 4.1. By Theorem 2.2 we have x̃ ≤ x̄ implying
that

b̃j =
(
A ⊗ x̃

)
j ≤ (A ⊗ x̄)j ≤ b̃j for j ∈ J

which concludes the proof. �

Our main result is:

Theorem 4.2. Let B ∈ Zn×n, λ(B) ≤ 0, A = B∗, b = A ⊗
(
A]

⊗
′ u
)

and b̃ be defined by

b̃j =
⌊
bj
⌋

for j ∈ J

and

b̃j = bj for j 6∈ J.

Then the BMISDNI has a solution if and only if

l ≤ A ⊗

(
A]

⊗
′ b̃
)

,

and x̂ = A ⊗

(
A]

⊗
′ b̃
)
is then the greatest solution (that is y ≤ x̂ for

any solution y).

Proof. Note first that A is an integer matrix and we therefore may
apply Corollary 4.1 to A.

‘‘If’’: By Corollary 2.1 x̂ ≤ b̃ ≤ b ≤ u. Let us take in Corollary 4.1
(and Theorem 4.1) x = A]

⊗
′ u. Then x̂ = A ⊗ x̄ and so x̂j ∈ Z for

j ∈ J.
‘‘Only if’’: Let y be a solution. Then y = A ⊗ w ≤ u for some

w ∈ Rn, thus by Theorem 2.2

w ≤ A]
⊗

′ u

and so

y = A ⊗ w ≤ A ⊗
(
A]

⊗
′ u
)

= b.

Since yj ∈ Z for j ∈ J we also have

A ⊗ w = y ≤ b̃.

Hence by Theorem 2.2

w ≤ A]
⊗

′ b̃

and by Lemma 2.1 then

l ≤ y = A ⊗ w ≤ A ⊗

(
A]

⊗
′ b̃
)

= x̂.

We also have x̂ ≤ b̃ ≤ b ≤ u by Corollary 2.1 and x̂j ∈ Z for j ∈ J
by Corollary 4.1 as above, hence x̂ is the greatest solution. �

Example 4.1. Let

B =

(
−2 2 −2
−3 −1 −4
1 3 −3

)

u = (3.5, 0.8, 5.7)T, J = {1, 3} (l is not specified).
Theorem 4.2 provides:

A = B∗
=

(0 2 −2
−3 0 −4
1 3 0

)

A]
⊗

′ u =

(0 3 −1
−2 0 −3
2 4 0

)
⊗

′ u =

(3.5
0.8
4.8

)

b = A ⊗
(
A]

⊗
′ u
)

=

(3.5
0.8
4.8

)

b̃ =

(3
0.8
4

)

x̂ = A ⊗

(
A]

⊗
′ b̃
)

= (3, 0.8, 4)T.

By Theorem 4.2 x̂ is the greatest solution to the BMISDNI provided
that l ≤ x̂ (otherwise there is no solution).

5. A note on an application

As a by-product, this paper provides a solution technique for
solving a scheduling-type of problems.

Consider a multiprocessor interactive system (of production,
transportation, information technology, etc.) in which the individ-
ual processors work in stages and a processor, say P cannot start
its work in a new stage until all or some of the processors have fin-
ished their activities necessary for P [10,11,14]. It is assumed that
each of the processors P1, . . . , Pn can work for all other processors
simultaneously and that a processor starts all these activities as
soon as it starts to work.

Let xi(r) denote the starting time of the rth stage on processor
i (i = 1, . . . , n) and let aij denote the duration of the operation at
which the jth processor prepares the component necessary for the
ith processor in the (r + 1)st stage (i, j = 1, . . . , n). Then

xi(r + 1) = max(x1(r) + ai1, . . . , xn(r) + ain)
(i = 1, . . . , n; r = 0, 1, . . .)

or, in max-algebraic notation

x(r + 1) = A ⊗ x(r)(r = 0, 1, . . .)

where A = (aij) is a production matrix. We say that the system is
in a steady state [9] if it moves forward in regular steps, that is if
for some λ we have x(r + 1) = λ ⊗ x(r) for all r . This implies
A ⊗ x(r) = λ ⊗ x(r) for all r . Therefore the system is in a steady
state in all stages if and only if for some λ, the starting times vector
x(0) is a solution to

A ⊗ x = λ ⊗ x.

For practical reasons it may be necessary to find the starting times
for the individual processors within given bounds, for instance
uj ≥ xj ≥ lj for all j. If an eigenvector within these bounds does
not exist then it may be interesting to find a subeigenvector, that
is an x satisfying

A ⊗ x ≤ λ ⊗ x (3)

and uj ≥ xj ≥ lj for all j (in this case a new stage at any processor
startswithin a given time limitλ after the beginning of the previous
stage). Solvability of (3) is answered by Theorem 2.1 and once this
is affirmative it remains to solve

B ⊗ x ≤ x
l ≤ x ≤ u

where B = λ−1
⊗ A. The answer to this question is given in

Corollary 2.2.

Author's personal copy

P. Butkovič / Operations Research Letters 36 (2008) 623–627 627

Acknowledgements

The author wishes to thank two anonymous referees for their
constructive remarks that helped to improve the presentation of
this paper.

References

[1] F.L. Baccelli, G. Cohen, G.-J. Olsder, J.-P. Quadrat, Synchronization and Linearity,
John Wiley, Chichester, New York, 1992.

[2] R.B. Bapat, A max version of the Perron Frobenius theorem, Linear Algebra
Appl. 275/276 (1998) 3–18.

[3] R.B. Bapat, Pattern properties and spectral inequalities in max algebra, SIAM J.
Matrix Anal. Appl. 16 (1995) 964–976.

[4] P. Butkovic, Max-algebra: The linear algebra of combinatorics? Linear Algebra
Appl. 367 (2003) 313–335.

[5] R.E. Burkard, P. Butkovic, Max algebra and the linear assignment problem,
Math. Program. Ser. B 98 (2003) 415–429.

[6] P. Butkovic, H. Schneider, Applications of max-algebra to diagonal scaling of
matrices, Electron. J. Linear Algebra 13 (2005) 262–273.

[7] P. Butkovic, H. Schneider, S. Sergeev, Generators, extremals and bases of max
cones, Linear Algebra Appl. 421 (2007) 394–406.

[8] G. Cohen, D. Dubois, J.-P. Quadrat, M. Viot, A linear-system-theoretic view
of discrete-event processes and its use for performance evaluation in
manufacturing, IEEE Trans. Automat. Control AC-30 (3) (1985).

[9] R.A. Cuninghame-Green, Describing industrial processeswith interference and
approximating their steady-state behaviour, Oper. Res. Quarterly 13 (1962)
95–100.

[10] R.A. Cuninghame-Green,Minimax Algebra, in: Lecture Notes in Economics and
Mathematical Systems, vol. 166, Springer, Berlin, 1979.

[11] R.A. Cuninghame-Green, Minimax Algebra and Applications, in: Advances
in Imaging and Electron Physics, vol. 90, Academic Press, New York, 1995,
pp. 1–121.

[12] S. Gaubert, Théorie des systèmes liné aires dans les dioïdes, Thèse, Ecole des
Mines de Paris, 1992.

[13] M. Gondran, M. Minoux, Valeurs propres et vecteur propres dans les dioïdes
et leur interprétation en théorie des graphes, Bulletin de la direction des
etudes et recherches, Serie C, Mathematiques et Informatiques 2 (1977)
25–41.

[14] B. Heidergott, G.J. Olsder, J. van der Woude, Max plus at work: Modeling
and analysis of synchronized systems, A Course on Max-Plus Algebra, PUP,
2006.

[15] D. Hochbaum, J. Naor, Simple and fast algorithms for linear and integer
programs with two variables per inequality, SIAM J. Comput. 23 (6) (1994)
1179–1192.

[16] C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization-Algorithms and
Complexity, Dover Publications, 1998.

[17] D.R. Shier, A decomposition algorithm for optimality problems in tree-
structured networks, Discrete Math. 6 (1973) 175–189.

[18] N.N. Vorobjov, Extremal algebra of positive matrices, Elektronische Datenver-
arbeitung und Kybernetik 3 (1967) 39–71 (in Russian).

[19] M. Conforti, M. Di Summa, F. Eisenbrand, L. Wolsey, Network formulations
of mixed-integer programs, CORE discussion paper 2006/117, Université
Catholique de Louvain, Belgium.

[20] K. Zimmermann, Extremální algebra, Výzkumná publikace Ekonomicko —
matematické laboratoře při Ekonomickém ústavě ČSAV, 46, Praha, 1976 (in
Czech).

