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Abstract

Max-algebra is an analogue of linear algebra developed for the pair
of operations (�;
) = (max;+) over R [ f�1g: There is a number of
solution methods for solving the eigenproblem A 
 x = � 
 x: On the
other hand little seems to be known about the generalized eigenproblem
A 
 x = � 
 B 
 x: We present a method for narrowing the search for
generalized eigenvalues for a pair of real square matrices. It is based on the
solvability conditions for two-sided systems formulated using symmetrized
semirings.
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1 Problem formulation

This paper deals with the generalized eigenvalue-eigenvector problem (brie�y,
generalized eigenproblem) in max-algebra. Max-algebra is an analogue of linear
algebra developed for the pair of operations (�;
) = (max;+) over R := R [
f�1g, extended to matrices and vectors. That is if A = (aij); B = (bij)
and C = (cij) are matrices of compatible sizes with entries from R, we write
C = A�B if cij = aij � bij for all i; j and C = A
B if cij =

P�
k aik 
 bkj =

maxk(aik + bkj) for all i; j. If � 2 R then � 
 A = (�
 aij). In max-algebra
�1 plays the role of a neutral element for � and a null for 
: Throughout
the paper we denote �1 by " and for convenience we also denote by the same
symbol any vector or matrix whose every component is �1:
The letter I will denote a square matrix whose diagonal entries are 0 and

o¤-diagonal entries are ": Clearly, A 
 I = A for every matrix A compatible
with I.
One of the most important problems in max-algebra is the eigenproblem

(EP):
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Given A 2 Rn�n; �nd all � 2 R (eigenvalues) and x 2 Rn; x 6= " (eigenvec-
tors) such that A
 x = �
 x.
EP has been studied since the 1960�s and can now be e¢ ciently solved [8],

[10], [11], [1], [6], [9], [15]. All eigenvalues and bases of all eigenspaces can be
found using O

�
n3
�
operations [8].

On the other hand relatively little seems to be known about the generalized
eigenproblem (GEP):
Given A;B 2 Rm�n, �nd all � 2 R (generalized eigenvalues) and x 2

Rn; x 6= " (generalized eigenvectors) such that

A
 x = �
B 
 x: (1)

Obviously, EP is obtained from GEP when B = I: However, it is likely that
GEP is profoundly more di¢ cult than EP. This is indicated by the fact that
while every n � n matrix over R has at least one and up to n eigenvalues [8],
the GEP for a pair of real matrices may have no generalized eigenvalue, any
�nite number or a continuum of generalized eigenvalues [13]. To the author�s
knowledge [2] and [13] are the only papers dealing with GEP. The �rst of these
papers solves the problem completely when m = 2 and some special cases for
general m and n; the second one solves some other special cases. No solution
method seems to have been published either for �nding a � or an x 6= " satisfying
(1) for general matrices. Note that a two-sided system

C 
 x = D 
 x (2)

with C;D 2 Rm�n can be solved by so-called Alternating Method [12] which
has pseudopolynomial complexity when applied to integer matrices. We con-
centrate on the question of �nding all generalized eigenvalues since for any of
them the question of �nding a generalized eigenvector can be solved using the
Alternating Method. We present a method for narrowing the search for general-
ized eigenvalues for a pair of real square matrices. It is based on the solvability
conditions for two-sided systems formulated using symmetrized semirings [1],
[14], [17].
A motivation for GEP is given by the following: Consider the multi-machine

interactive production process (MMIPP) where products P1; :::; Pm are prepared
using n machines (or processors), every machine contributing to the completion
of each product by producing a partial product. It is assumed that every ma-
chine can work for all products simultaneously and that all these actions on a
machine start as soon as the machine starts to work. Let aij be the duration
of the work of the jth machine needed to complete the partial product for Pi
(i = 1; :::;m; j = 1; :::; n): Let us denote by xj the starting time of the jth

machine (j = 1; :::; n). Then all partial products for Pi (i = 1; :::;m) will be
ready at time max(x1 + ai1; :::; xn + ain). Now suppose that independently, n
other machines prepare partial products for products Q1; :::; Qm and the dura-
tion and starting times are bij and yj ; respectively. Then the synchronisation
problem is to �nd starting times of all 2n machines so that each pair (Pi; Qi)
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(i = 1; :::;m) is completed at the same time. This task is equivalent to �nding
x1; :::; xn; y1; :::; yn 2 R satisfying the system

max(x1 + ai1; :::; xn + ain) = max(y1 + bi1; :::; yn + bin)

for i = 1; :::;m: If the machines are linked it may also be required that the
starting times xj ; yj of each pair of machines (j = 1; :::; n) di¤er by the same
value. If we denote this value by � then the equations read

max(x1 + ai1; :::; xn + ain) = max(�+ x1 + bi1; :::; �+ xn + bin) (3)

for i = 1; :::;m: In max-algebraic notation this system gets the formX
j=1;:::;n

�
aij 
 xj = �


X
j=1;:::;n

�
bij 
 xj (i = 1; :::;m) (4)

which is essentially (1).
We will use the following notation: If a1; :::; an 2 R then the expression

a1� :::�an will be denoted by
P�

i=1;:::;n ai: The iterated expression a
a
 :::
a
where the symbol a appears k-times (k � 1) will be denoted a(k) and a(0) = 0
by de�nition.
We assume everywhere that m;n � 1 are integers. Pn will stand for the

set of permutations of the set N = f1; :::; ng: Given A;B 2 Rm�n it will be
convenient to denote

�(A;B) =
n
� 2 R;

�
9x 2 Rn � f"g

�
A
 x = �
B 
 x

o
:

Notice that in the GEP the case when � = " is trivial (a corresponding
generalized eigenvector exists if and only if A contains an " column).
Finally, the following simple property may be helpful when solving two-sided

systems in max-algebra:

Lemma 1.1 (Cancellation Law) Let v; w; a; b 2 R; a > b. Then for any real x
we have

v � a
 x = w � b
 x (5)

if and only if
v � a
 x = w: (6)

Proof. If x satis�es (5) then LHS � a 
 x > b 
 x: Hence RHS = w and (6)
follows. If (6) holds then w � a
 x > b
 x and thus w = w � b
 x:
Since in what follows we only deal with generalized eigenvalues and general-

ized eigenvectors we will omit the word "generalized". A solution x to (2) will
be called trivial if x = " and nontrivial otherwise.
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2 Regularisation

Let C = (cij) ; D = (dij) 2 Rm�n: The system (2) is called regular if

cij 6= dij

for all i; j: For the method presented in this paper it is crucial that � is such
that (1) is regular. There are at most mn values of � in (1) for which this
requirement is not satis�ed. More precisely, we have:
Let A = (aij) ; B = (bij) 2 Rm�n and

L = f� 2 R; aij = �
 bij for some i; jg :

Then obviously jLj � mn and (1) is regular for all � 2 R�L: Every real number
in L will be called a singular value (of �). Recall that solvability of (1) can be
checked for each �xed and in particular singular value of � using the Alternating
Method. Note that the elements of L appear as entries of A�B:
It is also easily seen that if for some i we have cij > dij for all j then (2) has

no nontrivial solution. Therefore (1) has no nontrivial solution if � is too big
or too small, in particular for � > maxL and � < minL: These two conditions
may be slightly re�ned as aij > � 
 bij for all j or aij < � 
 bij for all j must
not hold for any i = 1; :::;m: Hence (1) has no nontrivial solution for � < �0 and
� > �00 where �0 is the mth smallest value in L and �00 is the mth greatest value
in L (both considered with multiplicities). So actually only at most mn � 2m
singular values of � need to be checked.
We can now assume that � is from an open interval J whose ends are singular

values but J \ L = ;: Thus the endpoints are singular values but there are no
singular values inside J: We will call such intervals regular and we will also call
every real number regular if it belongs to a regular interval. It follows that there
are at most mn � 2m � 1 regular intervals to be considered. In the rest of the
paper we assume that one such interval, say J; has been �xed, and we consider
(1) only for � 2 J:

3 A necessary condition for solving two-sided
systems

Symmetrized semirings [1], [17], [14] are useful to study two-sided systems of
equations in max-algebra. We now give a brief account of this theory.

Denote S = R� R and extend � and 
 to S as follows:

(a; a0)� (b; b0) = (a� b; a0 � b0);

(a; a0)
 (b; b0) = (a
 b� a0 
 b0; a
 b0 � a0 
 b):
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It is easy to check that ("; ") 2 S is the neutral element wrt � and (0; ") is
the neutral element wrt to 
 in S:
If x = (a; b) then �x stands for (b; a); x � y means x � (�y), the modulus

of x 2 S is jxj = a � b, the balance operator is x� = x � x = (jxj ; jxj). The
following identities hold:

�(�x) = x;

�(x� y) = (�x)� (�y);

�(x
 y) = (�x)
 y:

We will need the following properties:

Lemma 3.1 Let x; y 2 S: Then the following hold:

(a) jx� yj = jxj � jyj ;

(b) jx
 yj = jxj 
 jyj ;

(c) j�xj = jxj :

Proof. Let x = (a; b); y = (c; d): Then jx� yj = a � c � b � d and jxj � jyj =
a� b� c� d = jx� yj, hence the �rst identity. Also, we have

jx
 yj = (a
 c� b
 d)� (a
 d� b
 c)
= (a� b)
 (c� d)
= jxj 
 jyj :

Part (c) is trivial.
Let x = (a; b); y = (c; d) 2 S. We say that x balances y (notation x 5 y)

if a � d = b � c: Note that although 5 is re�exive and symmetric, it is not
transitive.
If x = (a; b) 2 S then x is called sign-positive [sign-negative], if a > b [a < b]

or x = ";x is called balanced if a = b, otherwise it is called unbalanced. Thus, "
is the only element of S that is both signed and balanced.
Due to the bijective semiring morphism t �! (t; ") we will identify, when

appropriate, the elements of R and the sign-positive elements of S of the form
(t; "). Conversely, a sign-positive element (a; b) may be identi�ed with a 2 R.
So for instance 3 may denote the real number as well as the element (3; ") of S:
By these conventions we may write 3� 2 = 3; 3� 7 = �7; 3� 3 = 3�:
The following are easily proved:
x5 y; u5 v =) x� u5 y � v
x5 y =) x
 u5 y 
 u
x5 y and x = (a; b); y = (c; d) are sign-positive =) a = c
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The operations � and 
 are extended to matrices and vectors over S in the
same way as in conventional linear algebra. A vector is called sign-positive [sign-
negative, signed ], if all its components are sign-positive [sign-negative, signed].
The properties mentioned above hold if they are appropriately modi�ed for
vectors. For more details see [17]. We will now formulate two results presented
in [17] of particular relevance for the present paper.

Proposition 3.1 [17] To every solution of the system A 
 x = B 
 x; x 2
Rn; x 6= " there exists a sign-positive solution to the system of linear balances
(A�B)
 x5 "; x 2 Sn; x 6= " and conversely.

For the second result we de�ne the determinant of matrices in symmetrized
semirings. The sign of a permutation � is sgn(�) = 0 if � is even and it is �0
if � is odd. The determinant of A = (aij) 2 Sn�n is

det(A) =
X
�2Pn

�
 
sgn (�)


Y
i2N



ai;�(i)

!
:

Theorem 3.1 [17] Let A 2 Sn�n. Then the system of balances A
 x5 " has
a signed nontrivial (i.e. 6= ") solution if and only if det(A)5 ".

A 2 Sn�n is said to have balanced determinant if det(A)5 ", otherwise it is
said to have unbalanced determinant. Note that the system of balances A
x5"
may not have a nontrivial sign-positive solution if A has balanced determinant.

Corollary 3.1 Let A;B 2 Rn�n and C = A� B. Then a necessary condition
that the system A
 x = B
 x have a nontrivial solution is that C has balanced
determinant.

Corollary 3.2 Let A;B 2 Rn�n; � 2 R and C (�) = A � � 
 B. Then a
necessary condition that the system A
x = �
B
x have a nontrivial solution
is that C (�) has balanced determinant.

The idea of narrowing the search for the eigenvalues is based on Corollary 3.2:
We show how to �nd all � for which C (�) has balanced determinant. It turns
out that this can be done using a polynomial number of operations in terms
of n: This method may in some cases identify all eigenvalues, see Examples 7.1
and 7.2.

4 Verifying that a determinant is balanced

In this section we show how to convert the question of checking that the de-
terminant of a square matrix over a symmetrized semiring is balanced into a
polynomially solvable problem. For this purpose we de�ne the max-algebraic
permanent of A = (aij) 2 R

n�n
as

maper(A) =
X
�2Pn

�Y
i2N



ai;�(i) = max

�2Pn

X
i2N

ai;�(i):
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Obviously, maper(A) is the optimal value in the classical (linear) assignment
problem for A: We therefore denote the set of optimal permutations by ap(A);
that is

ap(A) =

(
� 2 Pn;maper(A) =

X
i2N

ai;�(i)

)
:

Note that the assignment problem is a basic combinatorial optimization problem
studied in many books and papers. We mention at least [5] and [16]. Perhaps
the best known solution method is the Hungarian method of computational
complexity O

�
n3
�
: The method transforms A to a nonpositive matrix B with

ap(A) = ap(B) andmaper(B) = 0:We will refer to the matrix B = (bij) derived
from A in this way as to the normal form of A: Thus for � 2 ap(B) we have
bi;�(i) = 0 for all i 2 N . If bij = 0 for some i; j 2 N then a � 2 ap(B) with
j = �(i) may or may not exist. But this can easily be decided by checking that
maper (Bij) = 0 where Bij is the matrix obtained from B by removing row i
and column j:
The link between the determinant of a matrix over a symmetrized semiring

and the max-algebraic permanent is shown in the following proposition. If
C = (cij) 2 Sn�n then we denote jCj = (jcij j) 2 R

n�n
:

Proposition 4.1 For every C = (cij) 2 Sn�n we have:

jdet (C)j = maper (jCj) :

Proof. By a repeated use of Lemma 3.1 we have

jdet (C)j =

����� X
�2Pn

�
 
sgn (�)


Y
i2N



ci;�(i)

!�����
=

X
�2Pn

�
�����sgn (�)
Y

i2N



ci;�(i)

�����
=

X
�2Pn

�
�����Y
i2N



ci;�(i)

�����
=

X
�2Pn

�Y
i2N


 ��ci;�(i)��
= maper (jCj) :

A square (0; 1;�1) matrix is called sign-nonsingular (SNS) if at least one
term of its standard determinant expansion is non-zero and all non-zero terms
have the same sign [3]. The problem of checking whether a (0; 1;�1) matrix
is SNS or not is equivalent to the even cycle problem in digraphs [3], [14] and
therefore polynomially solvable [18].
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Given C = (cij) 2 Sn�n we de�ne eC = (~cij) to be the n�n (0; 1;�1) matrix
satisfying

~cij = 1 if j = � (i) for some � 2 ap(jCj) and cij is sign-positive
~cij = �1 if j = � (i) for some � 2 ap(jCj) and cij is sign-negative
~cij = 0 else

The matrix eC can easily be constructed since (as already explained) it is
straightforward to check whether j = � (i) for some � 2 ap(jCj): The next
theorem was proved in [14].

Theorem 4.1 Let C be a square matrix over a symmetrized semiring. A suf-
�cient condition that C have balanced determinant is that eC is not SNS. If C
has no balanced entry then this condition is also necessary.

If the system � is regular then C = A��
B has no balanced entry. Hence
we have:

Corollary 4.1 Let A;B 2 Rn�n; � be regular. Then the question whether C (�)
has balanced determinant can be checked using a polynomial number of opera-
tions by checking that ]C (�) is not SNS.

These results enable us to decide for any �xed regular value of � whether
the determinant of C (�) is balanced by checking that ]C (�) is not SNS. This
is important and will be used later. However, C (�) may have balanced deter-
minant for a continuum of values of � (see Example 7.2) and therefore we also
need to develop a tool which enables us to make the same decision for a whole
regular interval. This tool will be presented in Section 6. As a preparation we
�rst show in Section 5 how to �nd maper jC (�)j as a function of � 2 J:

5 Finding maper jC (�)j

In this section we show how to e¢ ciently �nd maper jC (�)j : This will then be
used in the next section to produce a method for �nding all regular values of �
for which ]C (�) is not SNS.
Recall �rst that jC (�)j = (aij � �
 bij) = (cij (�)) and for every � 2 J we

have
aij 6= �
 bij

for all i; j 2 N: Therefore for every � 2 J and for all i; j 2 N the entry
cij (�) = aij � � 
 bij is equal to exactly one of aij and � 
 bij : Note that
f (�) = maper jC (�)j is the maximum of n! terms. Each term is a 
 product
of n entries cij (�) ; hence of the form b 
 �(k); where b 2 R and k is a natural
number between 0 and n: Since b
�(k) in conventional notation is simply k�+b;
we deduce that f (�) is the maximum of a �nite number of linear functions and

8



therefore a piecewise linear convex function. Note that slopes of all linear pieces
of f (�) are natural numbers between 0 and n: Recall that f (�) for any particular
� can easily be found by solving the assignment problem for jC (�)j : It follows
that all linear pieces can therefore e¢ ciently be identi�ed. We now describe one
possible way of �nding these linear functions: Assume �rst that the linear pieces
of smallest and greatest slope are known, let us denote them fl (�) = al 
 �(l)

and fh (�) = ah 
 �(h); respectively. If l = h then there is nothing to do, so
assume l 6= h:We start by �nding the intersection point of fl and fh; that is, say,
�1 satisfying fl (�1) = fh (�1) : Calculate f (�1) = maper jC (�1)j : If f (�1) =
fl (�1) = fh (�1) then there is no linear piece other than fl and fh: Otherwise
f (�1) > fl (�1) = fh (�1) : Let r be the number of � terms appearing in an
optimal permutation (if there are several optimal permutations with various
numbers of � appearances then take any). Since r is the slope of the linear
piece we have l < r < h: Then ar = f (�1) � r�1 and fr (�) = ar 
 �(r): This
term is a new linear piece and we then repeat this procedure with fl and fr
and fr and fh; and so on. At every step a new linear piece is discovered unless
all linear pieces have already been found. Hence the number of iterations is at
most n� 1:
For �nding fl and fh it will be convenient to use the independent ones

problem (IOP) for 0� 1 square matrices:
Given a 0� 1 matrix M = (mij) 2 Rn�n; �nd the greatest number of ones

in M so that no two are from the same row or column or, equivalently, so that
there is a � 2 Pn selecting all these ones.
Clearly, IOP is a special case of the assignment problem, and therefore eas-

ily solvable. Note that in graph terminology IOP is known as the maximum
cardinality bipartite matching problem solvable in O

�
n2:5

�
time. In general we

say that a set of positions in a matrix are independent if no two of them belong
to the same row or column.
Now we discuss how to �nd fl and fh. The values of l and h are obviously

the smallest and biggest number of independent entries in jC (�)j containing �
and these can be found by solving the corresponding IOP. For h this problem
can be described by the matrixM = (mij) with mij = 1 when jcij (�)j = �
bij
and 0 otherwise and for l by E �M; where E is the all-one matrix.
Now we show how to �nd al and ah: Let dij = bij if cij (�) = � 
 bij and

dij = aij if cij (�) = aij (note that by regularity of � only one of these two
possibilities occurs for � 2 J). For �nding al and ah we need to determine
permutations � and � that maximize

P
i2N di;�(i) and

P
i2N di;�(i) and select

l and h entries containing �; respectively. To achieve this we interpret the two
above mentioned IOPs as assignment problems and describe their solution sets
using normal matrices Mh and Ml (that is nonpositive matrices with at least
one set of n independent zeros) obtained by the Hungarian method. It remains
then to replace all entries in D = (dij) corresponding to nonzero entries in Mh

and Ml by �1 and solve the assignment problem for the obtained matrices.
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6 Narrowing the search for eigenvalues

In this section we show how to e¢ ciently �nd the set of all regular values of � for
which det(C (�)) is balanced. This set will be denoted by S: We use essentially
the fact that the decision whether det(C (�)) is balanced can be made e¢ ciently
for any individual value of � (Corollary 4.1). The following will be useful:

Lemma 6.1 Let f(x); g(x); h(x) be piecewise linear convex functions on R;
f(x) = g(x) � h(x) for all x 2 R: Suppose a; b 2 R are such that f is lin-
ear on [a; b] : If g(x) = h(x) for at least one x 2 (a; b) then g(x) = h(x) for all
x 2 [a; b].

Proof. Suppose g(x0) = h(x0); x0 2 (a; b) : Hence g(x0) = h(x0) = f (x0) : If
g(x) < f(x) for an x 2 [a; b] ; without loss of generality for x 2 [a; x0) ; then by
convexity of g and linearity of f we have that g(x) > f(x) for all x 2 (x0; b) ; a
contradiction. Therefore g(x) = f(x) for all x 2 [a; b] and similarly h(x) = f(x)
for all x 2 [a; b] :
Recall that as before J is a regular interval. Let us denote det(C (�)) =

(d+ (C (�)) ; d� (C (�))) or just (d+ (�) ; d� (�)) : Then C (�) for � 2 J has bal-
anced determinant if and only if

d+ (�) = d� (�) : (7)

It follows from the results of the previous section that the piecewise linear convex
function

jdet (C (�))j = d+ (�)� d� (�) = maper jC (�)j

can e¢ ciently be found. By the same argument as for maper jC (�)j we see that
both d+ (�) and d� (�) are max-algebraic polynomials in � (hence piecewise
linear and convex functions) containing at most n + 1 powers of � between
0 and n. No method other than exhaustive search (requiring n! permutation
evaluations) seems to be known for �nding d+ (�) and d� (�) separately for any
particular � [7], however for a �xed � 2 R�L by Theorem 4.1 we can decide
in polynomial time whether d+ (�) = d� (�) or not. Since d+ (�) � d� (�) =
maper jC (�)j then if maper jC (�)j is known using Lemma 6.1 we can easily �nd
ALL values of � 2 J satisfying d+ (�) = d� (�) by checking this equality for any
point strictly between any two consecutive breakpoints and for the breakpoints
of maper jC (�)j. We summarize this in the following:

Theorem 6.1 If the set S = f� 2 J ; d+ (�) = d� (�)g is nonempty then it con-
sists of some breakpoints of maper jC (�)j and a number (possibly zero) of closed
intervals whose endpoints are pairs of adjacent breakpoints of maper jC (�)j. All
these can be identi�ed in polynomial time.

Proof. The statement is essentially proved by Lemma 6.1. We only need to
add that each interval whose endpoints are adjacent breakpoints ofmaper jC (�)j
can be decided by checking d+ (�) = d� (�) for one internal point of the interval
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and that the number of breakpoints is at most n and therefore the number of
intervals is at most n � 1: The equality d+ (�) = d� (�) for a �xed � can be
decided in polynomial time by Theorem 4.1.
We summarize our work in the following procedure for �nding all regular

values of � for which det (C (�)) is balanced:
ALGORITHM NARROWING THE EIGENVALUE SEARCH
Input: A;B 2 Rn�n and a regular interval J:
Output: The set S = f� 2 J ; d+ (�) = d� (�)g :

1. S := ;

2. C (�) := A� �
B

3. Calculate f (�) = maper jC (�)j ; that is �nd all breakpoints and linear
pieces of f (�)

4. For every breakpoint of f (�) do: If ]C (�) is not SNS then S := S [ f�g

5. For any two consecutive breakpoints a; b and arbitrarily taken � 2 (a; b)
do: If ]C (�) is not SNS then S := S [ (a; b)

7 Examples

In the two examples below we demonstrate that the described method for nar-
rowing the search for eigenvalues may actually �nd all eigenvalues. Note that in
these examples all matrices are of small sizes and therefore the functions d+ (�)
and d� (�) are explicitly evaluated, however for matrices of nontrivial sizes this
would not be practical and the above mentioned method provides an e¢ cient
tool for �nding all regular values of � for which d+ (�) = d� (�).

Example 7.1 Let A =

0@ 3 8 2
7 1 4
0 6 3

1A, B =

0@ 4 4 3
2 3 4
3 2 1

1A : Then A � B =

0@ �1 4 �1
5 �2 0

�3 4 2

1A and L = f�3;�2;�1; 0; 2; 4; 5g : For � < �1 all terms on

the RHS of the �rst equation in A 
 x = � 
 B 
 x are strictly less than the
corresponding terms on the left and therefore there is no nontrivial solution to
A 
 x = � 
 B 
 x. For � > 4 similarly all these terms are greater than their
counterparts on the left. Hence we only need to investigate regular intervals
(�1; 0) ; (0; 2) and (2; 4) and the singular points �1; 0; 2; 4:
For � 2 (�1; 0) we have

jC (�)j =

0@ 4 + � 8 3 + �
7 3 + � 4

3 + � 6 3

1A ;
11



d+ (�) = max (10 + 2�; 14 + �; 9 + 3�) ;

d� (�) = max (16 + �; 15 + �; 18) ;

maper jC (�)j = 18:
Since d+ (�) 6= d� (�) for � 2 (�1; 0) ; there are no eigenvalues in this interval.
For � 2 (0; 2) we have

jC (�)j =

0@ 4 + � 8 3 + �
7 3 + � 4 + �

3 + � 6 3

1A ;
d+ (�) = max (10 + 2�; 15 + 2�; 9 + 3�) ;

d� (�) = max (16 + �; 14 + 2�; 18) ;

maper jC (�)j = max (18; 16 + �; 15 + 2�; 9 + 3�) :
For � 2 (0; 2) there is only one breakpoint for maper jC (�)j at �0 = 3=2: Since
d+ (�) = d� (�) for � = �0; this value is the only candidate for an eigenvalue
in (0; 2): It is not di¢ cult to �nd that x = (2; 0; 3:5)T is a corresponding eigen-
vector.
For � 2 (2; 4) we have

jC (�)j =

0@ 4 + � 8 3 + �
7 3 + � 4 + �

3 + � 6 1 + �

1A ;
d+ (�) = max (15 + 2�; 16 + �; 9 + 3�) ;

d� (�) = max (16 + �; 14 + 2�; 8 + 3�) ;

maper jC (�)j = 15 + 2�
Since d+ (�) 6= d� (�) for � 2 (2; 4) ; there are no eigenvalues in this interval.
Let us consider the singular point � = 0 : In this small example we solve the

system A 
 x = B 
 x by direct analysis but note that in general the Alternat-
ing Method would be used. By the cancellation law (Lemma 1.1) the two-sided

system A 
 x = B 
 x is equivalent to the one with A =

0@ " 8 "
7 " 4
" 6 3

1A, B =

0@ 4 " 3
" 3 4
3 " "

1A : Here from the �rst equation either x2 = �4+x1 or x2 = �5+x3:
In the �rst case the third equation yields max (2 + x1; 3 + x3) = 3 + x1; thus
x1 = x3: Substituting in the second equation then x1 = �4 + x2; a contradic-
tion. In the second case the third equation yields again x1 = x3 which implies a
contradiction in the same way. Hence � = 0 is not an eigenvalue and a similar
analysis would show that neither are the remaining three singular values.
We conclude that �(A;B) = f3=2g.
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Example 7.2 Let A =
�
4 6
7 9

�
; B =

�
0 1
3 1

�
: It is easily seen that J =

(4; 5) is the unique regular interval. For � 2 (4; 5) we have

jC (�)j =
�

� 6
3 + � 9

�
and

maper jC (�)j = max (9 + �; 9 + �) = 9 + � = d� (�) = d+ (�) :

Hence every � 2 J satis�es the necessary condition. In fact all these values are
eigenvalues as x = (6; �)

T is a corresponding eigenvector (for every � 2 J).
This vector is also an eigenvector for � 2 f4; 5g and thus �(A;B) = [4; 5] :
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