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Abstract We consider the max-plus analogue of the eigenproblem for matrix pencils,
A ⊗ x = λ ⊗ B ⊗ x. We show that the spectrum of (A, B) (i.e., the set of possible
values of λ), which is a finite union of intervals, can be computed in pseudo-
polynomial number of operations, by a (pseudo-polynomial) number of calls to
an oracle that computes the value of a mean payoff game. The proof relies on
the introduction of a spectral function, which we interpret in terms of the least
Chebyshev distance between A ⊗ x and λ ⊗ B ⊗ x. The spectrum is obtained as the
zero level set of this function.
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1 Introduction

1.1 Motivations and general information

Max-plus algebra is the analogue of linear algebra developed over the max-plus
semiring which is the set Rmax = R ∪ {−∞} equipped with the operations of “ad-
dition” a ⊕ b := a ∨ b = max(a, b) and “multiplication” a ⊗ b := a + b . The zero
of this semiring is −∞, and the unit of this semiring is 0. Note that a−1 in max-
plus is the same as −a in the conventional notation. The operations of the semiring
are extended to matrices and vectors over Rmax. That is if A = (aij), B = (bij) and
C = (cij) are matrices of compatible sizes with entries from Rmax, we write C = A ∨ B
if cij = aij ∨ bij for all i, j and C = A ⊗ B if cij = ∨k(aik + b kj) for all i, j.

We investigate the two-sided eigenproblem in the max-plus algebra: for two
matrices A, B ∈ R

m×n
max , find scalars λ ∈ Rmax called eigenvalues and vectors x ∈ R

n
max

called eigenvectors, with at least one component not equal to −∞, such that

A ⊗ x = λ ⊗ B ⊗ x, (1)

where the operations have max-plus algebraic sense. In the conventional notation
this reads

max
j=1,...,n

(aij + x j) = λ + max
j=1,...,n

(bij + x j), for i = 1, . . . , m. (2)

The set of eigenvalues will be called the spectrum of (A, B) and denoted by
spec(A, B).

When B is the max-plus identity matrix I (all diagonal entries equal 0 and all off-
diagonal entries equal −∞), problem 1 is the max-plus spectral problem. The latter
spectral problem, as well as its continuous extension for max-plus linear operators,
is of fundamental importance for a wide class of problems in discrete event systems
theory, dynamic programming, optimal control and mathematical physics (Baccelli
et al. 1992; Heidergott et al. 2005; Kolokoltsov and Maslov 1997).

Problem 1 is related to the Perron–Frobenius theory for the two-sided eigenprob-
lem in the conventional linear algebra, as studied in McDonald et al. (1998) and
Mehrmann et al. (2008). When both matrices are nonnegative and depend on a large
parameter, it can be shown following the lines of Akian et al. (1998, Theorem 1) that
the asymptotics of an eigenvalue with nonnegative eigenvector is controlled by an
eigenvalue of Eq. 1. This argument calls for the development of two-sided analogue
of the tropical eigenvalue perturbation theory presented in Akian et al. (2004–2006,
2004).

A specific motivation to study the two-sided max-plus eigenproblem arises from
discrete event systems. In particular, systems of the form A ⊗ x = B ⊗ x or A ⊗ x �
B ⊗ x appear in scheduling. Indeed, when λ = 0, the system of constraints 2 can be
interpreted in terms of rendez-vous. Here, x j represents the starting time of a task
j (for instance, the availability of a part in a manufacturing system). The expression
maxn

j=1(aij + x j) represents the earliest completion time of a task which needs at least
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aij time units to be completed after task j started. Thus, the system A ⊗ x = B ⊗ x
requires to find starting times such that two different sets of tasks are completed at
the earliest exactly at the same times. In many situations, such systems cannot be
solved exactly, and a natural idea is to calculate the minimal Chebyshev distance
between A ⊗ x and B ⊗ x. Theorem 4 below determines this minimal distance. It
may be also of interest to solve perturbed problems like A ⊗ x = λ ⊗ B ⊗ x, as
in Eq. 1. Such problems express no wait type constraints. Indeed, y := A ⊗ x and
z := B ⊗ x may be thought of as the outputs of two different systems A and B,
with a common input x. The time offsets between output events are represented
by the differences yi − y j, for all i, j, where the difference is understood in the
usual algebra (these quantities belong to the “second order” max-plus theory, see
e.g. Cohen et al. 1991). No wait constraint may require that yi − y j take prescribed
values, for some pair (i, j). The condition that y = λ ⊗ z, i.e., y = λ + z, for some
λ ∈ R, means precisely that the time offsets are the same for the two outputs y and
z. Hence, an input x solving A ⊗ x = λ ⊗ B ⊗ x has the property of making A and B
indistinguishable from the point of view of no wait output constraints. An example
of such a situation is demonstrated on Fig. 2 in Section 3.2.

Problems of a related nature, regarding the time separation between events, arose
for instance in the work of Burns et al. (1995), following the work of Burns on
the checking of asynchronous digital circuits (Burns 1991). Moreover, systems of
the form A ⊗ x � B ⊗ x represent scheduling problems with both AND and OR
precedence constraints, studied by Möhring et al. (2004).

Similar motivations led to the study of min–max functions by Olsder (1991) and
Gunawardena (1994). Such functions can be written as finite infima of max-plus
linear maps, or finite suprema of min-plus linear maps. They also arise as dynamic
programming operators of zero-sum deterministic games. In particular, the fixed
points and invariant halflines of min–max functions studied in Cochet-Terrasson
et al. (1999) and Dhingra and Gaubert (2006) can be also used to compute values of
zero-sum deterministic games with mean payoff (Dhingra and Gaubert 2006; Zwick
and Paterson 1996). A correspondence between the computation of the value of
mean payoff games and two-sided linear systems in the max-plus algebra has been
established in Akian et al. (2012); we shall exploit here the same correspondence,
although in different guises.

In the max-plus algebra, a special form of min–max functions appears in
Cuninghame-Green (1979), under the name of AA∗-products. The same functions
appear as nonlinear projectors on max-plus cones playing essential role in the max-
plus analogue of Hahn-Banach theorem (Cohen et al. 2005; Litvinov et al. 2001).
The compositions of nonlinear projectors are more general min–max functions, and
they appear when one approaches two-sided systems A ⊗ x = B ⊗ y and A ⊗ x =
B ⊗ x (Cuninghame-Green and Butkovič 2003), and intersections of max-plus cones
(Gaubert and Sergeev 2008; Sergeev 2009). It is immediate to see that Eq. 1 is a
parametric version of A ⊗ x = B ⊗ x.

In the max-plus algebra, partial results for Problem 1 have been obtained by
Binding and Volkmer (2007), Butkovič (2010) and Cuninghame-Green and Butkovič
(2008). In particular, Butkovič (2010) and Cuninghame-Green and Butkovič (2008)
give an interval bound on the spectrum of Eq. 1 in the case where the entries of
both matrices are real. Besides that, both papers treat interesting special cases, for
instance when A and B square, or one of them is a multiple of the other.
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The spectrum of Eq. 1 is generally a collection of intervals on the real line.
By means of projection, this follows from a result of De Schutter and De Moor
(1996) that solution set to the system of max-plus (in)equalities is a union of convex
polyhedra. Note that the approach of De Schutter and De Moor (1996), related to
Develin–Sturmfels cellular decomposition (Develin and Sturmfels 2004), can also be
used for solving A ⊗ x = λ ⊗ B ⊗ x and more general problems of max-plus linear
algebra.

1.2 Contents of the paper

In the present paper, we first show that Eq. 1 can be viewed as a fixed-point problem
for a family of parametric min–max functions hλ. Based on this observation, we
introduce a spectral function s(λ) of Eq. 1, defined as the spectral radius of hλ.
The zero level set of s(λ) is precisely spec(A, B). More generally, s(λ) has a natural
geometric sense, being equal to the inverse of the least Chebyshev distance between
A ⊗ x and λ ⊗ B ⊗ x.

The function s(λ) is piecewise-affine and Lipschitz continuous, and it has an affine
asymptotics at large and small λ. In an important special case when none of the
matrices A and B have an identically −∞ column, the asymptotics is just λ + α1

at small λ, and −λ + α2 at large λ, in the conventional arithmetics. We also give
bounds on the spectrum of two-sided eigenproblem, which improve and generalize
the bound of Butkovič (2010) and Cuninghame-Green and Butkovič (2008). In the
case when the entries of A and B are integer or −∞, this allows us to show that all
affine pieces of s(λ) can be identified in a pseudopolynomial number of calls to an
oracle which identifies s(λ) at a given point. Importantly, s(λ) can be interpreted
as the greatest value of the associated parametric mean-payoff game and it can
be computed by the policy iteration algorithm of Cochet-Terrasson et al. (1999);
Dhingra and Gaubert (2006), as well as by the value iteration of Zwick and Paterson
(1996) or the subexponential method of Bjorklund and Vorobyov (2007). This leads
to a procedure for computing the whole spectrum of Eq. 1. To our knowledge,
no such general algorithm for computing the whole spectrum of Eq. 1 was known
previously. We also believe that the level set method used here, relying on the
introduction of the spectral function, is of independent interest and may have other
applications. See also Allamigeon et al. (2011) and Gaubert et al. (2011).

In some cases the spectral function can be computed analytically. In particular, we
will consider an example of Sergeev (2011), where it is shown that any finite system
of intervals and points on the real line can be represented as the spectrum of Eq. 1.

The paper is organized as follows. In the remaining subsection of Introduction we
explain the notation used in the rest of the paper. In Section 2 we consider two-sided
systems A ⊗ x = B ⊗ y and A ⊗ x = B ⊗ x. We relate the systems A ⊗ x = B ⊗ x
to certain min–max functions and show that the spectral radii of these functions
are equal to the inverse of the least Chebyshev distance between A ⊗ x and B ⊗ x.
In Section 3, we introduce the spectral function of two-sided eigenproblem as the
spectral radius of a natural parametric extension of the min–max functions studied
in Section 2. We give bounds on the spectrum of two-sided eigenproblem and
investigate the asymptotics of s(λ). We reconstruct the spectral function and hence
the whole spectrum in a pseudopolynomial number of calls to the mean-payoff
game oracle.
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1.3 Notation

For the sake of simplicity, the sign ⊗ will be usually omitted in the remaining part
of the paper, or even replaced with + if scalars are involved. In particular we write
Ax for A ⊗ x and λ + x for λ ⊗ x, where A ∈ R

m×n
max (a matrix), x ∈ R

n
max (a vector)

and λ ∈ Rmax (a scalar). Moreover in the remaining part of the paper we will prefer
conventional arithmetic notation: the four arithmetic operations a + b , a − b , ab and
a/b on the set of real numbers (scalars) will have their usual meaning. However we
often use ∨ for max and ∧ for min (also componentwise). The actions of max-plus
linear operators, their min-plus linear residuations and nonlinear projectors onto
max-plus cones (defined below in Section 2.1), which will appear as Ax, A�y, PA y
etc., should not be confused with any conventional linear operator. The notations like
A� B or PA PB should be understood as compositions of the corresponding operators
rather than any kind of matrix multiplication between them (in the case of A� B
above, B is max-plus linear and A� is min-plus linear).

We have to admit that notation AB might lead to a confusion, meaning both
scalar multiplication and the composition of two operators. However, any possible
confusion of this kind will be resolved by the context.

2 Two-sided systems and min–max functions

2.1 Max-plus linear systems and nonlinear projectors

Consider the m-fold Cartesian product R
m
max equipped with operations of taking

supremum u ∨ v and scalar “multiplication” (i.e., addition) λ ⊗ v := λ + v. This
structure is an example of semimodule over the semiring Rmax defined in the
introduction. The subsets of R

m
max closed under these two operations are its sub-

semimodules. We will call them max-plus cones or just cones, by abuse of language.
Indeed, there are important analogies and links between max-plus cones and convex
cones (Cohen et al. 2005; Develin and Sturmfels 2004; Gaubert and Katz 2009;
Sergeev 2009). We also need the operation of taking infimum which we denote by
inf or ∧.

With a max-plus cone V ⊆ R
m
max we can associate an operator PV defined by its

action

PVz = ∨{y ∈ V | y � z}. (3)

Consider the case where V ⊆ R
m
max is generated by a set S ∈ R

m
max, which means that

it is the set of bounded max-plus linear combinations

v = ∨
y∈S

(λy + y). (4)

In this case

PVz = ∨
y∈S

(z◦/y + y), where

z◦/y = max{γ | γ + y � z} = ∧
j∈supp(y)

(z j − y j) =
m∧

j=1
(z j − y j), (5)
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with the convention (−∞) + (+∞) = +∞. Here and in the sequel supp(y) := {i |
yi �= −∞} denotes the support of y. Note that z◦/y = ∞ if and only if y = −∞.

Further we are interested only in the case when V is finitely generated. Let S =
{y1, . . . , yn}, and Ti denote the set of indices where the minimum in z◦/yi is attained.
The following result is classical.

Proposition 1 (Baccelli et al. 1992; Butkovič 2003; Heidergott et al. 2005) Let a cone
V ⊆ R

m
max be generated by y1, . . . , yn and let z ∈ R

m
max. The following statements are

equivalent.

1. z ∈ V .
2. PVz = z.
3.

⋃m
i=1 Ti = supp z.

We note that the set covering condition 3. has been generalized to the case of
Galois connections (Akian et al. 2005).

By this proposition, the operator PV is a projector onto V . It is an order-preserving
and +-homogeneous operator, meaning that z1 � z2 implies PVz1 � PVz2, and that
PV (λ + z) = λ + PVz. However, in general it is neither ∨- nor ∧-linear.

A finitely generated cone can be described as a max-plus column span of a matrix
A ∈ R

m×n
max :

span(A) :=
{

n∨
i=1

(λi + A·i) | λi ∈ Rmax, i = 1, . . . , n
}

. (6)

In this case we denote PA := Pspan(A), and there is an explicit expression for this
operator which we recall below.

We denote Rmax := Rmax ∪ {+∞} and view A ∈ R
m×n
max as an operator from R

m
max to

R
n
max. The residuated operator A� from R

n
max to R

m
max is defined by

(
A�y

)
j = y◦/A· j =

m∧
i=1

(−aij + yi
)
, (7)

with the convention (−∞) + (+∞) = +∞. Note that this operator, also known as
Cuninghame-Green inverse, sends R

n
max to R

m
max whenever A does not have columns

equal to −∞. The term “residuated” refers to the property

Ax � y ⇔ x � A�y, (8)

where � is the partial order on R
m
max or R

n
max. Using Eq. 5 we obtain

PA(z) =
n∨

i=1
((z◦/A·i) + A·i) = AA�z. (9)

In this form (Eq. 9), the nonlinear projectors were studied by Cuninghame-Green
(1979) (as AA∗-products).

Finitely generated cones are closed in the topology induced by the metric

d(x, y) = max
i

|exi − eyi |, (10)
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which coincides with Birkhoff’s order topology. It is known (Cohen et al. 2005,
Theorem 3.11) that the projectors onto such cones are continuous.

The intersection of two finitely generated cones can be expressed in terms of two-
sided max-plus linear systems with separated variables Ax = By, by the following
proposition.

Proposition 2 Let A ∈ R
m×n1
max and B ∈ R

m×n2
max .

1. If (x, y) satisf ies Ax = By �= −∞ then z = Ax = By belongs to span(A) ∩
span(B). Equivalently, PA PBz = PB PAz = z.

2. If PA PBz = z �= −∞ then there exist x and y such that Ax = By = z.

This geometric approach to two-sided systems is also useful in the case of systems
with non-separated variables Ax = Bx, which is of greater importance for us here.
This system is equivalent to

Cx = Dy, where

C =
(

A
B

)

, D =
(

Im

Im

)

,
(11)

and Im = (δij) ∈ R
m×m
max denotes the max-plus m × m identity matrix with entries

δij =
{

0, if i = j,

−∞, if i �= j.
(12)

In this case we have the following version of Proposition 2.

Proposition 3 Let A, B ∈ R
m×n
max .

1. If x satisf ies Ax = Bx �= −∞, then v = (z z)T, where z = Ax = Bx, belongs to
span(C) ∩ span(D). Equivalently, PC PDv = PD PCv = PCv = v.

2. If v = (z z)T �= −∞ and PCv = v, then there exist x such that Ax = Bx = v.

Pairs (x, y) �= −∞ such that Ax = By = −∞ are described by: xi �= −∞ ⇔ A·i =
−∞ and y j �= −∞ ⇔ B· j = −∞. Analogously, vectors x �= −∞ such that Ax =
Bx = −∞ are described by xi �= −∞ ⇔ A·i = B·i = −∞. Any such pair of vectors
can be added to any other pair (x′, y′) or, respectively, vector x′, and the resulting
pair of vectors will satisfy the system if and only if so does (x′, y′) or, respectively,
x′. Therefore, we can assume in the sequel without loss of generality that there are
no such solutions, i.e., that (1) A and B do not have −∞ columns in the case of
separated variables, and (2) A and B do not have common −∞ columns in the case
of non-separated variables.

2.2 Projectors and Perron–Frobenius theory

Suppose that a function f : R
n
max → R

n
max is order preserving (x � y ⇒ f (x) � f (y)),

additively homogeneous ( f (λ + x) = λ + f (x)) and continuous in the topology in-
duced by Eq. 10. As x �→ exp(x) yields a homeomorphism with R

n+ endowed with the
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usual Euclidean topology, we can use the spectral theory for homogeneous, order-
preserving and continuous functions in R

n+. We will use the following important
identities, which follow from the results of Nussbaum (1986), see Akian et al. (2012,
Lemma 2.8) for the proof.

Theorem 1 (Coro. of Nussbaum (1986); Akian et al. 2012, Lemma 2.8) Let f denote
an order-preserving, additively homogeneous and continuous map from (R ∪ {−∞})n

to itself. Then it has a largest eigenvalue

r( f ) := max
{
λ | ∃x ∈ R

n
max, x �≡ −∞, λ + x = f (x)

}
,

which coincides with

r( f ) = max
{
λ | ∃x ∈ R

n
max, x �≡ −∞, λ + x � f (x)

}
, (13)

r( f ) = inf
{
λ | ∃x ∈ R

n, λ + x � f (x)
}
. (14)

Note that Eq. 14 is nonlinear generalization of the classical Collatz–Wielandt
formula (Minc 1988). Equations 13 and 14 are useful in the max-plus algebra, since
they work for the max-plus matrix multiplication as well as for the compositions
of nonlinear projectors. For Eq. 14 it is essential that it is taken over vectors with
real entries, and that the infimum may not be reached. Using Eq. 14 we obtain that
the spectral radius of such functions is isotone: f (x) � g(x) for all x ∈ R

n implies
r( f ) � r(g). We next recall an application of Eq. 14 to the metric properties of
compositions of projectors, which appeared in Gaubert and Sergeev (2008). The
Hilbert distance between u, v ∈ R

n
max such that supp(u) = supp(v) is defined by

dH(u, v) = max
i, j∈supp(v)

(
ui − vi + v j − u j

)
. (15)

If supp(u) �= supp(v) then we set dH(u, v) = +∞. Using Eq. 15 we define the Hilbert
distance between cones span(A) and span(B), for A ∈ R

m×n1
max and B ∈ R

m×n2
max :

dH(A, B) := min {dH(u, v) | u ∈ span(A), v ∈ span(B), supp(u) = supp(v)} . (16)

Theorem 2 (cp. Gaubert and Sergeev 2008, Theorem 25) Let A ∈ R
m×n1
max and B ∈

R
m×n2
max . Then

r (PA PB) = r (PB PA) = −dH(A, B). (17)

If dH(A, B) is f inite then it is attained by any eigenvector u of PA PB with eigenvalue
r(PA PB), and its image v by PB.

Proof As supp(PA PBu) ⊆ supp(PBu) ⊆ supp(u), it follows that PA PB and also
PB PA may have finite eigenvalue only if span(A) and span(B) have vectors with
common support. This shows the claim for the case dH(A, B) = +∞.

Now let dH(A, B) be finite. We show that −dH(u, v) = −dH(A, B) = r(PA PB).
Take arbitrary vectors u ∈ span(A) and v ∈ span(B) with supp(u) = supp(v), and
let Pu, resp. Pv , be projectors onto the rays U = {λ + u, λ ∈ Rmax}, resp. V =
{λ + v, λ ∈ Rmax}. As U ⊆ span(A) and V ⊆ span(B), we have that Pu � PA and
Pv � PB, hence Pu Pv � PA PB and, by the monotonicity of the spectral radius,
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r(Pu Pv) � r(PA PB). It can be shown that −dH(u, v) is the only finite eigenvalue
of Pu Pv , hence −dH(u, v) = r(Pu Pv), and consequently −dH(u, v) � r(PA PB) and
−dH(A, B) � r(PA PB). Now observe that −dH(u, v) = r(Pu Pv) is equal to the eigen-
value r(PA PB). This completes the proof. ��

In the case of the systems with non-separated variables, we will be more interested
in the Chebyshev distance. For u, v ∈ R

m
max with supp(u) = supp(v) it is defined by

d∞(u, v) = max
i∈supp(v)

|ui − vi|. (18)

Using that the Hilbert and the Chebyshev distance coincide when u � v and ui =
vi for some i ∈ {1, . . . , n}, it can be deduced from Theorem 2 that

r (PC PD) = r (PD PC) = − min
x∈Rm

max

d∞ (Ax, Bx) . (19)

where A, B ∈ R
m×n
max , and C and D are defined as in Eq. 11. However, we prefer

to give a different proof using min–max functions in the next subsection, see
Theorem 3.

2.3 Min–max functions and Chebyshev distance

Let A ∈ R
m×n1
max and B ∈ R

m×n2
max . In order to find a point in the intersection of span(A)

and span(B) (or equivalently, solve Ax = By), one can compute the action of
(PA PB)l , for l = 1, 2, . . . , on a vector z ∈ R

m
max. Dually one can start with a vector

x0 ∈ R
n1
max and compute

xk = A� BB� Axk−1, k � 1. (20)

We can assume that A and B do not have columns equal to −∞ so that A�z ∈ R
n1
max

and B�z ∈ R
n2
max for any z ∈ R

m
max.

If at some stage xk = xk−1 �= −∞ then we can stop, xk is a solution of the system.
If all coordinates of xk are less than those of x0 then we can stop, the system has
no solution. More details on this simple algorithm called alternating method can
be found in Cuninghame-Green and Butkovič (2003) and Sergeev (2009), see also
Akian et al. (2011). In particular, it converges to a solution with all finite components
in a finite number of steps, if such a solution exists.

Let A, B ∈ R
m×n
max . A system Ax = Bx can be written equivalently as Cx = Dy

with C and D as in Eq. 11. Applying alternating method 20 to this system, i.e.,
substituting C and D for A and B in Eq. 20 we obtain xk = g(xk−1), where

g(x) = A� Ax ∧ B� Bx ∧ A� Bx ∧ B� Ax. (21)

As it is assumed that A and B do not have common −∞ columns and hence C
(and D) do not have −∞ columns, g(x) ∈ R

n
max for all x ∈ R

n
max.
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It can be shown that (see also Cuninghame-Green and Butkovič 2003)

r(g) = 0 ⇔ Ax = Bx is solvable. (22)

In particular, if x is a fixed point of g then it satisfies Ax = Bx. For the function

f (x) = x ∧ A� Bx ∧ B� Ax (23)

which appears in Dhingra and Gaubert (2006), it is also true the other way around,
since

Ax = Bx ⇔ Ax � Bx and Bx � Ax ⇔
⇔ B� Ax � x and A� Bx � x ⇔
⇔ x ∧ A� Bx ∧ B� Ax = x. (24)

We also introduce the function h:

h(x) := A� Bx ∧ B� Ax. (25)

Although f , g and h are different functions, they have the same spectral radius,
equal to the inverse minimal Chebyshev distance between Ax and Bx. To show this,
we use the following identity.

−d∞(u, v) = max {λ : λ + u � v & λ + v � u} . (26)

Theorem 3 Let A, B ∈ R
m×n
max . For C, D def ined by Eq. 11, and f , g and h def ined by

Eqs. 21, 23 and 25,

r (PC PD) = r (PD PC) = r( f ) = r(g) = r(h) = − min
x∈Rm

max

d∞ (Ax, Bx) . (27)

Proof If v is an eigenvector of PD PC with a finite eigenvalue, then C�v is an
eigenvector of g and PCv is an eigenvector PC PD, both with the same eigenvalue.
The other way around, if x is an eigenvector of g with a finite eigenvalue, then
(Ax Bx)T is an eigenvector of PD PC with the same eigenvalue. This argument shows
that 1) either the spectral radii of PD PC, PC PD and g are all finite or they all equal
−∞, 2) the equality r(g) = r(PD PC) = r(PC PD) holds true both in finite and in
infinite case.

We show the remaining equalities. By Eq. 13, r(h) is the maximum of λ which
satisfy

∃x ∈ R
n
max : λ + x � A� Bx ∧ B� Ax. (28)

This is equivalent to

∃x ∈ R
n
max : λ + Ax � Bx & λ + Bx � Ax (29)

Using Eq. 26 we obtain

r(h) = max
x∈Rn

max

−d∞ (Ax, Bx) = − min
x∈Rn

max

d∞ (Ax, Bx) . (30)
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It follows in particular that r(h) � 0 and moreover, λ � 0 for any x satisfying Eq.
29. Applying Eq. 13 to f and g we obtain that both r( f ) and r(g) are equal to the
maximum of λ which satisfy

∃x ∈ R
m
max : λ � 0 & λ + Ax � Bx & λ + Bx � Ax (31)

As the first inequality follows from the other two, we obtain r( f ) = r(g) = r(h). ��

Functions f , g and h as well as projectors onto finitely generated max-plus cones
and their compositions, belong to the class of min–max functions. Such functions
were originally considered by Olsder (1991) and Gunawardena (1994). See Cochet-
Terrasson et al. (1999) for a formal definition. In a nutshell, these are additively ho-
mogeneous and order preserving maps, every coordinate of which can be represented
as a minimum of a finite number of max-plus linear forms, or as a maximum of a
finite number of min-plus linear forms. It is important that any min–max function
q : R

n
max → R

n
max can be represented as infimum of finite number of max-plus linear

maps Q(p) meaning that

q(x) = ∧
p

Q(p)x, (32)

in such a way that the following selection property is satisfied:

∀x ∃p : q(x) = Q(p)x. (33)

Note that taking infimum or supremum of vectors does not necessarily select one of
them, and that selection property 33 is useful, e.g., for the policy iteration algorithm
of Dhingra and Gaubert (2006).

In connection with the mean payoff games (Akian et al. 2012; Dhingra and
Gaubert 2006), each matrix Q(p) corresponds to a one player game, where the player
Min has chosen her strategy and the player Max is trying to win what he can.

In particular, f (x), g(x) and h(x), respectively, are represented as infima of the
max-plus linear maps F(p), G(p) and H(p), whose rows are taken from the max-plus
linear forms appearing in Eqs. 21, 23 and 25, respectively, in the following way:

F(p)

i· =

⎧
⎪⎪⎨

⎪⎪⎩

Ii·,

−aki + Bk·,

−b ki + Ak·.

G(p)

i· =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−aki + Ak·,

−b ki + Bk·,

−aki + Bk·,

−b ki + Ak·.

H(p)

i· =
{−aki + Bk·,

−b ki + Ak·.
(34)

Here Ii· denotes the ith row of the max-plus identity matrix, and the brackets mean
that any possibility, for any k = 1, . . . , m and aki �= −∞ or b ki �= −∞, can be taken
(assumed that A and B do not have common −∞ columns). Applying Collatz–
Wielandt formula 14 we obtain the following proposition, some variants of which
appeared in several contexts.

Proposition 4 (Compare with Cochet-Terrasson et al. 1999; Gaubert and Gunawar-
dena 1998a, b; Allamigeon et al. 2011) Suppose that a min–max function q : R

n
max →
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R
n
max is represented as inf imum of max-plus linear maps Q(l) ∈ R

n×n
max so that the

selection property is satisf ied. Then

r(q) = min
l

r
(
Q(l)) . (35)

Proof The spectral radius is isotone, hence r(q) � r(Q(l)) for all l. Using Eq. 14 we
conclude that for any ε > 0 there is x ∈ R

m such that q(x) � r(q) + ε + x. As q(x) =
Q(l)x for some l and there is only finite number of matrices Q(l), there exists l such
that

r(q) = inf
{
μ | ∃x ∈ R

n, Q(l)x � μ + x
} = r

(
Q(l)) . (36)

The proof is complete. ��

Proposition 4 can be derived alternatively from the duality theorem in Gaubert
and Gunawardena (1998b, Theorem 19) (see also Gaubert and Gunawardena 1998a).
It is related to the existence of the value of stochastic games with perfect information
(Liggett and Lippman 1969). Indeed, the spectral radius can be seen to coincide with
the value of a game in which Player Max chooses the initial state, see Akian et al.
(2012) for more information.

The greatest eigenvalue r(Q(l)) of the max-plus matrix Q(l) = (q(l)
ij ) ∈ R

n×n
max can be

computed explicitly. It is equal to the maximum cycle mean of Q(l) defined by

max
1�k�n

max
i1,...,ik

q(l)
i1i2 + q(l)

i2i3 + . . . + q(l)
iki1

k
. (37)

This result is fundamental in the max-plus algebra, see Akian et al. (2006), Baccelli
et al. (1992), Butkovič (2010) and Heidergott et al. (2005) for more details.

3 The spectrum and the spectral function

3.1 Construction of the spectral function

Given A ∈ R
m×n
max and B ∈ R

m×n
max , we consider the two-sided eigenproblem which

consists in finding eigenvalues λ ∈ Rmax and eigenvectors x ∈ R
n
max (which have at least

one component not equal to −∞), such that

Ax = λ + Bx. (38)

The set of eigenvalues is called the spectrum of (A, B) and denoted by spec(A, B).
Below we assume that A and B do not have −∞ rows and common −∞ columns.

Note that the assumption about −∞ rows can be made without loss of generality
when the solvability of Eq. 38 is considered. Indeed, if the ith row of B is −∞ then
all variables x j such that aij �= −∞ must be equal to −∞. Eliminating these variables
as well as the corresponding columns in A and B and the ith equation, we obtain a
new system where A or B may have −∞ rows. Proceeding this way we either cancel
the whole system in which case it is unsolvable, or we are left with a system where A
and B (what remains of them) do not have −∞ rows. This procedure can be run in
O(m2n) operations.
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The case of λ = −∞ appears if and only if A has −∞ columns, and the cor-
responding eigenvectors are described by xi �= −∞ ⇔ A·i = −∞. In the sequel we
assume that λ is finite.

Problem 38 is equivalent to C(λ)x = Dy, where C(λ) ∈ R
2m×n
max and D ∈ R

2m×m
max are

defined by

C(λ) =
(

A
λ + B

)

, D =
(

Im

Im

)

. (39)

As it follows from Theorem 3, spec(A, B)={λ : r(PD PC(λ))=0}={λ : r(hλ)=0}, where

hλ(x) = (λ + A� Bx
) ∧ (−λ + B� Ax

)
. (40)

The function hλ can be represented as infimum of max-plus linear maps so that the
selection property 33 is satisfied. Namely,

hλ(x) = ∧
p

H(p)

λ x, (41)

where for i = 1, . . . , n

(
H(p)

λ

)

i·
=
{

λ − aki + Bk·, for 1 � k � m, aki �= −∞,

−λ − b ki + Ak·, for 1 � k � m, b ki �= −∞,
(42)

the brackets meaning that any listed choice can be taken.
The greatest eigenvalue of Hλ equals the maximum cycle mean of Hλ. Using

formula 37, we observe that r(Hλ) is a piecewise-affine function, meaning that it is
composed of a finite number of affine pieces. More precisely, we have the following.

Proposition 5 r(H(p)

λ ) is a f inite piecewise-af f ine convex Lipschitz function of λ.

Proof Using Eq. 37 we observe that r(H(p)

λ ) = −∞ if and only if the associated
digraph of H(p)

λ is acyclic, which cannot happen when A and B and hence H(p)

λ do
not have −∞ rows.

If r(H(p)

λ ) is finite, then any finite cycle mean of H(p)

λ can be written as (kλ + a)/ l,
where l is the length of the cycle and k is an integer number with modulus not greater
than l, hence this affine function is Lipschitz. The function r(H(p)

λ ) is pointwise
maximum of a finite number of such affine functions, hence it is a convex Lipschitz
piecewise-affine function. ��

Definition 1 (Spectral function) We define the spectral function of Eq. 38 by

s(λ) := r (hλ) = r
(
PD PC(λ)

)
. (43)

It follows from Theorem 3 that s(λ) � 0 and that s(λ) = 0 if and only if λ ∈
spec(A, B). In general, s(λ) is equal to the inverse minimal Chebyshev distance
between Ax and λ + Bx.

By Proposition 4,

s(λ) = ∧
p

r
(

H(p)

λ

)
. (44)

As r(H(p)

λ ) are piecewise-affine and Lipschitz, we conclude the following.
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Corollary 1 s(λ) is a f inite piecewise-af f ine Lipschitz function.

Let us indicate yet another consequence of the fact that r(H(p)

λ ) and s(λ) are
piecewise-affine.

Corollary 2 If spec(A, B) is not empty, then it is a f inite system of closed intervals and
points.

Note that this also follows, by means of projection, from a result by De Schutter
and De Moor (1996) that the solution set of a system of polynomial (in)equalities in
the max-plus algebra is a (finite) union of polyhedra. The method of De Schutter and
De Moor can also offer an alternative (computationally expensive) way to determine
the spectrum and the generalized eigenvectors.

Conversely, it is shown in Sergeev (2011) that any system of closed intervals and
points in R can be represented as spectrum of (A, B). See also Section 3.5.

3.2 Bounds on the spectrum of (A, B)

Let us recall a bound on the spectrum obtained by Butkovič (2010) and Cuninghame-
Green and Butkovič (2008), extending it to the case when A = (aij) and B = (bij)

may have infinite entries. Denote

D(A, B) = ∨
i : Ai· finite

Ai·◦/Bi·,

D(A, B) = − ∨
i : Bi· finite

Bi·◦/Ai·. (45)

We assume that ∨∅ = −∞ and −∨∅ = +∞.
Since Ai·◦/Bi· = max{γ | Ai· � γ + Bi·} is finite when the row Ai· is finite and the

row Bi· is not −∞, we immediately see the following.

Lemma 1 D(A, B) (resp. D(A, B)) is f inite if and only if there exists an i ∈ {1, . . . , m}
such that Ai· is f inite (resp. Bi· is f inite).

When A and B have finite entries only, D(A, B) and D(A, B) are just like the
bounds of Cuninghame-Green and Butkovič (2008, Theorem 2.1):

D(A, B) = ∨
i
∧

j
(aij − bij),

D(A, B) = ∧
i
∨

j
(aij − bij). (46)

Note that D(A, B) and D(A, B) defined by Eq. 45 take infinite values if A or B do
not contain any finite rows.

Proposition 6 If Ax � λ + Bx (resp. Ax � λ + Bx) has solution x > −∞, then λ �
D(A, B) (resp. λ � D(A, B)).
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Proof If there exists i such that aij > λ + bij for all j = 1, . . . , m, then Ax � λ + Bx
cannot have solutions. This condition is equivalent to Ai·◦/Bi· > λ together with the
finiteness of Ai·. Taking the maximum of Ai·◦/Bi· over i such that Ai· is finite yields
D(A, B), that is, Ax � λ + Bx cannot have solutions if D(A, B) > λ. This shows
that if Ax � λ + Bx then λ � D(A, B). The remaining part follows analogously. ��

The next result is an extension of Cuninghame-Green and Butkovič (2008,
Theorem 2.1).

Corollary 3 spec(A, B) ⊆ [D(A, B), D(A, B)].

We use identity 13 to give a more precise bound. It will be assumed that A and
B do not have −∞ columns. Note that this condition is more restrictive than that A
and B do not have common −∞ columns, and it cannot be assumed without loss of
generality.

Theorem 4 Suppose that A = (aij), B = (bij) ∈ R
m×n
max do not have −∞ columns. Then

spec(A, B) ⊆ [−r
(

A� B
)
, r
(
B� A

)] ⊆
[

D(A, B), D(A, B)
]
. (47)

Proof Let Ax = λBx, then we also have

Ax � λ + Bx ⇔ −λ + x � A� Bx,

λ + Bx � Ax ⇔ λ + x � B� Ax. (48)

As A and B do not have −∞ columns so that A� Bx and B� Ax do not have +∞
entries, we can use Eq. 13 to obtain from Eq. 48 that λ ∈ [−r(A� B), r(B� A)]. For
λ <= r(B� A) we can find y �= −∞ such that λ + y � B� Ay and hence λ + By � Ay.
Using Proposition 6 we obtain λ � D(A, B). The remaining inequality λ � D(A, B)

can be obtained analogously. ��

By comparison with the finer bounds −r(A� B) and r(B� A), the interest of the
bounds of Butkovič and Cuninghame-Green, D(A, B) and D(A, B), lies in their
explicit character. However, these bounds become infinite when the matrices A and
B do not have any finite rows. We next give different explicit bounds, which turn out
to be finite as soon as A and B do not have any identically infinite columns.

Proposition 7 We have

spec(A, B) ⊆
⋃

1�i�n

[− (A� B0
)

i ,
(
B� A0

)
i

]
,

and so

spec(A, B) ⊆
[

−∨
i

(
A� B0

)
i ,∨i

(
B� A0

)
i

]

,

where 0 is the n-vector of all 0’s.
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Proof Consider x := 0 and μ := ∨i[hλ(0)]i, so that hλ(x) � μ + x. Then, the non-
linear Collatz–Wielandt formula 14 implies that r(hλ) � μ. If λ ∈ spec(A, B), we
have 0 � r(hλ), and so, there exists at least one index i ∈ {1, . . . , n} such that

0 �
[
hλ(0)

]
i = (λ + (A� B0

)
i

) ∧ (−λ + (B� A0
)

i

)
.

It follows that λ � (B� A0)i and λ � −(A� B0)i, that is, λ ∈ [−(A� B0)i, (B� A0)i]. ��

Remark 1 It follows readily from the Collatz–Wielandt property 14 that

[−r
(

A� B
)
, r
(
B� A

)] ⊆
[

−∨
i

(
A� B0

)
i ,∨i

(
B� A0

)
i

]

Example 1 We next give an example, to compare the bounds of Corollary 3, Theo-
rem 4 and Proposition 7. Consider the following finite matrices of dimension 3 × 4:

A =
⎛

⎝
−2 3 −3 −3
−4 1 2 −2
5 −1 5 −1

⎞

⎠ , B =
⎛

⎝
−4 5 −3 3
2 0 −1 4
0 2 −3 −1

⎞

⎠ (49)

From the graph of spectral function, Fig. 1, it follows that the only eigenvalue is
−2 since s(−2) = 0 and s(λ) < 0 for any λ �= −2. The interval [−r(A� B), r(B� A)]
is in this case [−2, 0.5]. Bounds Eq. 46 of Cuninghame-Green and Butkovič (2008,
Theorem 2.1) yield the interval [−3, 2], which is less precise. Proposition 7 yields
the union of intervals [3, 0] = ∅, [−2, −2], [3, 3] and [−3, −2], thus [−3,−2] ∪ {3}.
Note that these intervals are incomparable both with [−r(A� B), r(B� A)] and
[D(A, B), D(A, B)] = [−3, 2].

We remark that the intervals [−∨i(A� B0)i,∨i(B� A0)i] and [D(A, B), D(A, B)]
are also in general incomparable. Also, Section 3.5 will provide an example where
the bounds [−r(A� B), r(B� A)] are exact.

Fig. 1 Spectral
function of Eq. 49

−4 −3 −2 −1 0 1 2 3 4
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
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Example 2 Let us now illustrate the discrete event systems interpretation of the
spectral problem of the previous example. For readability, we replace the ma-
trices by

A =
⎛

⎝
−2 3 −∞ −∞
−∞ 1 2 −∞

5 −∞ 5 −1

⎞

⎠ , B =
⎛

⎝
−∞ 5 −3 −∞

2 −∞ −∞ 4
0 2 −∞ −∞

⎞

⎠ (50)

This pair of matrices can be shown to have the same spectral function (Fig. 1) as
the previous one, and the same bounds [−r(A� B), r(B� A)]. Consider now the two
discrete event systems

y = Ax, z = Bx .

Here, xi is interpreted as the starting time of a task i, and yi and zi are interpreted as
output time. This is illustrated in Fig. 2. For instance, the constraint y1 = max(−2 +
x1, 3 + x2) in y = Ax expresses that the first output is released at the earliest, given
that it must wait 3 time units after the second input becomes available,and can not
be released more than 2 time units before the first input becomes available. We are
looking for a common input x such that the time separation between events is the
same for both outputs, so that

yi − y j = zi − z j, ∀i, j .

This can be solved by finding an eigenvector x, so that Ax = λ + Bx. By inspection
of the spectral function in Fig. 1, we see that λ must be equal to −2. Then, computing
x reduces to solving a mean payoff game (see the discussion in Section 3.4 below
for more background). In this special example, x can be determined very simply
by running the power type algorithm (like the alternating method of Cuninghame-
Green and Butkovič 2003)

x(0) = (0, 0, 0, 0)T , x(k+1) = h−2
(
x(k)
)

where

h−2(x) := (−2 + A� Bx
) ∧ (

2 + B� Ax
)

,

2

5

1

3

2

5

1

y 1 = 3

y 2 = 1

y 3 = 0

x1 = 5

x2 = 0

x3 = 5

x4 = 1

z1 = 5

z2 = 3

z3 = 2

x1 = 5

x2 = 0

x3 = 5

x4 = 1

0

2

2

5

3

4

Fig. 2 Finding a common input making the outputs of two discrete event systems indistinguishable,
modulo a constant
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until the sequence xk converges. Actually,

x(2) = x(3) = (−5, 0,−5,−1)T ,

and it can be checked that

Ax(2) = −2 + Bx(2) = (3, 1, 0)T .

3.3 Asymptotics of the spectral function

If A and B do not have −∞ columns, the functions λ + A� B and −λ + B� A
are represented as infima of all max-linear mappings K(p)

λ and, respectively, M(s)
λ

such that
(

K(p)

λ

)

i·
= λ − aki + Bk·, 1 � k � n, aki �= −∞,

(
M(s)

λ

)

i·
= −λ − b ki + Ak·, 1 � k � n, b ki �= −∞. (51)

This representation satisfies the selection property.
Matrices K(p)

λ and M(s)
λ are both instances of H(p)

λ which represent hλ. We will
need the following observation on r(H(p)

λ ). Note that the number κ := min(2m, n),
which appears there, is a bound on the length of cycles in the bipartite digraph of the
mean-payoff game associated with Ax = λ + Bx, see Subsection 3.4 and Fig. 3 at the
right. Based on this, an easier proof could be given.

Lemma 2 Denote κ := min(2m, n). The spectral radii r(H(p)

λ ) can be expressed as
λs/ l + α, where 0 � |s| � l � κ , and |α| � 	(A, B), where

	(A, B) :=
∨

i, j,k : aij �=−∞, bik �=−∞

(
aij − bik

) ∨
∨

i, j,k : bij �=−∞, aik �=−∞

(
bij − aik

)
. (52)

Moreover it is only possible that s = l − 2t for t = 0, . . . , l.

Proof According to Eqs. 37 and 42, r(H(p)

λ ) is a cycle mean of the form
(

tk1
i1i2 + . . . + tkl

il i1

)
/ l (53)

where we use the notation tk
ij := −aki + λ + b kj and tm+k

ij = −λ − b ki + akj for

i, j = 1, . . . , n and k = 1, . . . , m. Actually tk
ij is the (i, j) entry of H(p)

λ , but here we
also need the intermediate index k. Note that it is determined by i.

In Eq. 53, only even numbers of ±λ can be cancelled, hence it can be expressed
as λs/ l + α where 0 � |s| � l with s = l − 2t for t = 0, . . . , l. The cycle (i1, . . . , il) is
elementary, hence l � n. We also obtain |α| � 	(A, B) since the arithmetic mean is
between minimum and maximum.

It remains to show that l � 2m. Indeed if l > 2m then there is an upper index
which appears at least twice in Eq. 53. Assume w.l.o.g. that this is k1. Then the sum
in Eq. 53 takes one of the following forms:

− ak1i1 + [λ + b k1i2 + . . . − ak1ir

]+ λ + b k1ir+1 + . . . ,

− λ − b k1i1 + [ak1i2 + . . . − λ − b k1ir

]+ ak1ir+1 + . . . (54)
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Assume w.l.o.g. that we have the first one. Then we can split it into the following two
cycles, as indicated by the square bracket in the first line of Eq. 54:

tk1
ir i2 + tk2

i2i3 . . . + tkr−1

ir−1ir ,

tk1
i1ir+1

+ tkr+1

ir+1ir+2
. . . + tkl

il i1 . (55)

Each of these forms is a weight of a cycle in H(p)

λ . Indeed, Eq. 54 (the first expression)
indicates that k1 is chosen by ir in H(p)

λ so that any element tk1
ir j for j = 1, . . . , n is an

entry of H(p). All other elements in Eq. 55 are also entries of H(p).
The arithmetic mean for both of the cycles in Eq. 55 has to be equal to Eq. 53, if

this is indeed r(H(p)

λ ). This shows l � 2m. ��

We also define

C(A, B) :=
∨

i, j,k : aij �=−∞, bik �=−∞

(
aij − bik

)
,

C(A, B) :=
∧

i, j,k : aik �=−∞, bij �=−∞

(
aik − bij

)
. (56)

We now study the asymptotics of s(λ), both in general case and in some special
cases.

Theorem 5 Suppose that A, B ∈ R
m×n
max and denote κ := min(2m, n).

1. There exist k1, l1, k2, l2 such that 0 � l1 � κ , k1 = l1 − 2t1 where 0 � t1 � �l1/2�,
0 � l2 � κ , k2 = l2 − 2t2 where 0 � t2 � �l2/2�, and α1, α2 ∈ R such that

s(λ) = λk1/ l1 + α1, if λ � −2κ2	(A, B),

s(λ) = −λk2/ l2 + α2. if λ � 2κ2	(A, B). (57)

2. Suppose that A and B do not have −∞ columns. Then there exist α1 � r(A� B)

and α2 � r(B� A) such that

s(λ) = λ + α1, if λ � −κ	(A, B),

s(λ) = −λ + α2, if λ � κ	(A, B). (58)

3. Suppose that A and B are real. Then

s(λ) = λ + r(A� B), if λ � C(A, B),

s(λ) = −λ + r(B� A), if λ � C(A, B). (59)

Proof

1. For the proof of this part, we observe that for each λ, the function s(λ) is the
maximum cycle mean of a representing matrix H(p)

λ , so that it equals λk/ l + α

where 0 � l � κ , k = l − 2t where 0 � t � l. For any two such terms, difference
between coefficients k/ l is not less than 1/κ2, and the difference between the
offsets does not exceed 2	(A, B), which yields that all intersection points must
be in the interval [−2κ2	(A, B), 2κ2	(A, B)]. Thus s(λ) is just one affine piece
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for λ � −2κ2	(A, B) and for λ � 2κ2	(A, B). As s(λ) � 0 for all λ, the left
asymptotic slope is nonnegative, and the right asymptotic slope is non-positive.

2. When A does not have −∞ columns, some of the matrices H(p)

λ are of the form
K(p)

λ (see Eq. 51) and their maximum cycle mean is λ + α. Taking minimum over
all r(H(p)

λ ) of the form λ + α yields an offset α1 � r(A� B). The cycle mean λ + α1

will dominate at small λ, and the smallest intersection point may occur with a
term λ(κ − 2)/ κ + α′

1. Indeed, the difference between coefficients is precisely
the smallest possible 2/κ , and the difference |α1 − α′

1| may be up to 2	(A, B).
This yields the bound −κ	(A, B). An analogous argument follows when λ is
large and B does not have −∞ columns.

3. When A and B are real and λ < C(A, B), all coefficients in the min–max
function λ + A� B are real negative, and all coefficients in the min–max function
−λ + B� A are real positive. This implies that s(λ) is equal to the minimum over
r(K(p)

λ ), which is equal to λ + r(A� B). An analogous argument follows when
λ > C(A, B). ��

Returning to Examples 1 and 2 we observe that the spectral function of Fig. 1
satisfies Eqs. 59 and 58 with α1 = r(A� B) = 2 and α2 = r(B� A) = 0.5. For the
matrices of Example 1, we substitute C(A, B) = −8 and C(A, B) = 8 in Eq. 59, while
for the matrices of Example 2, we substitute 	(A, B) = 7 and κ = 4 in Eq. 58. We
conclude that Theorem 5 works for these examples, though the bounds are quite
rough (especially those of Eq. 58).

In Proposition 9 we will show by an explicit construction that any slope k/ l can be
realized as asymptotics of a spectral function.

We next observe that the asymptotics of s(λ) can be read off from the spectral
function s◦(λ), which we introduce below. For arbitrary C = (cij) ∈ R

m×n
max define

c◦
ij =

{
0, if cij ∈ R,

−∞, if cij = −∞.
. (60)

Let s◦(λ) be the spectral function of the eigenproblem A◦x = λ + B◦x.

Proposition 8 Suppose that A, B ∈ R
m×n
max and that λk1/ l1 where k1, l1 � 0 (resp.

−λk2/ l2 where k2, l2 � 0) is the left (resp. the right) asymptotic slope of s(λ). Then

s◦(λ) =
{

λk1/ l1, if λ � 0,

−λk2/ l2, if λ � 0.
(61)

Proof Observe that the representing matrices H(p◦)
λ of

h◦
λ := (λ + (A◦)� B◦x

) ∧ (−λ + (B◦)� A◦x
)

(62)

are in one-to-one correspondence with the representing matrices H(p)

λ of hλ. The
finite entries H◦(p)

λ equal to ±λ, they are in the same places and with the same
sign of λ as in H(p)

λ . Hence the cycle means in H◦(p)

λ have the same slopes as
the corresponding cycle means in H(p)

λ , but with zero offsets. When s(λ) = r(hλ)

is computed by Eq. 44, the asymptotic slopes at large and small λ yield the same
expression as for s◦(λ) = r(h◦

λ). ��
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3.4 Mean-payoff game oracles and reconstruction problems

Here we consider the problem of identifying all affine pieces that constitute the
spectral function and computing the whole spectrum of (A, B) in the case when A
and B have integer entries.

The result will be formulated in terms of calls to a mean-payoff game oracle
(computing the value of a mean payoff game). Let us briefly describe what the
mean-payoff games are and how they are related to our problem. For more precise
information the reader may consult Akian et al. (2012) and Dhingra and Gaubert
(2006), as well as Bjorklund and Vorobyov (2007) and Zwick and Paterson (1996).

It can be observed that the min–max function A� B is also a dynamic operator of
a zero-sum deterministic mean-payoff game, which also corresponds to the system
Ax � Bx. A schematic example of such a game is given in Fig. 3, left. Two players,
named Max and Min, move a pawn on a bipartite digraph, whose nodes belong either
to Max (�) or to Min (©). In the beginning of the game, the pawn is at a node j
of Min, and she has to move it to a node i of Max, paying to him −aij (some real
number). Then Max has to choose a node k of Min. While moving the pawn there, he
receives bik from her. The game proceeds infinitely long, and the aim of Max (resp.
Min) is to maximize (resp. minimize) the average payment per turn (meaning a pair
of consecutive moves of Min and Max). It turns out that the game has a value, which
depends on the starting node of Min. Moreover r(A� B) equals the greatest value
over all starting nodes (i.e., all nodes of Min).

The two-sided eigenproblem Ax = λ + Bx can be represented as
(

A
λ + B

)

x �
(

λ + B
A

)

x. (63)

This is equivalent to x � hλ(x) where hλ(x) := (λ + A� Bx) ∧ (−λ + B� Ax) as
above. Hence the problem Ax = λ + Bx corresponds to a parametric mean-payoff
game of special kind, with 2m nodes of Max and n nodes of Min, whose scheme is
displayed on Fig. 3, right, where individual nodes of the players are merged in three
large groups.

Denoting by MPG(m, n, M) the worst-case execution time of any mean-payoff
oracle computing r(A� B), where A, B ∈ R

m×n
max have −∞ entries and integer entries

with the greatest absolute value M, we immediately obtain that for the same A and

j

k

i
ai j

bi k

[m] [n] [m]
+ B

A

λ + B

A

Fig. 3 General mean-payoff game (left) and mean-payoff game corresponding to Ax = λ + Bx
(right)
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B we can find s(0) = r(h) by calling that oracle, in no more than MPG(2m, n, M)

operations.
The implementation of a mean-payoff oracle can rely on the policy iteration

algorithm of Cochet-Terrasson et al. (1999) and Dhingra and Gaubert (2006), as
well as the subexponential algorithm of Bjorklund and Vorobyov (2007) or the value
iteration of Zwick and Paterson (1996). Zwick and Paterson (1996) showed that
MPG(m, n, M) is pseudo-polynomial. We use this result below to demonstrate that
the graph of the spectral function s(λ) can be reconstructed in pseudo-polynomial
time.

Theorem 6 Let A, B ∈ R
m×n
max have only −∞ entries and integer entries with absolute

value bounded by M. Denote κ := min(2m, n).

1. All af f ine pieces that constitute the function s(λ) and hence the spectrum of (A, B)

can be identif ied in no more than 	(A, B)O(κ6) calls to the mean-payof f game
oracle, whose worst-case complexity is MPG(2m, n, κ2(M + 4Mκ2)). In particular,
the reconstruction can be done in pseudo-polynomial time.

2. When A and B have no −∞ columns, the number of calls needed to reconstruct
the function s(λ) can be decreased to 	(A, B)O(κ5), where each call takes no more
than MPG(2m, n, κ2(M + 2Mκ) operations. When A and B are real, the number
of calls is decreased to (C(A, B) − C(A, B))O(κ4), and the complexity of each
call to MPG(2m, n, 3Mκ2) operations.

Proof In all cases we have a finite interval L of reconstruction, determined by the
asymptotics of s(λ). Using Theorem 5 , we obtain that in case 1 this is

L := [−2κ2	(A, B), 2κ2	(A, B)
] ⊆ [−4κ2 M, 4κ2 M

]
, (64)

In case 2, this is

L := [−κ	(A, B), κ	(A, B)
] ⊆ [−2κM, 2κM] (65)

when A and B do not have −∞ columns, or

L :=
[
C(A, B), C(A, B)

]
⊆ [−2M, 2M] (66)

when A and B do not have −∞ entries.
We first compute the asymptotic slopes of s(λ) outside L. By Proposition 8, we can

do this by computing s◦(±1) in just two calls to the oracle which computes it in no
more than MPG(2m, n, 1) operations. Then the goal is to reconstruct all affine pieces
which constitute s(λ) in the interval L.

The affine pieces of s(λ) correspond to the maximal cycle means in the matrices
from the representation of hλ(x). The points where such affine pieces may intersect
are given by

a1 + k1λ

n1
= a2 + k2λ

n2
, (67)

where all parameters are integers and 1 � |k1|, |k2|, n1, n2 � κ by Lemma 2. This
implies

λ = a1n2 − a2n1

k2n1 − k1n2
(68)
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The denominators of these points range from −κ2 to κ2, hence their number is
|L|O(κ4) where |L| is the length of the reconstruction interval L. We reconstruct
the whole spectral function by calculating s(λ) at these points, since there is only one
affine piece of s(λ) between them.

Using Eqs. 64–66 we obtain that the absolute value of the entries of A and
λ + B at each call does not exceed M + 4κ2 M in case 1, and M + 2κM or M + 2M in
case 2. Multiplying the entries of A and λ + B by the denominator of λ which does
not exceed κ2, we obtain a problem with integer costs, where all maximum cycle
means r(H(p)

λ ) get multiplied by that denominator, and hence s(λ) gets multiplied by
that denominator as well. Thus we can solve this mean-payoff game instead of the
initial one. In case 1, the new integer problem can be resolved by the mean-payoff
oracle in MPG(2m, n, κ2(M + 4κ2 M)) operations. In case 2, it takes no more than
MPG(2m, n, κ2(M + 2κM)) operations when A and B do not have −∞ columns, and
no more than MPG(2m, n, 3Mκ2) operations when A and B do not have −∞ entries.
The proof is complete. ��

Since spec(A, B) is the zero set of s(λ), we can identify spec(A, B) by recon-
structing s(λ) in the intervals given by Proposition 7 or more generally, Theorem 5.
However, the task of reconstructing spectrum of (A, B) as zero-level set is even more
simple, by the following arguments.

Theorem 7 Let A, B ∈ R
m×n
max have only integer or −∞ entries.

1. In general, the identif ication of spec(A, B) requires no more than MO(κ3) calls
to the mean-payof f game oracle, whose worst-case complexity is MPG(2m, n,

2κ(M + 2Mκ)). In particular, spec(A, B) can be identif ied in pseudo-polynomial
time.

2. If A and B have no −∞ columns, then the number of calls to the oracle needed
to identify spec(A, B) does not exceed (∨i(B� A0)i + ∨i(A� B0)i)O(κ2), and the
complexity of the oracle does not exceed MPG(2m, n, 6Mκ) operations.

Proof We have to reconstruct the zero-level set of s(λ), within a finite interval L of
reconstruction. In case 1, we notice that the intersection of s(λ) with zero level can
occur only at points with absolute value not exceeding 2Mκ (since s(λ) consists of
affine pieces (a + kλ)/ l where |a| � 2Mκ). Hence in case 1

L := [−2Mκ, 2Mκ] . (69)

In case 2 we use the bounds of Proposition 7:

L :=
[

− ∨
i

(
A� B0

)
i ,∨i

(
B� A0

)
i

]
⊆ [−2M, 2M] (70)

when A and B do not have −∞ columns. In case 1, we also need to check the as-
ymptotics of s(λ) outside the interval, for which we check s◦(±1) = 0 (i.e., s◦(±1) � 0
which takes no more than MPG(2m, n, 1) operations).

The absolute value of entries of A and λ + B does not exceed M + 2Mκ in
case 1 and M + 2M in case 2. We have to check s(λ) = 0 (i.e., s(λ) � 0) at all
possible intersections of affine pieces constituting s(λ) with zero, i.e., at the points
λ = a/k within L, such that a and k are integers and k � κ . We also have to check
s(λ) = 0 for one intermediate point between each pair of neighbouring points λ1 and
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λ2 such that s(λ1) = s(λ2) = 0. If it holds then s(λ) = 0 holds for the whole interval,
and if it does not then it holds only at the ends. Note that such an intermediate point
for a1/k1 and a2/k2 can be chosen as (a1 + a2)/(k1 + k2) thus leading to k � 2κ .

Multiplying all the entries by k yields a mean-payoff game with integer costs,
for which we check whether the value is nonnegative. This takes no more than
MPG(2m, n, 2κ(M + 2Mκ)) in Case 1 and MPG(2m, n, 2κ × 3M) in Case 2, with the
number of calls not exceeding |L|O(κ2). ��

Note that this theorem uses the oracles checking s(λ) � 0, not requiring to
compute the exact value.

The reconstruction of the spectral function has been implemented in MATLAB,
also to generate Figs. 1 and 4.

In the spirit of Gaubert et al. (2011), we can also formulate a certificate that λ is an
end point (left or right) of a spectral interval. Namely, suppose that s(λ∗) � 0. Then
λ∗ is the left (resp., the right) end point of an interval of spec(A, B) if and only if there
exists a representing matrix H(p)

λ where the weights of all cycles are nonpositive, and
the slopes of all cycles with zero weight are strictly positive (resp., negative). Observe
that these conditions can be verified in polynomial time for a given H(p)

λ .

3.5 Examples of analytic computation

In this section we consider two particular situations when the spectral function can
be constructed analytically. The first example shows that any asymptotics k/ l, where
l = 1, . . . , m and k = l − 2t for t = 1, . . . , l, can be realized. The second example is
taken from Sergeev (2011), and it shows that any system of intervals and points on
the real line can be represented as spectrum of a max-plus two-sided eigenproblem.

Asymptotic slopes In our first example we consider pairs of matrices Am,l ∈
R

m×m
max , Bm,l ∈ R

m×m
max with entries in {0,−∞}, where 0 � l � �m/2�. An intuitive idea

Fig. 4 The spectral function
of A and B in Eq. 80
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is to make some “exchange” between the max-plus identity matrix and some cyclic
permutation matrix. For instance

A6,2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

· · · · · 0
· 0 · · · ·
· 0 · · · ·
· · · 0 · ·
· · · 0 · ·
· · · · 0 ·

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, B6,2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 · · · · ·
0 · · · · ·
· · 0 · · ·
· · 0 · · ·
· · · · 0 ·
· · · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (71)

where the dots denote −∞ entries.
Formally, Am,l = (am,l

ij ) are defined as matrices with {0,−∞} entries such that

am,l
ij = 0 for i = 1 and j = m; or i = j + 1 where 2l < i � m; or i = j = 2k where

1 � k � l; or i = 2k + 1 and j = 2k, where 1 � k < l; and am,l
ij = −∞ otherwise.

Similarly, Bm,l = (b m,l
ij ) are defined as matrices with entries in {0,−∞} such that

b m,l
ij = 0 for i = j where 2l < i � m; or i = j = 2k − 1 where 1 � k � l; or i = 2k and

j = 2k − 1, where 1 � k � l; and b m,l
ij = −∞ otherwise.

Proposition 9 The spectral function associated with Am,l, Bm,l consists of two linear
pieces: s(λ) = λ(m − 2l)/m for λ � 0 and s(λ) = −λ(m − 2l)/m for λ � 0.

Proof Let us introduce yet another matrix Cm,l(λ) = (cm,l
ij (λ)) ∈ R

m×m
max . Informally, it

is a sum of a {0,−∞} permutation (circulant) matrix and its inverse, weighted by ±λ.
This pattern corresponds to the above mentioned “exchange” in the construction of
Am,l and Bm,l . In particular, Eq. 71 corresponds to

C6,2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

· −λ · · · −λ

λ · λ · · ·
· −λ · −λ · ·
· · λ · λ ·
· · · −λ · λ

λ · · · −λ ·

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (72)

Defining formally, cm,l
1,m = −λ, cm,l

m,1 = λ, and

cm,l
ij =

{
sign(i, j)λ, if 1 � i, j � m and | j − i| = 1,

−∞, otherwise,
(73)

where

sign(i, j) =
{

1, j − 1 = i � 2l or j ± 1 = i = 2k � 2l,

−1, i − 1 = j � 2l or i ± 1 = j = 2k � 2l.
(74)

Observe that the pairs (i, j) and ( j, i) for j = i + 1 (and also (1, m) and (m, 1)) have
the opposite sign.

It can be shown that each representing max-plus matrix of the min–max function

hm,l
λ (x) =

(
λ + (Am,l)� Bm,lx

)
∧
(
−λ + (Bm,l)� Am,lx

)
(75)
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is choosing one of the two entries in each row of Cm,l(λ). The matrices can be
classified according to this choice as follows (see Eq. 72 for example):

1. Choose (m, 1), and (i, i + 1) for i = 1, . . . , m − 1;
2. Choose (1, m), and (i, i − 1) for i = 2, . . . , m;
3. Choose both (m, 1) and (1, m), or both (i − 1, i) and (i, i − 1) for some

i = 2, . . . , n.

The first two strategies give just one matrix each, with the (maximum) cycle means
λ(m − 2l)/m and −λ(m − 2l)/m. The rest of the representing matrices are described
by 3., and it follows that their maximum cycle means are always greater than or equal
to 0. Hence s(λ) = λ(m − 2l)/m ∧ −λ(m − 2l)/m. ��

The spectrum of two-sided eigenproblem Now we consider an example of Sergeev
(2011). Let us define A ∈ R

2×3t
max , B ∈ R

2×3t
max :

A =
(

. . . ai b i ci . . .

. . . 2ai 2bi 2ci . . .

)

,

B =
(

. . . 0 0 0 . . .

. . . ai ci b i . . .

)

, (76)

where ai � ci < ai+1 for i = 1, . . . , t − 1, where bi := ai+ci
2 . The following result de-

scribes spec(A, B).

Theorem 8 (Sergeev 2011) With A, B def ined by Eq. 76,

spec(A, B) =
t⋃

i=1

[ai, ci]. (77)

To calculate s(λ), which is a more general task, one can study the representing
matrices like in the previous example. Another way is to guess, for each λ, a
finite eigenvector of PD PC(λ) and then s(λ) is the corresponding eigenvalue. By this
method we obtained that:

s(λ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ − a1, if λ � a1,

0, if ak � λ � ck, k = 1, . . . , t,

max (ck − λ, λ − ak+1) , if ck � λ � ak+1, k = 1, . . . , t − 1,

ct − λ, if λ � ct.

(78)

More precisely, it can be shown that the following vectors are eigenvectors of
PD PC(λ):

yλ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(0 a1 0 a1), if λ � a1,

(0 λ + b k − ak 0 λ + b k − ak), if ak � λ � b k, k = 1, . . . , t,

(0 ck 0 ck), if b k � λ � ck, k = 1, . . . , t,

(0 λ 0 λ), if ck � λ � ak+1, k = 1, . . . , t − 1,,

(0 ct 0 ct)
T , if λ � ct,

(79)

with the eigenvalues expressed by Eq. 78.
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We can also conclude that in this case −r(A� B) = a1 and r(B� A) = ct. Indeed, by
Eq. 78, s(λ) = λ − a1 for λ � a1 and s(λ) = ct − λ for λ � ct. Comparing this with the
result of Theorem 5, part 3, we get the claim.

As a1 and ct are eigenvalues, the last result shows that the bounds given in
Theorem 4 cannot be improved in general.

For example, take t = 3, [a1, c1] = [1, 2], [a2, c2] = [2.2, 2.4] and [a3, c3] =
[3, 3]. Then

A =
(

1 1.5 2 2.2 2.3 2.4 3
2 3 4 4.4 4.6 4.8 6

)

,

B =
(

0 0 0 0 0 0 0
1 2 1.5 2.2 2.4 2.3 3

)

(80)

The spectral function is shown on Fig. 4. Note that this is the least 1-Lipschitz
function with a given zero-level set. The same observation holds for the general
case 78.

4 Conclusions

We developed a new approach to the two-sided eigenproblem A ⊗ x = λ ⊗ B ⊗ x
in max-plus linear algebra, based on parametric min–max functions. Thus we also
connected this problem to mean-payoff games, for which a number of effective al-
gorithms have been developed. We introduced the concept of spectral function s(λ),
defined as the greatest eigenvalue of the associated parametric min–max function (or
the greatest value of the associated mean-payoff game). We showed that s(λ) has a
natural geometric sense being equal to the inverse of the least Chebyshev distance
between A ⊗ x and λ ⊗ B ⊗ x. The spectrum of (A, B) can be regarded as the zero-
level set of the spectral function, which is a 1-Lipschitz function consisting of a finite
number of affine pieces. These pieces can be reconstructed in pseudopolynomial
time, hence the spectrum of (A, B) can also be effectively identified.

A similar approach can be used in max-plus linear programming (Gaubert et al.
2011). Spectral functions of a different type are used in the decision procedure
associated with the tropical Farkas lemma in Allamigeon et al. (2011), allowing one
to check whether a max-plus inequality can be logically deduced from other max-
plus inequalities. The present approach can be generalized to the case when the
entries of A and B are general piecewise-affine functions of λ (Sergeev 2010), but the
case of many parameters would be even more interesting. Such development could
lead to practical applications in scheduling and design of asynchronous circuits. Also
note that the parametric tropical systems are equivalent to parametric mean-payoff
games, directing to useful stochastic and infinite-dimensional generalizations.
Acknowledgements We thank Peter Butkovič and Hans Schneider for many useful discussions
which have been at the origin of this work. We are also grateful to the referees for their careful
reading and many useful remarks.
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