
Mathematika 67 (2021) 116–144 doi:10.1112/mtk.12064

BEST CONSTANTS FOR LIPSCHITZ QUOTIENT MAPPINGS
IN POLYGONAL NORMS

OLGA MALEVA AND CRISTINA VILLANUEVA-SEGOVIA

Abstract. We investigate the relation between the maximum cardinality N of the level sets of a
Lipschitz quotient mapping of the plane and the ratio between its Lipschitz and co-Lipschitz constants,
with respect to the polygonal norms, and establish that bounds of 1/N previously shown to be sharp
for Euclidean norm stay sharp for polygonal n-norms if and only if n is not divisible by 4.

§1. Introduction. This paper is motivated by a desire to understand how the properties
of Lipschitz quotient mappings, in particular cardinality of point preimages, depend on the
norm of the space. For a pair of two normed spaces (X, ‖ · ‖X ) and (Y, ‖ · ‖Y ), we consider
mappings f : X → Y which are Lipschitz and satisfy an additional, ‘dual’ property of being
co-Lipschitz. Namely, a mapping f is Lipschitz quotient if there exist 0 < c � L < ∞ such
that Bcr( f (x)) ⊆ f (Br(x)) ⊆ BLr( f (x)) for any x ∈ X and all r > 0. If only left (or right)
inclusion is satisfied for all x ∈ X , the mapping f is called c-co-Lipschitz (respectively, L-
Lipschitz). The infimum of all such L is called the Lipschitz constant of f , denoted by Lip( f );
and the supremum of all such c is called the co-Lipschitz constant of f , denoted by co-Lip( f ).
Here Bρ (z) denotes the open ball centred at z of radius ρ. We also consider pointwise versions
of Lipschitzness and co-Lipschitzness.

Definition 1.1. A map f : (X, ‖ · ‖X ) → (Y, ‖ · ‖Y ) is called pointwise Lipschitz at x ∈ X ,
if there exists an L > 0 such that the L-Lipschitz condition for f at x is satisfied in some open
ball centred at x, i.e. if there exists an R > 0 such that f (BX

r (x)) ⊆ BY
Lr( f (x)) for all r ∈ (0, R).

For any such L, we will say that f is pointwise L-Lipschitz at x. Similarly, we say that f is
pointwise co-Lipschitz at x if there exist c > 0 and R > 0 such that BY

cr( f (x)) ⊆ f (BX
r (x))

for all r ∈ (0, R). For any such c, we then say that f is pointwise c-co-Lipschitz at x.

The notion of co-Lipschitz mappings was originally introduced in [3, 4, 10] but their first
systematic study should be attributed to [1, 5], where the authors reached very significant
results concerning the structure of such mappings. The results support the intuition that
Lipschitz quotient mappings are a non-linear analogue of linear quotient mappings between
Banach spaces. One particular feature that will be important for us is point preimages under
Lipschitz quotient mappings. Under a linear quotient mapping X → Y , each point preimage
is an affine subspace of X of dimension dim(X ) − dim(Y ). It is shown in [6] that for Lipschitz
quotient mappings with constants c and L close enough to each other, point preimages cannot
be (d + 1)-dimensional, where d = dim(X ) − dim(Y ). However, without the constraint on
c and L, it is shown in [2] that a Lipschitz quotient mapping R

3 → R
2 may have a point

preimage which contains a 2-dimensional plane. It is still an open question whether point

Received 11 June 2020, published online 23 November 2020.
MSC (2020): 26A16 (primary), 46B20 (secondary).
First author acknowledges the support of the EPSRC grant EP/N027531/1. Second author acknowledges the support of
CONACYT.
© 2020 The Authors. Mathematika is copyright © University College London. This is an open access article under the
terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

http://creativecommons.org/licenses/by/4.0/


BEST CONSTANTS FOR LIPSCHITZ QUOTIENT MAPPINGS IN POLYGONAL NORMS 117

preimages under a Lipschitz quotient mapping f between finite-dimensional spaces of equal
dimension n � 3 can be 1-dimensional.

It is, however, a strong result of [5] that every Lipschitz quotient mapping from R
2 to

R
2 can be viewed as a reparameterization of a complex polynomial in the sense that there

are a homeomorphism h of the plane and a polynomial P of one complex variable such that
f = P ◦ h, see Theorem 2.4 below. This immediately implies that point preimages are finite,
without any assumption on the constants. Moreover, see Corollary 2.5, this shows that any
Lipschitz quotient mapping of the plane is N-fold for some N � 1, in the following sense.

Definition 1.2. Let N � 1 be a positive integer. A mapping f : X → Y is called N-fold,
if maxy∈Y # f −1(y) = N , in other words, the cardinality of preimage of each y ∈ Y does not
exceed N and there is at least one point for which it is exactly N .

From [6, 7] it transpires that the number N is dictated by the ratio c/L of co-Lipschitz
and Lipschitz constants of f . Conceptually, N appears to represent the number of connected
components of a point preimage under a Lipschitz quotient mapping; see [8, 9] where a
sharp upper bound on such a number is obtained as a function of c/L for mappings R

2 →
R

1, where the preimage is not 0-dimensional. In our case, it follows from [6, Theorem 2]
and [7, Theorem 1] that if an N-fold Lipschitz quotient mapping f : (R2, ‖ · ‖) → (R2, ‖ · ‖)

is considered in the case when the two norms coincide, ‖ · ‖X = ‖ · ‖Y = ‖ · ‖, then N � L/c.
In the case of the Euclidean norm | · |, this upper bound is sharp: the N-fold Lipschitz quotient
mappings fN defined by fN (reiθ ) = reiNθ satisfy N = L/c.

A natural question then is whether the same happens to other norms, i.e. whether for
any norm ‖ · ‖ on R

2 and any N � 1, there exists an N-fold Lipschitz quotient mapping
f : (R2, ‖ · ‖) → (R2, ‖ · ‖) with constants L and c such that N = L/c. In the present paper,
we answer this question in the negative and describe a large class of norms for which there
are no such mappings. To describe these, we consider the norms whose unit balls are given
by regular polygons with n sides, and refer to them as polygonal norms.

We show that if n is divisible by 4, then any 2 � N-fold Lipschitz quotient mapping in
a polygonal n-norm satisfies N < L/c, see Theorem 5.13, whereas all remaining polygonal
norms, with n congruent 2 modulo 4, actually possess N-fold Lipschitz quotient mappings
with N = L/c, see Theorem 3.19, Theorem 4.3 and Corollary 4.5.

In Definition 3.12 below, we generalise the above basic example of ‘Euclidean’ N-fold
Lipschitz quotient mappings with N = L/c to the case of polygonal norms and call such
mappings N-fold winding. The idea of N-fold winding maps has already been introduced in
[7, Section 3] where it was claimed that for all such mappings, with all n (and in particular,
n = 4 which corresponds to the �1-norm on the plane), it holds c/L = 1/N . The present paper
hence shows that this claim is only correct in cases when n is not divisible by 4. Moreover,
in Proposition 5.14, we obtain an upper bound for N (strictly less than L/c) for the N-fold
winding map in the case when the number of sides is divisible by 4.

§2. Preliminaries. We start by quoting a number of important statements that we are going
to use in this paper. The following two statements about Lipschitz mappings are standard.
Below we also follow [2] to prove Lemma 2.3, which is similar to Lemma 2.2 but is about
co-Lipschitz mappings.

LEMMA 2.1. Let X,Y be normed spaces and f : X → Y a continuous mapping. If f is a
Lipschitz mapping on A ⊆ X with Lipschitz constant L, then f is L-Lipschitz on A.
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LEMMA 2.2. Let X,Y be normed spaces, U ⊆ X be open and convex and L > 0. If
f : X → Y is pointwise L-Lipschitz at x for every x ∈ U, then f |U is L-Lipschitz on U.

LEMMA 2.3. Let c > 0. If f : (R2, ‖ · ‖) → (R2, ||| · |||) is continuous and is pointwise
c-co-Lipschitz at every x ∈ R

2, then f is (globally) c-co-Lipschitz on (R2, ‖ · ‖).

Proof. Observe first that given any x ∈ R
2 if R > 0 is the radius of the ball centred at x in

which the pointwise c-co-Lipschitz property is satisfied at x and |||y − f (x)||| < cR, then for
ry, f (x) = 1

c |||y − f (x)|||, it holds

y ∈ Bcry, f (x)
( f (x)) ⊆ f (Bry, f (x)

(x)) (2.1)

(as f is continuous, compact sets are mapped to compact sets, so co-Lipschitz property can
be used for closed balls).

We now show that f is a c-co-Lipschitz mapping on (R2, ‖ · ‖). Let x0 ∈ R
2, r > 0 and

y0 ∈ Bcr( f (x0)). Consider the line segment L = ( f (x0), y0] joining f (x0) with y0, and let

A = {z ∈ L : y ∈ f (Bry, f (x0 )
(x0)) ∀ y ∈ ( f (x0), z]}.

As f is pointwise c-co-Lipschitz at x0, by (2.1) we have A 	= ∅. It is enough to show that A
is both open and closed in L, as then y0 ∈ L = A, hence, as ry0, f (x0 ) = 1

c |||y0 − f (x0)||| < r,
it holds y0 ∈ f (Bry0 , f (x0 )

(x0)) ⊆ f (Br(x0)), which finishes the proof. It remains to note that A
is open because f is pointwise c-co-Lipschitz at each point z ∈ A, and A is closed because f
is continuous. �

The following statement is a consequence of [5, Theorem 2.8].

THEOREM 2.4. Let f : (R2, ‖ · ‖) → (R2, ||| · |||) be a Lipschitz quotient mapping. Then
f = P ◦ h, where h is a homeomorphism of R

2 and P is a monic polynomial (viewing R
2 as

a complex plane C).

COROLLARY 2.5. Any Lipschitz quotient mapping f : (R2, ‖ · ‖) → (R2, ||| · |||) is N-fold
for some N � 1.

Note that any homeomorphism of the plane may either preserve or reverse the orientation.
We use this to make the following observation.

LEMMA 2.6. Let f : (R2, ‖ · ‖) → (R2, ||| · |||) be a Lipschitz quotient mapping. Then
there exist a monic polynomial P and an orientation preserving homeomorphism h such that
(P ◦ h)(z) = f (z) for all z ∈ C or (P ◦ h)(z) = f (z) for all z ∈ C.

Proof. Consider a monic polynomial P1 and a homeomorphism h1 such that P1 ◦ h1 = f ,
the existence of these is guaranteed by Theorem 2.4. If h1 preserves the orientation, let
P = P1 and h = h1. Otherwise, if h1 reverses the orientation, then set h(z) = h1(z), so that
the homeomorphism h preserves the orientation. Denote the coefficients of P1 by ak , i.e.
P1(z) = zN + ∑N−1

k=0 akzk , then put P(z) = zN + ∑N−1
k=0 akzk so that f (z) = P(h(z)). �

Remark 2.7. In the present paper, our main concern is the relation between the maximum
cardinality N of a point preimage under the Lipschitz quotient mapping f : R

2 → R
2 and the

ratio c/L of its co-Lipschitz and Lipschitz constants; therefore, we may, and will, without
loss of generality, assume that the decomposition of a Lipschitz quotient mapping f under
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consideration is always given by the monic polynomial P and an orientation preserving
homeomorphism h.

The next theorem collects important facts about Lipschitz quotient mappings; it is based
on [6, Lemmas 1–3] and assumes that the mapping is decomposed into the composition of
a monic polynomial and an orientation preserving homeomorphism. We only mention this
condition here; in statements in subsequent sections which use this theorem we will not
reiterate this condition.

Recall that Ind0 γ , the index around 0 of the closed smooth curve γ , is defined as 1
2π i

∮
γ

dz
z .

Note for future reference that if P is a polynomial of degree N and γ : [0, 1] → C is any
closed curve with index 1 around 0, such that all roots of P are contained inside γ , which is
satisfied, for example, if there is an R > 0 such that |γ (t )| > R > |z| for all t ∈ [0, 1] and all
z ∈ P−1(0), then by Cauchy’s Residue theorem, the index of P ◦ γ around 0 is equal to N .

THEOREM 2.8. Let g: (R2, ‖ · ‖) → (R2, ||| · |||) be an N-fold Lipschitz quotient mapping
which can be written as a composition of a monic polynomial and an orientation preserving
homeomorphism. Then there exists a positive constant R such that for any ρ > R, the following
are satisfied:
(1) |||g(x)||| � c(‖x‖ − M) for any x ∈ ∂B‖·‖

ρ (0);
(2) Ind0 g(∂B‖·‖

ρ (0)) = N.
Here c is the co-Lipschitz constant of g, M = max{‖z‖ : g(z) = 0} and in (2) the curve

∂B‖·‖
ρ (0) is considered as given by its orientation preserving parametrisation going in the

counter-clockwise direction around 0.

Proof. Let g = P ◦ h, where P is a monic polynomial and h is an orientation preserving
homeomorphism. Fix R > M + 1, let ρ > R and x ∈ ∂B‖·‖

ρ (0). As 0 ∈ B|||g(x)|||(g(x)) ⊆
g(B|||g(x)|||/c(x)), we conclude that there exists z ∈ g−1(0) such that ‖x − z‖ � |||g(x)|||/c.
Hence |||g(x)||| � c‖x − z‖ � c(‖x‖ − ‖z‖) � c(ρ − M), and this verifies (1).

Part (2) follows from [6, Lemma 3]. �

We finish this section with the restatements of Lemma 3 and Theorem 1 from [7].

LEMMA 2.9 [7, Lemma 3]. If � : [0; L] → R
2 is a closed curve with ‖�(t )‖ � r for all

t ∈ [0, L] and Ind0 � = N, then the length of � in the sense of the 1-dimensional Hausdorff
measure H1 associated with ‖ · ‖ is at least NH1(∂Br(0)).

THEOREM 2.10 [7, Theorem 1]. If f : (R2, ‖ · ‖) → (R2, ‖ · ‖) is an N-fold L-Lipschitz
and c-co-Lipschitz mapping with respect to ‖ · ‖, then c/L � 1/N.

§3. Polygonal norms and winding mappings. Definition 3.1. For n � 4 even integer, a norm
in R

2, whose unit ball centred at the origin Bn
1(0) is a regular n-gon, is called a polygonal

n-norm.
A polygonal n-norm, whose unit ball has a vertex at (1,0), the point on the positive x-axis

at x = 1, will be denoted by ‖ · ‖n.
When n is fixed, we may write Br(x) instead of Bn

r (x) to simplify the notation.

Remark 3.2. By the above definition, both the �1-norm and �∞-norm are polygonal 4-norms.
However, only the �1-norm is denoted by ‖ · ‖4.
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Remark 3.3. It is easy to see that all the results about Lipschitz and co-Lipschitz constants
of Lipschitz quotient mappings we obtain below for ‖ · ‖n hold for all polygonal n-norms
and, moreover, for all norms whose unit ball is a linear image of a regular n-gon. This is
simply because if U : (R2, ‖ · ‖n) → (R2, ‖ · ‖) is an isomorphism, then f : (R2, ‖ · ‖n) →
(R2, ‖ · ‖n) is a Lipschitz quotient mapping if and only if g(x) = U ( f (U −1(x))) is a Lipschitz
quotient mapping (R2, ‖ · ‖) → (R2, ‖ · ‖), and their respective constants are equal. We use
this observation in Corollary 4.5 and Theorem 5.13.

We also fix some further notation.

Notation 3.4. Assume that an even integer n � 4 and a positive integer N � 1 are fixed. Let
V0V1 . . .Vn−1 = ∂Bn

1(0) be the regular n-gon with V0 being at the point on the positive x-axis
at x = 1 and vertices going counter-clockwise. In what follows we denote ei = Vi to be the
unit vector in the norm ‖ · ‖n pointing to the vertex Vi. We will treat the indices indicating the
vertex number modulo n, so that en = e0, e−1 = en−1, etc.

Let Ln = n‖e1 − e0‖n denote the length of ∂Bn
1(0) in the sense of measuring distances

with respect to ‖ · ‖n. The exact value of Ln can be computed via Lemma 3.6 below.
For each i ∈ {0, . . . , n − 1}, we divide each of the sides [Vi,Vi+1] of ∂Bn

1(0) into N segments
of equal Euclidean (and ‖ · ‖n-) length and denote the subdivision points by vi, j , where j ∈
{0, . . . , N}. Here vi,0 = Vi and vi,N = Vi+1. We let ei, j be the ‖ · ‖n-unit vector pointing to vi, j .

For i ∈ {0, . . . , n − 1}, j ∈ {0, . . . , N − 1}, we will also consider the open region Ri, j

enclosed by the lines R+ei, j and R+ei, j+1, where R+ = (0, +∞), and let

Ui =
N−1⋃
j=0

Ri, j ∪
N−1⋃
j=1

R+ei, j .

Effectively,Ui is the open region enclosed by the lines R+ei = R+ei,0 and R+ei+1 = R+ei+1,0.
We further write Rn,N (p) = (0, i, j) if p ∈ R+ei, j , and Rn,N (p) = (1, i, j) if p ∈ Ri, j . We
note that Rn,N (p) is defined for all nonzero p ∈ R

2. We will use this notation in Lemma 3.14.

For the rest of this section, we will assume that an even integer n � 4 and a positive integer
N � 1 are fixed.

Remark 3.5. Before we start working with the polygonal norms, we recall some basic
properties of a regular polygon P = ∂Bn

r (x).
(1) The Euclidean length of a side of P is equal to 2r sin(π/n).
(2) An apothem of P is a segment joining the centre x with the middle point of a side and it

has Euclidean length equal to r cos(π/n).

This remark immediately implies the following statement.

LEMMA 3.6. The ‖ · ‖n-length of each side of the polygon ∂Bn
r (0) is given by

(1) r‖e1 − e0‖n = 2r tan(π/n), if n is divisible by 4,
(2) r‖e1 − e0‖n = 2r sin(π/n), if n is not divisible by 4.

Proof. (1) In this case, an apothem Ar of ∂Bn
r (0) is parallel to its side, hence by

Remark 3.5 (2),

r‖e1 − e0‖n

‖Ar‖n
= 2r sin(π/n)

r cos(π/n)
.

Using ‖Ar‖n = r, we get the desired identity.
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(2) This is by Remark 3.5 (1) because in this case a side of Br(0) is parallel to a segment
connecting zero with one of the vertices of ∂Bn

r (0), which clearly has Euclidean length r. �

We now define a notion analogous to polar coordinates in the Euclidean plane.

Definition 3.7. Let γ1 : [0,Ln] → ∂Bn
1(0) be the 1-Lipschitz parametrization of ∂Bn

1(0),
such that γ1(k‖e1 − e0‖n) = Vk for 0 � k � n − 1, γ1(Ln) = V0 and Ind0 γ1 = 1.

Given a non-zero point x in the plane, we say that (r, �) are the length coordinates of x under
the norm ‖ · ‖n, if ‖x‖n = r and � = (γ1|[0,Ln ))

−1(x/r). We refer to � as the angle component
of the length coordinates of x. The coordinates of the origin are defined to be (0,0). It is clear
that each pair (r, �) ∈ (R+ × [0,Ln)) ∪ {(0, 0)} determines a single point in R

2.

Definition 3.8. We introduce the following notation for �1, �2 ∈ [0,Ln):

ρ(�1, �2) = min{|�1 − �2|,Ln − |�1 − �2|} (3.1)

and for any r1, r2 > 0, call ρ(�1, �2) the difference in angle between points (r1, �1) and
(r2, �2).

In the lemma below, we collect some straightforward facts about the notions introduced
above.

LEMMA 3.9. (1) The function ρ(�1, �2) defined by (3.1) is a metric on [0,Ln).
(2) If x, y ∈ R

2, ‖x‖n = ‖y‖n = r > 0, x and y belong to the same side of ∂Br(0), and �x

and �y are the angle components of x and y with respect to ‖ · ‖n, then ‖x − y‖n = rρ(�x, �y).

The following simple lemma gives a valuable property of how the norm ‖ · ‖n is related to
length coordinates.

LEMMA 3.10. Let x = (rx, �x) be a non-zero point in the plane given in its
length coordinates with respect to ‖ · ‖n and σ > 0. Then there is a φx ∈ (0,Ln/(2n)]
such that φx < σ and for any non-zero y = (ry, �y), the following three assertions are
satisfied.

(1) If ρ(�x, �y) < φx, then x/rx and y/ry are on the same side of ∂B1(0) and ‖x − y‖n �
|rx − ry| + rxρ(�x, �y).

(2) If ‖x − y‖n < dx = rxφx/2, then ρ(�x, �y) � 2‖x − y‖n/rx < φx. In this case too, x/rx

and y/ry are on the same side of ∂B1(0). Moreover, if x/rx is not a vertex of ∂B1(0), then y/ry

is also not a vertex of ∂B1(0).
(3) If �x 	= 0 and ρ(�x, �y) < φx, then �y 	= 0.

Proof. To define φx > 0, consider the following two cases. If �x/‖e1 − e0‖n is not integer,
i.e. the point (1, �x) is not a vertex of ∂B1(0), then set φx to be half of the minimum of σ and
the two ‖ · ‖n-distances between (1, �x) and the two vertices of the side of ∂B1(0) containing
the point (1, �x). If �x/‖e1 − e0‖n is integer, i.e. the point (1, �x) is a vertex of ∂B1(0), let
φx = 1

2 min{σ, ‖e1 − e0‖n}. In both cases, φx is a positive value less than or equal to Ln/(2n)

and less than σ . Let dx = rxφx/2.
Let now x = (rx, �x) and y = (ry, �y) be two non-zero points. Let z = (rx/ry)y = (rx, �y),

then ‖y − z‖n = |rx − ry|.
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Note that if ρ(�x, �y) < φx, then by the definition of φx the points x/rx = (1, �x) and
y/ry = (1, �y) are on the same side of ∂B1(0) and, moreover, (3) is satisfied. Hence the points
x = (rx, �x) and z = (rx, �y) are on the same side of ∂Brx (0), and so, by Lemma 3.9 (2),
we have ‖x − z‖n = rxρ(�x, �y). We thus conclude that ‖x − y‖n � rxρ(�x, �y) + |rx − ry|,
which verifies (1).

To verify (2), we note that it always holds ‖x − z‖n � ‖x − y‖n + |rx − ry| � 2‖x − y‖n,
so if ‖x − y‖n < dx, then ‖x − z‖n < 2dx = rxφx, i.e. ‖x/rx − z/rx‖n < φx. By the choice of
φx, this implies that x and z are on the same side of ∂Brx (0), and so, by Lemma 3.9 (2),
ρ(�x, �y) = ‖x − z‖n/rx � 2‖x − y‖n/rx < 2dx/rx = φx. The points x/rx and y/ry are on the
same side of B1(0) because x and z are on the same side of ∂Brx (0). The last assertion of (2)
follows from the definition of φx. �

COROLLARY 3.11. If p ∈ R
2 \ {0}, then for any ε > 0 there exists δ > 0 such that for any

y ∈ Bδ(p), the difference in angle between points p and y is less than ε.

Proof. Let δ = min{‖p‖n/2, dp}, where dp is given by Lemma 3.10 (2), using σ = ε.
Then for any y ∈ Bδ(p) we have y 	= 0, hence, by Lemma 3.10 (2), ‖p − y‖n < dp implies
ρ(�p, �y) < φp < ε. Here �p and �y are the angle components of p and y, respectively, hence
the statement of the corollary is proved. �

Our next goal is to define a mapping which behaves in an analogous way to the exponential
mapping f (reiθ ) = reiNθ , but relative to the polygonal n-norm. We subsequently show that
in the case when n is not divisible by 4, this mapping realises the desired ratio 1/N , see
Theorem 3.19 and Theorem 4.3.

Definition 3.12. For an integer N � 1, we define the N-fold winding mapping for the norm
‖ · ‖n, using the length coordinates, as f N

n (r, �) = (r, N� (mod Ln)). Here t (mod Ln),
t ∈ R, is equal to the value s ∈ [0,Ln) such that (t − s)/Ln ∈ Z, as usual.

Of course, if N = 1, then f N
n = f 1

n is the identity mapping, so c/L = 1. Hence it only makes
sense to study N-fold winding mappings for N � 2.

LEMMA 3.13. Let 0 � i � n − 1 and 0 � j � N − 1, s = (Ni + j) (mod n), r > 0. Then
the following properties are satisfied:
(1) f N

n (Ri, j ) = Us (see Notation 3.4) and f N
n (Rei, j ) = Res;

(2) f N
n (rei, j + t (ei+1 − ei)) = res + Nt (es+1 − es) and f N

n (rei, j+1 − t (ei+1 − ei)) =
res+1 − Nt (es+1 − es), for any t ∈ [0, r/N];

(3) if ‖p1‖n = ‖p2‖n = r, the difference in angle between p1 and p2 is smaller than Ln
nN

and the points f N
n (p1) and f N

n (p2) are on the same side of ∂Br(0), then there exist
0 � i � n − 1 and 0 � j � N − 1 such that p1, p2 ∈ Ri, j ;

(4) if q1, q2 ∈ [res, res+1], p1 ∈ [rei, j, rei, j+1), f N
n (p1) = q1 and q2 = q1 + t ′(es+1 − es)

for t ′ ∈ [0, r], then p2 = p1 + t ′/N (ei+1 − ei) ∈ [rei, j, rei, j+1) and f N
n (p2) = q2;

(5) if ‖p1‖n = ‖p2‖n = r and p1, p2 ∈ Ri, j , then ‖ f N
n (p1) − f N

n (p2)‖n = N‖p1 − p2‖n;
(6) if p1, p2 ∈ Ri, j are such that p1 = r′ei, j + t ′(ei+1 − ei) and p2 = r′ei, j+1 − t ′(ei+1 −

ei), then r′ = ‖p1‖n = ‖p2‖n > 0 and t ′ ∈ (0, r′/N );
(7) if p1, p2 ∈ Ui are such that p1 = r′ei + t ′(ei+1 − ei) and p2 = r′ei+1 − t ′(ei+1 − ei),

then r′ = ‖p1‖n = ‖p2‖n > 0 and t ′ ∈ (0, r′).
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Proof. (1) This follows from the fact that the angle component � of a point x ∈ Ri, j satisfies
i Ln

n + j Ln
nN < � < i Ln

n + ( j + 1)Ln
nN , i.e.

Ln

nN
(iN + j) < � <

Ln

nN
(iN + ( j + 1)),

thus the angle component of f N
n (x) belongs to

(
Ln
n (iN + j), Ln

n (iN + ( j + 1))
)
, modulo Ln,

which means f N
n (x) ∈ Us.

For x ∈ Rei, j , its angle component satisfies � = Ln
nN (Ni + j), thus f N

n (x) ∈ Res.
(2) Let x = rei, j + t (ei+1 − ei) and y = rei, j+1 − t (ei+1 − ei). Since t ∈ [0, r

N ], we
see that x, y ∈ [rei, j, rei, j+1] ⊆ Ri, j , so ‖ f N

n (x)‖n = ‖x‖n = ‖ f N
n (y)‖n = ‖y‖n = r and

f N
n (x), f N

n (y) ∈ U s by (1), hence f N
n (x), f N

n (y) ∈ [res, res+1]. Furthermore, f N
n (rei, j ) = res

and f N
n (rei, j+1) = res+1, hence f N

n is linear on [rei, j, rei, j+1] and the desired identities are
satisfied.

(3) Assume that such i, j do not exist. This implies, because of the condition on angle
difference between p1 and p2, that at least one of p1 or p2, say p1, belongs to Ri1, j1 for some
i1, j1; then p2 	∈ Ri1, j1 . Hence, by (1), we have f N

n (p1) ∈ Us and f N
n (p1) 	∈ U s, a contradiction.

(4) This follows from statement (2) of the present lemma and linearity of f N
n on

[rei, j, rei, j+1].
(5) For such p1, p2 there are t1, t2 ∈ [0, r/N] such that pk = rei, j + tk(ei+1 − ei), k = 1, 2.

Then (2) implies the statement.
(6) Let r = ‖p1‖n, then p1 = rei, j + t (ei+1 − ei) with r > 0 and 0 < t < r/N . Together

with the expression given in this part, we get (r − r′)ei, j = (t ′ − t )(ei+1 − ei). As the
vectors ei, j and (ei+1 − ei) are not collinear, this implies r′ = r > 0 and t ′ = t ∈ (0, r/N ) =
(0, r′/N ). The proof for p2 is analogous.

(7) Similarly to (6), let p1 = rei + t (ei+1 − ei) where r = ‖p1‖n and 0 < t < r. Then r′ =
r > 0 and t ′ = t ∈ (0, r) = (0, r′). The proof for p2 is analogous. �

The following lemma describes images of some of the vertices of a small ‖ · ‖n-
neighbourhood of a non-zero point p under the N-fold winding mapping f N

n .

LEMMA 3.14. Let p be a non-zero point in the plane. Then there exists 
 = 
p > 0,
defined by (3.2) and (3.3), such that whenever δ ∈ (−
, 
), the following are satisfied.

If Rn,N (p) = (1, i, j), i.e. p ∈ Ri, j for some 0 � i � n − 1 and 0 � j � N − 1, then for
s = (Ni + j) (mod n) it holds that
(1) for A = {p + δei, p + δei+1, p + δei, j, p + δei, j+1} we have A ⊆ B
(p) ⊆ Ri, j and

f N
n (A) ⊆ Us,

(2) ‖x‖n = ‖p‖n + δ for any x ∈ A,
(3) f N

n (p + δei, j ) = f N
n (p) + δes,

(4) f N
n (p + δei, j+1) = f N

n (p) + δes+1.
If Rn,N (p) = (0, i, j), i.e. p ∈ R+ei, j for some 0 � i � n − 1 and 0 � j � N − 1, then (3)

holds true, again for s = (Ni + j) (mod n).

Proof. Let 
 = 
(p) > 0 be such that:

B
(p) ⊆ Ri, j, if p ∈ Ri, j; (3.2)


 = ‖p‖n/2, if p ∈ Rei, j . (3.3)

Let δ ∈ (−
, 
). For brevity, we write f instead of f N
n . Let r0 = ‖p‖n.
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Assume first that Rn,N (p) = (0, i, j), i.e. p ∈ R+ei, j , and let s = (Ni + j) (mod n).
Notice that f (rei, j ) = res for any r > 0, so as p ∈ R+ei, j , we have p = r0ei, j , then f (p +
δei, j ) = f ((r0 + δ)ei, j ) = (r0 + δ)es, so (3) is satisfied. Here r0 + δ > 0 follows from the
choice of 
 in (3.3).

Consider now the case Rn,N (p) = (1, i, j), i.e. p ∈ Ri, j . In this case, for δ ∈ (−
, 
) we
have A ⊆ B
(p) ⊆ Ri, j , hence by Lemma 3.13 (1), f (A) ⊆ Us; this verifies (1).

Note that as ‖p‖n = r0 and p ∈ Ri, j , there is a t ∈ (0, r0/N ) such that

p = r0ei, j + t (ei+1 − ei) = r0ei, j+1 −
(r0

N
− t

)
(ei+1 − ei) (3.4)

and

p = r0ei +
(

t + r0
j

N

)
(ei+1 − ei) = r0ei+1 −

(
r0

N − j

N
− t

)
(ei+1 − ei). (3.5)

We then get from (3.4) that

p + δei, j = (r0 + δ)ei, j + t (ei+1 − ei);

p + δei, j+1 = (r0 + δ)ei, j+1 −
(r0

N
− t

)
(ei+1 − ei),

and from (3.5) that

p + δei = (r0 + δ)ei +
(

t + r0
j

N

)
(ei+1 − ei);

p + δei+1 = (r0 + δ)ei+1 −
(

r0
N − j

N
− t

)
(ei+1 − ei).

As A ⊆ Ri, j , by Lemma 3.13 (6) and (7), we conclude that ‖p + δei, j‖n = ‖p +
δei, j+1‖n = ‖p + δei‖n = ‖p + δei+1‖n = r0 + δ, which verifies (2) of the present lemma.
We also infer that we can use Lemma 3.13 (2) to get from (3.4) and (3.5):

f (p) = r0es + Nt (es+1 − es) = r0es+1 − N
(r0

N
− t

)
(es+1 − es);

f (p + δei, j ) = (r0 + δ)es + Nt (es+1 − es);

f (p + δei, j+1) = (r0 + δ)es+1 − N
(r0

N
− t

)
(es+1 − es).

Identities (3) and (4) of the present lemma then immediately follow from the above. �

For the next lemma, we use the length coordinates to denote the points on the plane.

LEMMA 3.15. A sequence {xk = (rk, �k )}k�1 of points in the plane converges to x =
(r, �) 	= (0, 0) under the norm ‖ · ‖n if and only if rk → r 	= 0 and ρ(�k, �) → 0.

Proof. The forward implication follows from Corollary 3.11.
Assume now that x = (r, �) and for xk = (rk, �k ) we have rk → r 	= 0 and ρ(�k, �) →

0. Then for (sufficiently large) k � k0 we have rk 	= 0 and ρ(�k, �) < φx (given by
Lemma 3.10 (1)). Hence, by Lemma 3.10 (1), for such k we have 0 � ‖xk − x‖n � |rk −
r| + rxρ(�k, �) → 0. �

Using Lemma 3.15, we immediately get the following.
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COROLLARY 3.16. The N-fold winding mapping f N
n for the norm ‖ · ‖n is continuous.

Proof. The mapping f N
n : (R2, ‖ · ‖n) → (R2, ‖ · ‖n) is continuous at all x 	= 0 by

Lemma 3.15. To check continuity at x = 0, it is enough to notice that ‖ f N
n (y)‖n = ‖y‖n

for all y ∈ R
2. �

Our aim now is to show that for any n � 4, the N-fold winding mapping f N
n is 1-co-Lipschitz

under the norm ‖ · ‖n. We will do so in Theorem 3.19. Note that the value of the Lipschitz
constant of f N

n is not always N (as in the case of the exponential mapping f (reiθ ) = reiNθ for
the Euclidean norm), see Theorem 4.3 and Proposition 5.14. We first introduce some notation
we will be using.

Definition 3.17. Consider again R
2 equipped with ‖ · ‖n. Recall the Notation 3.4 for

e0, . . . , en−1. For each ε > 0, δ ∈ (−ε, ε), p ∈ R
2 and i = 0, 1, . . . , n − 1, let

� λ(ε, δ, p, i) � 0 be the unique λ � 0 such that p + δei + λ(ei+1 − ei) ∈ ∂Bε(p).
� λ∗(ε, δ, p, i) � 0 be the unique λ∗ � 0 such that p + δei − λ∗(ei+1 − ei) ∈ ∂Bε(p).

Here and below, the balls Bε(p) are considered with respect to the norm ‖ · ‖n.
Note that the existence and uniqueness of values λ(ε, δ, p, i) and λ∗(ε, δ, p, i) follows from

the fact that p + δei belongs to the open ball Bε(p) for any |δ| < ε. We also let λ(ε, ε, p, i) =
λ∗(ε, −ε, p, i) = ε and λ(ε, −ε, p, i) = λ∗(ε, ε, p, i) = 0.

The following technical lemma summarises the basic properties of λ(ε, δ, p, i) and
λ∗(ε, δ, p, i).

LEMMA 3.18. In the notation of Definition 3.17, the following assertions are true for any
ε > 0.

(1) For any δ ∈ [−ε, ε] the values of λ(ε, δ, p, i) and λ∗(ε, δ, p, i) are independent of
p ∈ R

2 and of 0 � i � n − 1, so that the parameters p and i can be dropped.
(2) For any p ∈ R

2, 0 � i � n − 1 and δ ∈ (−ε, ε) we have that λ = λ(ε, δ) is the unique
λ � 0 satisfying p + δei+1 − λ(ei+1 − ei) ∈ ∂Bε(p), and λ∗ = λ∗(ε, δ) is the unique λ∗ � 0
satisfying p + δei+1 + λ∗(ei+1 − ei) ∈ ∂Bε(p).

(3) For any δ ∈ [−ε, ε] it holds that λ(ε, −δ) = λ∗(ε, δ).
(4) For any δ ∈ [−ε, ε] and c > 0 it holds that λ(cε, δ) = cλ(ε, δ/c).
(5) For any δ ∈ [0, ε) we have λ(ε, δ) = δ + λ∗(ε, δ).
(6) For any δ ∈ [0, ε) we have λ(ε, δ) > δ and λ(ε, δ) � λ∗(ε, δ), and equality in the

latter inequality occurs only if δ = 0.

Proof. (1) The statement follows from translation invariance of the definition of λ(ε, δ, p, i)
and λ∗(ε, δ, p, i) and rotational symmetry of ∂Br(p) around p by 2π/n.

(2) Notice that, from the definition of λ(ε, δ, p, i), the point p + δei + λ(ei+1 − ei) =
p + (δ − λ)ei + λei+1 is symmetric to the point p + δei+1 − λ(ei+1 − ei) = p + λei + (δ −
λ)ei+1 with respect to the line through p in the direction (ei + ei+1), as is Bε(p).

Similarly, the point p + δei − λ∗(ei+1 − ei) = p + (δ + λ∗)ei − λ∗ei+1 from the definition
of λ∗(ε, δ, p, i) is symmetric to p + δei+1 + λ∗(ei+1 − ei) = p + (δ + λ∗)ei+1 − λ∗ei with
respect to the line through p in the direction (ei + ei+1), as is Bε(p).

(3) If δ = ±ε, then this follows from Definition 3.17. Hence assume |δ| < ε.
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Let λ = λ(ε, −δ) = λ(ε, −δ, 0, 0) and λ∗ = λ∗(ε, δ) = λ∗(ε, δ, 0, 0). Then consider the
points P = −δe0 + λ(e1 − e0) ∈ ∂Bε(0) and P∗ = δe0 − λ∗(e1 − e0) ∈ ∂Bε(0). Notice that
the point −P = δe0 − λ(e1 − e0) also belongs to ∂Bε(0), and so

δe0 − t (e1 − e0) ∈ ∂Bε(0) (3.6)

is satisfied with both t = λ and t = λ∗. However, there exists a unique t > 0 such that (3.6)
is satisfied, so we conclude λ = λ∗.

(4) Let λ = λ(cε, δ), i.e. p + δe0 + λ(e1 − e0) ∈ ∂Bcε(p). Then p + 1
c

(
δe0 + λ(e1 −

e0)
) = p + (δ/c)e0 + 1

c λ(e1 − e0) ∈ ∂Bε(p). Hence λ(ε, δ/c) = 1
c λ = 1

c λ(cε, δ).
(5) For δ = 0 the statement follows from (3), so assume δ ∈ (0, ε). Let λ = λ(ε, δ, 0, 0)

and λ∗ = λ∗(ε, δ, 0, 0). Notice that as 0 < δ < ε, the closed ball B̄δ(0) is a subset of the open
ball Bε(0), hence δe1 = 0 + δe0 + δ(e1 − e0) ∈ Bε(0). The latter implies λ > δ. Also, δe0 +
λ(e1 − e0) ∈ ∂Bε(0) by the definition of λ, and δe0 + λ(e1 − e0) = δe1 + (λ − δ)(e1 − e0)

with λ − δ > 0, hence, by part (2) of the present lemma, we have λ − δ = λ∗.
(6) This follows from (5) as δ � 0 and λ∗(ε, δ) � 0, and the fact that λ∗(ε, δ) = 0 only

if δ = ε. This value is excluded from the interval δ ∈ [0, ε), hence λ(ε, δ) > δ for all δ ∈
[0, ε). �

Now we can prove that the N-fold winding mapping is a 1-co-Lipschitz mapping under the
norm ‖ · ‖n.

THEOREM 3.19. For any even n � 4 and N � 1, the N-fold winding mapping f N
n ,

considered as a mapping (R2, ‖ · ‖n) → (R2, ‖ · ‖n), is 1-co-Lipschitz.

Proof. This is clear in the trivial case N = 1, so we only need to prove the statement for
N � 2.

For convenience of notation, we write f for f N
n . By Corollary 3.16, f is continuous, hence

by Lemma 2.3 it is enough to show that for any p ∈ R
2 there exists ε0 > 0 such that

f (Bε(p)) ⊇ Bε( f (p)) (3.7)

for any ε ∈ (0, ε0). Here and below all balls are considered with respect to the norm ‖ · ‖n.
Notice that if p = 0, this is trivially satisfied for any ε0 > 0 as f (Br(0)) = Br(0) =

Br( f (0)) for any r > 0.
Assume therefore

p 	= 0. (3.8)

Let p = (r0, �0) be given in its length coordinates. This implies f (p) = (r0, �1), where the
angle component �1 is defined by

�1 = N�0 (mod Ln) ∈ [0,Ln). (3.9)

To prove (3.7), it is enough to find ε0 > 0 such that for any ε ∈ (0, ε0) and any y = (r, m1) ∈
Bε( f (p)), there is an x ∈ Bε(p) such that f (x) = y. While ε0 will be defined later, depending
on the values of �0 and �1, we explain now how the point x will be defined. Let

m′
1 =

⎧⎪⎨
⎪⎩

m1 + (N − 1)Ln, if �0 = 0, �1 = 0 and m1 > n−1
n Ln,

m1 − Ln, if �0 	= 0, �1 = 0 and m1 > n−1
n Ln,

m1, otherwise,

(3.10)
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and define

m0 = 1

N

(
m′

1 + (N�0 − �1)
)

and x = (r, m0). (3.11)

We divide the proof into two cases. In each case, we show that m0 ∈ [0,Ln), i.e. the definition
of x in terms of its length coordinates is valid. By (3.11) and Definition 3.12, it is clear that
‖ f (x)‖n = r = ‖y‖n and the angle component of f (x) is equal to the angle component of y.
Indeed, use (3.10) and (3.9) to deduce m′

1 = m1 (mod Ln) and N�0 = �1 (mod Ln), then
use (3.11) to get

Nm0 (mod Ln) = (m′
1 + N�0 − �1) (mod Ln) = (m1 + N�0 − �1) (mod Ln) = m1.

Thus f (x) = (r, m1) = y. Therefore, it is enough to define ε0 > 0 and to verify that m0 ∈
[0,Ln) and that x ∈ Bε(p) whenever y ∈ Bε( f (p)), for all ε ∈ (0, ε0).

In the proof, we will use Notation 3.4 which introduced ‖ · ‖n-unit vectors ei and ei, j , where
0 � i � n − 1 and 0 � j � N − 1.

Case I. �0 = 0.
This means that p belongs to the positive side of the x-axis of R

2, hence p = r0e0 and
f (p) = p, so �1 = �0 = 0 by (3.9).

By Corollary 3.11, find ε0 > 0 such that for any y ∈ Bε0 ( f (p)) the difference in angle
between f (p) and y is less than Ln/(2n). Pick any ε ∈ (0, ε0) and assume y = (r, m1) ∈
Bε( f (p)). Then ρ(m1, �1) = ρ(m1, 0) < Ln/(2n) means that either m1 ∈ [0,Ln/(2n)) or
m1 ∈ (Ln − Ln/(2n),Ln).

If m1 ∈ [0,Ln/(2n)), then by (3.10), m′
1 = m1 and hence, by (3.11), m0 = m1/N ∈

[0,Ln/n) so that x, p ∈ R0,1. We can apply Lemma 3.13 (5) to get ε > ‖y − p‖n =
‖ f (x) − f (p)‖n = N‖x − p‖n, hence ‖x − p‖n < ε, i.e. x ∈ Bε(p).

If m1 ∈ (Ln − 1
2nLn,Ln), then by (3.10), m′

1 = m1 + (N − 1)Ln ∈ (NLn −
1

2nLn, NLn) and hence, by (3.11), m0 = m′
1/N ∈ (Ln − Ln

2Nn ,Ln) so that x, p ∈ Rn−1,N−1.
We can then again apply Lemma 3.13 (5) to get ε > ‖y − p‖n = ‖ f (x) − f (p)‖n =
N‖x − p‖n, hence ‖x − p‖n < ε, i.e. x ∈ Bε(p).

Case II. �0 	= 0.
Let Rn,N (p) = (ε, i, j), where ε = 0 or 1, 0 � i � n − 1 and 0 � j � N − 1. This means

p ∈ Ri, j ∪ R+ei, j , hence, by Lemma 3.13 (1), we have f (p) ∈ Us ∪ R+es for s = (Ni + j)
(mod n), in other words

f (p) ∈ [r0es, r0es+1). (3.12)

Let

ε1 = 1

8nN
min

{
d f (p), dp, r0�0, r0(Ln − �0)

}
, (3.13)

where dp and d f (p) are defined as in Lemma 3.10 (2) (of course, p 	= 0 and f (p) 	= 0 by (3.8)).
Let ε2 = 
 > 0 be given by (3.2) or (3.3), depending on p, so that the conclusions of

Lemma 3.14 are satisfied.
Let now ε3 > 0 be such that for any v ∈ Bε3 (0), the difference in angle between p + v and

p is less than Ln/(4nN ), and the difference in angle between f (p) + v and f (p) is less than
Ln/(4nN ). Existence of such ε3 follows from Corollary (3.11).

Finally, let ε0 = min{ε1, ε2, ε3} and ε ∈ (0, ε0); pick any y ∈ Bε( f (p)) with length
coordinates (r, m1). We define x = (r, m0) according to (3.11).
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As we have that ε < ε1 < d f (p), we see, by Lemma 3.10 (2) applied to the pair of points
f (p) = (r0, �1) and y = (r, m1), that

a := ρ(m1, �1) � 2ε/r0 < φ f (p) < Ln/(2n), (3.14)

and also

f (p)/‖ f (p)‖n = (1, �1) and y/‖y‖n = (1, m1) are on the same side of ∂B1(0). (3.15)

Moreover, Lemma 3.10 (2) implies that

if f (p) ∈ (r0es, r0es+1), then y ∈ Us ∩ [res, res+1] = (res, res+1). (3.16)

Our aim now is to show that m0 ∈ [0,Ln). Recall that �0 	= 0.
If m′

1 = m1, then by (3.10) either �1 	= 0, or �1 = 0 and m1 � n−1
n Ln. In the former case, we

use �1 	= 0, a = ρ(�1, m1) < φ f (p) from (3.14) and Lemma 3.10 (3) to conclude m1 	= 0 too,
thus |m1 − �1| = ρ(m1, �1) = a by Definition 3.8. In the latter case, we recall that by (3.14)
we have a = ρ(m1, �1) = ρ(m1, 0) = min{m1,Ln − m1} < Ln/(2n). Notice that 0 � m1 �
n−1

n Ln implies Ln − m1 � Ln
n > Ln

2n , so we must have a = ρ(m1, �1) = m1 = |m1 − �1|.
We now further use (3.14) and ε < ε1 < 1

2 min
{
r0�0, r0(Ln − �0)

}
to get a � 2ε/r0 <

min
{
�0,Ln − �0

}
, hence, by (3.11),

m0 = �0 + (m1 − �1)/N ∈ (�0 − a, �0 + a) ⊆ (0,Ln). (3.17)

If m′
1 = m1 − Ln, then by (3.10) we have �1 = 0 and m1 ∈ ( n−1

n Ln,Ln). This time a =
ρ(m1, �1) = ρ(m1, 0) = min{m1,Ln − m1} = Ln − m1, hence, using again that ε < ε1 <
1
2 r0�0 and (3.14), we get a � 2ε/r0 < �0, thus

m0 = �0 + (m1 − Ln)/N = �0 − a
N ∈ (0,Ln). (3.18)

We have thus shown in (3.17) and (3.18) that m0 ∈ (0,Ln), thus x = (r, m0) indeed gives the
length coordinates. It is left to show that x = (r, m0) ∈ Bε(p).

We now use (3.12), (3.15) and (3.16) to conclude that either

p ∈ (r0ei, j, r0ei, j+1), f (p) ∈ (r0es, r0es+1) and y ∈ (res, res+1), (3.19)

or f (p) = r0es, in which case

p = r0ei, j and y ∈ [res, res+1], or (3.20)

p = r0ei, j and y ∈ [res−1, res]. (3.21)

Here in case s = 0 we let e−1 = en−1.
Denote δ = r − r0. In case of (3.19), as |δ| < ε < ε2, we have by Lemma 3.14 (1)–(3)

‖ f (p + δei, j )‖n = ‖p + δei, j‖n = ‖p‖n + δ = r = ‖y‖n

and

p + δei, j ∈ (rei, j, rei, j+1) and f (p) + δes = f (p + δei, j ) ∈ Us. (3.22)

Together with (3.19), this implies that the points y and f (p + δei, j ) are on the same side
[res, res+1] of ∂Br(0) whenever p ∈ (r0ei, j, r0ei, j+1).

Now, in case p = r0ei, j , i.e. if (3.21) or (3.20) holds, we have f (p + δei, j ) = res, so it is
clear that y is on the same side of ∂Br(0) as its endpoint res. Therefore, in any case, y and
f (p + δei, j ) are on the same side of ∂Br(0).

Recall that by (3.17) and (3.18), and as N � 2, we have |m0 − �0| < a and m0 	= 0, whereas
by (3.14) and (3.13), we have a = ρ(m1, �1) < 2ε/r0 � �0/(4nN ) < Ln/(4nN ). This means
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that the difference in angle between points x and p satisfies ρ(m0, �0) = |m0 − �0| < a <

Ln/(4nN ). As we also have that |δ| < ε < ε3, we get that the difference in angle between
points p and p + δei, j is also smaller than Ln/(4nN ). Hence, by Lemma 3.9 (1), the difference
in angle between points x and p + δei, j is smaller than Ln/(2nN ).

This, together with the fact that their images, f (x) = y and f (p + δei, j ), are on the same
side of ∂Br(0), implies, by Lemma 3.13 (3), that the points x and p + δei, j are in the same
regionR∗,∗. Hence by Lemma 3.13 (5), we have ‖y − f (p + δei, j )‖n = N‖x − (p + δei, j )‖n.

To finish the proof that x ∈ Bε(p), we now consider three cases given by (3.19), (3.21)
and (3.20).

If (3.19) is satisfied, then

x, p + δee, j ∈ (rei, j, rei, j+1) ⊂ Ri, j, (3.23)

so by (3.22) we may apply Lemma 3.13 (4) to f (p) and q2 = y to get

y = f (p) + δes + t (es+1 − es) (3.24)

for some t ∈ R. By (3.23) and Lemma 3.14 (3) we can now apply Lemma 3.13 (4) with p1 = p
and q2 = y to get

x = p + δei, j + t

N
(ei+1 − ei) = p + δei + (δ

j

N
+ t

N
)(ei+1 − ei). (3.25)

If (3.20) is satisfied, then (3.24) and (3.25) hold, and t ∈ [0, λ(ε, δ)). If (3.21) is satisfied,
then (3.24) would need to be modified, so we will leave this case until later. Meanwhile,
consider the case when (3.24) and (3.25) are satisfied with t � 0.

If t � 0, then, as y ∈ Bε( f (p)), we have 0 � t < λ(ε, δ) by Definition 3.17 and
Lemma 3.18 (1).

Apply then λ(ε, δ) > δ for all δ ∈ (−ε, ε) (this follows from Lemma 3.18 (6) for δ � 0
and is trivial for δ < 0) to get

−λ(ε, |δ|) < −|δ| � −|δ| j

N
� δ

j

N
+ t

N
< λ(ε, δ)

j

N
+ λ(ε, δ)

N
= λ(ε, δ)

j + 1

N
� λ(ε, δ).

(3.26)

If δ
j

N + t
N � 0, we have x ∈ Bε(p) as a consequence of (3.25) and because the right-hand

side inequality of (3.26) implies δ
j

N + t
N < λ(ε, δ). If δ

j
N + t

N < 0, then δ < 0, so the left-
hand side inequality of (3.26) and Lemma 3.18 (3) imply δ

j
N + t

N > −λ(ε, −δ) = −λ∗(ε, δ),
hence x ∈ Bε(p) by (3.25) and the definition of λ∗(ε, δ) (Definition 3.17 and Lemma 3.18 (1)).
This finishes the case (3.20), and (3.19) with t � 0.

If (3.19) is satisfied and t < 0, let t ′ = −t > 0. If we also have δ � 0, then let δ′ = −δ,
so from (3.25) and (3.24), it follows x = p + δ′ei′, j′ + t ′

N (ei′+1 − ei′ ) and y = f (x) = f (p) +
δ′es′ + t ′(es′+1 − es′ ), where i′ = (i + n/2) (mod n), j′ = ( j + n/2) (mod n) and s′ = (s +
n/2) (mod n), so that ei′ = −ei, ei′+1 = −ei+1, ei′, j′ = −ei, j es′ = −es and es′+1 = −es+1.
As y ∈ Bε( f (p)), we conclude 0 < t ′ < λ(ε, δ′), and (3.24) and (3.25) are satisfied with non-
negative t ′ and δ′, instead of t and δ, respectively. Using 0 < t ′ < λ(ε, δ′) and (3.26), we
conclude that is satisfied too with t ′ and δ′. It follows x ∈ Bε(p).

If t ′ = −t > 0 and δ � 0, then y ∈ Bε( f (p)) implies, using (3.24) and the definition of
λ∗(ε, δ), that 0 < t ′ < λ∗(ε, δ). The expression (3.25) then becomes

x = p + δei +
(

δ
j

N
− t ′

N

)
(ei+1 − ei)
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and instead of (3.26) we have, using again Lemma 3.18 (6),

−λ∗(ε, δ) < −t ′ � −t ′

N
� δ

j

N
− t ′

N
< δ

j

N
� δ < λ(ε, δ), (3.27)

which implies x ∈ Bε(p). Here we again use the right-hand side estimate in case δ
j

N − t ′
N � 0,

and the left-hand side estimate in case δ
j

N − t ′
N < 0. This finishes (3.19) completely.

Finally, consider the case (3.21). In this case

y = f (p) + δes − t (es − es−1) with t � 0, (3.28)

so y ∈ Bε( f (p)) implies 0 � t < λ(ε, δ) by Lemma 3.18 (2). If j = 0, i.e. p = r0ei,
we have x = p + δei − t

N (ei − ei−1) ∈ [rei−1, rei], otherwise x = p + δei, j − t
N (ei+1 − ei) ∈

[rei, rei+1].
In the former case (p = r0ei), we have x ∈ Bε(p) by Lemma 3.18 (2) as 0 � t/N � t <

λ(ε, δ). If p 	= r0ei (i.e. j � 1), then write again expression for x:

x = p + δei, j − t

N
(ei+1 − ei) = p + δei +

(
δ

j

N
− t

N

)
(ei+1 − ei).

We consider the following three possibilities. The first one is when δ � 0 and δ
j

N − t
N � 0, in

this case we use Lemma 3.18 (6) to get 0 � δ
j

N − t
N � δ < λ(ε, δ), hence x ∈ Bε(p). A second

possibility is δ � 0 and δ
j

N − t
N < 0, in this case use t < λ(ε, δ), j � 1 and Lemma 3.18 (5) to

get 0 � t
N − δ

j
N < λ(ε,δ)

N − δ 1
N = λ∗(ε, δ) 1

N � λ∗(ε, δ), hence x ∈ Bε(p). The last possibility
is δ < 0, in which case let δ′ = −δ > 0, then x = p − δ′ei − (

δ′ j
N + t

N

)
(ei+1 − ei) = p +

δ′ei′ +
(
δ′ j

N + t
N

)
(ei′+1 − ei′ ), where we set i′ = (i + n/2) (mod n). Let also s′ = (s + n/2)

(mod n), then by (3.28)

y = f (p) + δes − t (es − es−1) = f (p) + δ′es′ + t (es′ − es′−1).

As y ∈ Bε( f (p)), we have 0 � t � λ∗(ε, δ′) < λ(ε, δ′) by Lemma 3.18 (2) and (6), and
δ′ > 0. This, together with 0 < δ′ < λ(ε, δ′) from Lemma 3.18 (6), implies that

0 � δ′ j

N
+ t

N
< λ(ε, δ′)

j + 1

N
� λ(ε, δ′),

hence x = p + δ′ei′ +
(
δ′ j

N + t
N

)
(ei′+1 − ei′ ) ∈ Bε(p).

This finishes the proof of (3.21). �

§4. Polygonal norms with 4m + 2 sides. In this section, we show that there are non-
Euclidean norms on the plane for which, as in the Euclidean case, for each N � 1, there
exists an N-fold Lipschitz quotient mapping f satisfying c/L = 1/N . Indeed, we show that
this is satisfied for all polygonal n-norms with n = 4m + 2; the example of such a mapping
for ‖ · ‖n would be the N-fold winding mapping f N

n defined in Definition 3.12. This section
is devoted to the proof of this result.

We already know, from Therorem 3.19, that f N
n is an N-fold 1-co-Lipschitz mapping. We

also know that any N-fold Lipschitz quotient mapping satisfies c/L � 1/N , see Theorem 2.10.
It remains to show that for any n = 4m + 2, the N-fold winding map f N

n : (R2, ‖ · ‖n) →
(R2, ‖ · ‖n) is an N-Lipschitz mapping. We first prove two additional properties of λ(ε, δ) and
λ∗(ε, δ) (see Definition 3.17 and Lemma 3.18 (1)) that are satisfied only in case n = 4m + 2
and show that it is enough to check that f N

n is N-Lipschitz on
⋃

0�i�n−1(
⋃

0� j�N−1 Ri, j ),
where Ri, j are defined in Notation 3.4.
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LEMMA 4.1. Let n = 4m + 2, m � 1 and ε > 0. Then:
(1) λ(ε, ·) is monotone increasing on [−ε, 0] and is monotone decreasing on [0, ε];
(2) Nλ(ε, δ) � λ(Nε, δ) and Nλ∗(ε, δ) � λ∗(Nε, δ) for all δ ∈ [−ε, ε] and N ∈ N.

Proof. (1) By Lemma 3.18 (1), we may use that λ(ε, δ) = λ(ε, δ, 0, 0). Letting λ = λ(ε, δ),
we can see that P = δe0 + λ(e1 − e0) ∈ ∂Bε(0) runs vertically upwards along the boundary
of the regular n-gon from −εe0 = εe2m+1 to εem+1, as δ ∈ [−ε, 0] increases, hence λ(ε, ·)
increases on [−ε, 0]. Let d = ‖e1 − e0‖n, then λ(ε, ·)|[0,εd] is constant and on [εd, ε], we
have that λ(ε, ·) decreases; hence λ(ε, ·) (non-strictly) decreases on [0, ε].

(2) Use Lemma 3.18 (4) and the first statement of the present lemma to get λ(Nε, δ) =
Nλ(ε, δ/N ) � Nλ(ε, δ). The inequality for λ∗ then follows by Lemma 3.18 (3). �

The purpose of the next lemma is to allow us to verify only the pointwise Lipschitzness
of a mapping at points of a certain subset of the plane, in order to ensure that the mapping is
Lipschitz everywhere. The choice of the subset,

⋃
0�i�n−1
0� j�N−1

Ri, j , is dictated by the fact that

the N- fold winding mapping f N
n is linear in each of the regions Ri, j—we will later show that

f N
n is pointwise N-Lipschitz at each x ∈ Ri, j .

LEMMA 4.2. Let L > 0, f : (R2, ‖ · ‖) → (R2, ||| · |||) be continuous and pointwise L-
Lipschitz at every x ∈ ⋃

0�i�n−1
0� j�N−1

Ri, j . Then f is L-Lipschitz on the whole (R2, ‖ · ‖).

Proof. By Lemma 2.2 we know that f is (globally) L-Lipschitz on each of the open regions
Ri, j . By continuity of f , it is L-Lipschitz on the closure of each region Ri, j , see Lemma 2.1.
As the closure of P = ⋃

0�i�n−1
0� j�N−1

Ri, j is the whole R
2, by Lemma 2.2, it remains to show

that f is pointwise L-Lipschitz at the points x on the boundary of P . Indeed, if x ∈ ∂P and
is not zero, then for r small enough Br(x) intersects only Ri, j and Ri, j+1 for some i and j
while x ∈ Ri, j ∩ Ri, j+1, hence pointwise L-Lipschitzness of f in each of these regions implies
||| f (x) − f (y)||| � L‖x − y‖ for any y ∈ Br(x). If x = 0, then for any r, we have that Br(0)

intersects all Ri, j while 0 ∈ ∂Ri, j for all pairs (i, j). Hence, pointwise L-Lipschitzness of f
in each Ri, j implies ||| f (0) − f (y)||| � L‖y‖ for any y ∈ Br(0). �

THEOREM 4.3. For n = 4m + 2, m � 1 the Lipschitz constant Lip( f N
n ) of the N-fold

winding mapping f N
n under ‖ · ‖n is equal to N.

Proof. For simplicity of notation, denote f N
n by f . It is clear that Lip( f ) � N from

considering points x = e0 and y = e0,1: f (x) = x and f (y) = e1, hence ‖ f (y) − f (x)‖n =
N‖y − x‖n. Therefore, by Lemma 4.2, it is enough to show that f N

n is pointwise N-Lipschitz
at all points p ∈ P := ⋃

0�i�n−1
0� j�N−1

Ri, j .

Let p ∈ P , say p ∈ Ri, j and define s = (Ni + j) (mod n). Denote the length coordinates
of p as (r0, �0). Take ε0 = 
 > 0 defined by (3.2) such that the conclusions of Lemma 3.14
hold and let ε ∈ (0, ε0). Take x ∈ Bε(p), denote the length coordinates of x as (r, �). Let
δ := r − r0, note that δ ∈ (−ε, ε) and x ∈ Ri, j hence x ∈ (rei, j, rei, j+1) and f (x) ∈ Us. By
Lemma 3.13 (1) f (Bε(p)) ⊆ Us. We show that f (Bε(p)) ⊆ BNε(p).

Denote by �1, �2, �3 and �4 the angle components of length coordinates of points p + δei,
p + δei, j , p + δei, j+1 and p + δei+1, respectively. Note that for δ � 0 we necessarily have �1 �
�2 � �3 � �4, and for δ � 0 we have �4 � �3 � �2 � �1. Also note that by Lemma 3.14 (1)
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and (2), all these four points have ‖ · ‖n-norm equal to r and all belong to Ri, j , hence all are
on the same straight line segment (rei, j, rei, j+1) and x ∈ (rei, j, rei, j+1) too.

Case 1: δ � 0 and � � �2.
The assumption � � �2 implies that ‖x − (p + δei)‖n � ‖x − (p + δei, j )‖n as �2 � �1

in this case. As x, p + δei, p + δei, j all have the same norm and belong to Ri, j , we use
Lemma 3.13 (5) and Lemma 3.14 (3) to get

‖ f (x) − ( f (p) + δes)‖n = N‖x − (p + δei, j )‖n � N‖x − (p + δei)‖n < Nλ(ε, δ).

The last inequality is satisfied since x ∈ Bε(p) ∩ [rei, rei+1] and � � �2 � �1 implies x =
(p + δei) + t (ei+1 − ei) for some t ∈ [0, λ(ε, δ)). Using now Lemma 4.1 (2), we conclude
‖ f (x) − ( f (p) + δes)‖n � λ(Nε, δ), which implies, as f (x) ∈ f (p) + δes + R+(es+1 − es),
that f (x) ∈ BNε( f (p)).

Case 2: δ � 0 and � � �2.
In this case, we have ‖x − (p + δei+1)‖n � ‖x − (p + δei, j+1)‖n as � � �2 � �3 � �4.

Using again Lemma 3.13 (5) and Lemma 3.14 (4), we get

‖ f (x) − ( f (p) + δes+1)‖n = N‖x − (p + δei, j+1)‖n � N‖x − (p + δei+1)‖n < Nλ(ε, δ).

The last inequality is satisfied by Lemma 3.18 (2), since x ∈ Bε(p) ∩ [rei, rei+1] and
� � �2 � �4 implies x = (p + δei+1) − t (ei+1 − ei) for some t ∈ [0, λ(ε, δ)). Using now
Lemma 4.1 (2), we conclude ‖ f (x) − ( f (p) + δes+1)‖n � λ(Nε, δ), which implies, as
f (x) ∈ f (p) + δes+1 − R+(es+1 − es), that f (x) ∈ BNε( f (p)), again by Lemma 3.18 (2).

Case 3: δ < 0 and � � �3.
The assumption � � �3 implies that ‖x − (p + δei+1)‖n � ‖x − (p + δei, j+1)‖n as �3 � �4

in this case. Using Lemma 3.13 (5) and Lemma 3.14 (4), we get

‖ f (x) − ( f (p) + δes+1)‖n = N‖x − (p + δei, j+1)‖n � N‖x − (p + δei+1)‖n � Nλ∗(ε, δ).

The last inequality is satisfied by Lemma 3.18 (2), since x ∈ Bε(p) ∩ [rei, rei+1] and
� � �3 � �4 implies x = (p + δei+1) + t∗(ei+1 − ei) for some t∗ ∈ [0, λ∗(ε, δ)). Using now
Lemma 4.1 (2), we conclude ‖ f (x) − ( f (p) + δes+1)‖n � λ∗(Nε, δ), which implies, as
f (x) ∈ f (p) + δes+1 + R+(es+1 − es), that f (x) ∈ BNε( f (p)).

Case 4: δ < 0 and � � �3.
The assumption � � �3 implies that � � �3 � �2 � �1 in this case. Hence ‖x − (p +

δei)‖n � ‖x − (p + δei, j )‖n, therefore using again Lemma 3.13 (5) and Lemma 3.14 (3),
we get

‖ f (x) − ( f (p) + δes)‖n = N‖x − (p + δei, j )‖n � N‖x − (p + δei)‖n � Nλ∗(ε, δ).

The last inequality is satisfied since x ∈ Bε(p) ∩ [rei, rei+1], and � � �3 � �2 � �1 implies
x = (p + δei) − t∗(ei+1 − ei) for some t∗ ∈ [0, λ∗(ε, δ)). Using now Lemma 4.1 (2), we
conclude ‖ f (x) − ( f (p) + δes)‖n � λ∗(Nε, δ), which implies, as f (x) ∈ f (p) + δes −
R+(es+1 − es), that f (x) ∈ BNε( f (p)). �

COROLLARY 4.4. For n = 4m + 2 and m � 1, the ratio of the co-Lipschitz and Lipschitz
constants of the N-fold winding mapping, f N

n , under ‖ · ‖n, is equal to 1/N.

Proof. Follows from Theorem 3.19 and Theorem 4.3. �

COROLLARY 4.5. Let n = 4m + 2 and m � 1. If ‖ · ‖ is a norm on R
2 whose unit ball is a

linear image of a regular polygon with n sides, then there exists a Lipschitz quotient mapping
g: (R2, ‖ · ‖) → (R2, ‖ · ‖) with ratio of constants c/L = 1/N.
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Proof. Let f N
n be the N-fold winding mapping for the n-norm ‖ · ‖n. From Remark 3.3,

Theorem 4.3 and Theorem 3.19, it follows that the mapping g: (R2, ‖ · ‖) → (R2, ‖ · ‖),
defined as g = U ◦ f N

n ◦ U −1, is a Lipschitz quotient mapping with ratio of constants equal
to 1/N . Here U is an isomorphism (R2, ‖ · ‖n) → (R2, ‖ · ‖). �

§5. Polygonal norms with 4m sides. In the previous chapter, we have shown that for any
polygonal norm with 4m + 2 sides and for any norm whose unit ball is a linear image of a
regular polygon with 4m + 2 sides, there exists an N-fold Lipschitz quotient mapping with
ratio of constants equal to 1/N . Now we are going to show that for all remaining polygonal n-
norms on the plane, i.e. whenever n is divisible by 4, every N-fold Lipschitz quotient has ratio
of constants strictly less than 1/N , whenever N � 2. We first show in Theorem 5.12 that for n =
4m and each N � 2 there is no N-fold Lipschitz quotient mapping, under the norm ‖ · ‖n, which
achieves the 1/N ratio of constants, and then concludes in Theorem 5.13 that the same is true
for all polygonal n-norms. We then show in Proposition 5.14 that the ratio of constants cN/LN

of the N-fold winding map for the n-norm ‖ · ‖n is bounded above by ρN,n = 1
N+(N−1) tan2 π

n
. It

is our conjecture that for any Lipschitz quotient map f : (R2, ‖ · ‖n) → (R2, ‖ · ‖n), the ratio
of its co-Lipschitz and Lipschitz constants does not exceed ρN,n, see Conjecture 5.15.

Throughout the section we will be working with the n-norm ‖ · ‖n, and with the Euclidean
norm denoted by | · |, as usual. Recall Notation 3.4 which we will be using in the next lemma.
Also, recall the notion of length coordinates introduced in Definition 3.7.

LEMMA 5.1. Let n = 4m, m � 1 be integers. For r > 0 and 0 < a < r‖e1 − e0‖n, let
P1 = (r,Ln − a/r) and P2 = (r, a/r) be two points on the sides [ren−1, re0] and [re0, re1] of
∂Br(0), respectively, given in their length coordinates. Then ‖P1 − P2‖n = 2a cos2(π/n).

Proof. Notice that ‖Pi − re0‖n = a for i = 1, 2 by the definition of the angle component
of length coordinates. As [P1, P2] is a vertical line segment and D = [rem, re3m] is a vertical
diameter of ∂Br(0), we get

‖P1 − P2‖n

‖D‖n
= |P1 − P2|

|D| ,

so ‖P1 − P2‖n = |P1 − P2|, as ‖D‖n = |D|.
On the other hand, applying Remark 3.5 (1) and Lemma 3.6 (1), we get

|re0 − Pi| = ‖re0 − Pi‖n
|e0 − e1|

‖e0 − e1‖n
= a

2 sin π
n

2 tan π
n

= a cos(π/n).

Hence ‖P1 − P2‖n = |P1 − P2| = 2|re0 − P1| sin( (n−2)π

2n ) = 2a cos2(π/n). �

Notation 5.2. Recall Notation 3.4. For any 0 � i � n − 1 and 0 � j � N − 1 let wNi+ j =
ei, j . Denote the angle between R+wk and R+wk+1 as αk . Of particular importance for us will
be α0. Note that the values of αk depend on n and N ; we will, however, suppress these indices
for convenience of notation.

LEMMA 5.3. Let n = 4m, m � 1 and N � 2 be integers. Let further α0 be the angle
∠w00w1, as defined in Notation 5.2. Then

tan α0 =
2
N tan π

n

1 + (1 − 2
N ) tan2 π

n

� 2
N tan π

n . (5.1)

In particular, if n = 4, then tan α0 = 1
N−1 .
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Proof. Notice that from the right triangle 0w1W , where W = e0+e1
2 is the middle point of

the straight line segment [e0, e1],

tan( π
n − α0)

tan π
n

=
N
2 − 1

N
2

= 1 − 2
N ,

hence

tan α0 = tan( π
n − ( π

n − α0)) = tan π
n − tan( π

n − α0)

1 + tan π
n tan( π

n − α0)
=

2
N tan π

n

1 + (1 − 2
N ) tan2 π

n

� 2
N tan π

n .

�

LEMMA 5.4. Let n = 4m, m � 1 and N � 2 be integers and let r > 0. Using Notation 5.2,
consider the intersection point sw1 between the line R+w1 and the vertical line through re0.
Then

s = r(1 + tan π
n tan α0), (5.2)

‖re0 − sw1‖n = r tan α0, (5.3)

‖re0 − se1‖n = r tan π
n (2 + tan π

n tan α0). (5.4)

Proof. As the straight line segment [sw1, re0] is vertical and n is divisible by 4, we conclude
that ‖re0 − sw1‖n = |re0 − sw1| = r tan α0, proving (5.3).

Since w1 ∈ [e0, e1], the angle between w1 − e0 and the x-axis is equal to π
2 − π

n , hence

s − r = |se0 − re0| = |re0 − sw1|
tan( π

2 − π
n )

= r tan α0 tan π
n ,

which implies (5.2).
Now let d := ‖re0 − se1‖n, consider the polygon ∂Bd (re0), containing se1, and denote by

Q its n
4 th vertex. Let H be the intersection point between the horizontal line through se1 and

the vertical line through re0, notice that

∠HE1E0 = π
2 − π

n , (5.5)

where Ei = sei, i = 0, 1.
Using (5.5), (5.2) and |se0 − se1| = 2s sin π

n from Remark 3.5 (1), we get

|re0 − H | = cos π
n |se0 − se1| = (2 sin π

n cos π
n )s, and (5.6)

|se1 − H | = tan π
n |re0 − H | − |se0 − re0| = 2 sin2 π

n s − (s − r)

= 2r sin2 π
n (1 + tan α0 tan π

n ) − r tan α0 tan π
n . (5.7)

Finally, as ∠E1QH = π
2 − π

n , we use (5.7) to get

|H − Q| = tan π
n |se1 − H | = 2r sin2 π

n tan π
n (1 + tan α0 tan π

n ) − r tan α0 tan2 π
n .

We therefore obtain, using (5.6) and (5.2),

d = |re0 − Q| = |re0 − H | + |H − Q|
= (2 sin π

n cos π
n )s + 2r sin2 π

n tan π
n (1 + tan α0 tan π

n ) − r tan α0 tan2 π
n
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= (2r sin π
n cos π

n )(1 + tan α0 tan π
n ) + 2r sin2 π

n tan π
n (1 + tan α0 tan π

n ) − r tan α0 tan2 π
n

= 2r sin π
n (1 + tan α0 tan π

n )(cos π
n + sin π

n tan π
n ) − r tan α0 tan2 π

n

= 2r tan π
n (1 + tan α0 tan π

n ) − r tan α0 tan2 π
n

= 2r tan π
n + r tan α0 tan2 π

n ,

which proves (5.4). �

Note that in the following lemma, we assume m � 2 as sec(2π/n) is undefined for n = 4.

LEMMA 5.5. Let n = 4m, m � 2 be integers. For u > 0 define

a0 := u cos(2π/n) and a1 := u sec(2π/n) (5.8)

and let a ∈ [a0, a1]. Assume further p ∈ R+e0 and q ∈ R+e1. Then
(1) ae1 belongs to the ( n

4 + 1)th side of ∂B‖ue0−ae1‖n (ue0);
(2) ‖ue0 − q‖n � ‖ue0 − ae1‖n, whenever ‖q‖n � a;
(3) ‖p − ae1‖n � ‖ue0 − ae1‖n, whenever ‖p‖n � u;
(4) ‖p − q‖n � ‖ue0 − ae1‖n, whenever ‖p‖n � u and a1 � ‖q‖n � a.

Proof. (1) Notice that the constants a0, a1 are defined by (5.8) in such a way that a1e1 − ue0

is vertical and its angle with a0e1 − ue0 is equal to 2π
n . Consider T ∈ [ue0, a1e1] such that the

triangle formed by ue0, a0e1 and T is isosceles, hence the Euclidean distance |T − ue0| =
|a0e1 − ue0| = u sin(2π/n). On the other hand, the orthogonal projection of a1e1 − a0e1 on e0

is equal to (a1 − a0) cos(2π/n), and the line through a0e1 and T is at π/n with the horizontal
direction, thus

|a0e1 − T | = (a1 − a0) cos(2π/n)/ cos(π/n) = u(1 − cos2(2π/n))/ cos(π/n)

= 2u sin(2π/n) sin(π/n) = 2 sin(π/n)|ue0 − T |.
Hence it is readily verified by Remark 3.5 (1) that a0e1 is the ( n

4 + 1)th vertex of
∂B‖ue0−a0e1‖n (ue0).

For an arbitrary a ∈ [a0, a1], we now have that the line through ae1 parallel to a0e1 − T
intersects [ue0, a1e1] between T and a1e1, hence the statement follows.

(2) Notice that if q = A := ae1, then (2) is satisfied trivially. Assume thus ‖q‖n > a. Let
d = ‖ue0 − ae1‖n, consider the polygon ∂Bd (ue0), denote its ( n

4 )th vertex by Q and let H
denote the intersection point between the horizontal line through A and the vertical line through
ue0.

Since a0 � a � a1, by (1) we know that A belongs to the ( n
4 + 1)th side of the polygon

∂Bd (ue0), therefore ∠HAQ = π/n. On the other hand, since q ∈ R+e1 and ‖q‖n � a, we
have ∠HAq = 2π

n > π
n . Thus, q /∈ Bd (ue0), since q belongs to the closed half plane above the

line AQ implying (2).
(3) Assume that p ∈ R+e0 is such that ‖p‖n � u and let d ′ = ‖p − ae1‖n. Let H ′ denote

the intersection point between the horizontal line through A and the vertical line through p.
Also denote by Q′ the ( n

4 )th vertex of the polygon ∂Bd ′ (p).
Notice that if 0 � ∠Q′ pA � 2π/n, then A belongs to the ( n

4 + 1)th side of the polygon
∂Bd ′ (p). In this case, we have that A, Q, Q′ are on the same straight line and

∠p OA = 2π
n ; ∠AQH = ∠AQ′H ′ = π

2 − π
n and ∠H ′AQ′ = ∠HAQ = π

n . (5.9)
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It is also clear that if∠Q′ pA > 2π/n, then A is not on the ( n
4 + 1)th side of ∂Bd ′ (p), so instead

of the last two equations in (5.9), we have:

∠H ′AQ′ � ∠HAQ = π
n .

So Q is below the line AQ′. In both cases we have:

d ′ = ‖p − A‖n = |p − Q′| � |ue0 − Q| = ‖ue0 − ae1‖n = d,

as p and ue0 belong to the x-axis and Q′ is higher than Q, implying (3).
(4) Assume that q ∈ R+e1 is such that a � ‖q‖n � a1. Use (3) with a = ‖q‖n, to get

‖p − q‖n � ‖ue0 − q‖n. Joining this with (2) for an arbitrary a ∈ [a0, a1], we get the desired
inequality. �

COROLLARY 5.6. Let n = 4m, m � 1 be integers. For any r > 0, if p ∈ R+e0 and q ∈
R+e1 are such that ‖p‖n, ‖q‖n � r, then ‖p − q‖n � 1

n rLn.

Proof. For n = 4, m = 1 we know that ‖ · ‖4 is the �1-norm, so we can easily calculate
distances, indeed for p = (x, 0) and q = (0, y), given in Cartesian coordinates, with x, y � r
we have:

‖p − q‖4 = |x| + |y| � 2r = 1

4
rL4.

Assume now that m � 2 and let p ∈ R+e0 and q ∈ R+e1 be as in hypothesis of the corollary.
Then r′ := min{‖q‖n, ‖p‖n} � r. As the unit ball B1(0) is symmetrical with respect to the
bisector of ∠e10e0, we may assume without loss of generality that r′ = ‖p‖n. Hence we can
apply Lemma 5.5 (2), using a = u = r′ as in this case p = ue0, a ∈ [a0, a1] trivially and
‖q‖n � r′ = a. We get:

‖p − q‖n = ‖ue0 − q‖n � ‖ue0 − ae1‖n = r′‖e0 − e1‖n = r′ Ln

n
� 1

n
rLn.

�

Notation 5.7. In subsequent statements, we will use the following notation. For any r � 0
and 0 � i � n − 1 we denote Di = R+ei and Dr

i = [r, +∞)ei; we also let D
r = ⋃n−1

i=0 Dr
i .

For a point p ∈ R
2 we will also use notation distn(p, S), where S = Di,Dr

i or D
r to denote

the quantity inf{‖p − x‖n : x ∈ S}.

LEMMA 5.8. Let n = 4m, m � 1, 0 � i � n − 1 be integers. If P ∈ R
2 is such that

‖P‖n sin(2π/n) � 2distn(P,Di), then the point Q = ‖P‖nei satisfies Q ∈ Di, ‖Q‖n = ‖P‖n

and ‖P − Q‖n � sec2(π/n)distn(P,Di).

Proof. As the norm is invariant with respect to the rotation by 2π/n, we may assume without
loss of generality that i = 0. Denote r = ‖P‖n. Let Q1 = re1 and Q = re0. The statement is
straightforward if m = 1, i.e. ‖ · ‖n is the �1-norm.

Assume therefore m � 2. As d := distn(Q1,D0) is equal to the Euclidean distance from
Q1 to D0, which, by Remark 3.5 (1), is equal to 2r sin(π/n) cos(π/n) = ‖P‖n sin(2π/n) �
2distn(P,D0), we conclude that either P ∈ [re0, re1] or P ∈ [ren−1, re0]. Let H ∈ D0

be the point such that PH is vertical, then |P − H | = ‖P − H‖n � distn(P,D0), thus
|P − Q| � sec(π/n)distn(P,D0). Then by Lemma 3.6 (1) ‖P − Q‖n = |P − Q| sec(π/n) �
sec2(π/n)distn(P,D0). �
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The next proposition shows that if an N-fold Lipschitz quotient mapping has the ratio
of its co-Lipschitz and Lipschitz constants with respect to ‖ · ‖n equal to 1/N , then it must
map corners rei of its ball of radius r centred at the origin close to the rays R+e j , for all r
big enough. Eventually we will use it to show that any such Lipschitz quotient mapping is
‘close’ to the N-fold winding map whose ratio of constants is strictly less than 1/N , leading to
contradiction. We will assume in the next proposition that the Lipschitz quotient map keeps
the orientation, see Remark 2.7, in the sense that its decomposition f = P ◦ h consists of a
monic polynomial P and an orientation preserving homeomorphism h.

PROPOSITION 5.9. Let n = 4m for some m � 1, and let f : (R2, ‖ · ‖n) → (R2, ‖ · ‖n) be
an L-Lipschitz and c-co-Lipschitz N-fold mapping which satisfies f (0) = 0. If c/L = 1

N , then
there exist positive constants κ (defined by (5.13)) and R such that for all ρ > R and p ∈ D

ρ ,
it holds distn( f (p), D

ρ ′
) � κ , where ρ ′ = c(ρ − M) and M = max{‖z‖n : f (z) = 0}.

Proof. Consider the mapping g(x) := f (x)/L; note that g is a 1-Lipschitz, 1/N-co-
Lipschitz mapping that maps zero to zero. It is then enough to find R1 and κ1 which
work for g and c = 1/N , and to let R = R1, κ = Lκ1. Indeed, this is because g(z) = 0
if and only if f (z) = 0, so that M = max{‖z‖n : f (z) = 0} = max{‖z‖n : g(z) = 0}, and
‖ f (p) − Lp′‖n = L‖g(p) − p′‖n for p ∈ D

ρ and p′ ∈ D
1
N (ρ−M).

Let R1 be given by Theorem 2.8 applied to g. Let ρ > R1 and p ∈ D
ρ ; set ρ ′ = 1

N (ρ − M).
As p = rei is a vertex of ∂Br(0) for r = ‖p‖n � ρ, we may perform a rotation of an integer
multiple of 2π/n without affecting the Lipschitz and co-Lipschitz constants of g, and assume
without loss of generality that p = re0.

Set

κ1 = 2nM

sin(2π/n)

and let a := distn(g(re0), D
ρ ′

). If a = 0, there is nothing to prove as κ1 � 0. Assume a > 0,
i.e. g(re0) /∈ D

ρ ′
; we first show that

a < r‖e0 − e1‖n. (5.10)

By Theorem 2.8 (1), we know that r′ := ‖g(re0)‖n � 1
N (r − M) � ρ ′, therefore, since

g(re0) is not in D
ρ ′

, we have that g(re0) lies between two of the lines Dk , say g(re0) lies in
one of the regions Us, 0 � s � n − 1. Hence, g(re0) ∈ (r′es, r′es+1), so that

0 < a � ‖g(re0) − r′es‖n < ‖r′es+1 − r′es‖n = r′‖e1 − e0‖n.

Since g is a 1-Lipschitz mapping and g(0) = 0, we have r′ = ‖g(re0)‖n � ‖re0‖n = r,
therefore (5.10) follows.

Let, as in Lemma 5.1, P1 and P2 be on the sides [ren−1, re0] and [re0, re1] of ∂Br(0),
respectively, such that ‖Pi − re0‖n = a. Let γ : [0, ρLn] → ∂Bρ (0) be the 1-Lipschitz
parametrization of the boundary of the polygon Bρ (0) with starting point at P1 so that
γ (0) = P1, γ (a) = re0, γ (2a) = P2 and Ind0 γ = 1. Let qi = g(Pi); as ‖Pi‖n = r � ρ, it
follows, by Theorem 2.8 (1), that ‖q1‖n, ‖q2‖n � ρ ′ = 1

N (ρ − M), and, by 1-Lipschitzness
of g and Lemma 5.1 that

‖q1 − q2‖n � ‖P1 − P2‖n = 2a cos2(π/n). (5.11)

Let U = U s \ Bρ ′ (0). Since g and γ are 1-Lipschitz, for any t ∈ [0, 2a]

‖g(γ (t )) − g(re0)‖n = ‖g(γ (t )) − g(γ (a))‖n � |t − a| � a = distn(g(re0), D
ρ ′

),
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so as g(re0) ∈ U and ‖g(γ (t ))‖n � ρ ′ for all t ∈ [0, ρLn], we conclude that (g ◦
γ )([0, 2a]) ⊆ U . Moreover, since the region U is convex, it follows [q1, q2] = [(g ◦
γ )(0), (g ◦ γ )(2a)] ⊆ U . Let φ : [0, 2a] → [q1, q2] be a linear parametrisation, and define

�(t ) =
{

φ(t ), if 0 � t � 2a;
(g ◦ γ )(t ), if 2a � t � ρLn.

We thus have that Ind0 � = Ind0(g ◦ γ ) = N and ‖�(t )‖n � ρ ′ for all t . Hence from
Lemma 2.9, we infer that

‖q1 − q2‖n + lengthn((g ◦ γ )|[2a,ρLn]) � N (ρ ′Ln) = N
1

N
(ρ − M)Ln = (ρ − M)Ln.

Therefore, using again that g and γ are 1-Lipschitz, and (5.11), we get

ρLn − 2a � lengthn(g ◦ γ |[2a,Lnρ]) � Ln(ρ − M) − 2a cos2(π/n).

Hence we conclude that 0 < a � LnM
2 sin2(π/n)

= 2nM
sin(2π/n)

, where the last equality follows from
Lemma 3.6 (1), therefore

distn(g(p), D
1
N (ρ−M)) = a � 2nM

sin(2π/n)
= κ1. (5.12)

To finish the proof of this proposition is now enough to define the constant

κ := L
2nM

sin(2π/n)
. (5.13)

�

LEMMA 5.10. Let n = 4m for some m � 1, N � 2 and let f : (R2, ‖ · ‖n) → (R2, ‖ · ‖n)

be an N-Lipschitz and 1-co-Lipschitz N-fold mapping which satisfies f (0) = 0. Then for any
T > 0 and ε > 0 there exist positive constants R0, κ1 > T such that for each ρ � R0, if

distn( f (ρw0),Dρ−M
0 ) < κ1, (5.14)

then

distn( f (ρwk ),Dρ−M
k (mod n)

)) < (1 + ε)κ1 (5.15)

for all 1 � k � nN − 1, where wk are defined in Notation 5.2.

Proof. Let M = max{‖z‖n : f (z) = 0} and let R be the maximum of values given by
Theorem 2.8 and Proposition 5.9 for f . Define

κ1 = max{T, NMLn/ε}, (5.16)

and

R0 = 1 + max

{
R, T,

κ1

sin(π/(2n))
+ M

}
, (5.17)

let ρ � R0, and assume, as in the hypothesis of the present lemma, that (5.14) is satisfied.
Consider γ : [0, ρLn] → ∂Bρ (0) to be a 1-Lipschitz parametrisation of ∂Bρ (0) with γ (0) =
γ (ρLn) = ρe0 = ρw0.

By Theorem 2.8 (2), Ind0( f ◦ γ ) = N , hence there exists a continuous parametrisation
θ : [0, ρLn] → R of the Euclidean argument of ( f ◦ γ )([0, ρLn]) which satisfies
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θ (0) = arg( f ◦ γ )(0);
θ (t ) (mod 2π) = arg( f ◦ γ )(t ) for all t ∈ [0, ρLn];
θ (ρLn) = θ (0) + 2πN.

As the co-Lipschitz constant of f is equal to 1, we have ‖( f ◦ γ )(0)‖n = ‖ f (ρw0)‖n �
ρ − M by Theorem 2.8 (1), thus ‖ f (ρw0)‖n > κ1

sin(π/(2n))
by (5.17), and so, by (5.14), we get

that θ (0) ∈ (−π/(2n), π/(2n)). For each 1 � k � Nn − 1, let us define the values

tk = sup

{
t ∈ [0, ρLn] : θ (t ) = k

2π

n

}
, and

sk = k

N

ρLn

n
.

(5.18)

Notice that 0 < t1 < · · · < tnN−1 < ρLn, θ (tk ) = k 2π
n and θ (t ) > k 2π

n for any t ∈ (tk, ρLn].
This, in particular, implies (5.19) below, while the definition of sk implies (5.20), for all
1 � k � nN − 1:

( f ◦ γ )(tk ) ∈ Dρ−M
k (mod n)

, (5.19)

γ (sk ) = ρwk. (5.20)

We also conclude, for each 1 � k � nN − 2,

N (tk+1 − tk ) � lengthn(( f ◦ γ )[tk, tk+1]) � (ρ − M)Ln

n
. (5.21)

Indeed, the left-hand side inequality follows from the fact that ( f ◦ γ ) is N-Lipschitz,
and to prove the right-hand side inequality, we use (5.19) and Theorem 2.8 (1) to get
( f ◦ γ )(ti) ∈ Dρ−M

i (mod n)
, i = k, k + 1, and then apply Corollary 5.6. Using the fact that

θ (0) ∈ (−π/(2n), π/(2n)) and

distn(( f ◦ γ )(0),Dρ−M
0 ) = distn( f (ρw0),Dρ−M

0 ) < κ1,

we similarly conclude that

Nt1 � lengthn(( f ◦ γ )[0, t1]) >
(ρ − M)Ln

n
− κ1, and

N (ρLn − tnN−1) � lengthn

(
( f ◦ γ )[tnN−1, ρLn]

)
>

(ρ − M)Ln

n
− κ1.

(5.22)

Let 1 � j � nN − 1. Summing up the inequalities (5.21) over 1 � k � j − 1 and over
j � k � nN − 2 with, respectively, first or second inequality from (5.22), we get

Nt j � lengthn

(
f ◦ γ [0, t j]

)
> j

(ρ − M)Ln

n
− κ1, and

N (ρLn − t j ) � lengthn

(
f ◦ γ [t j, ρLn]

)
> (nN − j)

(ρ − M)Ln

n
− κ1.

Therefore, using N � 2 and κ1 � MLn from (5.16), we get, using the definition of s j

from (5.18),

t j>
j

N

(ρ − M)Ln

n
− κ1

N
= s j −

(
jMLn

nN
+ κ1

N

)
� s j −

(
MLn + κ1

N

)
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t j<ρLn − (n − j

N
)
(ρ − M)Ln

n
+ κ1

N
= MLn + s j − ( jM)Ln

nN
+ κ1

N

� s j + MLn + κ1

N
.

We thus conclude that ∣∣t j − s j

∣∣ < MLn + κ1

N
. (5.23)

Hence, using (5.19) and (5.20), and, additionally, that ( f ◦ γ ) is N-Lipschitz, we conclude
that for 1 � k � nN − 1,

distn( f (ρwk ),Dρ−M
k (mod n)

) � ‖( f ◦ γ )(sk ) − ( f ◦ γ )(tk )‖n � N |sk − tk| < κ1 + NMLn,

and we get (5.15) using (5.16). �

Remark 5.11. One can see that if, instead introducing κ1 in (5.16), we simply assume
distn( f (ρw0),Dρ−M

0 ) < T in (5.14), we would get, instead of (5.15), that

distn( f (ρw0),Dρ−M
0 ) < T + NMLn.

With the last two results in hand, we are now able to show that the ratio of constants of any
N-fold Lipschitz quotient mapping under a 4m-norm is strictly less than 1/N .

THEOREM 5.12. Let n = 4m for some m � 1, and N � 2. If f : (R2, ‖ · ‖n) → (R2, ‖ · ‖n)

is an L-Lipschitz and c-co-Lipschitz N-fold mapping, then c/L < 1/N.

Proof. By Theorem 2.10, we know that c/L � 1/N . Hence if the conclusion of the present
theorem is not satisfied, then c/L = 1/N . Without loss of generality, we may assume further
that f (0) = 0, c = 1 and L = N (replace f (z) by ( f (z) − f (0))/c), thus we may apply
Proposition 5.9 and Lemma 5.10.

By Theorem 2.8 and Proposition 5.9 there exists R′ > 0 and a constant κ such that whenever
r � R′ and ‖p‖n = r, we have ‖ f (p)‖n � c(r − M) = r − M and, moreover, there exists
j = j(r) ∈ {0, 1, . . . , n − 1} such that

distn( f (re0),Dr−M
j(r) (mod n)) < κ. (5.24)

Let R = R′ + 3nκ/Ln + M. Since we may perform a rotation of the image by − j(R) 2π
n

radians without changing the Lipschitz and co-Lipschitz constants of f , we can assume without
loss of generality that j(R) = 0, i.e. distn( f (Re0),DR−M

0 ) < κ . As the length of a side of
∂Br−M (0) is (r − M)Ln/n > 2κ for r � R and f (re0) : [R, ∞) → R

2 is continuous, we
use (5.24) to conclude by Corollary 5.6 that j(r) = j(R) = 0 for all r � R, i.e.

distn( f (re0),Dr−M
0 ) < κ for all r � R. (5.25)

By Lemma 5.10 this implies that there exist R0 > R and κ1 > κ such that for any r > R0 and
any 1 � k � nN − 1 we have distn( f (rwk ),Dr−M

k ) < 2κ1; for the definition of κ1 see (5.16),
where we set T = κ and ε = 1.

Now we set the new constants

κ2 = 2κ1 sec2(π/n);

δ = 1 + max

{
2n

Ln
κ2 sec2(π/n), M + 2

tan(π/n)
κ2

}
; (5.26)
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R∗ = max

{
3κ2

sin(2π/n)
+ 2M,

4δ

tan2(π/n) tan α0
,

M + δ cos(2π/n)

1 − cos(2π/n)

}
,

and pick r > max{R, R0, R∗}.
Consider first the case n = 4. In this case the norm ‖ · ‖n coincides with the �1-norm.

Consider the pair of points re0 and sw1, as in Lemma 5.4. Let f (re0) = (x1, y1) and f (sw1) =
(x2, y2) be given in Cartesian coordinates. Then x1 � r − M − κ � r − M − κ1 and |y1| � κ1,
hence |x1| − |y1| � r − M − 2κ1; |x2| � 2κ1 and y2 � s − M − 2κ1, hence |y2| − |x2| � s −
M − 4κ1. Thus, we can use (5.26), Lemma 5.4 (5.3) and Lemma 5.3 to get

‖ f (sw1) − f (re0)‖n = |x1 − x2| + |y1 − y2| � (r + s) − 2(M + 3κ1)

= r
2N − 1

N − 1
− 2(M + 3κ1) > r

N

N − 1
= Nr tan α0 = N‖re0 − sw1‖,

a contradiction since f is N-Lipschitz. Here we used that by (5.2) of Lemma 5.4s = r(1 +
tan π

n tan α0) = rN/(N − 1) as tan π
n = tan π

4 = 1 and, by Lemma 5.3, tan α0 = 1/(N − 1),
followed by r > R∗ � 6κ1 + 2M.

Let now n > 4. The remaining proof is organised as follows. We first check that at least
one of the two points Pi = f (rwi), i = 0, 1 belongs to Br+δ(0). We then consider two cases,
Pi ∈ Br+δ(0) for i = 0 or i = 1, and get a contradiction in each of the cases. This completes
the proof of this theorem.

Assume first ‖Pi‖n > r + δ for both i = 0, 1. As distn(Pi,Di) � 2κ1, by (5.26) we have
2distn(Pi,Di) � ‖Pi‖n sin(2π/n), so we may apply Lemma 5.8 to get that Wi = ‖Pi‖nei ∈
Di are such that ‖Wi‖n = ‖Pi‖n > r + δ and ‖Pi − Wi‖n � 2κ1 sec2(π/n) = κ2, i = 0, 1. By
Corollary 5.6 we have ‖W0 − W1‖n � 1

n (r + δ)Ln, hence also using (5.26) and Ln � 2n
(easily seen from Lemma 3.6), we get

r
Ln

n
= Nr

Ln

nN
= Nr‖w0 − w1‖n � ‖ f (rw0) − f (rw1)‖n = ‖P0 − P1‖n

� ‖W0 − W1‖n − 2κ2 � (r + δ)
Ln

n
− 2κ2 > r

Ln

n
,

a contradiction.
Case 1. m � 2 and P0 = f (re0) ∈ Br+δ(0).
In this case distn( f (re0),Dr−M

0 ) � κ < κ1 and r + δ � ‖ f (re0)‖n � r − M � r − δ, as
δ � M. As 2κ1 � (r − M) sin(2π/n) from (5.26), we may apply Lemma 5.8 to get that the
point Q = ‖ f (re0)‖ne0 ∈ D0 is such that ‖Q‖n = ‖ f (re0)‖n ∈ (r − δ, r + δ), hence ‖Q −
re0‖n < δ, and ‖ f (re0) − Q‖n � κ1 sec2(π/n). This implies, using (5.26)

‖ f (re0) − re0‖n � δ + κ1 sec2(π/n) � 2δ. (5.27)

Now (going back to the domain of f ), let sw1 be the intersection point between R+w1

and the vertical line through re0, as in Lemma 5.4. As s > r > R0, we get from the choice
of R0 that Lemma 5.10 holds for f and ε = 1, so that distn( f (sw1),Ds−M

1 ) � 2κ1, and from
Theorem 2.8 (1), s′ = ‖ f (sw1)‖n � s − M. Since s − M � r − M, we get from (5.26) that
(s − M) sin(2π/n) � 4κ1, so we may apply Lemma 5.8 to get

‖ f (sw1) − s′e1‖n � 2κ1 sec2(π/n). (5.28)

Apply (5.27) and (5.28), following by 2κ1 sec2(π/n) � δ from (5.26), to get

‖ f (re0) − f (sw1)‖n � ‖s′e1 − re0‖n − ‖re0 − f (re0)‖n − ‖s′e1 − f (sw1)‖n (5.29)

� ‖s′e1 − re0‖n − 2δ − 2κ1 sec2(π/n) � ‖s′e1 − re0‖n − 3δ.
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We now plan to use Lemma 5.5 (2) for u = r, a = s − M and q = s′e1. Let us first verify that
its conditions are satisfied. We have already mentioned above that s′ � s − M, so it remains
to check that

cos(2π/n) � s − M

r
� sec(2π/n). (5.30)

Let us now recall the results of Lemma 5.4. By (5.2), s/r = 1 + tan π
n tan α0. As M/r �

tan π
n tan α0 by the choice of R∗, we only need to verify that s−M

r � sec(2π/n). As N � 2,
we get from Lemma 5.3 that 0 < tan α0 � tan π

n , hence

sec 2π
n � 1

cos2 π
n

= 1 + tan2 π
n � 1 + tan α0 tan π

n = s

r
.

This allows us to use Lemma 5.5 (2) to conclude that ‖re0 − s′e1‖n � ‖re0 − (s − M)e1‖n.
This last inequality, used together with (5.29), gives us:

‖ f (re0) − f (sw1)‖n � ‖re0 − (s − M)e1‖n − 3δ � ‖re0 − se1‖n − M − 3δ

� ‖re0 − se1‖n − 4δ.

We now apply (5.4) of Lemma 5.4 to the above inequality, following by the estimate for R∗

from (5.26), then Lemma 5.3 and (5.3) of Lemma 5.4, and conclude that

‖ f (re0) − f (sw1)‖n � r tan π
n (2 + tan π

n tan α0) − 4δ > 2r tan π
n

� Nr tan α0 = N‖re0 − sw1‖n,

a contradiction as f is N-Lipschitz.
Case 2. m � 2, P0 = f (re0) /∈ Br+δ(0) and P1 = f (rw1) ∈ Br+δ(0).
First we note that if we let u = r + δ, a = r − M and a0, a1 be defined as in (5.8), then

u, a, a0, a1 satisfy the assumptions of Lemma 5.5. (5.31)

Indeed, a � r � u � a1 is trivial and a0 � a because r � R∗, see (5.26). By Lemma 5.5 (1),
we conclude that the point ae1 is on the ( n

4 + 1)th side of the polygon Bd (ue0), where d =
‖ue0 − ae1‖n.

Consider the vertical line through ue0 and let Q denote the ( n
4 )th vertex of ∂Bd (ue0) that

belongs to this vertical line. Let further H be the intersection between the horizontal line
through ae1 and the segment [ue0, Q]. Finally, let V = ve0 be the intersection between the
x-axis and the vertical line through ae1.

Using that v = a cos 2π
n , we conclude

|Q − H | = (u − v) tan π
n = (

u − a cos 2π
n

)
tan π

n ,

|H − ue0| = |ae1 − ve0| = a sin 2π
n = a tan π

n (cos 2π
n + 1),

so that

d = |Q − H | + |H − ue0| = (u + a) tan
π

n
.

Hence, as u + a = 2r + δ − M, using Lemma 3.6 (1) and (5.26), we conclude

‖(r + δ)e0 − (r − M)e1‖n = ‖ue0 − ae1‖n = d (5.32)

= (2r + δ − M) tan π
n = r‖e0 − e1‖n + (δ − M) tan π

n � r‖e0 − e1‖n + 2κ2.
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Now, from (5.25) we know that f (re0) is at most κ-far from the ray D0 and, in this case, we
have ‖ f (re0)‖n > r + δ, so applying again Lemma 5.8, as (r + δ) sin(2π/n) � 2κ , we get
that Q0 = ‖ f (re0)‖ne0 satisfies

‖ f (re0) − Q0‖n � κ sec2(π/n) < κ1 sec2(π/n) < κ2. (5.33)

We also use Lemma 5.10 to get distn( f (rw1),D1) � 2κ1, hence as r − M � ‖ f (rw1)‖n �
r + δ and (r − M) sin(2π/n) � 4κ1, we use Lemma 5.8 to get that for Q1 = ‖ f (rw1)‖ne1

we have

‖ f (rw1) − Q1‖n � 2κ1 sec2(π/n) = κ2. (5.34)

Recall that in (5.31) we verified the general conditions of Lemma 5.5 for u = r + δ and
a = r − M. Let now p = Q0 and q = Q1. It is readily seen that ‖p‖n = ‖ f (re0)‖n � u and
a1 � u � ‖q‖n = ‖ f (rw1)‖n � a, so apply Lemma 5.5 (4) to get

‖Q0 − Q1‖n � ‖(r + δ)e0 − (r − M)e1‖n,

hence, using in addition (5.32),

‖Q0 − Q1‖n � r‖e0 − e1‖n + 2κ2.

Combining the above inequality with (5.33) and (5.34), we conclude

‖ f (re0) − f (rw1)‖n > ‖Q0 − Q1‖n − 2κ2 � r‖e0 − e1‖n = N‖re0 − rw1‖n.

This is not possible since f is N-Lipschitz. �

We derive now the more general result.

THEOREM 5.13. Let n = 4m for some m � 1 and N � 2, and let ‖ · ‖ be a norm on R
2

whose unit ball is a linear image of a regular n-gon (for example, any polygonal n-norm). Then
any N-fold Lipschitz quotient mapping f : (R2, ‖ · ‖) → (R2, ‖ · ‖) has ratio of constants c/L
strictly less than 1/N.

In particular, this includes the cases of the �1 and �∞ norms.

Proof. This follows from Theorem 5.12 and Remark 3.3. �

We have shown then that for every norm whose unit ball is a linear image of a regular polygon
with 4m sides, every N-fold Lipschitz quotient mapping with N � 2 satisfies c/L < 1/N . A
natural question is what is the upper bound for this ratio.

PROPOSITION 5.14. If n = 4m for some m � 1, then the Lipschitz and co-Lipschitz
constants, LN and cN , of the N-fold winding mapping f N

n : (R2, ‖ · ‖n) → (R2, ‖ · ‖n) satisfy
LN � N + (N − 1) tan2( π

n ) and cN = 1. Hence,

cN

LN
� 1

N + (N − 1) tan2( π
n )

and

N � LN

cN
cos2 π

n
+ sin2 π

n
.

Proof. First notice that cN = 1 by Theorem 3.19. To prove that LN � N + (N − 1) tan2( π
n ),

consider the pair of points re0 and sw1, as in Lemma 5.4. By Lemma 5.4, we have that ‖re0 −
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we1‖n = r tan α0, where α0 is defined in Notation 5.2. As f N
n (re0) = re0 and f N

n (sw1) = se1,
we apply again Lemma 5.4 to get

‖ f N
n (re0) − f N

n (sw1)‖n = ‖re0 − se1‖n = r tan π
n (2 + tan π

n tan α0).

Hence, using (5.1) from Lemma 5.3

Lip( f N
n ) �

tan π
n (2 + tan π

n tan α0)

tan α0
= 2

tan π
n

tan α0
+ tan2 π

n = N (1 + (1 − 2
N ) tan2 π

n ) + tan2 π
n

= N + (N − 1) tan2 π
n .

The upper estimate for N is then obtained by a simple rearrangement. �

The following conjecture is a generalisation of Theorem 5.13 and Proposition 5.14:

CONJECTURE 5.15. Let n = 4m for m � 1 defines a polygonal n-norm ‖ · ‖ on R
2.

If f : (R2, ‖ · ‖) → (R2, ‖ · ‖) is an L-Lipschitz and c-co-Lipschitz N-fold mapping, then

N � L

c
cos2 π

n
+ sin2 π

n
.

The equality is achieved for an appropriately rotated mapping f = f N
n , where f N

n is the N-fold
winding mapping defined by Definition 3.12.
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