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ABSTRACT

We give a short proof that any non-zero Euclidean space has a compact

subset of Hausdorff dimension one that contains a differentiability point

of every real-valued Lipschitz function defined on the space.

1. Introduction

1.1. It is well-known that if f : R → R is a Lipschitz function, then f is

differentiable almost everywhere. Zahorski, [9], gives a full characterisation

of the possible sets of points of non-differentiability of a real-valued Lipschitz

function defined on R. In particular, it follows that for any Lebesgue null set

E ⊆ R there exists a Lipschitz function f : R → R that is non-differentiable at

every point of E.

Turning to higher dimensions, we may still conclude that real-valued func-

tions defined on a finite-dimensional Euclidean space are differentiable almost

everywhere; this is Rademacher’s theorem. However, the converse implication

no longer holds; in any Euclidean space of dimension at least two, there are

sets of measure zero on which every real-valued Lipschitz function, defined on

the space, is somewhere differentiable. Examples of sets satisfying this property

— which we hitherto refer to as the universal differentiability property — were

constructed by Preiss in [8] and the authors of the present paper in [2].

It is proved in [8] that if E ⊆ R
d is any Gδ set, i.e. an intersection of a

countable family of open sets, such that E contains every line segment that
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passes through any two points of some dense subset S ⊆ R
d, then E has the

universal differentiability property. One can check that not only can such a set

E be taken to be null in R
d for d ≥ 2, but that such a set may also be chosen

to have Hausdorff dimension one; see Lemma 1.1. However, it is also clear that

the closure of such a set E is the whole space R
d.

In [2] we show, on the other hand, that it is possible to find a compact and

null subset E ⊆ R
d with the universal property, for d ≥ 2. An example for d = 2

is given by a generalisation of the Menger–Sierpinski carpet; see also [3]. More

precisely, we choose odd integers Ni > 1 such that Ni → ∞ and
∑
N−2
i = ∞.

At the first step, we divide the unit square [0, 1]2 into N2
1 equal squares and

remove the central square in the division. Then on each subsequent step we

divide the remaining squares into N2
i equal squares and remove the central

square. The example is given by the set that remains. For d > 2 we take

the Cartesian product of this two-dimensional set with R
d−2. See [2] for more

details.

The drawback of the example in [2] is, however, that its Hausdorff dimension

is equal to d, the dimension of the underlying space.

In the present paper we construct a compact subset of Rd with the universal

differentiability property such that its Hausdorff dimension is equal to one, thus

making the set small both in terms of its closure and in terms of its Hausdorff

dimension.

For Lipschitz mappings to spaces of dimension larger than one there are fewer

positive results. For d ≥ 3, it is proved in [7] that there exists a Lebesgue null

set E in R
d such that every Lipschitz mapping from R

d to R
d−1 has a point

of ε-differentiability in that set for all ε > 0; see the subsequent section for

a definition. In fact one may take E to be the union of all “rational hyper-

planes” in R
d, so that the Hausdorff dimension of E is equal to d− 1. However,

ε-differentiability is weaker than differentiability.

1.2. Recall for a pair of real Banach spaces X,Y a function f : X → Y is

called Lipschitz if there is a constant L ≥ 0 such that

‖f(x′)− f(x)‖Y ≤ L‖x′ − x‖X

for any x, x′ ∈ X . The smallest such L is denoted as Lip(f).
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We say that the function f : X → Y has a directional derivative at x ∈ X

in the direction e ∈ X if the limit

(1.1) lim
t→0

f(x+ te)− f(x)

t

exists. We then denote the limit (1.1) as f ′(x, e). We say f is Gâteaux

differentiable at x ∈ X if f ′(x, e) exists for every e ∈ X and T (e) := f ′(x, e)
defines a bounded linear operator T : X → Y .

If f is Gâteaux differentiable at x and the limit

(1.2) lim
h→0

f(x+ h)− f(x)− T (h)

‖h‖
is equal to 0 — or equivalently, the convergence in (1.1) is uniform for e in the

unit sphere of X — then we say that f is Fréchet differentiable at x and

denote the operator T as f ′(x).
The condition (1.2) can be rewritten as follows. We require that there exists

a bounded linear operator f ′(x) : X → Y such that for any ε > 0 there exists

δ > 0 such that for any h ∈ X with ‖h‖ < δ we have

‖f(x+ h)− f(x)− f ′(x)(h)‖ ≤ ε‖h‖.

If, on the other hand, we only know the existence of such an operator for some

fixed ε, we say that f is ε-Fréchet differentiable at x.

We refer the reader to [4, 5] where the notion of ε-Fréchet differentiability

is studied in relation to Lipschitz mappings, with the emphasis on the infinite-

dimensional case. In general, Fréchet differentiability is a strictly stronger prop-

erty than Gâteaux differentiability. However, the two notions coincide for Lip-

schitz functions defined on a finite-dimensional space; see [1]. Hence, in this

case, we may simply refer to differentiability, without any ambiguity.

The Hausdorff dimension of a set E, a subset of a metric space, is defined in

the following way. For r, δ > 0, let

Hr
δ(E) = inf

{ ∞∑
i=1

[diam(Si)]
r over all Si with E ⊆

∞⋃
i=1

Si and diam(Si) ≤ δ

}

and

(1.3) Hr(E) = lim
δ→0+

Hr
δ(E);
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as Hr
δ(E) is a decreasing function of δ > 0, this limit exists in [0,∞]. The

number

(1.4) dimH(E) := inf{r > 0 with Hr(E) = 0}
is called the Hausdorff dimension of E. It is easy to see that the Hausdorff

dimension is a monotone set function with respect to inclusion, and if f : X → Y

is a Lipschitz function then the Hausdorff dimension of f(E) does not exceed

the Hausdorff dimension of E, for every E ⊆ X . See [6] for a discussion of the

properties of Hausdorff dimension.

From this point, we shall work in R
d where d ≥ 1. We fix some notation for

the rest of the paper. We let ‖ · ‖ be the Euclidean distance on R
d and denote

an open ball centred at a ∈ R
d of radius r by Br(a) and a closed ball by Br(a).

Further, for any S ⊆ R
d and r ≥ 0 we let

Br(S) := {x ∈ R
d such that inf

y∈S
‖x− y‖ < r} =

⋃
y∈S

Br(y),

Br(S) := {x ∈ R
d such that inf

y∈S
‖x− y‖ ≤ r}

denote the open and closed r-neighbourhoods of S respectively.

We require the following simple observation.

Lemma 1.1: If L ⊆ R
d is a countable union of line segments, then there exists

a Gδ set O ⊆ R
d with L ⊆ O such that the Hausdorff dimension of O is equal

to one.

Proof. It clearly suffices to show that the Hausdorff dimension of O can be

taken to be less than or equal to one.

Note that if I is a line segment of length at most 1 in a Banach space Y ,

r, δ > 0 and k ≥ 4/δ is a positive integer, then

(1.5) Hr
δ(B1/k(I)) ≤ k ·

(
4

k

)r
= 4r · k−(r−1),

as we may cover B1/k(I) with k open balls whose radii are equal to 2/k, i.e.

with diameters 4/k ≤ δ.

Now let L ⊆ R
d be a countable union of line segments. One may write

L =
⋃
m≥1 Lm, where each Lm is a line segment of length at most 1. Let

On =
∞⋃
m=1

B1/2m+n(Lm) and O =
∞⋂
n=1

On.
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Note that O is a Gδ subset of R
d, containing L. To verify that the Hausdorff

dimension of O is no greater than one, it suffices, by (1.3) and (1.4), to show

that Hr
δ(O) = 0 for every δ > 0 and r > 1. If 2n+1 ≥ 4/δ, then

Hr
δ(O) ≤ Hr

δ(On) ≤
∞∑
m=1

Hr
δ(B1/2m+n(Lm))

≤
∞∑
m=1

4r · 2−(m+n)(r−1)

= 4r · 2
−(n+1)(r−1)

1− 2−(r−1)
,

using the countable subadditivity of Hr
δ , (1.5) and r > 1. Letting n → ∞ we

obtain Hr
δ(O) = 0 as required.

1.3. We have already mentioned that by [8] any Gδ set O that contains ev-

ery line segment passing through two points of a dense subset R ⊆ R
d has

the universal differentiability property, and that if R is countable, O may be

taken to have Hausdorff dimension one by Lemma 1.1. Our strategy then is to

construct a closed and bounded subset of such a set O that still has the univer-

sal differentiability property; this will give our example of a compact universal

differentiability set with Hausdorff dimension one.

The basic idea of the construction is as follows. We write O =
⋂
k≥1Ok, where

Ok are open subsets of Rd with Ok+1 ⊆ Ok for each k ≥ 1. Then for each k ≥ 1

we construct a family of closed subsets Mk(λ)λ∈[0,1] of Ok with the property

thatMk(λ) ⊆Mk(λ
′) for λ ≤ λ′. Taking the intersection Tλ :=

⋂
k≥1Mk(λ) we

note that each Tλ is a closed subset of O and that Tλ ⊆ Tλ′ for λ ≤ λ′. We then

prove, using the details of the construction, that the family (Tλ)λ∈[0,1] contains,

in a certain sense, a large amount of line segments connecting two points in the

dense set R.

Next, by quoting Theorem 2.7, which is Theorem 3.1 in [2], we show that

given a Lipschitz function f : Rd → R we can find a point x ∈ Tλ for some

λ < 1 and a direction e ∈ Sd−1, the unit sphere of Rd, such that the directional

derivative f ′(x, e) is almost locally maximal: if ε > 0 and x′ ∈ Tλ′ is close to

x, with λ′ sufficiently close to λ, and e′ ∈ Sd−1 is a direction such that (x′, e′)
satisfies certain additional constraints, then f ′(x′, e′) < f ′(x, e) + ε.

Finally, we then prove f is differentiable at x with derivative

f ′(u) = f ′(x, e)〈u, e〉
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using Lemma 2.8, which we quote from [2, Lemma 4.3]. This last step makes

essential use of the fact that the family (Tλ)λ∈[0,1] contains sufficiently many

line segments.

We finish this section by noting that the Hausdorff dimension of one is

optimal.

Lemma 1.2: If d ≥ 1 and E ⊆ R
d is a universal differentiability set, then the

Hausdorff dimension of E is at least one.

Proof. Assume E has Hausdorff dimension strictly less than 1. Let v be any

unit vector in R
d and set

ϕ(x) = 〈x, v〉.
Since ϕ : Rd → R is Lipschitz, we conclude

dimH(ϕ(E)) ≤ dimH(E) < 1;

in particular, ϕ(E) ⊆ R has Lebesgue measure 0. Hence there exists a Lipschitz

function g : R → R that is non-differentiable at every x ∈ ϕ(E). Then f := g◦ϕ
defines a Lipschitz function from R

d to R that is not differentiable at every

x ∈ E, as the directional derivative f ′(x, v) does not exist for x ∈ E.

2. Construction

Let R be a countable dense subset of B1(0), and for each ε > 0 let R(ε) be

a finite subset of R such that for every x ∈ B1(0) there exists r ∈ R(ε) with

‖r − x‖ < ε.

By Lemma 1.1 we may pick a Gδ set O ⊆ B1(0) of Hausdorff dimension one

such that [r, s] ⊆ O for every r, s ∈ R. We write O =
⋂∞
k=1Ok, where Ok are

open subsets of Rd with Ok+1 ⊆ Ok for each k ≥ 1.

Definition 2.1: For k ≥ 0 we define compact sets Rk ⊆ O and wk > 0 as follows.

Let w0 > 0 and R0 be any compact subset of R; for example w0 = 1 and R0 = ∅.
For each k ≥ 1 we let

• Rk =
⋃{[r, s] where r, s ∈ R(wk−1/k)} ∪Rk−1,

• wk ∈ (0, wk−1/2) be such that Bwk
(Rk) ⊆ Ok.

Since [r, s] ⊆ O for every r, s ∈ R(wk−1/k) ⊆ R and R(wk−1/k) is finite, the

set Rk defined above is compact and is a subset of O. Then we may pick wk > 0
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as given above because Rk ⊆ O ⊆ Ok, Rk is compact and Ok is open. Note

that (wn) is a decreasing sequence which tends to zero.

Definition 2.2: If k ≥ 1 and λ ∈ [0, 1] we set

(2.1) Mk(λ) =
⋃

k≤n≤(1+λ)k

Bλwn(Rn).

We note that for each k ≥ 1 and λ ∈ [0, 1], the set Mk(λ) is a finite union of

closed sets, so closed. As Bλwn(Rn) ⊆ On for any n ≥ 1 we have, for k ≥ 1,

(2.2) Mk(λ) ⊆
⋃

k≤n≤(1+λ)k

On = Ok

as On+1 ⊆ On for all n ≥ 1.

Definition 2.3: Given λ ∈ [0, 1] we set

(2.3) Tλ =

∞⋂
k=1

Mk(λ).

Note from (2.2) that Tλ ⊆ Ok for every k ≥ 1 so that Tλ ⊆ O, which is

bounded and has Hausdorff dimension one. Further, as Tλ is an intersection

of closed sets, it is closed. We conclude that for every λ ∈ [0, 1], the set Tλ is

a compact subset of Rd of Hausdorff dimension at most one. Finally, we note

that if λ1 ≤ λ2 then we have Tλ1 ⊆ Tλ2 .

Lemma 2.4: Suppose that 0 ≤ λ < λ+ ψ ≤ 1 and x ∈Mk(λ) where k ≥ 1. If

0 < Δ ≤ ψwn

for all n ≤ (1 + λ)k, then we have

BΔ(x) ⊆Mk(λ+ ψ).

Proof. Using Definition 2.2 we may find n such that k ≤ n ≤ (1 + λ)k and

x ∈ Bλwn(Rn). Noting that Δ ≤ ψwn we have

BΔ(x) ⊆ Bλwn+Δ(Rn) ⊆ B(λ+ψ)wn
(Rn) ⊆Mk(λ+ ψ)

using Definition 2.2 once more and k ≤ n ≤ (1 + λ+ ψ)k.

Lemma 2.5: Suppose that 0 ≤ λ < λ + ψ ≤ 1. If η ∈ (0, 1), Δ > 0 and

k ≥ 1/(ψη) satisfyΔ > ψwn for some n ≤ (1+λ)k, then there exists α ∈ (0, ηΔ)

such that [r, s] ⊆Ml(λ+ ψ) for every r, s ∈ R(α) and l ≥ k.
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Proof. As the sequence wn is decreasing we may assume k ≤ n ≤ (1 + λ)k, so

that using k ≥ 1/(ψη) we get

α :=
wn
n+ 1

<
Δ/ψ

1/(ψη)
= ηΔ.

Let l ≥ k and choose any r, s ∈ R(α) so that [r, s] ⊆ Rn+1 by Definition 2.1.

Note that as n ≤ (1 + λ)k and ψk ≥ 1/η ≥ 1,

(1 + λ+ ψ)l ≥ (1 + λ)k + ψk ≥ n+ 1.

Thus we may pick m ≥ n+ 1 with l ≤ m ≤ (1 + λ+ ψ)l. Then [r, s] ⊆ Rn+1 ⊆
Rm. Hence [r, s] ⊆Ml(λ+ ψ) by Definition 2.2.

Lemma 2.6: For each η, ψ > 0 there exists

Δ0 = Δ0(η, ψ) > 0

such that, ifΔ ∈ (0,Δ0), 0 ≤ λ < λ+ψ ≤ 1 and x ∈ Tλ, there exists α ∈ (0, ηΔ)

such that for every r, s ∈ R(α) ∩BΔ(x) we have [r, s] ⊆ Tλ+ψ.

Proof. Pick Δ0 > 0 with Δ0 < ψwn for every n ≤ 2/(ψη). Now suppose that

Δ ∈ (0,Δ0). Pick a minimal k ≥ 1 such that Δ > ψwn for some n ≤ (1 + λ)k.

Note that (1 + λ)k > 2/(ψη) so that k > 1/(ψη). Thus by Lemma 2.5 we can

find α ∈ (0, ηΔ) with [r, s] ⊆Ml(λ+ψ) for every r, s ∈ R(α) and l ≥ k. But for

l < k, if r, s ∈ BΔ(x) then by the minimality of k we have Δ ≤ ψwn for every

n ≤ (1 + λ)l, so that by Lemma 2.4,

[r, s] ⊆ BΔ(x) ⊆Ml(λ+ ψ).

Hence for every r, s ∈ R(α) ∩ BΔ(x) we have [r, s] ⊆ Ml(λ + ψ) for any l ≥ 1,

so that [r, s] ⊆ Tλ+ψ.

We now let the Hilbert space H equal Rd and write S(H) for the unit sphere

of H . Note that (S,�) := ([0, 1],≤) is a dense, chain complete poset: for any

λ1 < λ2 there exists λ ∈ (λ1, λ2) and every non-empty chain in ([0, 1],≤) has a

supremum.

We quote [2, Theorem 3.1] as Theorem 2.7. The assumptions for Theorem 2.7

are as follows: H is a real Hilbert space, (S,�) is a dense chain complete poset

and (Tλ)λ∈S is a collection of closed subsets of H such that Tλ ⊆ Tλ′ whenever

λ � λ′.
We also use the following notation. For a Lipschitz function h : H → R we

write Dh for the set of all pairs (x, e) ∈ H × S(H) such that the directional
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derivative h′(x, e) exists and, for each λ ∈ S, we let Dh
λ be the set of all

(x, e) ∈ Dh such that x ∈ Tλ. If, in addition, h : H → R is linear, then we write

‖h‖ for the operator norm of h.

Theorem 2.7: Suppose f0 : H → R is a Lipschitz function, λ0 ∈ S, (x0, e0) ∈
Df0
λ0
, δ0, μ,K > 0 and λ1 ∈ S with λ0 ≺ λ1. Then there exists a Lipschitz

function f : H → R such that f − f0 is linear with norm not greater than μ

and a pair (x, e) ∈ Df
λ, where ‖x − x0‖ ≤ δ0 and λ ∈ (λ0, λ1), such that the

directional derivative f ′(x, e) > 0 is almost locally maximal in the following

sense. For any ε > 0 there exists δε > 0 and λε ∈ (λ, λ1) such that, whenever

(x′, e′) ∈ Df
λε

satisfies

(i) ‖x′ − x‖ ≤ δε, f
′(x′, e′) ≥ f ′(x, e) and

(ii) for any t ∈ R

(2.4) |(f(x′ + te)− f(x′))− (f(x+ te)− f(x))| ≤ K
√
f ′(x′, e′)− f ′(x, e)|t|,

then we have f ′(x′, e′) < f ′(x, e) + ε.

We now quote [2, Lemma 4.3].

Lemma 2.8 (Differentiability Lemma): LetH be a real Hilbert space, f : H→R

be a Lipschitz function and (x, e) ∈ H × S(H) be such that the directional

derivative f ′(x, e) exists and is non-negative. Suppose that there is a family of

sets {Fε ⊆ H | ε > 0} such that

(1) whenever ε, η > 0 there exists δ∗ = δ∗(ε, η) > 0 such that for any

δ ∈ (0, δ∗) and u1, u2, u3 in the closed unit ball of H , one can find

u′1, u′2, u′3 with ‖u′m − um‖ ≤ η and

[x+ δu′1, x+ δu′3] ∪ [x+ δu′3, x+ δu′2] ⊆ Fε,

(2) whenever (x′, e′) ∈ Fε × S(H) is such that the directional derivative

f ′(x′, e′) exists, f ′(x′, e′) ≥ f ′(x, e) and

(2.5) |(f(x′ + te)− f(x′))− (f(x + te)− f(x))|
≤ 25

√
(f ′(x′, e′)− f ′(x, e))Lip(f)|t|

for every t ∈ R, then

(2.6) f ′(x′, e′) < f ′(x, e) + ε.
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Then f is Fréchet differentiable at x and its derivative f ′(x) is given by the

formula

(2.7) f ′(x)(h) = f ′(x, e)〈h, e〉

for h ∈ H .

We now apply these results to our construction to obtain the following.

Theorem 2.9: There exists a compact subset S ⊆ R
d of Hausdorff dimension

one with the universal differentiability property; moreover, if g : Rd → R is

Lipschitz, the set of points x ∈ S such that f is Fréchet differentiable at x is a

dense subset of S.

Proof. We let

S =
⋃
q<1

Tq.

Note, as T1 is closed, that S ⊆ T1 ⊆ O ⊆ B1(0) is a compact set of Hausdorff

dimension at most one. We shall prove it has the universal differentiability

property; it will follow, by Lemma 1.2, that its Hausdorff dimension is equal to

one.

Let y ∈ S, ρ > 0 and g : Rd → R be a Lipschitz function. We shall prove the

existence of a point x ∈ S of differentiability of g with ‖x− y‖ < ρ.

We may assume Lip(g) > 0. Let H be the Hilbert space R
d. We may pick

q < λ1 := 1 and y′ ∈ Tq with ‖y′ − y‖ < ρ/3.

Let λ0 ∈ (q, 1). By applying Lemma 2.6 with η < 1/2 we can find distinct

r, s ∈ R ∩ Bρ/3(y
′) so that [r, s] ⊆ Tλ0 . Then, by Lebesgue’s theorem, there

exists x0 ∈ [r, s] such that (x0, e0) ∈ Dg
λ0
, where

e0 =
r − s

‖r − s‖ .

Set f0 = g, K = 25
√
2Lip(g), δ0 = ρ/3 and μ = Lip(g).

Let the Lipschitz function f , the pair (x, e), λ ∈ (λ0, λ1) = (λ0, 1) and, for

each ε > 0, the numbers δε > 0 and λε ∈ (λ, 1) be given by the conclusion

of Theorem 2.7. We verify the conditions of Lemma 2.8 hold for the function

f : Rd → R, the pair (x, e) ∈ Df
λ and the family of sets {Fε ⊆ R

d | ε > 0} where

Fε = Tλε ∩Bδε(x).
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We know from Theorem 2.7 that the derivative f ′(x, e) exists and is non-

negative. To verify condition (1) of Lemma 2.8, for every ε > 0 and η ∈ (0, 1),

we put ψε = λε − λ and define

δ∗ =
1

2
min

{
Δ0

(η
2
, ψε

)
, δε, 1− ‖x‖

}
,

where Δ0 is given by Lemma 2.6. We see that δ ∈ (0, δ∗) implies

2δ < min
{
Δ0

(η
2
, ψε

)
, 1− ‖x‖

}
.

By Lemma 2.6 we can find α ∈ (0, η/2 · 2δ) = (0, ηδ) such that for every

r, s ∈ R(α) ∩ B2δ(x) we have [r, s] ⊆ Tλε . Using the definition of R(α) and

B2δ(x) ⊆ B1(0) we can find x+ δu′i ∈ Bα(x+ δui) such that

[x+ δu′1, x+ δu′3] ∪ [x+ δu′3, x+ δu′2] ⊆ Tλε .

Note then that since

‖(x+ δu′i)− (x+ δui)‖ < α < ηδ,

we have ‖u′i − ui‖ < η; also, as δ(1 + η) < 2δ∗ ≤ δε we have x + δu′i ∈ Bδε(x)

for each i = 1, 2, 3. Thus

[x+ δu′1, x+ δu′3] ∪ [x+ δu′3, x+ δu′2] ⊆ Fλε .

Condition (2) of Lemma 2.8 is immediate from the definition of Fε and equation

(2.4) as Lip(f) ≤ Lip(g) + μ = 2Lip(g) so that 25
√
Lip(f) ≤ K.

Therefore, by Lemma 2.8 the function f is differentiable at x. So too, there-

fore, is g as (g − f) is linear. Finally, note that x ∈ Tλ ⊆ S and

‖x− y‖ ≤ ‖x− x0‖+ ‖x0 − y′‖+ ‖y′ − y‖ < ρ/3 + ρ/3 + ρ/3 = ρ.
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