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Abstract

We show that any non-zero Banach space with a separable dual contains a totally disconnected, closed
and bounded subset S of Hausdorff dimension 1 such that every Lipschitz function on the space is Fréchet
differentiable somewhere in S.
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1. Introduction

It is well known that there are quite strong results ensuring the existence of points of dif-
ferentiability of Lipschitz functions defined on finite and infinite dimensional Banach spaces.
Rademacher’s theorem implies that real-valued Lipschitz functions on finite dimensional spaces
are differentiable almost everywhere in the sense of Lebesgue measure. For the infinite dimen-
sional case, Preiss shows in [12, Theorem 2.5] that every real-valued Lipschitz function defined
on an Asplund1 space is Fréchet differentiable at a dense set of points.
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1 This is best possible as any non-Asplund space has an equivalent norm—which of course is a Lipschitz function—that
is nowhere Fréchet differentiable; see [2,3].
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A natural question then arises as to whether every “small” set S in a finite dimensional or
infinite dimensional Asplund space Y gives rise to a real-valued Lipschitz function on Y not dif-
ferentiable at any point of S. Let us call a subset E of the space Y a universal differentiability set
if for every Lipschitz function f : Y → R, there exists y ∈ E such that f is Fréchet differentiable
at y.

In this paper we show that for non-zero separable Asplund spaces Y , there are always “small”
subsets with the universal differentiability property, in the sense that the Hausdorff dimension of
the closure of the set can be taken equal to 1. Hence, as we may also take the set to be bounded,
in the case in which Y is a finite dimensional space of dimension at least 2 we recover the fact
that a universal differentiability set may be taken to be compact and with Lebesgue measure zero,
a fact first proved by the authors in [6].

In the case dimY = 1 it is easy to show that every Lebesgue null subset of R is not a universal
differentiability set; see [13] and [8]. Note also that a separable Asplund space is simply a Banach
space with a separable dual. For non-separable spaces Y , any set S of finite Hausdorff dimension
is contained in a separable subspace Y ′ ⊆ Y ; therefore the distance function y �→ dist(y,Y ′) is
Lipschitz and nowhere differentiable on S.

We note here that for Lipschitz mappings whose codomain has dimension 2 or above, there
are many open questions. For example, while Rademacher’s Theorem still guarantees that for
every n � m � 2 the set of points where a Lipschitz mapping f : R

n → R
m is not differentiable

has Lebesgue measure zero, the answer to the question of whether there are Lebesgue null sets in
R

n containing a differentiability point of every Lipschitz f : R
n → R

m is known only for m = 2.
The answer for n = m = 2 is negative; see [1]. The case n > m = 2 is a topic of a forthcoming
paper [5] where the authors, building on methods developed in [11] in their study of differentia-
bility problems in infinite dimensional Banach spaces, construct null universal differentiability
sets for planar-valued Lipschitz functions.

No similar positive results are known in the case in which the dimension of the codomain
is at least 3. However, a partial result was obtained in [4] where it is proved that the union H

of all “rational hyperplanes” in R
n has the property that for every ε > 0 and every Lipschitz

mapping f : R
n → R

n−1 there is a point in H where the function f is ε-Fréchet differentiable.
Unfortunately, this is a weaker notion, and the existence of points of ε-Fréchet differentiability
does not imply the existence of points of full differentiability. See also [9,10], in which the notion
of ε-Fréchet differentiability is studied with the emphasis on the infinite dimensional case.

It follows from the work of Preiss in [12] that Lebesgue null universal differentiability sets
exist in any Euclidean space of dimension at least 2. However there is a drawback in the con-
struction by Preiss: any set S covered by [12, Theorem 6.4] is dense in the whole space, and
simple refinements of the same approach are only capable of constructing universal differentia-
bility sets that are still dense in some non-empty open set. This can be explained as follows. The
proof in [12] makes essential use of the following sufficient condition for S to be a universal
differentiability set: S is Gδ and for every x ∈ S and ε > 0, there is a δ-neighbourhood N of x,
for some δ = δ(ε, x) > 0, such that for every line segment I ⊆ N , the set contains a large portion
of a path that approximates I to within ε|I |. Fixing ε = 1/2 say, a simple application of the Baire
category theorem shows that one can choose δ(1/2, x) uniformly over x ∈ S ∩ U 	= ∅, for some
open U . It quickly follows that S itself is dense in U . See also [6, Introduction] for a discussion
of this point.

In [7] we improve the result of [12, Corollary 6.5] by constructing, in every finite dimensional
space, a compact universal differentiability set that has Hausdorff dimension 1.
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The main result of the present paper is that every non-zero Banach space with separable
dual contains a closed and bounded universal differentiability set of Hausdorff dimension 1; see
Theorem 3.1, Remark 3.4, Lemma 3.5 and Theorem 3.10. The dimension 1 here is optimal;
see Lemma 2.1. The universal differentiability set need not contain any non-constant continuous
curves; in Theorem 3.10 we show that this set may in fact be chosen to be totally disconnected. In
the case in which Y is a finite dimensional space, this result implies the earlier result of [7]. Note
that compact subsets of infinite dimensional spaces cannot have the universal differentiability
property; indeed if S ⊆ Y is compact then one may even construct a Lipschitz convex function
f : Y → R not Fréchet differentiable on S, for example

f (y) := dist
(
y, convex hull(S)

)
.

See also remark after Lemma 3.8.
The proof of Lemma 3.5 is based on Theorems 3.1 and 3.3, which rely on Sections 4, 5 and 6.

Section 6 gives details of the construction of the set. Section 5 explains the procedure for finding
the point with almost locally maximal directional derivative. Finally, Section 4 proves any such
point is a point of Fréchet differentiability.

Assume we have a closed set S and that we aim to prove S has the universal differentiability
property. We describe the details of the construction of S below; at the moment we just say S is
going to be defined using a Souslin-like operation on a family of closed “tubes”, that is closed
neighbourhoods of particular line segments. Consider an arbitrary Lipschitz function f : Y → R;
we would like to show f is Fréchet differentiable at some point of S. The strategy is to, in some
sense, almost locally maximise the directional derivative of f ; this is done in Theorem 3.2, from
within the constructed family of tubes. We then use the Differentiability Lemma 4.2, which gives
a sufficient condition for the Lipschitz function to be Fréchet differentiable at a point where it
has such an ‘almost locally maximal’ directional derivative.

In Section 4 we prove that if a Lipschitz function f has a directional derivative L at some point
y ∈ S, and this derivative is almost locally maximal in the sense that for every ε, every directional
derivative at any nearby point from S does not exceed L + ε, then the Lipschitz function is in
fact Fréchet differentiable at the original point and the gradient is in the direction e of the almost
locally maximal directional derivative. The word any in the latter sentence needs in fact to be
replaced by a special condition (4.7); see Lemma 4.1 and Lemma 4.2. The proof is then based
on the idea that, assuming non-Fréchet differentiability, we can find a wedge—that is a specially
chosen union of two line segments—in which the growth of the function contradicts the mean
value theorem and the local maximality assumption.

In Section 5 we show how to find such point with ‘almost locally maximal’ directional deriva-
tive. The idea behind the proof is to take a sequence of pairs (yn, en) with the directional
derivative g′(yn, en) being very close to the supremum over all directional derivatives g′(z, u)

with z close to yn−1 and (z, u) satisfying certain additional constraints—see Definition 5.2 and
inequality (5.7)—and to argue that the sequence (yn, en) converges to a point-direction pair (y, e)

with the desired almost locally maximal directional derivative.
The optimisation method used in the present paper develops ideas from [12] and [6]. The new

idea that we use in this paper is that instead of looking at points y ∈ Y , we define a bundle X

over Y , where X is a complete topological space and π : X → Y is a continuous mapping, and
locally maximise the directional derivative f ′(πx, e) over x ∈ X. This ensures that during the
optimisation iterative procedure we are not thrown to the boundary of the set; if π(X) ⊆ S then
we are guaranteed that the point we obtain lies inside S.
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Another key aspect of the proof of our result is the new set theoretic construction; see The-
orem 3.3 and Section 6. First of all, we need to remark that the limit point to be obtained as a
result of optimisation procedure must not be a porosity point of the set—see the next section for
the definition and reasons. We achieve this by constructing a set in which, for every point x and
every ε > 0, sufficiently small δ-neighbourhoods of x contain an εδ-dense set of line segments.
The set is defined as an intersection of a countable collection (Jk(λ))k�1 of closed sets. Each
Jk(λ) is in its turn a countable union of “tubes”, which are closed neighbourhoods of particular
line segments. The construction of Jk(λ) is inductive: around every tube in Jl(λ) with l < k we
add a fine collection of tubes to Jk(λ) and replace the original tube with a more narrow tube
around the same line segment.

As we are aiming for a final set of Hausdorff dimension 1, we need to ensure the widths of
the tubes in Jk(λ) tend to 0 as k → ∞. More precisely, we fix upfront a Gδ set O of Hausdorff
dimension 1 containing a dense set of straight line segments, and a nested collection of open sets
Ok with intersection O . By constructing Jk(λ) ⊆ Ok we thereby ensure that Tλ = ⋂

k�1 Jk(λ)

has Hausdorff dimension at most 1, as required. As Jk(λ) are closed sets, so then is Tλ.
The parameter λ ∈ (0,1) is used to change the widths of all tubes involved in tube sets Jk(λ)

proportionally, multiplying by λ. We then establish that if λ1 < λ2 are fixed and we pick an
arbitrary point y ∈ Tλ1 , then for each ε > 0 every sufficiently small δ-neighbourhood of y has
an εδ-dense set of line segments that are fully inside Tλ2 . In order to achieve this we first find
the level N after which, in the construction of tube sets Jk(λ) we were choosing new tubes with
density finer than ε multiplied by the width of the tube on the previous level. Choose δ to be
smaller than the width of a tube on the level N and set n � N to be the “critical” level on which
the width of the tube containing point x multiplied by λ2 −λ1 for the first time becomes less than
δ. Then the whole δ-neighbourhood of x is guaranteed to be inside the tube sets Jm(λ2), with
m � n − 1. For m � n + 1 we find that the new tubes go εwm-densely around x, where wm is
the width on the tube on level m. Since wm � εwm−1 � εδ by construction, we find many tubes
εδ-close to x on those subsequent levels. The problem that remains is that on the level n itself we
might not find an appropriate tube at all! We overcome this obstacle by slightly modifying the
definition of Jk(λ) and taking it to be the union of tubes on a number of levels so that the “one
level shift” does not take us outside the tube set Jk(λ).

There is extra problem in the infinite dimensional case however. Given a tube T of width
w in one of the tube sets Jk , in order to “kill” its porosity points and ensure sufficiently many
line segments in the final set, we add tubes w/Nk-densely to Jk+1, where Nk → ∞. The problem
that immediately arises in the infinite dimensional case is that there is no “minimal” width among
all tubes from Jk : since the Banach spaces we are working over are not locally compact, each
collection of tubes Jk will have to be infinite, so that the infimum of the widths in Jk may be
zero. Therefore we must add such approximating tubes only locally, in a small neighbourhood
of each tube from Jk . This forces the length of tubes close to any fixed point x ∈ Tλ to shrink
rapidly, and therefore the point x will not have a “safe” neighbourhood Br(x) in which the set
hits every ball Bc‖x−y‖(y), i.e. we again get porosity at x.

To overcome this, a new approach is required; see Definition 6.4 and the proof of Lemma 6.6.
In brief, on constructing level k + 1 approximation of tube T from Jk , we re-visit tubes con-
structed on each previous levels, 1 � l � k, that form a sequence of ancestors of T . We approx-
imate each tube thus re-visited to level k + 1 and include all new tubes in Jk+1—see Fig. 1.
Approximations of lower level tubes to level k + 1 allows us to include longer tubes in Jk+1.
This makes it possible to find, for each x and ε > 0, the critical value δ1 > 0 such that εδ-close to
x there are line segments of length δ, for every δ ∈ (0, δ1). As explained in the beginning of this
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Fig. 1. We show here a horizontal tube T1 of level 1, vertical tubes of level 2 that approximate points from T1 and
“diagonal” tubes of level 3 that approximate points from tubes of level 2 and points from T1.

section, this property turns out to be sufficient for the set to have the universal differentiability
property.

Theorem 3.3 is stated using more general terms than line segments and tubes; we prove the
statement for a general class (Kr)r∈R of compact subsets of an arbitrary metric space (Y, d).

Finally, to get a totally disconnected universal differentiability set, we need to get rid of all
these straight line segments that we have included in order to be able to prove the differentia-
bility property inside the set Tλ defined above. For this, we intersect Tλ with a union of parallel
hyperplanes obtained as a preimage of a totally disconnected subset of R under a continuous
linear functional. To have this intersection totally disconnected it is enough to ensure that the
containing Gδ set has this intersection totally disconnected. To show that the intersection of Tλ

with the union of hyperplanes has the universal differentiability property we prove that for every
Lipschitz function, its differentiability points inside Tλ form a very dense subset, and then choose
the hyperplanes densely enough. See Theorems 3.1 and 3.10 for details.

2. Definitions and notations

In this paper we shall be working with real-valued functions defined on a real Banach space
Y with separable dual. If a function f : E → R is defined on a subset E of a Banach space Y

we say f is locally Lipschitz on its domain E if for every x ∈ E there exist r > 0 and L � 0
such that |f (y′) − f (y)| � L‖y − y′‖ for all y, y′ ∈ E ∩ Br(x); the smallest such constant L is
called the Lipschitz constant of f in Br(x) and is denoted Lip(f |Br (x)). A function f : Y → R is
simply called Lipschitz if there is a common Lipschitz constant L < ∞ for which the Lipschitz
condition is satisfied for any pair of points y, y′ ∈ Y . The smallest such constant L � 0 is then
called the Lipschitz constant of f and is denoted by Lip(f ).

For any f : Y → R and y, e ∈ Y , we define the directional derivative of f in the direction e as

f ′(y, e) = lim
t→0

f (y + te) − f (y)

t
(2.1)

if the limit exists. If, for a fixed y ∈ Y , the formula (2.1) defines an element of Y ∗, we say f is
Gâteaux differentiable at y. Finally, if f is Gâteaux differentiable at y and the convergence in
(2.1) is uniform for e in the unit sphere S(Y ) of Y , we say that f is Fréchet differentiable at y

and call f ′(y) the Fréchet derivative of f , where f ′(y)e = f ′(y, e) for all e ∈ Y .
The main focus of the present paper is on universal differentiability sets (UDS), those subsets

of a Banach space Y that contain points of Fréchet differentiability of every Lipschitz function
f : Y → R.

Recall a subset P of Y is called porous if there is a c > 0 such that for every y ∈ P and every
r > 0 there exist ρ < r and y′ ∈ Bρ(y) such that Bcρ(y′) ∩ P = ∅. It is easy to see that any
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porous set is not a UDS since the distance function f (x) = infy∈P ‖x − y‖ is 1-Lipschitz and is
not Fréchet differentiable at any point of P , provided P is porous; [15]. It turns out that the same
is true for any σ -porous set P , that is any set that is a countable union of porous sets; see [3].

The existence, in Euclidean spaces, of a non-σ -porous set without porosity points and with
a null closure was first shown in [14]; see also [16,17]. The set we are constructing will, in the
finite dimensional case, be a compact null non-σ -porous. In fact, the construction implies that
this null set has a universal differentiability subset without porosity points.

We shall be interested in the Hausdorff dimension of the universal differentiability sets we
shall construct. Recall, for s � 0 and A ⊆ Y

H s(A) = lim
δ↓0

inf

{ ∑
i

diam(Ei)
s where A ⊆

⋃
i

Ei, diam(Ei) � δ

}
,

defines the s-dimensional Hausdorff measure of A, and

dimH (A) = inf
{
s � 0 such that H s(A) = 0

}
the Hausdorff dimension of A.

Let (M,‖ · ‖) be a normed space. We call the set WM := M3 of triples from M the wedge
space of M and we define a metric on WM by

d
(
t ′, t

) = max
1�i�3

∥∥t ′i − ti
∥∥,

where t = (t1, t2, t3) and t ′ = (t ′1, t ′2, t ′3). Of course the distance d depends on the norm chosen
on M .

Given t ∈ WM , we call the union of segments W(t) = [t1, t2] ∪ [t2, t3] a wedge. Note that
triples (t1, t2, t3) and (t3, t2, t1) correspond to the same wedge for any t1, t2, t3 ∈ M .

For α > 0 and subsets S1, S2 ⊆ M we say S1 is an α-wedge approximation for S2 in norm ‖ · ‖
if for any t ∈ WM with W(t) ⊆ S2, there exists t ′ ∈ WM with W(t ′) ⊆ S1 and d(t ′, t) � α. When
it is clear which norm on M is considered we shall just say that S1 is an α-wedge approximation
for S2.

We shall also consider a more general construction when the collection of wedges is replaced
by a general family of compact subsets of M , which may now be considered a general metric
space. We shall at times make use of the Hausdorff distance between two such compact sets:

H (K1,K2) = inf
{
r > 0: K1 ⊆ Br(K2) and K2 ⊆ Br(K1)

}
.

Here we use Br(A) to denote the closed r-neighbourhood of A ⊆ M ; we shall also use Br(A) to
denote an open r-neighbourhood of A ⊆ M .

As a simple observation we note that if M is a normed space and t, t ′ ∈ WM then we have

H
(
W

(
t ′
)
,W(t)

)
� d

(
t ′, t

)
.

In order to construct a UDS we first define a Gδ set O containing a dense set of arbitrarily
small wedges and then define a subset S of O as described in Section 1. For an arbitrary Lipschitz
function we then apply our optimisation method to S; see Section 5. We remark that any Gδ set
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is a complete topological space; this lets us conclude that the differentiability point, which we
find as a limit point of the iterative construction, belongs to the set S.

As we have already mentioned in Section 1, any UDS has Hausdorff dimension at least 1. We
prove this result in the next lemma.

Lemma 2.1. Let Y be a non-zero Banach space and S ⊆ Y a universal differentiability set. Then
the Hausdorff dimension of S is at least 1.

Proof. Assume dimH (S) < 1. Fix any nonzero P ∈ Y ∗ and e ∈ Y with P(e) = 1. The Haus-
dorff dimension of P(S) is strictly less than 1, and therefore P(S) has Lebesgue measure 0. Let
g : R → R be a Lipschitz function that is not differentiable at any y ∈ P(S). Then f :=
g ◦ P : Y → R is a Lipschitz function that is not differentiable at any x ∈ S, as the directional
derivative f ′(y, e) does not exist for y ∈ S. �
3. Main results

We begin this section with the statement of a criterion for universal differentiability.

Theorem 3.1. Let (M,d) be a non-empty complete metric space, (Y,‖ · ‖) be a Banach space
with separable dual and π : M → Y a continuous mapping.

Suppose that for every η > 0 and x ∈ M and every open neighbourhood N(x) of x in M

there exists δ0 = δ0(x,N(x), η) > 0 such that, for any δ ∈ (0, δ0) the set π(N(x)) is a δη-wedge
approximation for Bδ(π(x)).

Then π(M) is a universal differentiability set and, moreover, for every Lipschitz function
g : Y → R the set Dg = {y ∈ π(M): g is Fréchet differentiable at y} is dense in π(M). Further-
more, if y ∈ π(M), r > 0 and P : Y → R is a non-zero continuous linear map then there exists a
finite open interval I = Ig(y) with Py ∈ I and

μ
(
I \ P

(
Dg ∩ Br(y)

)) = 0,

where μ denotes the Lebesgue measure.

To prove Theorem 3.1, we need to find points of Fréchet differentiability in π(M) for every
Lipschitz function defined on Y . To accomplish this, we first apply the next theorem, Theo-
rem 3.2, to obtain a point with almost locally maximal directional derivative, and then use
Differentiability Lemma 4.2 to show that the function is in fact Fréchet differentiable at this
point.

Theorem 3.2. Let (M,d) be a non-empty complete metric space, (Y,‖ · ‖) a Banach space,
π : M → Y a continuous map and Θ : (0,∞) → (0,∞) a real-valued function with Θ(t) → 0
as t → 0+. Assume g : Y → R is a Lipschitz function and

(x0, e0) ∈ D = {
(x, e) ∈ M × (

Y \ {0}) such that g′(πx, e) exists
}

is such that ‖e0‖ = 1 and g′(πx0, e0) � 0.
Then one can define
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(1) a Lipschitz function f : Y → R by

f = g + 2 Lip(g)e∗
0, (3.1)

where e∗
0 ∈ Y ∗ is a linear functional such that ‖e∗

0‖(Y,‖·‖)∗ = e∗
0(e0) = 1,

(2) a norm ‖ · ‖′ on Y , with ‖y‖ � ‖y‖′ � 2‖y‖ for all y ∈ Y , and
(3) a pair (x̃, ẽ) ∈ D with ‖ẽ‖′ = 1

such that f ′(πx̃, ẽ) � f ′(πx0, e0) and the directional derivative f ′(πx̃, ẽ) is almost locally max-
imal in the following sense. For any ε > 0 there exists an open neighbourhood Nε of x̃ in M such
that whenever (x′, e′) ∈ D with

(i) x′ ∈ Nε , ‖e′‖′ = 1 and
(ii) for any t ∈ R

∣∣(f (
πx′ + t ẽ

) − f
(
πx′)) − (

f (πx̃ + t ẽ) − f (πx̃)
)∣∣

� Θ
(
f ′(πx′, e′) − f ′(πx̃, ẽ)

)|t |, (3.2)

then we have f ′(πx′, e′) < f ′(πx̃, ẽ) + ε.
Moreover, if the original norm ‖ · ‖ is Fréchet differentiable on Y \ {0} then the norm ‖ · ‖′

can be chosen with this property too.

We prove Theorem 3.2 at the end of Section 5. We will now use its conclusion to prove
Theorem 3.1.

Proof of Theorem 3.1. Without loss of generality we may assume that the norm ‖ · ‖ is Fréchet
differentiable on Y \ {0}, by [2,3], since passing to an equivalent norm keeps the δη-wedge
approximation condition and does not change the differentiability property.

Taking arbitrary x ∈ M and N0(x) = M we get that the wedge approximation property
of π(N0(x)) implies that π(M) contains a non-degenerate straight line segment L ⊆ Y . As any
Lipschitz function g : Y → R is differentiable at some point p ∈ L in the direction of L, the set

D := {
(x, e) ∈ M × (

Y \ {0}) such that g′(πx, e) exists
}

is non-empty.
Without loss of generality we may assume that the Lipschitz constant of g is equal to 1. Pick-

ing an arbitrary (x0, e0) ∈ D and Θ(s) = 25
√

3s, we see that all the conditions of Theorem 3.2
are satisfied if we rescale e0 in order to have ‖e0‖ = 1 and replace e0 with −e0 if necessary so
as to have g′(πx0, e0) � 0. Let the Lipschitz function f : Y → R, the norm ‖ · ‖′ on Y , the pair
(x̃, ẽ) ∈ D and, for each ε > 0, the open neighbourhood Nε of x̃ ∈ M be given by the conclusion
of Theorem 3.2. Note that f ′(πx̃, ẽ) � f ′(πx0, e0), Lip(f ) � 3, we may take ‖ · ‖′ to be Fréchet
differentiable on Y \ {0} and that

‖z‖ � ‖z‖′ � 2‖z‖ (3.3)

for all z ∈ Y , so that ‖ẽ‖ � ‖ẽ‖′ = 1.
We claim that ỹ = πx̃ is a point of Fréchet differentiability of f .
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Since the two norms ‖ ·‖, ‖ ·‖′ are equivalent, it suffices to verify the conditions of Lemma 4.2
for (Y,‖ · ‖′), applied to the Lipschitz function f , L = 3 and the pair (ỹ, ẽ) = (πx̃, ẽ). To ac-
complish this, we let ε, θ > 0 and show that Fε = π(Nε) and δ∗ = δ0(x̃,Nε, θ/2) are such that
(1) and (2) of Lemma 4.2 hold, with the norm ‖ · ‖ replaced by ‖ · ‖′.

Suppose δ ∈ (0, δ∗), ‖yi − ỹ‖′ < δ for i = 1,2,3. Then from (3.3) we have ‖yi − ỹ‖ < δ for
i = 1,2,3 as well. Now using that Fε = π(Nε) is a δθ/2-wedge approximation for Bδ(ỹ) in ‖ · ‖
and the inequality (3.3), we get that Fε is a δθ -wedge approximation for Bδ(ỹ) in norm ‖ · ‖′.
This verifies condition (1) of Lemma 4.2.

For condition (2) we note that if y′ ∈ Fε , ‖e′‖′ = 1 and

∣∣(f (
y′ + t ẽ

) − f
(
y′)) − (

f (ỹ + t ẽ) − f (ỹ)
)∣∣

� 25
√(

f ′(y′, e′) − f ′(ỹ, ẽ)
)
L · |t |

for all t ∈ R, then as Fε = π(Nε) we may write y′ = πx′ where x′ ∈ Nε . As L = 3 and Ω(s) =
25

√
3s, the conditions (i) and (ii) of Theorem 3.2 are satisfied, so we deduce that f ′(πx′, e′) <

f ′(πx̃, ẽ) + ε.
As all the conditions of Lemma 4.2 are satisfied we deduce that f is Fréchet differentiable at

ỹ = πx̃ ∈ π(M). As f − g is linear, we conclude g is also Fréchet differentiable at ỹ ∈ π(M).
Hence π(M) is indeed a universal differentiability set in Y .

Note moreover we have proved slightly more: namely, if M is any non-empty complete metric
space satisfying the wedge approximation property as in the conditions of present theorem, then
for any Lipschitz g : Y → R and an arbitrary pair (x0, e0) ∈ M × (Y \ {0}) such that ‖e0‖ = 1
and g′(πx0, e0) � 0, there is a Lipschitz function f : Y → R defined according to (3.1) and a
pair (x̃, ẽ) ∈ M × (Y \ {0}) such that ‖ẽ‖ � 1, g is Fréchet differentiable at πx̃ and f ′(πx̃, ẽ) �
f ′(πx0, e0).

To verify the density of the set

Dg = {
y ∈ π(M): g is Fréchet differentiable at y

}
in π(M), it suffices to note that if y = πx ∈ π(M) and ε > 0, we may pick a non-empty open set
N ⊆ M such that π(N) ⊆ Bε(y). Then as the restriction bundle π |N : N → Y satisfies the condi-
tions of the present theorem, any Lipschitz g : Y → R contains a point of Fréchet differentiability
in π(N) ⊆ π(M) ∩ Bε(y).

We now check the last observation of the theorem. We may assume ‖P ‖ = 1. Let y = π(x) ∈
π(M) and δ0 = δ0(x,M,η), where η ∈ (0,1/12). Choose also a vector e1 ∈ Y such that Pe1 = 1.
Fix any δ ∈ (0,min{r/2, δ0}) and find a line segment L0 ⊆ π(M) that is an ηδ-wedge approxi-
mation for L = [y − δe1, y + δe1]. It is easy to see that L0 ⊆ Br(y) and

P(L0) ⊇ I = (
Py − (1 − η)δ,Py + (1 − η)δ

)
.

Let L0 = [z0, z0 + l0e0] with ‖e0‖ = 1. As g is Lipschitz, the directional derivative g′(z, e0)

exists for almost all points z ∈ L0. We note that the set Dg is a Fσδ-set:

Dg =
⋂
n�1

⋃
y∗∈A

⋂
‖z‖�1

{
y ∈ Y :

∣∣g(y + tz) − g(y) − ty∗(z)
∣∣ � |t |/n

}
,

δ∈Q |t |<δ
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where A is a countable dense subset of the unit ball of Y ∗. Therefore the image P(Dg ∩ Br(y)),
being a projection of a Borel subset of a Polish space, is an analytic subset of R and therefore
Lebesgue measurable.

Suppose then that the Lebesgue measure μ(I \ P(Dg ∩ Br(y))) is strictly positive. There
exists a non-constant everywhere differentiable Lipschitz function h : I → R such that h′ = 0
on P(Dg ∩ Br(y)) ∩ I . This implies there exists y0 ∈ L0 such that s = Py0 ∈ I , the directional
derivative g′(y0, e0) exists and h′(s) 	= 0. By scaling h if necessary we may assume h′(s) = 1.
Let G = g + 3h ◦ P . This is a Lipschitz function defined on Y , and such that the directional
derivative G′(y0, e0) exists; moreover, G′(y0, e0) = g′(y0, e0) + 3P(e0). Note that the vectors
l0e0 and 2δe1 which define the line segments L0 and L1 have their start and end points ηδ-close
to each other. Therefore

‖e0 − e1‖ = 1

2δ
‖2δe0 − 2δe1‖ � 1

2δ

(|2δ − l0| · ‖e0‖ + ‖l0e0 − 2δe1‖
)
� 2η <

1

6
.

Using Lip(g) = 1, Pe1 = 1 and ‖P ‖ = 1 we conclude G′(y0, e0) � 3/2.
Let M̃ = π−1(L0 ∩P −1(I )). Note that M̃ is a Gδ-set and M̃ ⊆ M . As y0 ∈ π(M̃) we conclude

there is an x0 ∈ M̃ such that y0 = πx0.
Then, using the more general statement we have proved for the first part of the theorem for

M̃ instead of M and G instead of g, we conclude that there is a Lipschitz function F : Y → R

defined according to (3.1), F = G + 2 Lip(G)e∗
0 , where ‖e∗

0‖ = e∗
0(e0) = 1, and a pair (x̃, ẽ) ∈

M̃ × (Y \ {0}) such that ‖ẽ‖ � 1, G is Fréchet differentiable at πx̃ and F ′(πx̃, ẽ) � F ′(πx0, e0).
Then ỹ = πx̃ ∈ L0 ⊆ Br(y) is a point of Fréchet differentiability of G and

G′(ỹ, ẽ) − G′(y0, e0) = F ′(ỹ, ẽ) − F ′(y0, e0) + 2 Lip(G)e∗
0(e0 − ẽ)

� F ′(ỹ, ẽ) − F ′(y0, e0) � 0

as e∗
0(e0) = 1 and e∗

0(ẽ) � ‖ẽ‖ � 1. Together with G′(y0, e0) � 3/2 we conclude G′(ỹ, ẽ) � 3/2.
However, since G is Fréchet differentiable at ỹ, so is g, and therefore ỹ ∈ Dg ∩ Br(y). As we

also have ỹ = πx̃ ∈ π(M̃), we conclude P ỹ ∈ P(Dg ∩ Br(y)) ∩ I ; hence G′(ỹ, ẽ) = g′(ỹ, ẽ),
a contradiction to G′(ỹ, ẽ) � 3/2 as a directional derivative of a 1-Lipschitz function g cannot
exceed 1. �

Together with the following statement, Theorem 3.1 implies the existence of a closed universal
differentiability set; see Lemma 3.5.

Theorem 3.3. Let (Y, d) be a metric space and let (Kr)r∈R be a collection of non-empty com-
pact subsets of Y indexed by a non-empty metric space (R,γ ) such that the Hausdorff distance
H (Kr,Ks) is bounded from above by γ (r, s) for every r, s ∈ R. Assume O is a Gδ subset of Y

such that O contains a γ -dense subset of the family (Kr)r∈R and Kr0 ⊆ O is one of these com-
pacts. Assume further that there exist ρ > 0 and ε0 > 0 such that for every ε ∈ (0, ε0) we can
find a set of indices R(ε) ⊆ R such that

• for every s ∈ R there exists t ∈ R(ε) with γ (t, s) < ε,
• for every subset S of Y of diameter at most ρε the set (3.4)
{r ∈ R(ε): S ∩ Kr 	= ∅} is finite.



1684 M. Doré, O. Maleva / Journal of Functional Analysis 261 (2011) 1674–1710
Then there exists a nested collection of closed non-empty subsets (Tλ)0�λ�1 of O—Tλ′ ⊆ Tλ

whenever 0 � λ′ � λ � 1—each containing Kr0 that satisfies the following. For each η > 0,
λ ∈ (0,1] and y ∈ ⋃

0�λ′<λ Tλ′ there exists δ1 = δ1(η,λ, y) > 0 such that if δ ∈ (0, δ1) and s ∈ R

with Ks ⊆ Bδ(y) there exists t ∈ R such that Kt ⊆ Tλ and γ (t, s) < ηδ.

We prove Theorem 3.3 in Section 6.

Remark 3.4. Let now R = Y 3 be the wedge space on Y , and for each triple r = (y1, y2, y3) ∈ R

define Kr = W(r) = [y1, y2] ∪ [y2, y3] to be the corresponding wedge. If we further let
γ (Kr,Ks) be equal to the standard wedge distance, γ (Kr,Ks) = d(W(r),W(s)), the conclusion
of Theorem 3.3 is: there exists δ1 > 0 such that if δ ∈ (0, δ1) then Tλ is a ηδ-wedge approximation
for Bδ(y). In Lemma 3.5 we show that this property implies that Tλ are universal differentiability
sets. We will later easily get that Tλ has Hausdorff dimension 1 by taking the containing Gδ-set
O of Hausdorff dimension 1. See Lemma 3.9 for the list of properties that we require O to satisfy
for this.

However, in order to get the conclusion of Theorem 3.3, one needs to verify condition (3.4).
In the case in which Y is a finite dimensional space, it is easy to see that since balls in Y are
totally bounded sets, R = Y 3 satisfies the required condition. In case Y is an infinite dimensional
space, we prove this property in Lemma 3.6.

Lemma 3.5. Let Y be a Banach space with separable dual and (W , d) = (WY , d) be the wedge
space equipped with the standard wedge distance. Suppose O is a Gδ subset of Y containing
W(t) for t belonging to a d-dense subset of W , and the nested collection (Tλ)0�λ�1 of non-
empty closed subsets of Y , Tλ′ ⊆ Tλ for 0 � λ′ � λ � 1, satisfies the condition that for each
η > 0, λ ∈ (0,1] and y ∈ ⋃

0�λ′<λ Tλ′ there is a δ1 = δ1(η,λ, y) > 0 such that for all δ ∈ (0, δ1)

the set Tλ is a ηδ-wedge approximation for Bδ(y).
Then for each λ ∈ (0,1] the set Tλ is a closed universal differentiability set. Furthermore,

for any Lipschitz function g : Y → R, any x ∈ Tλ′ , 0 � λ′ < λ � 1, r > 0 and any non-zero
continuous linear map P : Y → R there exists a finite open interval I = Ig(x) with Px ∈ I and

μ
(
I \ P

(
Tλ ∩ Dg,r (x)

)) = 0,

where Dg,r(x) is the set of points of Fréchet differentiability of g in the r-neighbourhood of x

and μ denotes the Lebesgue measure.

Proof. For every λ ∈ (0,1], define a subset of (0, λ) × Y

Xλ = {
(τ, y): 0 < τ < λ and y ∈ Tτ ′ for every τ ′ ∈ (τ,1)

}
. (3.5)

Note that if τ ∈ (0, λ) we have Xλ ⊇ {τ } × Tτ , so Xλ 	= ∅; and for every (τ, y) ∈ Xλ we neces-
sarily have y ∈ Tλ. Moreover, if we let � denote a complete metric on (0, λ), then

d
((

τ ′, y′), (τ, y)
) = �

(
τ ′, τ

) + ∥∥y′ − y
∥∥

makes Xλ a complete metric space, since Tλ is closed.
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We now check that the conditions of Theorem 3.1 are satisfied for M = Xλ and π(τ, y) = y.
Assume we are given η ∈ (0,1), a point x = (τ, y) ∈ Xλ and its open neighbourhood N(x).
Without loss of generality we may assume there is ψ > 0 such that

N(x) = {(
τ ′, y′) ∈ Xλ: �

(
τ ′, τ

)
< ψ and

∥∥y′ − y
∥∥ < ψ

}
.

Then fixing τ ′ ∈ (τ, λ) such that �(τ ′, τ ) < ψ we get π(N(x)) ⊇ Bψ(y) ∩ Tτ ′ . Define now
δ0(x,N(x), η) = min{δ1(η, τ ′, y),ψ/2} and assume δ ∈ (0, δ0). Since Tτ ′ is a δη-wedge approx-
imation for Bδ(y) and δ + δη < 2δ < ψ , we conclude that Tτ ′ , and therefore π(N(x)) as well is
a δη-wedge approximation for Bδ(x).

The conclusion of Theorem 3.1 says that π(Xλ) is a universal differentiability set. Since
π(Xλ) ⊆ Tλ we conclude Tλ is a universal differentiability set, for every λ ∈ (0,1].

Moreover, if x ∈ Tλ′ and 0 � λ′ < λ � 1 we conclude (λ′, x) ∈ Xλ (if λ′ = 0 then find
λ′′ ∈ (0, λ) and get x ∈ Tλ′′ so (λ′′, x) ∈ Xλ). Then the final part of the lemma follows from
the conclusion of Theorem 3.1. �

Lemma 3.6 shows that most natural choices of (R,γ ) in Y , an infinite dimensional separable
Banach space, satisfy the conditions of Theorem 3.3 with ρ = 1/4; in particular the condi-
tions are satisfied whenever the collection (Kr)r∈R of compacts is translation invariant, with
γ (Kr, x + Kr) � ‖x‖.

Lemma 3.6. Suppose (Y,‖ · ‖) is an infinite dimensional Banach space, (R,γ ) is separable and
has the property that whenever r ∈ R and x ∈ Y then Ks = x + Kr for some s ∈ R with

γ (s, r) � 1

4ρ
‖x‖. (3.6)

Then for every ε > 0 there exists a set R(ε) ⊆ R such that

(1) for all r ∈ R there exists s ∈ R(ε) with γ (s, r) < ε,
(2) if r, s are distinct elements of R(ε) then dist(Kr,Ks) > ρε,

where for compact K,K ′ ⊆ Y , we define

dist
(
K,K ′) = inf

{∥∥k′ − k
∥∥ where k ∈ K, k′ ∈ K ′}.

We establish the lemma in a few short steps.

Lemma 3.7. If Y is an infinite dimensional Banach space and K ⊆ Y is compact then for every
ε > 0 there exists y ∈ Y with ‖y‖ = ε and dist(y,K) > ε/3.

Proof. It is well known that one may find an infinite collection (en)n∈N in Y with ‖en‖ = 1
and ‖en − em‖ � 1 for m 	= n. Assuming, for a contradiction, that we cannot find n with
dist(εen,K) > ε/3 then we can pick kn ∈ Kn for each n with ‖kn − εen‖ � ε/3. It then fol-
lows that ‖kn − km‖ � ε/3 for all m 	= n, contradicting the compactness of K . �
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Lemma 3.8. If Y is an infinite dimensional Banach space and (Kn)n�1 are compact subsets of Y

then for any ε > 0 we can find yn ∈ Y with ‖yn‖ = ε for each n � 1 such that K ′
n := yn + Kn

satisfy dist(K ′
n,K

′
m) > ε/3 for n 	= m.

Proof. Suppose n � 1 and we have chosen (ym)1�m<n such that dist(K ′
m,K ′

l ) > ε/3 for 1 � l <

m < n. It suffices to pick yn such that dist(K ′
n,K

′
m) > ε/3 for 1 � m < n.

The difference set

K := Kn −
⋃

1�m<n

K ′
m = {

k − k′ where k ∈ Kn, k′ ∈ Km for some m < n
}

is compact so that we may find y ∈ Y with ‖y‖ = ε and dist(y,K) > ε/3, using Lemma 3.7.
Then dist(0,−y + K) > ε/3 so that, choosing yn = −y,

dist
(
0,K ′

n −
⋃

1�m<n

K ′
m

)
> ε/3. �

Proof of Lemma 3.6. We may assume R 	= ∅. Let (rn)n�1 be a dense sequence in R.
By Lemma 3.8 we can find yn ∈ Y with ‖yn‖ = 3ρε such that K ′

n := yn + Krn satisfy
dist(K ′

n,K
′
m) > ρε for n 	= m. Now we may pick r ′

n with Kr ′
n
= yn + Krn = K ′

n and

γ
(
r ′
n, rn

)
� 1

4ρ
‖yn‖ = 3

4
ε

using (3.6). Setting R(ε) = {r ′
n where n ∈ N} we are done. �

Conclusion. We summarise what we have shown and add some further observations. First note,
Lemma 3.7 implies that any compact set in an infinite dimensional space is porous. Now, as any
porous set is not a UDS, it follows that a UDS cannot be compact in infinite dimensional spaces.

On the other hand, we now show that inside any non-empty open set in Y we can find a closed
universal differentiability set of Hausdorff dimension 1 which does not contain any continuous
curves: this set can be chosen to be totally disconnected.

Lemma 3.9. Let Y be a non-zero separable Banach space and (W , d) = (WY , d) be the wedge
space on Y equipped with the standard wedge distance. Then given any ϕ ∈ Y ∗ \ {0} there exists
a Gδ subset O of Y of Hausdorff dimension 1 such that O contains the wedges W(t) for t

belonging to a d-dense subset of W and the intersection O ∩ (y + kerϕ) is totally disconnected
for any y ∈ Y .

Proof. Let W0 ⊆ W be a d-dense countable subset. Note that

W1 = {
(y1, y2, y3) ∈ W0: ϕ(y1) 	= ϕ(y2) and ϕ(y2) 	= ϕ(y3)

}
is then also d-dense in W .

As
⋃

t∈W1
W(t) is a countable union of line segments we can cover it, for each n, by O ′

n =⋃
B2−(m+n) (Lm), where

⋃
Lm = ⋃

W(t) and each Lm has length less than or equal
m�1 m�1 t∈W1
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to 1. Note that this implies that the Hausdorff dimension of the Gδ-set O ′ = ⋂
n�1 O ′

n is less
than or equal to 1. Indeed, for any s > 1 we have

H s
(
O ′

n

)
�

∑
m�1

2m+n
(
2 · 2−(m+n)

)s = 2s

(2s−1)n+1

1

1 − 2−(s−1)
,

and so H s(O ′) = 0. On the other hand, the Hausdorff dimension of O ′ cannot be less than 1 as
it contains non-trivial line segments.

We thus found a Gδ set O ′ of Hausdorff dimension 1 such that W(t) ⊆ O ′ for all t ∈ W1. Let
further {t (1), t (2), . . .} be an enumeration of W1.

Let L = y0 +Re be a line through one of the sides of a wedge W(t) where t ∈ W1 and ‖e‖ = 1.
Let a > 0. Then, for any y ∈ Y , the diameter of any connected component of the intersection
of Ba(L) with hyperplane y + kerϕ does not exceed 2a(1 + ‖ϕ‖/|ϕ(e)|). Therefore if we let
the countable set (e1,i , e2,i )i�1 be the pairs of unit directions of sides of all wedges W(t(i)),
i � 1, then for any y ∈ Y each connected component of the intersection of the open set On =⋃

i�1 Bεi
(W(t(i))) with y + kerϕ has diameter less than 1/n, whenever

0 < εi < 1/

(
n2i+2

(
1 + ‖ϕ‖

min{|ϕ(e1,i )|, |ϕ(e2,i )|}
))

.

Thus the conclusion of the lemma is satisfied for O = O ′ ∩ ⋂
n�1 On. �

Theorem 3.10. Let Y be a Banach space with separable dual. Then for every open set U ⊆ Y

there is a closed set S ⊆ U of Hausdorff dimension 1 such that every locally Lipschitz function
f defined on a domain containing U has a point of Fréchet differentiability inside S. Moreover,
the set S may be chosen to be in addition totally disconnected so that it contains no non-constant
continuous curves.

Proof. Fix any non-zero continuous linear map P : Y → R. Let O be a Gδ subset of Y satisfying
Lemma 3.9 for the wedge space (W , d) = (WY , d) equipped with the standard wedge distance,
and ϕ = P . By Remark 3.4 and Lemma 3.6 we can apply Theorem 3.3 in order to get a nested
sequence of closed sets Tλ ⊆ O satisfying the hypothesis of Lemma 3.5.

Fix y0 ∈ Tλ for some λ ∈ [0,1). Let λ0 ∈ (λ,1] and r0 > 0 be such that Br0(y0) ⊆ U .
Let C ⊆ [0,1] be a closed totally disconnected set of positive measure, such that every neigh-

bourhood of any of its points intersects C by a set of positive measure. An example of such set
could be a Cantor set of positive measure.

Let C0 be a shift of C such that Py0 ∈ C0. Consider a set

S = P −1(C0) ∩ Tλ0 ∩ Br0/2(y0).

We clearly have y0 ∈ S ⊆ Br0/2(y0) ⊆ U . Note further that as P −1(C0) ∩ O is totally dis-
connected for every c ∈ C0, and C0 is totally disconnected by itself, the set S set is totally
disconnected. It is also clear S is closed and dimH (S) � 1 as dimH (O) = 1 and S ⊆ O . It
remains to verify that every locally Lipschitz function defined on a domain containing U has a
point of differentiability in S. By Lemma 2.1 this would also imply dimH (S) = 1.

Let f : U ′ → R be a locally Lipschitz function with domain U ′ containing U . Let r1 ∈ (0, r0)

be such that the restriction of f to Br (y0) is Lipschitz. Then for the restriction f |Br (y )
1 1 0
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there exists a Lipschitz extension f̃ to the whole space Y ; one can take for example f̃ (x) =
infy∈Br1 (y0)(f (y) + L‖y − x‖), where L � Lip(f |Br1 (y0)).

Let D
f̃

be the set of points of Fréchet differentiability of f̃ inside Tλ0 . By Lemma 3.5 there
exists a finite open interval I = I

f̃
(y0) � Py0 such that almost every point in I belongs to P(S1 ∩

D
f̃
), where S1 = Tλ0 ∩ Br1/2(y0).
Since Py0 ∈ C0, we can find a nearby point that belongs to C0 ∩ P(S1 ∩ D

f̃
). This means

P −1(C0) intersects S1 ∩ D
f̃

. As f coincides with f̃ on Br1/2(y0) and D
f̃

⊆ Tλ0 we conclude

there is a point of Fréchet differentiability of f that belongs to P −1(C0)∩S1 ⊆ P −1(C0)∩Tλ0 ∩
Br0/2(y0) = S. �
4. Differentiability

We start this section by quoting [6, Lemma 4.2]:

Lemma 4.1. Let (Y,‖ · ‖) be a Banach space, f : Y → R be a Lipschitz function with Lipschitz
constant Lip(f ) > 0 and let ε ∈ (0,Lip(f )/9). Suppose y ∈ Y , e ∈ S(Y ) and s > 0 are such that
the directional derivative f ′(y, e) exists, is non-negative and

∣∣f (y + te) − f (y) − f ′(y, e)t
∣∣ � ε2

160 Lip(f )
|t | (4.1)

for |t | � s

√
2 Lip(f )

ε
. Suppose further ξ ∈ (−s/2, s/2) and λ ∈ Y satisfy

∣∣f (y + λ) − f (y + ξe)
∣∣ � 240εs, (4.2)

‖λ − ξe‖ � s

√
ε

Lip(f )
, and (4.3)

‖πse + λ‖
|πs + ξ | � 1 + ε

4 Lip(f )
(4.4)

for π = ±1. Then if s1, s2, λ
′ ∈ Y are such that

max
(‖s1 − se‖,‖s2 − se‖) � ε2

320 Lip(f )2
s (4.5)

and ∥∥λ′ − λ
∥∥ � εs

16 Lip(f )
, (4.6)

we can find y′ ∈ [y − s1, y + λ′] ∪ [y + λ′, y + s2] and e′ ∈ S(Y ) such that the directional
derivative f ′(y′, e′) exists, f ′(y′, e′) � f ′(y, e) + ε and for all t ∈ R we have

∣∣(f (
y′ + te

) − f
(
y′)) − (

f (y + te) − f (y)
)∣∣

� 25
√(

f ′(y′, e′) − f ′(y, e)
)

Lip(f )|t |. (4.7)
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Our next lemma is crucial for the proof of Theorem 3.1 and enables us to demonstrate the
universal differentiability property of the set by finding a point y with almost maximal directional
derivative and a family of sets around y with wedge approximation for arbitrarily small balls
around y. See the definition of wedge approximation in Section 2.

Lemma 4.2 (Differentiability Lemma). Let (Y,‖ · ‖) be a Banach space such that the norm ‖ · ‖
is Fréchet differentiable on Y \ {0}. Let f : Y → R be a Lipschitz function and (y, e) ∈ Y ×S(Y )

be such that the directional derivative f ′(y, e) exists and is nonnegative. Suppose that there is a
family of sets {Fε ⊆ Y : ε > 0} such that

(1) whenever ε, θ > 0 there exists δ∗ = δ∗(ε, θ) > 0 such that for any δ ∈ (0, δ∗) the set Fε is a
δθ -wedge approximation for Bδ(y), and

(2) whenever (y′, e′) ∈ Fε × S(Y ) is such that the directional derivative f (y′, e′) exists,
f ′(y′, e′) � f ′(y, e) and for any t ∈ R (4.7) is satisfied, i.e.

∣∣(f (
y′ + te

) − f
(
y′)) − (

f (y + te) − f (y)
)∣∣

� 25
√(

f ′(y′, e′) − f ′(y, e)
)

Lip(f )|t |,

then f ′(y′, e′) < f ′(y, e) + ε.

Then f is Fréchet differentiable at y.

Proof. We may assume Lip(f ) = 1. Let e∗ be the Fréchet derivative of the norm ‖ · ‖ at e. We
shall prove that f is Fréchet differentiable at y and that f ′(y) is given by the formula

f ′(y)(u) = f ′(y, e)e∗(u).

Note that ‖e∗‖ = 1 and e∗(e) = 1. Fix an arbitrary η ∈ (0,1/3). Choose � ∈ (0, η) such that∣∣‖e + th‖ − ‖e‖ − te∗(h)
∣∣ � η|t | (4.8)

for any ‖h‖ � 1 and |t | � �.
Let ε = η� and θ = η2�2/320. We know that the directional derivative f ′(y, e) exists so that

we may pick ρ ∈ (0, δ∗(ε, θ)) such that whenever |t | < ρ,

∣∣f (y + te) − f (y) − f ′(y, e)t
∣∣ <

η2�2

160
|t |. (4.9)

Let δ = 1
32ρ�

√
�η. We plan to show that∣∣f (y + ru) − f (y) − f ′(y, e)e∗(u)r

∣∣ < 5000ηr (4.10)

for any ‖u‖ � 1 and r ∈ (0, δ). This will imply the differentiability of f at y.
Assume for a contradiction, that there exist r ∈ (0, δ) and ‖u‖ � 1 such that the inequality

(4.10) does not hold: ∣∣f (y + ru) − f (y) − f ′(y, e)e∗(u)r
∣∣ � 5000ηr. (4.11)
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Define

s = 16r/�, λ = ru and ξ = re∗(u).

We check now that all the conditions of Lemma 4.1 are satisfied with ε, s, ξ, λ defined as above.
First of all, ε = η� < 1/9 and condition (4.1) follows from (4.9) as ε2 = η2�2 and s

√
2/ε =

16
√

2r/(�
√

η�) < 32δ/(�
√

η�) = ρ.
Next we check |ξ | < s/2 and condition (4.2). Indeed, |ξ | � r < r/� = s/16 < s/2. More-

over, r � δ < ρ, so that we may apply (4.9) with t = ξ . Combining this with (4.11) we verify
condition (4.2):

∣∣f (y + ru) − f (y + ξe)
∣∣ � 5000ηr − ηr

η�2

160

∣∣e∗(u)
∣∣

� 240 · 16ηr = 240s�η = 240sε.

Note that ‖λ − ξe‖ = r‖u − e∗(u)e‖ � 2r < 16r
√

η/� = s
√

ε; this establishes condi-
tion (4.3).

Finally, for π = ±1 we have |πs + ξ | � s/2; thus

t =
∥∥∥∥πse + λ

πs + ξ
− e

∥∥∥∥ =
∥∥∥∥ λ − ξe

πs + ξ

∥∥∥∥ � 2r

s/2
= �/4,

and so applying (4.8) for h = (
λ−ξe
πs+ξ

)/t we get

∥∥∥∥πse + λ

πs + ξ

∥∥∥∥ � 1 + e∗
(

λ − ξe

πs + ξ

)
+ η|t |.

Note that e∗( λ−ξe
πs+ξ

) = 0 as e∗(λ) = re∗(u) = ξ = e∗(ξe) and hence (4.4):

∥∥∥∥πse + λ

πs + ξ

∥∥∥∥ � 1 + η�/4 = 1 + ε/4.

Define u1 = −e, u2 = e and u3 = (r/s)u. Note that r/s = �/16 < 1; thus all vectors
u1, u2, u3 are in the unit ball. We also have s < 16δ/� = 1

2ρ
√

�η < ρ < δ∗(�η,�2η2/320) =
δ∗(ε, δ), and therefore as Fε is an sθ -wedge approximation for Bs(y), we can find u′

1, u
′
2, u

′
3

such that ‖u′
i − ui‖ < θ = �2η2/320 for i = 1,2,3 and

[
y − s1, y + λ′] ∪ [

y + λ′, y + s2
] ⊆ Fε,

where s1 = −su′
1, s2 = su′

2 and λ′ = su′
3. We then have ‖si − se‖ = s‖u′

i − ui‖ � �2η2s/320
for i = 1,2 and ‖λ′ − λ‖ = ‖su′

3 − ru‖ = s‖u′
3 − u3‖ � �2η2s/320 < �ηs/16, which verifies

(4.5) and (4.6).
Therefore all conditions of Lemma 4.1 are satisfied; hence we may find

y′ ∈ [
y − s1, y + λ′] ∪ [

y + λ′, y + s2
] ⊆ Fε
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and a direction e′ ∈ S(Y ) such that the directional derivative f (y′, e′) exists, satisfies f ′(y′, e′) �
f ′(y, e)+ε and for all t ∈ R the inequality (4.7) holds. But for every pair (y′, e′) from Fε ×S(Y )

that satisfies (4.7) we have f ′(y′, e′) < f ′(y, e) + ε, a contradiction. Hence for every r ∈ (0, δ)

and ‖u‖ � 1, (4.10) is satisfied. �
5. Optimisation

In this section we prove Theorem 3.2. It describes how, given a Lipschitz function g on a
Banach space Y and a bundle π : M → Y , where (M,d) is a complete metric space and π is
continuous, one finds a point x̃ ∈ M and direction ẽ in the unit sphere of Y with almost locally
maximal directional derivative.

We describe how to choose the desired sequence of pairs

(xn, en)n�0 ⊆ M × S(Y )

as an inductive procedure. While convergence of (xn)n�0 simply follows from the fact that xn+1
is chosen very close to xn, we shall need additional work in order to obtain the convergence
of en. For this, we change the norm on each step; see (5.5) and Lemma 5.4. We then argue in
Section 5.5 that the sequence of norms defined in (5.5) converges to the norm ‖ · ‖′ specified in
Theorem 3.2.

Suppose the assumptions of Theorem 3.2 are satisfied. We thus have a Lipschitz function g

acting on a Banach space Y such that the set

D = {
(x, e) ∈ M × (

Y \ {0}): the directional derivative g′(πx, e) exists
}

is not empty. Assume without loss of generality that Lip(g) = 1/3.
Recall ‖e0‖ = 1 and g′(πx0, e0) � 0. Choose e∗

0 ∈ Y ∗ with e∗
0(e0) = 1 and ‖e∗

0‖ = 1, and
define

f = g + 2

3
e∗

0 (5.1)

so that item (1) of Theorem 3.2 is satisfied. Note that f is a Lipschitz function with Lip(f ) �
Lip(g) + 2

3 = 1, As f − g is linear, the set D is precisely the set of all (x, e) ∈ M × (Y \ {0})
such that f ′(πx, e) exists. We can make immediately a very simple observation: if f ′(πx0, e0) �
f ′(πx, e) then

g′(πx0, e0) + 2

3
� g′(πx, e) + 2

3
e∗

0(e),

so that

e∗
0(e) � 1 − 3

2
g′(πx, e) � 1

2
. (5.2)

Note that for any Lipschitz function f : Y → R with Lip(f ) � 1 and x, x′ ∈ M , e ∈ Y with
‖e‖ � 1, we have ∣∣(f (

πx′ + te
) − f

(
πx′)) − (

f (πx + te) − f (πx)
)∣∣ � 2|t |;

therefore, we may assume that Θ(t) � 2 for all t > 0.
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We now introduce a function Ω(t) : (0,∞) → (0,∞) that we are going to use instead of Θ(t)

in our subsequent argument.

Lemma 5.1. If Θ : (0,∞) → (0,2] satisfies Θ(t) → 0 as t → 0 then there exists a function
Ω : (0,∞) → (0,∞) such that

(1) Ω(t) � 2Θ(t) for all t ∈ R,
(2) Ω(t) → 0 as t → 0+,
(3) if A,B > 0 then Ω(A) + 2B � Ω(A + B).

Proof. For each n ∈ Z, define β(2n) := sup0<t ′�2n+1 Θ(t ′). We may uniquely extend β to (0,∞)

by imposing the property that β is affine on each interval of the form [2n,2n+1] for n ∈ Z. Note
that β is continuous, increasing and β(t) � Θ(t) for every t > 0. Further for t � 2n where
n ∈ Z, we have β(t) � β(2n) = sup0<t ′�2n+1 Θ(t ′) and as Θ(t) → 0 as t → 0+ we deduce that
β(t) → 0 as t → 0+.

We now let Ω(t) = 2β(t) + 2t . Then (1) and (2) are immediate as β(t) � Θ(t) and β(t) → 0
as t → 0+. Finally for (3) we may use the fact that β is increasing to deduce that for A,B > 0,
Ω(A + B) = 2β(A + B) + 2A + 2B � 2β(A) + 2A + 2B = Ω(A) + 2B . �

We now define a notion of weight and a class of pairs that weigh more than the given pair.

Definition 5.2. If p is a norm on Y and (x, e) ∈ D then we call

wp(x, e) = f ′(πx, e)

p(e)

the weight of (x, e) with respect to the norm p.
Further for σ � 0 we let Gp(x, e, σ ) be the set of all (x′, e′) ∈ D such that

wp(x, e) � wp

(
x′, e′) (5.3)

and

∣∣(f (
πx′ + te

) − f
(
πx′)) − (

f (πx + te) − f (πx)
)∣∣

�
(
σ + Ω

(
wp

(
x′, e′) − wp(x, e)

))|t | (5.4)

for all t ∈ R, where the function Ω is given by Lemma 5.1.

In what follows, the notation ‖y − Re‖ where y ∈ Y and e ∈ Y \ {0} is used for the distance
between the point y and the one-dimensional subspace of Y generated by e. This distance is
calculated with the original norm ‖ · ‖ on Y .
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5.3. Inductive construction

Let σ0 = 16, δ0 = 1, t0 ∈ (0,1/2), the norm p0 = ‖ · ‖ and w0 = wp0 . The pair (x0, e0) was
chosen earlier. Below we will define various positive parameters σn, tn, εn, νn,�n, δn, nested
sequence Dn of non-empty subsets of D and pairs (xn, en) ∈ Dn. For every n � 1, we define

pn(y) =
√√√√‖y‖2 +

n−1∑
m=0

t2
m‖y − Rem‖2 (5.5)

and let wn = wpn be the weight function defined on D. It is clear (5.5) defines a norm on Y and
pn(y) � max{‖y‖,pn−1(y)} for all y ∈ Y . Together with Lip(f ) � 1, this implies wn(x, e) �
min{1,wn−1(x, e)} for any (x, e) ∈ D.

For every n � 1, choose

σn ∈ (0, σn−1/16), tn ∈ (0, tn−1/2) with t2
n < σn−1/16 and

εn ∈ (
0, t2

nσ 2
n /213). (5.6)

Let Dn to be the set of all pairs (x, e) ∈ D with d(x, xn−1) < δn−1, ‖e‖ = 1 and

(x, e) ∈ Gpn(xn−1, en−1, σn−1 − ν)

for some ν ∈ (0, σn−1/2). Note that (xn−1, en−1) ∈ Dn, and so Dn 	= ∅. Since wn is bounded
by 1 from above we can choose (xn, en) ∈ Dn such that for every (x, e) ∈ Dn

wn(x, e) � wn(xn, en) + εn. (5.7)

Note that the definition of Dn then implies d(xn, xn−1) < δn−1, and as (xn, en) ∈ Dn and
pn(en−1) = pn−1(en−1), we have for every n � 1

wn−1(xn−1, en−1) = wn(xn−1, en−1) � wn(xn, en). (5.8)

This implies wn(x, e) � w0(x0, e0) = f ′(πx0, e0) for every (x, e) ∈ Dn; in particular, (5.2) im-
plies

e∗
0(e) � 1/2 (5.9)

for any (x, e) ∈ Dn.
Let νn ∈ (0, σn−1/2) be such that (xn, en) ∈ Gpn(xn−1, en−1, σn−1 − νn). Finally pick �n > 0

such that

∣∣f (πxn + ten) − f (πxn) − f ′(πxn, en)t
∣∣ � σn−1|t |/32, (5.10)∣∣f (πxn−1 + ten−1) − f (πxn−1) − f ′(πxn−1, en−1)t

∣∣ � σn−1|t |/32 (5.11)

for all t with |t | � 4�n/νn. Choose δn ∈ (0, (δn−1 −d(xn, xn−1))/2) such that ‖πx −πxn‖ � �n

whenever d(x, xn) � δn; such a δn exists because π is continuous.
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Let us make some simple observations. First of all, (5.6) implies that the sequences σn, tn, εn

all tend to zero. Since νn < σn−1/2 and δn satisfies the inequality δn < (δn−1 − d(xn, xn−1))/2
we conclude that νn and δn tend to zero, too. The latter inequality also implies

Bδn(xn) ⊆ Bδn−1(xn−1) (5.12)

for every n � 1 and so

d(xk, xn) < δn for all k � n. (5.13)

Since M is complete we conclude that the sequence (xn) converges in M to some point x∞.
The inequality tn < tn−1/2 also implies pn(y)2 � ‖y‖2 +2t2

0 · ‖y‖2 � 2‖y‖2, so for all y ∈ Y ,

‖y‖ � pn(y) � 2‖y‖. (5.14)

Then, using pn(en−1) � 2, we get for every (x, e) ∈ D

∣∣f ′(πx, e) − f ′(πxn−1, en−1)
∣∣

� 2
|f ′(πx, e) − f ′(πxn−1, en−1)|

pn(en−1)

� 2

∣∣∣∣f ′(πx, e)

pn(e)
− f ′(πxn−1, en−1)

pn(en−1)

∣∣∣∣ + 2
∣∣f ′(πx, e)

∣∣∣∣∣∣ 1

pn(en−1)
− 1

pn(e)

∣∣∣∣
� 2

∣∣wn(x, e) − wn(xn−1, en−1)
∣∣ + 2

‖e‖
pn(en−1)pn(e)

∣∣pn(e) − pn(en−1)
∣∣

� 2
∣∣wn(x, e) − wn(xn−1, en−1)

∣∣ + 4‖e − en−1‖, (5.15)

where, in the penultimate line, we are using Lip(f ) � 1 and, in the final line, pn(e) � ‖e‖,
pn(en−1) � ‖en−1‖ = 1 and the fact that∣∣pn(e) − pn(en−1)

∣∣ � pn(e − en−1) � 2‖e − en−1‖.

We are now ready to prove a very important property of sets Dn; the “moreover” part of
Lemma 5.4 together with (5.6) implies the convergence of the sequence (en) to some e∞ ∈ Y with
‖e∞‖ = 1. We will show later that the pair (x∞, e∞) has the properties required by Theorem 3.2.

Lemma 5.4. For every n � 1, we have Dn+1 ⊆ Gpn(xn−1, en−1, σn−1 − νn/2) and Dn+1 ⊆ Dn.
Moreover, for any (x, e) ∈ Dn+1 we have ‖e − en‖ � σn/8.

Proof. Notice first that since σ0 = 16, the “moreover” statement is satisfied for n = 0.
We shall now show that assuming the latter statement is satisfied for n − 1, where n � 1, the

full conclusion of the present lemma holds for n.
Assume therefore n � 1, the “moreover” part is satisfied for n − 1 and (x, e) ∈ Dn+1. Since

(xn, en) ∈ Dn, we get

‖en − en−1‖ � σn−1
. (5.16)
8
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Since (x, e) ∈ Gpn+1(xn, en, σn − ν) for some ν > 0, we get that wn+1(x, e) � wn+1(xn, en);
thus using (5.8), we obtain the first defining property of the set Gpn(xn−1, en−1,∗):

wn(x, e) � wn+1(x, e) � wn+1(xn, en) = wn(xn, en) � wn(xn−1, en−1).

In order to show (x, e) ∈ Gpn(xn−1, en−1, σn−1 − νn/2), we need to prove the second defining
property of the latter set. We prove the inequality separately for |t | < 4�n/νn and |t | � 4�n/νn.

If |t | < 4�n/νn, using first (5.10), (5.11) and then Lip(f ) � 1,

∣∣(f (πx + ten−1) − f (πx)
) − (

f (πxn−1 + ten−1) − f (πxn−1)
)∣∣

�
∣∣(f (πx + ten−1) − f (πx)

) − (
f (πxn + ten) − f (πxn)

)∣∣
+ ∣∣f ′(πxn, en) − f ′(πxn−1, en−1)

∣∣ · |t | + 1

16
σn−1|t |

�
∣∣(f (πx + ten) − f (πx)

) − (
f (πxn + ten) − f (πxn)

)∣∣ + ‖en − en−1‖ · |t |

+ ∣∣f ′(πxn, en) − f ′(πxn−1, en−1)
∣∣ · |t | + 1

16
σn−1|t |.

We may now apply (5.16), (x, e) ∈ Gpn+1(xn, en, σn − ν) and (5.15) to deduce that the latter is
bounded from above by

|t |(σn − ν + Ω
(
wn+1(x, e) − wn+1(xn, en)

)) + 3

16
σn−1

+ 2
(
wn(xn, en) − wn(xn−1, en−1) + 4‖en − en−1‖

)
. (5.17)

Recall that Ω is an increasing function and

wn+1(x, e) − wn+1(xn, en) = wn+1(x, e) − wn(xn, en) � wn(x, e) − wn(xn, en);

then using again (5.16), σn ∈ (0, σn−1/16) and νn ∈ (0, σn−1/2) so that 3
4σn−1 � σn−1 − νn/2,

and Lemma 5.1(3), we have

∣∣(f (πx + ten−1) − f (πx)
) − (

f (πxn−1 + ten−1) − f (πxn−1)
)∣∣

�
(

3

4
σn−1 + Ω

(
wn(x, e) − wn(xn, en)

) + 2
(
wn(xn, en) − wn(xn−1, en−1)

))|t |

�
(
σn−1 − νn/2 + Ω

(
wn(x, e) − wn(xn−1, en−1)

))|t |.
Now we consider the case |t | � 4�n/νn. As (x, e) ∈ Dn+1, we have d(x, xn) < δn. Therefore,

from the definition of δn, we have ‖πx − πxn‖ � �n � νn|t |/4. Thus, replacing f (πx + ten−1)

with f (πxn + ten−1) and f (πx) with f (πxn), we get

∣∣(f (πx + ten−1) − f (πx)
) − (

f (πxn−1 + ten−1) − f (πxn−1)
)∣∣

� νn|t |/2 + ∣∣(f (πxn + ten−1) − f (πxn)
) − (

f (πxn−1 + ten−1) − f (πxn−1)
)∣∣.
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Now using (xn, en) ∈ Gpn(xn−1, en−1, σn−1 − νn), we estimate the second term by (σn−1 −
νn + Ω(wn(xn, en) − wn(xn−1, en−1)))|t |. Adding νn|t |/2 to this and noting Ω is an increasing
function, we estimate this from above by

(
σn−1 − νn/2 + Ω

(
wn(x, e) − wn(xn−1, en−1)

))|t |.
This finishes the proof of (x, e) ∈ Gpn(xn−1, en−1, σn−1 − νn/2).

Further, for (x, e) ∈ Dn+1 we have ‖e‖ = 1 and d(x, xn−1) < δn−1, using inequality
d(x, xn) < δn and (5.12). Therefore, (x, e) ∈ Dn; hence Dn+1 ⊆ Dn.

Finally to prove ‖e − en‖ � σn/8, note that (5.8) together with the definition of (xn, en) im-
plies

wn(xn, en) = wn+1(xn, en) � pn(e)

pn+1(e)
wn(x, e) � pn(e)

pn+1(e)

(
wn(xn, en) + εn

)
. (5.18)

Writing pn+1(e) = √
p2

n(e) + t2
nd2, where d = ‖e − Ren‖ � 1 and using tn < t0 < 1/2 we

deduce

pn(e)

pn+1(e)
= 1/

√
1 + t2

nd2/pn(e)2 � 1 − t2
nd2

4pn(e)2

as 1/
√

1 + x � 1 − x/4 for 0 � x � 1. Substituting this inequality into (5.18) and using (5.6) we
obtain

t2
nd2

4pn(e)2
wn(xn, en) � εn

(
1 − t2

nd2

4pn(e)2

)
� εn < t2

nσ 2
n /213.

On the other hand, (5.8) and g′(πx0, e0) � 0 imply

wn(xn, en) � w0(x0, e0) = f ′(πx0, e0) = g′(πx0, e0) + 2

3
>

1

2
,

so using pn(e) � 2 we conclude d � σn/24. This means there is a t ∈ R such that

‖e − ten‖ � σn

16
. (5.19)

It follows |e∗
0(e − ten)| � σn/16 � 1/2. However, by (5.9), e∗

0(e), e∗
0(en) � 1/2, hence t � 0.

Then from (5.19) and ‖en‖ = ‖e‖ = 1 we get that |1 − t | � σn

16 and so

‖e − en‖ � σn

8
. �

We note here that Lemma 5.4 implies that ‖em − en‖ � σn/8 whenever m � n + 1. Thus (en)

is a Cauchy sequence, so it converges. Let e∞ = lim en. As ‖en‖ = 1 for each n � 1, we have
‖e∞‖ = 1.
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5.5. Existence of directional derivative f ′(πx∞, e∞)

From 5.13 we have d(xk, xn) < δn for all k � n. We also know that for k � n, (xk, ek) ∈
Dk+1 ⊆ Dn+1 using Lemma 5.4, so that ‖ek − en‖ � σn/8, again by Lemma 5.4. Hence the
sequences xn and en converge to x∞ and e∞ respectively, where

d(x∞, xn) < δn and ‖e∞ − en‖ � σn/8 (5.20)

are satisfied for every n � 1, the strictness of the first inequality following from (5.12). It is also
clear that the sequence of norms pn converges to

p∞(y) =
√√√√‖y‖2 +

∞∑
m=1

t2
m‖y − Rem‖2

as this formula defines a norm and

p2
n(y) � p2∞(y) � p2

n(y) + 2t2
n‖y‖2 �

(
1 + 2t2

n

)
p2

n(y) �
(
1 + t2

n

)2
p2

n(y)

implies for all y ∈ Y

pn(y) � p∞(y) �
(
1 + t2

n

)
pn(y). (5.21)

This implies for every (x, e) ∈ D

∣∣wn(x, e) − w∞(x, e)
∣∣ = ∣∣f ′(x, e)

∣∣ · |p∞(e) − pn(e)|
pn(e)p∞(e)

� ‖e‖ t2
n · pn(e)

pn(e)p∞(e)
� t2

n (5.22)

using Lip(f ) � 1 and p∞(e) � ‖e‖.
We will now show that the directional derivative f ′(πx∞, e∞) exists and

wm(xm, em) ↗ w∞(x∞, e∞), (5.23)

where w∞ = wp∞ .
Indeed, for every n � 1, the inequality pn(y) � ‖y‖ and (5.8) imply

0 < w0(x0, e0) � wn(xn, en) � Lip(f ) � 1.

Thus there is L ∈ (0,1] such that wn(xn, en) ↗ L. From (5.21) we conclude w∞(xn, en) → L

and wn+1(xn, en) → L. Note then

wm(xn, en) − wm(xm−1, em−1) −→
n→∞

p∞(e∞)

pm(e∞)
L − wm(xm−1, em−1) =: sm −→

m→∞ 0.

Assuming n � m we get (xn, en) ∈ Dn ⊆ Dm+1. The first condition (5.3) of

(xn, en) ∈ Gpm(xm−1, em−1, σm−1 − νm/2) (5.24)
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says wm(xn, en) � wm(xm−1, em−1), thus sm � 0 for each m. Taking n → ∞ in the second
inequality (5.4) from the definition of (5.24), we obtain

∣∣(f (πx∞ + tem−1) − f (πx∞)
) − (

f (πxm−1 + tem−1) − f (πxm−1)
)∣∣ � rm|t | (5.25)

for any t ∈ R, where

rm := σm−1 − νm/2 + Ω(sm) → 0

by Lemma 5.1(2). Using ‖e∞ − em−1‖ � σm−1 and Lip(f ) � 1:

∣∣(f (πx∞ + te∞) − f (πx∞)
) − (

f (πxm−1 + tem−1) − f (πxm−1)
)∣∣

� (rm + σm−1)|t |. (5.26)

Let ε > 0. Note that as

f ′(πxm−1, em−1) = pm−1(em−1)wm−1(xm−1, em−1) → p∞(e∞)L

we may pick m such that

rm + σm−1 � ε/3 and
∣∣f ′(πxm−1, em−1) − p∞(e∞)L

∣∣ � ε/3 (5.27)

and then δ > 0 with

∣∣f (πxm−1 + tem−1) − f (πxm−1) − f ′(πxm−1, em−1)t
∣∣ � ε|t |/3 (5.28)

for all t with |t | � δ. Combining (5.26), (5.27) and (5.28) we obtain

∣∣f (πx∞ + te∞) − f (πx∞) − p∞(e∞)Lt
∣∣ � ε|t |

for |t | � δ. Hence the directional derivative f ′(πx∞, e∞) exists and equals p∞(e∞)L and
w∞(x∞, e∞) = L.

The last equality and the definition of sm implies

wm(x∞, e∞) − wm(xm−1, em−1) = sm � 0,

so together with (5.25) we get

(x∞, e∞) ∈ Gpm(xm−1, em−1, σm−1 − νm/2) (5.29)

and so (x∞, e∞) ∈ Dm for all m � 1.
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5.6. Maximality of the weight function at (x∞, e∞)

We now verify that the value of the weight function w∞(x∞, e∞) is almost maximal in the
following sense: For every ε > 0 there exists δ > 0 such that whenever (x′, e′) ∈ Gp∞(x∞, e∞,0)

with d(x′, x∞) � δ then we have

w∞
(
x′, e′) < w∞(x∞, e∞) + ε. (5.30)

Assume ε > 0 is fixed, choose then n � 1 with εn + 2t2
n < ε and pick � > 0 such that for

|t | < 8�/νn, the following two inequalities are satisfied:

∣∣f (πx∞ + te∞) − f (πx∞) − f ′(πx∞, e∞)t
∣∣ � 1

16
σn−1|t |; (5.31)

∣∣f (πxn−1 + ten−1) − f (πxn−1) − f ′(πxn−1, en−1)t
∣∣ � 1

16
σn−1|t |. (5.32)

Using (5.20) and the continuity of π we can find

δ ∈ (
0, δn−1 − d(x∞, xn−1)

)
(5.33)

such that whenever d(x′, x∞) � δ, ∥∥πx′ − πx∞
∥∥ � �. (5.34)

We now suppose, for a contradiction, that (x′, e′) ∈ Gp∞(x∞, e∞,0) is such that d(x′, x∞) � δ

and contrary to (5.30) we have

w∞
(
x′, e′) � w∞(x∞, e∞) + ε. (5.35)

As w∞(x′, e′) is invariant if we scale e′ by a positive factor, as is the membership relation
(x′, e′) ∈ Gp∞(x∞, e∞,0), we may assume that ‖e′‖ = 1.

First we shall show that (x′, e′) ∈ Dn. Since (5.33) and d(x′, x∞) � δ imply d(x′, xn−1) <

δn−1, by definition of Dn to prove (x′, e′) ∈ Dn it is enough to show that

(
x′, e′) ∈ Gpn(xn−1, en−1, σn−1 − νn/4). (5.36)

Note that from (5.22) we have

wn

(
x′, e′) − wn(x∞, e∞) � w∞

(
x′, e′) − w∞(x∞, e∞) − 2t2

n

� ε − 2t2
n � εn > 0; (5.37)

therefore

wn

(
x′, e′) > wn(x∞, e∞) � wn(xn−1, en−1)

as sn = wn(x∞, e∞) − wn(xn−1, en−1) � 0: see the end of Section 5.5.
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We now check the second condition of (5.36). Assume |t | < 8�/νn; then using first (5.31),
(5.32) and then Lip(f ) � 1,

∣∣(f (
πx′ + ten−1

) − f
(
πx′)) − (

f (πxn−1 + ten−1) − f (πxn−1)
)∣∣

�
∣∣(f (

πx′ + ten−1
) − f

(
πx′)) − (

f (πx∞ + te∞) − f (πx∞)
)∣∣

+ ∣∣f ′(πx∞, e∞) − f ′(πxn−1, en−1)
∣∣ · |t | + 1

8
σn−1|t |

�
∣∣(f (

πx′ + te∞
) − f

(
πx′)) − (

f (πx∞ + te∞) − f (πx∞)
)∣∣ + ‖e∞ − en−1‖ · |t |

+ ∣∣f ′(πx∞, e∞) − f ′(πxn−1, en−1)
∣∣ · |t | + 1

8
σn−1|t |.

In this sum of four terms, we use (x′, e′) ∈ Gp∞(x∞, e∞,0) to bound the first term from above
by Ω(w∞(x′, e′) − w∞(x∞, e∞)) · |t |, and (5.15) to bound the third term by (2(wn(x∞, e∞) −
wn(xn−1, en−1)) + 4‖e∞ − en−1‖)|t |. Using in addition inequality ‖e∞ − en−1‖ � σn−1/8 from
(5.20), we get

∣∣(f (
πx′ + ten−1

) − f
(
πx′)) − (

f (πxn−1 + ten−1) − f (πxn−1)
)∣∣

� |t |
(

Ω
(
w∞

(
x′, e′) − w∞(x∞, e∞)

)
+ 2

(
wn(x∞, e∞) − wn(xn−1, en−1)

) + 3

4
σn−1

)
. (5.38)

We now use the fact that Ω is an increasing function and w∞(x′, e′) � wn(x
′, e′) which follows

from pn � p∞, and use (5.22) to estimate 2wn(x∞, e∞) from above by 2w∞(x∞, e∞) + 2t2
n .

Then the expression in the right hand side of (5.38) is less than or equal to

|t |
(

Ω
(
wn

(
x′, e′) − w∞(x∞, e∞)

) + 2
(
w∞(x∞, e∞) − wn(xn−1, en−1)

) + 3

4
σn−1 + 2t2

n

)
.

As t2
n < σn−1/16 and Ω satisfies property (3) in Lemma 5.1, we finally get

∣∣(f (
πx′ + ten−1

) − f
(
πx′)) − (

f (πxn−1 + ten−1) − f (πxn−1)
)∣∣

�
(

Ω
(
wn

(
x′, e′) − wn(xn−1, en−1)

) + 7

8
σn−1

)
|t |

�
(
σn−1 − νn/4 + Ω

(
wn

(
x′, e′) − wn(xn−1, en−1)

))|t |,
as νn < σn−1/2. Thus we proved the second condition of (5.36) for |t | < 8�/νn.

Now we consider the case |t | � 8�/νn. From d(x′, x∞) � δ and (5.34) we have

∥∥πx′ − πx∞
∥∥ � � � νn|t |/8

so we get, using (x∞, e∞) ∈ Gpn(xn−1, en−1, σn−1 − νn/2) from (5.29),



M. Doré, O. Maleva / Journal of Functional Analysis 261 (2011) 1674–1710 1701
∣∣(f (
πx′ + ten−1

) − f
(
πx′)) − (

f (πxn−1 + ten−1) − f (πxn−1)
)∣∣

�
∣∣(f (πx∞ + ten−1) − f (πx∞)

) − (
f (πxn−1 + ten−1) − f (πxn−1)

)∣∣ + 2
∥∥πx′ − πx∞

∥∥
�

(
σn−1 − νn/2 + Ω

(
wn(x∞, e∞) − wn(xn−1, en−1)

))|t | + νn|t |/4

�
(
σn−1 − νn/4 + Ω

(
wn

(
x′, e′) − wn(xn−1, en−1)

))|t |,
where, in the final line, we have used wn(x

′, e′) � wn(x∞, e∞) from (5.37).
This finishes the proof of (x′, e′) ∈ Dn for every n � 1. Recall the property of the pair

(xn, en) ∈ Dn is such that

wn(x, e) � wn(xn, en) + εn

for all (x, e) ∈ Dn. Notice that by (5.23) the right hand side of this inequality is less than or equal
to w∞(x∞, e∞) + εn, thus together with (5.35) and (5.22) we finally get

w∞(x∞, e∞) + ε � w∞
(
x′, e′) � wn

(
x′, e′) + t2

n � w∞(x∞, e∞) + εn + t2
n .

This is a contradiction as ε > εn + t2
n . This means that the assumption (5.35) is false, completing

the proof of the statement of the present section.

5.7. Proof of Theorem 3.2

We first quote [12, Lemma 4.3] for determining the Fréchet differentiability of the norm p∞:

Lemma. If the norm of a Banach space Y is Fréchet differentiable on Y \ {0}, em ∈ Y and tm � 0
with

∑
t2
m < ∞, then the function p : Y → R defined by the formula

p(y) :=
√√√√‖y‖2 +

∞∑
m=1

t2
m‖y − Rem‖2

is an equivalent norm on Y that is Fréchet differentiable on Y \ {0}.

We verify the conclusions of Theorem 3.2 for Lipschitz function f defined in (5.1) and the
norm ‖ · ‖′ = p∞.

The items (1) and (2) of Theorem 3.2 follow from (5.1) and (5.14) as pn → p∞. The “more-
over” statement in Theorem 3.2 is a direct consequence of the lemma quoted above and the
definition of p∞ in Section 5.5.

For part (3) of Theorem 3.2 we define x̃ = x∞ and ẽ = e∞/‖e∞‖′. Then we have (x̃, ẽ) ∈ D

and ‖ẽ‖′ = 1. Further we have

f ′(πx̃, ẽ) = w∞(x̃, ẽ) = w∞(x∞, e∞) � w0(x0, e0) = f ′(πx0, e0)

by Definition 5.2 and (5.23). Now given any ε > 0 we choose δ > 0 as in Section 5.6 and then
define the open neighbourhood of x̃ in M by Nε = Bδ(x̃).
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By replacing w∞(x′, e′) by f ′(πx′, e′) and w∞(x∞, e∞) by f ′(πx̃, ẽ) we get (5.3) from
f ′(πx̃, ẽ) � f ′(πx′, e′) and (5.4) from (3.2). Here we used 2Θ � Ω , from Lemma 5.1(1), and
‖e∞‖′ � 2‖e∞‖ = 2. Hence (

x′, e′) ∈ Gp∞(x∞, e∞,0).

Then we have just showed in Section 5.6, as x′ ∈ Bδ(x),

w∞
(
x′, e′) < w∞(x∞, e∞) + ε

by (5.30), and so we conclude

f ′(πx′, e′) < f ′(πx̃, ẽ) + ε. �
6. Set theory

In this section we shall prove Theorem 3.3. We recall its hypotheses: (Y, d) is a metric space
and (Kr)r∈R is a collection of non-empty compact subsets of Y indexed by (R,γ ), a non-empty
metric space, such that

H (Kr,Ks) � γ (r, s) (6.1)

for every r, s ∈ R, where H denotes the Hausdorff distance.
Further O is a Gδ subset of Y containing every element of the family (Kr)r∈R′ where R′ ⊆ R

is γ -dense and r0 ∈ R′. We further recall that ρ, ε0 > 0 are such that for every ε ∈ (0, ε0) there
exists R(ε) ⊆ R such that (3.4) holds:

• for every s ∈ R there exists t ∈ R(ε) with γ (t, s) < ε,
• for every subset S of Y of diameter at most ρε the set {r ∈ R(ε): S ∩ Kr 	= ∅} is finite.

We may assume ρ ∈ (0,1) is fixed. Write O = ⋂∞
n=1 On where (On) is a nested sequence of

open subsets of Y , On+1 ⊆ On for each n � 1.
We first observe that due to the fact that O contains a γ -dense collection of compacts Kr , we

may replace the families R(ε) of compacts with families R′(ε) ⊆ R′, so that Kr ⊆ O for every
r ∈ R′(ε), and properties listed in the following lemma are satisfied.

Lemma 6.1. For every ε ∈ (0, ε0) we can find R′(ε) ⊆ R such that Kr ⊆ O for all r ∈ R′(ε) and

• for every r ∈ R there exists t ∈ R′(ε) with γ (t, r) < ε,
• for every subset B of Y of diameter at most 4

5ρε the set

FB(ε) := {
t ∈ R′(ε) with Kt ∩ B 	= ∅}

(6.2)

is finite.

Proof. For each s ∈ R take ts ∈ R′ with γ (ts, s) < ρε/10, using the density of R′. Set

R′(ε) = {
ts : s ∈ R(4ε/5)

}
.
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It is clear that Kr ⊆ O for every r ∈ R′(ε) and that for every r ∈ R we can find t ∈ R′(ε) with
γ (t, r) < 4ε/5 + ρε/10 < ε.

Now if t ∈ FB(ε) then, writing t = ts with s ∈ R(4ε/5), we see from γ (ts, s) < ρε/10 and
(6.1) that Ks intersects Bρε/10(B); this set has diameter at most ρε so the set FB(ε) is finite
by (3.4). �

We now define the set

T = {
(r,w,α) ∈ R × (0, ε0) × (0,∞) such that Kr ⊆ O and w � α

}
. (6.3)

Here w ∈ (0, ε0) denotes the width of the neighbourhood T = Bw(Kr) around Kr ; as we men-
tioned earlier in Remark 3.4 our main example is the case when Kr is a wedge, then T is an
angled tube around Kr . A slightly bigger neighbourhood Bα(Kr), defined by the third parame-
ter, is considered as a neighbourhood of the tube T just constructed, in which we plan to choose
smaller tubes that approximate T . Therefore each element (r,w,α) ∈ T presents a tube Bw(Kr)

with some “safe” neighbourhood Bα(Kr). For convenience, we will use these terms even in the
general case when Kr are arbitrary compacts; we will also refer to elements (r,w,α) ∈ T as tube
triples.

For fixed r0 ∈ R′ choose 0 < w0 < α0 < ε0 so that

R0 = {
(r0,w0, α0)

} ⊆ T. (6.4)

We shall now construct, for each k � 1, a set Rk ⊆ T inductively by adding, for every (r,w,α) ∈
Rl where l < k, a collection Rk,l = Rk,l(r,w,α) of tube triples (t, v,β) ∈ T with Bv(Kt ) ⊆ Ok

such that the collection (Kt )(t,v,β)∈Rk,l
well approximates the collection of all compacts (Ks)s∈R

when restricted to the “safe” neighbourhood Bα(Kr). First let

rk,l ∈ (0, ρ/10) (6.5)

for each 0 � l < k, where ρ ∈ (0,1) is the number fixed in the beginning of the present section.
Later, in (6.14), we will impose additional restrictions on (rk,l); however Lemmas 6.2, 6.3 and 6.5
we prove up to that point are valid for any rk,l ∈ (0, ρ/10).

Lemma 6.2. If 0 � l < k and (r,w,α) ∈ T then there is a set

Rk,l = Rk,l(r,w,α) ⊆ T

such that

(1) for every s ∈ R with Ks ⊆ Bα(Kr) there exists (t, v,β) ∈ Rk,l such that

γ (t, s) � 10

ρ
rk,lw,

(2) if (t, v,β) ∈ Rk,l then β = rk,lw < α/10 and v < ε0/k,
(3) if (t, v,β) ∈ Rk,l then Bv(Kt ) ⊆ Ok and Kt ⊆ B2α(Kr),
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(4) if B ⊆ Y has diameter at most 8rk,lw then the set

F = FB
k,l(r,w,α)

of all (t, v,β) ∈ Rk,l such that Kt intersects B , is finite,
(5) there exists v > 0 such that (r, v, rk,lw) ∈ Rk,l .

Proof. For each t ∈ R with Kt ⊆ O we can pick vt ∈ (0, ε0/k) such that vt � rk,lw and

Bvt (Kt ) ⊆ Ok,

as Kt ⊆ O ⊆ Ok , Kt is compact and Ok is open. Now let

ε = 10

ρ
rk,lw.

Note that ε < w < ε0 from (6.5) and (6.3) and that for any t ∈ R′(ε) ∪ {r} we have Kt ⊆ O .
So we may set

Rk,l = {
(t, vt , rk,lw): t ∈ R′(ε) ∪ {r} is such that Kt ⊆ B2α(Kr)

}
.

Observe that Rk,l ⊆ T, using the definition of vt .
To see item (1) of the lemma, for s ∈ R with Ks ⊆ Bα(Kr) we pick t ∈ R′(ε) with γ (t, s) < ε.

Then γ (t, s) � w � α so that Kt ⊆ Bα(Ks) using (6.1). It follows that Kt ⊆ B2α(Kr) so that
(t, vt , rk,lw) ∈ Rk,l .

Items (2) and (3) are immediate.
For (4) note that if (t, vt , rk,lw) ∈ F then as t ∈ R′(ε)∪{r} and the set B has diameter at most

4
5ρε we have

t ∈ FB(ε) ∪ {r};

see (6.2). As this set is finite then so is F .
Finally item (5) is immediate with v = vr . �
Recall from (6.4) that we have defined R0 ⊆ T. Now for k � 1 define Rk ⊆ T by the recursion

Rk =
k−1⋃
l=0

⋃
(r,w,α)∈Rl

Rk,l(r,w,α). (6.6)

Note that for any (t, v,β) ∈ Rk we have

Kt ⊆ O and Bv(Kt ) ⊆ Ok (6.7)

and

0 < v � min

(
β,

ε0

k

)
(6.8)

using (6.3) and Lemma 6.2, (2) and (3).
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Next lemma proves that the collection of tube triples Rk has some local finiteness in its struc-
ture; we will use this property later to prove that if we consider unions of all tubes on each
level and then intersect these unions up to a certain level then the resulting set is closed, see
Definition 6.4 and Lemma 6.5.

Lemma 6.3. If y ∈ Y and k � 0 there exists δk = δk(y) > 0 such that the set

Fk = Fk(y) := {
(r,w,α) ∈ Rk such that d(y,Kr) � δk + 3α

}
is finite.

Proof. Let y ∈ Y . For any δ0 > 0 we pick, the set F0 ⊆ R0 will be finite. Suppose now that k � 1
and we have picked δl > 0 for every 0 � l < k such that Fl is finite.

Pick δk > 0 such that for every l < k we have δk < δl and, for any (r,w,α) ∈ Fl , δk < rk,lw.
We shall show that Fk is finite.

Suppose that (t, v,β) ∈ Fk . We may write (t, v,β) ∈ Rk,l(r,w,α) where l < k and
(r,w,α) ∈ Rl , using (6.6). Note that Kt ⊆ B2α(Kr) by Lemma 6.2(3). Hence

d(y,Kr) � d(y,Kt ) + 2α

� δk + 3β + 2α

� δl + 3α

using δk < δl and β = rk,lw < α/10 from Lemma 6.2(2). Hence (r,w,α) ∈ Fl and so δk < rk,lw.
We get d(y,Kt ) � δk + 3β < 4rk,lw so that

Kt ∩ B4rk,lw(y) 	= ∅

and (t, v,β) ∈ F
B4rk,lw

(y)

k,l (r,w,α); see Lemma 6.2(4).
We conclude that

Fk ⊆
k−1⋃
l=0

⋃
(r,w,α)∈Fl

F
B4rk,lw

(y)

k,l (r,w,α),

which is finite by Lemma 6.2(4). �
Definition 6.4. If k � 1, λ ∈ [0,1] and w > 0 we define Mk(λ,w) to be the set of y ∈ Y such
that there exist integers n � 1, 0 = l0 < l1 < · · · < ln = k and tube triples (rm,wm,αm) ∈ Rlm for
0 � m � n with

(1) (rm,wm,αm) ∈ Rlm,lm−1(rm−1,wm−1, αm−1) for 1 � m � n,
(2) d(y,Krm) � λαm for 0 � m � n,
(3) d(y,Krn) � λwn,
(4) wn = w.

We then let

Mk(λ) =
⋃
w>0

Mk(λ,w).
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Remark. Note that Definition 6.4(3) implies that Mk(λ) is a subset of the union
⋃

Bλw(Kr),
where the union is taken over the collection of all tube triples (r,w,α) in Rk . Since each of those
tubes is inside Ok by (6.7), we conclude Mk(λ) ⊆ Ok . Further from (6.4), (6.6), Lemma 6.2(5),
Definition 6.4(2) and (6.7),

Kr0 ⊆ Mk(λ) (6.9)

for all k � 1 and λ ∈ [0,1]. Finally if Mk(λ,w) 	= ∅ then by Lemma 6.2(2),

w < ε0/k. (6.10)

Lemma 6.5. For any k � 1 and λ ∈ [0,1], the set Mk(λ) is a closed subset of (Y, d).

Proof. Suppose that y(i) ∈ Mk(λ) with y(i) → y ∈ Y . It suffices to show that y ∈ Mk(λ).
For each i � 1 we have y(i) ∈ Mk(λ), therefore we can find n(i) � 1, 0 = l

(i)
0 < · · · < l

(i)

n(i) = k

and (r
(i)
m ,w

(i)
m ,α

(i)
m ) ∈ R

l
(i)
m

for 0 � m � n(i) such that the conditions in Definition 6.4(1)–(3) are
satisfied:

(
r(i)
m ,w(i)

m ,α(i)
m

) ∈ R
l
(i)
m ,l

(i)
m−1

(
r
(i)
m−1,w

(i)
m−1, α

(i)
m−1

)
for 1 � m � n(i), (6.11)

d
(
y(i),K

r
(i)
m

)
� λα(i)

m for 0 � m � n(i), (6.12)

d
(
y(i),K

r
(i)

n(i)

)
� λw

(i)

n(i) . (6.13)

As 1 � n(i) � k we may assume, passing to a subsequence if necessary, that n(i) = n is constant.
But then as 0 � l

(i)
m � k we may assume, passing to another subsequence, that l

(i)
m = lm is constant

for each 0 � m � n with 0 = l0 < l1 < · · · < ln = k.
Fixing m then as d(y, y(i)) → 0, λ � 1 and

d(y,K
r
(i)
m

) � d
(
y, y(i)

) + λα(i)
m ,

from (6.12), we have (r
(i)
m ,w

(i)
m ,α

(i)
m ) ∈ Flm(y) for i sufficiently high; see Lemma 6.3. As this set

is finite we can assume, passing to another subsequence, that

(
r(i)
m ,w(i)

m ,α(i)
m

) = (rm,wm,αm)

is constant for each 0 � m � n, with (rm,wm,αm) ∈ Rlm . Further from (6.11)–(6.13) we have

• (rm,wm,αm) ∈ Rlm,lm−1(rm−1,wm−1, αm−1) for 1 � m � n,
• d(y(i),Krm) � λαm for 0 � m � n,
• d(y(i),Krn) � λwn.

Taking the i → ∞ limit and using y(i) → y we obtain
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• d(y,Krm) � λαm for 0 � m � n,
• d(y,Krn) � λwn,

so that y ∈ Mk(λ). �
Up to this point we have let rk,l ∈ (0, ρ/10) be arbitrary; see (6.5). We now further stipulate

that if 0 � l < l′ � k then we have

rk+1,k � 1

k
and rk+1,l � 1

k
rl′,l . (6.14)

We now come to the crucial lemma. It proves that if we consider a point y is in Mk(λ,w) and
λ′ > λ, then the whole (λ′ − λ)w-neighbourhood of y is inside Mk(λ

′,w). If, however, we want
to find compacts Kt close to y of bigger size, δ > (λ′ − λ)w/2, we can accomplish this as long
as we agree to consider tube sets constructed on subsequent levels.

Lemma 6.6. Suppose k � 1, 0 � λ < λ + ψ � 1, w > 0, ε ∈ (0,1) and y ∈ Mk(λ,w). Then

(1) Bψw(y) ⊆ Mk(λ + ψ,w),
(2) if 2δ ∈ (ψw,ψα0) and 20/(ρψk) < ε < 1 then for each s ∈ R with Ks ⊆ Bδ(y) there exists

t ∈ R with γ (t, s) < εδ and Kt ⊆ Mk+j (λ + ψ) for all j � 1.

Proof. From Definition 6.4 we can find integers n � 1,

0 = l0 < l1 < · · · < ln = k

and tube triples (rm,wm,αm) ∈ Rlm for 0 � m � n with

(rm,wm,αm) ∈ Rlm,lm−1(rm−1,wm−1, αm−1) for 1 � m � n, (6.15)

d(y,Krm) � λαm for 0 � m � n, (6.16)

d(y,Krn) � λwn, (6.17)

wn = w. (6.18)

Note that

αm = rlm,lm−1wm−1 < αm−1 (6.19)

for each 1 � m � n by Lemma 6.2(2).
To establish (1) of the present lemma, suppose d(y′, y) � ψw; then from (6.16) and (6.17),

d
(
y′,Krm

)
� λαm + ψw for 0 � m � n,

d
(
y′,Krn

)
� λwn + ψw.

Using (6.18) and (6.19) we have w = wn � αn � αm so that
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d
(
y′,Krm

)
� (λ + ψ)αm for 0 � m � n,

d
(
y′,Krn

)
� (λ + ψ)wn;

combining these with (6.15) and (6.18) we get y′ ∈ Mk(λ + ψ,w), as required.
We now turn to (2). We claim that we can find m with 0 � m � n and

(t,w,α) ∈ Rk+1,lm(rm,wm,αm) (6.20)

where 2δ � ψαm and γ (t, s) < εδ.
To see this suffices, note first that as H (Kt ,Ks) � γ (t, s) < δ, using ε � 1, we have

Kt ⊆ Bδ(Ks) ⊆ B2δ(y) ⊆ Bψαm(y), (6.21)

where we have also used 2δ � ψαm from the claim to be proved and Ks ⊆ Bδ(y) from the
hypothesis of (2).

Now let l′j = lj and (r ′
j ,w

′
j , α

′
j ) = (rj ,wj ,αj ) for j � m and l′m+j = k + j for j � 1 and,

using (6.20) for (r ′
m+1,w

′
m+1, α

′
m+1) and Lemma 6.2(5), pick inductively

(
r ′
m+j ,w

′
m+j , α

′
m+j

) ∈ Rl′m+j ,l′m+j−1

(
r ′
m+j−1,w

′
m+j−1, α

′
m+j−1

)
for each j � 1, with r ′

m+j = t . Then for any y′ ∈ Kt , as

d
(
y′,Krj

)
� d(y,Krj ) + ψαm � (λ + ψ)α′

j

for j � m, using (6.16) and (6.21), while d(y′,Kr ′
m+j

) = 0 for j � 1 from y′ ∈ Kt = Kr ′
m+j

, we

have y′ ∈ Mk+j (λ + ψ) for j � 1 as required.
We now establish the claim. Suppose first that 2δ � ψαn. Then as

Ks ⊆ Bδ(y) ⊆ Bλαn+δ(Krn) ⊆ Bαn(Krn),

using (6.16), we may pick, by Lemma 6.2(1), (t,w,α) ∈ Rk+1,k(rn,wn,αn) with

γ (t, s) � 10

ρ
rk+1,kwn � 10

ρ

1

k

2δ

ψ
< εδ

using (6.14) and 2δ ∈ (ψwn,ψ). Thus we can satisfy the claim with m = n.
Suppose instead that ψαn < 2δ. As 2δ � ψα0 we can find m with

ψαm+1 < 2δ � ψαm (6.22)

where 0 � m � n − 1. Then as

Ks ⊆ Bδ(y) ⊆ Bλαm+δ(Krm) ⊆ Bαm(Krm),

we may pick, by Lemma 6.2(1), (t,w,α) ∈ Rk+1,lm(rm,wm,αm) with
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γ (t, s) � 10

ρ
rk+1,lmwm � 10

ρ

1

k
rlm+1,lmwm = 10

ρ

1

k
αm+1 <

10

ρ

1

k

2δ

ψ
< εδ

using (6.14) with lm < lm+1 � k, (6.19) and (6.22). Thus the claim is satisfied. �
6.7. Proof of Theorem 3.3

We are now ready to prove Theorem 3.3.
Assume r0 used in (6.4) is the one given by hypothesis of Theorem 3.3.
Given λ ∈ [0,1] we set

Tλ =
∞⋂

k=1

Jk(λ), where Jk(λ) =
⋃

k�n�(1+λ)k

Mn(λ).

Note that as (6.9) implies Kr0 ⊆ Mn(λ) ⊆ On ⊆ Ok for n � k, we have Kr0 ⊆ Jk(λ) ⊆ Ok

for every k � 1 and hence Kr0 ⊆ Tλ ⊆ O for every λ ∈ [0,1]. Similarly as Mk(λ) is closed
by Lemma 6.5, the set Jk(λ) is also closed for every k � 1, and hence Tλ is closed for every
λ ∈ [0,1]. We further note that if 0 � λ1 � λ2 � 1 then as Mk(λ1) ⊆ Mk(λ2) from Definition 6.4,
we have Jk(λ1) ⊆ Jk(λ2) and hence we have Tλ1 ⊆ Tλ2 .

Assume η ∈ (0,1), 0 � λ′ < λ � 1 and y ∈ Tλ′ . By the definitions of Tλ′ and Mk(λ
′) and the

last part of Definition 6.4, there exists, for each k � 1, an index nk with k � nk � (1 + λ′)k and
wk > 0 such that y ∈ Mnk

(λ′,wk). Let ψ = λ − λ′ > 0.
Pick δ1 > 0 with 2δ1 < ψwk for every k � 20/(ρψη), where ρ ∈ (0,1) is the number fixed

in the beginning of the present section. Now suppose that δ ∈ (0, δ1). We need to show that
if Ks ⊆ Bδ(y) for some s ∈ R then there exists t ∈ R such that Kt ⊆ Tλ and γ (t, s) < ηδ. Let
k0 � 1 be the minimal index k such that 2δ > ψwk . Such k0 exists as (6.10) implies wk → 0. Note
that k0 > 20/(ρψη). In particular ψk0 > 1 and so k0 < nk0 + 1 < (1 + λ′)k0 + ψk0 = (1 + λ)k0.

By Lemma 6.6(2) there exists t ∈ R such that γ (s, t) < ηδ and Kt ⊆ Mj(λ) for every j �
nk0 + 1, so that Kt ⊆ Jk(λ) for all k � k0. Note that γ (t, s) < ηδ < δ implies Kt ⊆ B2δ(y) ⊆
Bψwk

(y) for every k < k0. By Lemma 6.6(1) we conclude Kt ⊆ Mnk
(λ,wk) for every k < k0.

Hence Kt ⊆ Tλ as required. �
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[14] L. Zajíček, Sets of σ -porosity and sets of σ -porosity (q), Časopis pro Pěstování Matematiky 101 (1976) 350–359.
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