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Abstract We prove that in a Euclidean space of dimension at least two, there exists
a compact set of Lebesgue measure zero such that any real-valued Lipschitz function
defined on the space is differentiable at some point in the set. Such a set is constructed
explicitly.
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1 Introduction

1.1 Background

A theorem of Lebesgue says that any real-valued Lipschitz function on the real line is
differentiable almost everywhere. This result is sharp in the sense that for any subset
E of the real line with Lebesgue measure zero, there exists a real-valued Lipschitz
function not differentiable at any point of E . The exact characterisation of the possible
sets of non-differentiability of a Lipschitz function f : R → R is given in [11].

For Lipschitz mappings between Euclidean spaces of higher dimension, the inter-
play between Lebesgue null sets and sets of points of non-differentiability is less
straightforward. By Rademacher’s theorem, any real-valued Lipschitz mapping on R

n

is differentiable except on a Lebesgue null set. However, Preiss [8] gave an example of
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a Lebesgue null set E in R
n , for n ≥ 2, such that E contains a point of differentiability

of every real-valued Lipschitz function on R
n .

In particular, [8] shows that the latter property holds whenever E is a Gδ-set in
R

n—i.e. an intersection of countably many open sets—such that E contains all lines
passing through two points with rational coordinates. However, this set is dense in R

n .
In the present paper we construct a much “smaller” set in R

n for n ≥ 2—a compact
Lebesgue null set—that still captures a point of differentiability of every Lipschitz
function f : R

n → R.
It is important to note that though, setting n = 2, any Lipschitz function f : R

2 → R

has points of differentiability in such an extremely small set as ours, for any Lebesgue
null set E in the plane there is a pair of real-valued Lipschitz functions on R

2 with no
common points of differentiability in E [1].

Only a few positive results are known about the case where the codomain is a space
of dimension at least two. For n ≥ 3, there exists a Lebesgue null set in R

n , namely the
union of all “rational hyperplanes”, such that for all ε > 0 every Lipschitz mapping
from R

n to R
n−1 has a point of ε-Fréchet differentiability in that set; see [7].

1.2 Previous research

Let us say a few words about why the method of [8] does not yield a set with the prop-
erties we are aiming for. Indeed, [8, Theorem 6.4] says that every Lipschitz function
defined on R

n is differentiable at some point of a Gδ-set E if E satisfies certain con-
ditions, in particular for any two points u, v ∈ R

n and any η > 0, the set E contains a
large portion of a path that approximates the line segment [u, v] to within η‖u − v‖.
The closure of such a set E is the whole space R

n .
There is, however, a stronger version of [8, Theorem 6.4] that only requires a local

version of this condition for the same conclusion to hold: namely for every ε > 0
and every x ∈ E there is a neighbourhood of x in which any line segment I can be
approximated to within ε|I | by a curve in E . Let us explain why the closure of any
Gδ-set with this property has non-empty interior and hence is of positive measure.

Indeed, by this “local approximation” property there is an open ball B intersecting
E and a positive η, such that each open U ⊆ B that intersects E contains a point
x ′ ∈ U ∩ E with the following property: any line segment I ⊆ B through x ′ of length
at most η is pointwise |I |/2-close to a curve inside E . It follows that E is dense in B.

Thus in order to construct a closed set of measure zero containing points of dif-
ferentiability of every Lipschitz function, we introduce crucial new steps, outlined in
Subsect. 1.4. Before describing our approach we need some preliminaries.

1.3 Preliminaries

Given real Banach spaces X and Y , a mapping f : X → Y is called Lipschitz if there
exists L ≥ 0 such that ‖ f (x)− f (y)‖Y ≤ L‖x − y‖X for all x, y ∈ X . The smallest
such constant L is denoted Lip( f ).
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A compact null set containing a differentiability point 635

If f : X → Y is a mapping, then f is said to be Gâteaux differentiable at x0 ∈ X if
there exists a bounded linear operator D : X → Y such that for every u ∈ X , the limit

lim
t→0

f (x0 + tu)− f (x0)

t
(1.1)

exists and is equal to D(u). The operator D is called the Gâteaux derivative of f at
the point x0 and is written f ′(x0). If this limit exists for some fixed u we say that f
has a directional derivative at x0 in the direction u and denote the limit by f ′(x0, u).

If f is Gâteaux differentiable at x0 and the convergence in (1.1) is uniform for u in
the unit sphere S(X) of X , we say that f is Fréchet differentiable at x0 and call f ′(x0)

the Fréchet derivative of f .
Equivalently, f is Fréchet differentiable at x0 if we can find a bounded linear oper-

ator f ′(x0) : X → Y such that for every ε > 0 there exists a δ > 0 such that for any
h ∈ X with ‖h‖ ≤ δ we have

‖ f (x0 + h)− f (x0)− f ′(x0)(h)‖ ≤ ε‖h‖.

If, on the other hand, we only know this condition for some fixed ε > 0 we say that
f is ε-Fréchet differentiable at x0. Note that f is Fréchet differentiable at x0 if and only
if it is ε-Fréchet differentiable at x0 for every ε > 0. In [5,6] the notion of ε-Fréchet
differentiability is studied in relation to Lipschitz mappings with the emphasis on the
infinite dimensional case.

In general, Fréchet differentiability is a strictly stronger property than Gâteaux dif-
ferentiability. However the two notions coincide for Lipschitz functions defined on a
finite dimensional space; see [2].

We now make some comments about the porosity property and its connection with
the Fréchet differentiability of Lipschitz functions. Recall first that a subset A of a
Banach space X is said to be porous at a point x ∈ X if there exists λ > 0 such
that for all δ > 0 there exist r ≤ δ and x ′ ∈ B(x, δ) such that r > λ‖x − x ′‖ and
B(x ′, r) ∩ A = ∅. Here B(x, δ) denotes an open ball in the Banach space X with
centre at x and radius δ.

A set A ⊆ X is called porous if it is porous at every x ∈ A. A set is said to be
σ -porous if it can be written as a countable union of porous sets. The family of σ -
porous subsets of X is a σ -ideal. A comprehensive survey on porous and σ -porous
sets can be found in [14].

Observe that for a non-empty set A the distance function f (x) = dist(x, A) is
Lipschitz with Lip( f ) ≤ 1 but is not Fréchet differentiable at any porosity point of the
set A [2]. Moreover if A is a σ -porous subset of a separable Banach space X we can
find a Lipschitz function from X to R that is not Fréchet differentiable at any point of
A. This is proved in [9] for the case in which A is a countable union of closed porous
sets and, as per remark in [2, Chap. 6], the proof of [10, Proposition 14] can be used
to derive this statement for an arbitrary σ -porous set A.

The set S we are constructing in this paper contains a point of differentiability of
every Lipschitz function, so we require S to be non-σ -porous. Such a set should also
have plenty of non-porosity points. By the Lebesgue density theorem every σ -porous
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subset of a finite-dimensional space is of Lebesgue measure zero. We remark that the
σ -ideal of σ -porous sets is a proper subset of that of Lebesgue null sets. In order to
arrive at an appropriate set that is not σ -porous, has no porosity points and whose
closure has measure zero, we use ideas similar to those in [12,13,15].

1.4 Construction

We now outline the method we use to prove that the set S we construct contains a
differentiability point of every Lipschitz function.

Given a Lipschitz function f : R
n → R, we first find a point x ∈ S and a direction

e ∈ Sn−1, the unit sphere of R
n , such that the directional derivative f ′(x, e) exists and

is locally maximal in the sense that if ε > 0, x ′ is a nearby point of S, e′ ∈ Sn−1 is a
direction and (x ′, e′) satisfies appropriate constraints, then f ′(x ′, e′) < f ′(x, e)+ ε.

We then prove f is differentiable at x with derivative

D(u) = f ′(x, e)〈u, e〉.

A heuristic outline goes as follows. Assume this is not true. Find η > 0 and a vector λ
with small norm such that | f (x +λ)− f (x)− f ′(x, e)〈λ, e〉| > η‖λ‖. Then construct
an auxiliary point x + h lying near the line x + Re and calculate the ratio

| f (x + λ)− f (x + h)|
‖λ− h‖ .

We find that this is at least f ′(x, e)+ ε for some ε > 0. By using an appropriate mean
value theorem [8, Lemma 3.4], it is possible to find a point x ′ on the line segment
[x +h, x +λ] and a direction e′ ∈ Sn−1 such that f ′(x ′, e′) ≥ f ′(x, e)+ε and (x ′, e′)
satisfies the required constraints. This contradicts the local maximality of f ′(x, e) and
so f is differentiable at x .

Since f ′(x, e) is only required to be locally maximal for x in the set S, it is nec-
essary to ensure the above line segment [x + h, x + λ] lies in S, if we are to get a
contradiction. It is therefore vital to construct S so that it contains lots of line segments.

Crucially, instead of just one set, we introduce a hierarchy of closed null sets Mi ,
indexed by sequences i of real numbers that are subject to a certain partial ordering.
For any point x in Mi the required line segments [x + h, x + λ] can be found in every
set M j where j is greater than i in the sense of the partial order. Subsequently we
prove in Corollary 5.2 that each set Mi contains a point of differentiability of every
Lipschitz function. The desired set S can then be taken equal to the intersection of any
of the Mi with a closed ball.

1.5 Structure of the paper

Section 2 is devoted to the description of the partial ordered set and the layers Mi .
The existence of line segments close to any point in a previous layer is verified in
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A compact null set containing a differentiability point 637

Theorem 2.5. In Sect. 5 we will show that this condition is sufficient for any Lipschitz
function to have a point of differentiability in each layer.

In Sect. 3 we show in detail how to arrive at a pair (x, e) with “almost maximal”
directional derivative f ′(x, e). By a modification of the method in [8] we construct
a sequence of points xm and directions em ∈ Sn−1 such that f has a directional
derivative f ′(xm, em) that is almost maximal, subject to some constraints. We then
argue that (xm) and (em) both converge and that the directional derivative f ′(x, e) at
x = limm→∞ xm in the direction e = limm→∞ em is locally maximal in the required
sense. We eventually show x is a point of differentiability of f .

The convergence of (xm) is achieved simply by choosing xm+1 close to xm . The
convergence of em is more subtle; we obtain this by altering the function by an appro-
priate small linear piece at each stage of the iteration. Then picking (xm, em) such
that the mth function fm has almost maximal directional derivative f ′

m(xm, em) can
be shown to guarantee that the sequence (em) is Cauchy.

In Sect. 4 we introduce a Differentiability Lemma 4.3, showing that under certain
conditions such a pair (x, e), with f ′(x, e) almost maximal, gives a point x of Fréchet
differentiability of f .

Finally in Sect. 5 we verify the conditions of this Differentiability Lemma 4.3 for
the pair (x, e) constructed in Sect. 3, using the results of Sect. 2. This completes the
proof.

1.6 Related questions

To conclude the introduction let us observe the following. Independently of our con-
struction, one can deduce from [3,4] that there exists a non-empty Lebesgue null set E
in the plane with a weaker property: E is Fσ—i.e. a countable union of closed sets—
and contains a point of sub-differentiability of every real-valued Lipschitz function.

Indeed, in [3] it is proved that there exist a non-empty open set G ⊆ R
2, a dif-

ferentiable function f : G → R and a non-empty open set � ⊆ R
2 for which there

exists a point p ∈ G such that the gradient ∇ f (p) ∈ � but ∇ f (q) /∈ � for almost
all q ∈ G, in the sense of two dimensional Lebesgue measure. In other words, the set
E = (∇ f )−1(�) ∩ G is a non-empty set of Lebesgue measure zero. Note that ∇ f is
a Baire-1 function; therefore the set E , which is a preimage of an open set, is an Fσ
set. Now [4, Lemma 4] implies that any Lipschitz function h : R

2 → R has a point of
sub-differentiability in E .

2 The set

Let (Nr )r≥1 be a sequence of odd integers such that Nr > 1, Nr → ∞ and
∑ 1

N 2
r

=
∞. Let S be the set of all sequences i = (i (r))r≥1 of real numbers with 1 ≤ i (r) < Nr

for all r and i (r)/Nr → 0 as r → ∞.
We define a relation � on S by

i ≺ j if (∀r)(i (r) > j (r)) and i (r)/j (r) → ∞ as r → ∞
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and

i � j if i ≺ j or i = j.

For i, j ∈ S such that i ≺ j , we denote by (i, j) the set {k ∈ S : i ≺ k ≺ j} and by
[i, j] the set {k ∈ S : i � k � j}.

Recall that a partially ordered set—or poset—is a pair (X,≤) where X is a set and
≤ is a relation on X such that x ≤ x for all x ∈ X , if x ≤ y and y ≤ x for x, y ∈ X
then necessarily x = y and finally if x, y, z ∈ X with x ≤ y and y ≤ z then x ≤ z.

A chain in a poset (X,≤) is a subset C ⊆ X such that for any x, y ∈ C we have
x ≤ y or y ≤ x . We say (X,≤) is chain complete if every non-empty chain C ⊆ X
has a least upper bound—or “supremum”—in X .

We write x < y if x ≤ y and x �= y. We call (X,≤) dense if whenever x, y ∈ X
with x < y we can find z ∈ X such that x < z < y. Finally, recall that an element x
of X is minimal if there does not exist y with y < x .

The following lemma summarises basic properties of (S,�).
Lemma 2.1 (S,�) is a non-empty partially ordered set that is chain complete, dense
and has no minimal element.

Proof It is readily verified that (S,�) is a poset and that S �= ∅ since it contains
the element (1, 1, 1, . . . ). Given a non-empty chain C = {iα | α ∈ A} in S, the
supremum of C exists and is given by i ∈ S where i (r) = infα∈A i (r)α ; hence (S,�)
is chain complete. To see that (S,�) is dense, note that if i, j ∈ S with i ≺ j then
i ≺ k ≺ j where k ∈ S is given by k(r) = √

i (r) j (r). Finally given l ∈ S, we can
find m ∈ S with m ≺ l by taking m(r) =

√
l(r)Nr . Therefore (S,�) has no minimal

element. This completes the proof of the lemma.

We begin by working in the plane R
2.

Denote the inner product 〈, 〉 and the Euclidean norm ‖ · ‖. Write B(x, δ) for an
open ball in (R2, ‖ · ‖) with centre x ∈ R

2 and radius δ > 0. Further let B∞(c, d/2)
be an open ball in (R2, ‖ · ‖∞), i.e. an open square with centre c ∈ R

2 and side d > 0.
Finally, given x, y ∈ R

2 we use [x, y] to denote the closed line segment

{(1 − λ)x + λy | 0 ≤ λ ≤ 1} ⊆ R
2.

Let d0 = 1. For each r ≥ 1 set dr = 1
N1 N2...Nr

and define the lattice Cr ⊆ R
2:

Cr = dr−1

((
1

2
,

1

2

)

+ Z
2
)

. (2.1)

Suppose now i ∈ S. Define the set Wi ⊆ R
2 by

Wi = R
2 \

∞⋃

r=1

⋃

c∈Cr

B∞
(

c,
1

2
i (r)dr

)

. (2.2)

123



A compact null set containing a differentiability point 639

Note that each Wi is a closed subset of the plane and Wi ⊆ W j if i � j . From
i (r) < Nr we see that Wi �= ∅—for example (0, 0) ∈ Wi . We now claim that the
Lebesgue measure of Wi is equal to 0.

For each r ≥ 0 we define sets Dr and Rr of disjoint open squares of side dr as fol-
lows. Recall d0 = 1. Let D0 be the empty-set and R0 = {U } be a singleton comprising
the open unit square:

U = {(x, y) ∈ R
2 | 0 < x, y < 1}.

Divide each square in the set Rr−1 into an Nr × Nr grid. Let Dr comprise the
central open squares of the grids and let Rr comprise all the remaining open squares.
By induction each square in Dr and Rr has side dr and the centres of the squares in
Dr belong to the lattice Cr . For each m ≥ 1 we have from (2.2) and i (r) ≥ 1,

Wi ⊆ R
2 \

m⋃

r=1

⋃

c∈Cr

B∞
(

c,
1

2
dr

)

so that

Wi ∩ U ⊆ U \
m⋃

r=1

⋃
Dr =

⋃
Rm,

and, as the cardinality of the set Rm is equal to (N 2
1 − 1) . . . (N 2

m − 1) and each square
in Rm has area d2

m , we can estimate the Lebesgue measure of Wi ∩ U :

|Wi ∩ U | ≤
(

1 − 1

N 2
1

)

. . .

(

1 − 1

N 2
m

)

.

This tends to 0 as m → ∞, because
∑ 1

N 2
r

= ∞. Therefore the Lebesgue measure

|Wi ∩ U | = 0. Furthermore, from (2.1) and (2.2), Wi is invariant under translations
by the lattice Z

2. Hence |Wi | = 0 for every i ∈ S.
Let

W =
⋃

i∈S
i≺(1,1,1,... )

Wi .

As (1, 1, 1, . . . ) is not minimal and Wi �= ∅ for any i ∈ S, we observe W is not
empty. The following theorem now proves that for any point x ∈ W there are line
segments inside W with directions that cover a dense subset of the unit circle. We
say e = (e1, e2) ∈ S1 has rational slope if there exists (p, q) ∈ Z

2 \ {(0, 0)} with
pe1 = qe2.

Theorem 2.2 For any i, j ∈ S with i ≺ j, ε > 0 and e ∈ S1 with rational slope
there exists δ0 = δ0(i, j, ε, e) > 0 such that whenever x ∈ Wi and δ ∈ (0, δ0), there
is a line segment [x ′, x ′ + δe] ⊆ W j where ‖x ′ − x‖ ≤ εδ.
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640 M. Doré, O. Maleva

Proof First we note that without loss of generality we may assume that ε ≤ 1 and
|e2| ≤ |e1| where e = (e1, e2). Write e2/e1 = p/q with p, q ∈ Z and q > 0. Now
observe that if y ∈ R

2 then the line y + Re has gradient p/q ∈ [−1, 1] and if it
intersects the square B∞(c, d/2),

∣
∣
∣
∣(y2 − c2)− p

q
(y1 − c1)

∣
∣
∣
∣ < d (2.3)

where y = (y1, y2) and c = (c1, c2).

From i ≺ j , we have supm
j (m)

i (m)
< 1 so that we can findψ > 0 such that j (m)

i (m)
≤ 1−ψ

for all m. Put ρm = i (m)dmψ/4. Since dm = Nm+1dm+1 and i (m) ≥ 1 for each m ≥ 1,

ρm/ρm+1 = (i (m)Nm+1)/ i (m+1) ≥ inf
m

Nm+1

i (m+1)
> 1

so that ρm ↘ 0. Let k0 be such that

{
j (m)/i (m) ≤ εψ/16
j (m)/Nm ≤ (5q)−1 for all m ≥ k0. (2.4)

We set δ0 = ρk0 and let δ ∈ (0, δ0). Since ρk → 0, there exists k ≥ k0 such that
ρk ≥ δ > ρk+1.

Let Cm be given by (2.1) and set

Tm =
⋃

c∈Cm

B∞(c, j (m)dm/2)

so that W j = ⋂
m≥1(R

2\Tm).
Fix any point x ∈ Wi . Define the line �λ = x + (0, λ)+Re ⊆ R

2 to be the vertical
shift of x + Re by λ. We claim that if m ≥ k + 1 and I ⊆ R is a closed interval of
length at least 4 j (m)dm we can find a closed subinterval I ′ ⊆ I of length j (m)dm such
that the line �λ does not intersect Tm for any λ ∈ I ′.

Take I = [a, b]. We may assume there exists λ ∈ [a, a + j (m)dm] such that �λ
intersects B∞(c, j (m)dm/2) for some c ∈ Cm ; if not we can take I ′ = [a, a+ j (m)dm].
Write c = (c1, c2) and x = (x1, x2). Note that from (2.3) we have

∣
∣
∣
∣(x2 + λ− c2)− p

q
(x1 − c1)

∣
∣
∣
∣ < j (m)dm .

Let I ′ = [λ + 2 j (m)dm, λ + 3 j (m)dm] ⊆ I . Suppose that λ′ ∈ I ′ and that c′ ∈ Cm .
We may write c′ = (c′

1, c′
2) = (c1, c2) + (l1, l2)dm−1 where l1, l2 ∈ Z. Then if

pl1 �= ql2,
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∣
∣
∣
∣(x2 + λ′ − c′

2)− p

q
(x1 − c′

1)

∣
∣
∣
∣

≥ dm−1

∣
∣
∣
∣

pl1 − ql2
q

∣
∣
∣
∣ −

∣
∣
∣
∣(x2 + λ− c2)− p

q
(x1 − c1)

∣
∣
∣
∣ − |λ′ − λ| > j (m)dm

as |pl1 − ql2| ≥ 1 and dm−1 = Nmdm ≥ 5q j (m)dm from (2.4). On the other hand if
pl1 = ql2 the same inequality holds as

∣
∣
∣
∣(x2 + λ′ − c′

2)− p

q

(
x1 − c′

1

)
∣
∣
∣
∣

≥ |λ′ − λ| −
∣
∣
∣
∣(x2 + λ− c2)− p

q
(x1 − c1)

∣
∣
∣
∣ > j (m)dm .

Therefore by (2.3) the line �λ′ does not intersect B∞(c′, j (m)dm/2) for any c′ ∈ Cm

and any λ′ ∈ I ′. Hence the claim.
Note that for m ≥ k +1 we have j (m)dm ≥ 4 j (m+1)dm+1 from (2.4). Subsequently,

by the previous claim, we may construct a nested sequence of closed intervals

[0, 4 j (k+1)dk+1] ⊇ Ik+1 ⊇ Ik+2 ⊇ · · ·

such that |Im | = j (m)dm and �λ does not intersect Tm for λ ∈ Im .
Picking λ ∈ ⋂

m≥k+1 Im we have

0 ≤ λ ≤ 4 j (k+1)dk+1 ≤ i (k+1)ψε

4
dk+1 = ερk+1 < εδ

using (2.4) again.
Set x ′ = x + (0, λ) so that ‖x ′ − x‖ = λ < εδ. Note that [x ′, x ′ + δe] does not

intersect Tm for m ≥ k + 1 as [x ′, x ′ + δe] ⊆ �λ and λ ∈ Im . Now suppose m ≤ k.
From ε ≤ 1 we have λ ≤ δ ≤ ρk . If c ∈ Cm then we observe that [x ′, x ′ + δe] does
not intersect B∞(c, j (m)dm/2) as x ∈ Wi is outside B∞(c, i (m)dm/2) and

λ+ δ ≤ 2ρk ≤ 2ρm = 1

2
i (m)dmψ ≤ 1

2
i (m)dm

(

1 − j (m)

i (m)

)

= 1

2
(i (m)dm − j (m)dm).

Therefore [x ′, x ′ +δe] does not intersect Tm for any m ≥ 1 so that [x ′, x ′ +δe] ⊆ W j .
This finishes the proof.

We now give a simple geometric lemma and then prove some corollaries to Theo-
rem 2.2. Given e = (e1, e2) ∈ S1 we define e⊥ = (−e2, e1) so that 〈e⊥, e〉 = 0 for
any e ∈ S1 and, given x0 ∈ R

2 and e0 ∈ S1, then x ∈ R
2 lies on the line x0 + Re0 if

and only if 〈e⊥
0 , x〉 = 〈e⊥

0 , x0〉.
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Lemma 2.3 Suppose that x1, x2 ∈ R
2, e1, e2 ∈ S1, α1, α2 > 0, the line segments

l1, l2 given by lm = [xm, xm + αmem] intersect at x3 ∈ R
2 and that

[x3 − αem, x3 + αem] ⊆ lm, (m = 1, 2) (2.5)

where α > 0. If x ′
1, x ′

2 ∈ R
2 and e′

1, e′
2 ∈ S1 are such that

‖x ′
m − xm‖ ≤ α

16
|〈e⊥

2 , e1〉| and (2.6)

‖e′
m − em‖ ≤ α

8(α1 + α2)
|〈e⊥

2 , e1〉| (2.7)

for m = 1, 2, then the line segments l ′1, l ′2 given by l ′m = [x ′
m, x ′

m + αme′
m] intersect

at a point x ′
3 ∈ R

2 with ‖x ′
3 − x3‖ ≤ α.

Proof As 〈e⊥
2 , e1〉 = −〈e⊥

1 , e2〉 we may assume, without loss of generality, that the
inner product 〈e⊥

2 , e1〉 is non-negative. From (2.5) we can write x3 = xm + λmem for
m = 1, 2 with α ≤ λm ≤ αm − α. Now note that as x1 + λ1e1 ∈ l2 we have

〈e⊥
2 , x1 + λ1e1〉 = 〈e⊥

2 , x2〉

so that

〈

e⊥
2 , x1 +

(

λ1 + π
1

2
α

)

e1

〉

− 〈e⊥
2 , x2〉 = π

α

2
〈e⊥

2 , e1〉 (2.8)

for π = ±1. Using (2.6) and (2.7) we quickly obtain from (2.8)

〈

e′⊥
2 , x ′

1 +
(

λ1 + 1

2
α

)

e′
1

〉

− 〈e′⊥
2 , x ′

2〉 ≥ 0 (2.9)

and

〈

e′⊥
2 , x ′

1 +
(

λ1 − 1

2
α

)

e′
1

〉

− 〈e′⊥
2 , x ′

2〉 ≤ 0. (2.10)

Indeed, for π = ±1,

(

〈e′⊥
2 , x ′

1 + (λ1 + π
1

2
α)e′

1〉 − 〈e′⊥
2 , x ′

2〉
)

−
(

〈e⊥
2 , x1 + (λ1 + π

1

2
α)e1〉 − 〈e⊥

2 , x2〉
)

=
〈

e′⊥
2 , (x

′
1 − x1)− (x ′

2 − x2)+
(

λ1 + π
1

2
α

)

(e′
1 − e1)

〉

+
〈

(e′⊥
2 − e⊥

2 ), (x1 − x2)+
(

λ1 + π
1

2
α

)

e1

〉

;
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the norm of the first term is bounded by

‖x ′
1 − x1‖ + ‖x ′

2 − x2‖ +
∣
∣
∣
∣λ1 + π

1

2
α

∣
∣
∣
∣ · ‖e′

1 − e1‖

≤ 2
α

16
〈e⊥

2 , e1〉 + α1
α

8(α1 + α2)
〈e⊥

2 , e1〉 ≤ α

4
〈e⊥

2 , e1〉,

and the norm of the second term is bounded by

‖e′
2 − e2‖

(

‖x1 − x2‖ + |λ1 + π
1

2
α|

)

≤ α

8(α1 + α2)
〈e⊥

2 , e1〉((α1 + α2)+ α1)

≤ α

4
〈e⊥

2 , e1〉.

Hence by (2.9) and (2.10) there exists

x ′
3 ∈

[

x ′
1 +

(

λ1 − 1

2
α

)

e′
1, x ′

1 + (λ1 + 1

2
α)e′

1

]

⊆ l ′1 (2.11)

with 〈e′⊥
2 , x ′

3〉 = 〈e′⊥
2 , x ′

2〉 so that we can write

x ′
3 = x ′

2 + λ′
2e′

2 (2.12)

for some λ′
2 ∈ R. Since x3 = x1 + λ1e1 and (2.11) imply

‖x ′
3 − x3‖ ≤ ‖x ′

1 − x1‖ + λ1‖e′
1 − e1‖ + 1

2
α‖e′

1‖ ≤ 3

4
α

and x3 = x2 + λ2e2 and (2.12) imply

‖x ′
3 − x3‖ ≥ |λ′

2 − λ2| − ‖x ′
2 − x2‖ − λ2‖e′

2 − e2‖ ≥ |λ′
2 − λ2| − 1

4
α,

we get

|λ′
2 − λ2| ≤ 3

4
α + 1

4
α = α.

It follows that

x ′
3 ∈ [x ′

2 + (λ2 − α)e′
2, x ′

2 + (λ2 + α)e′
2] ⊆ l ′2

since α ≤ λ2 ≤ α2 −α. Therefore x ′
3 ∈ l ′1 ∩ l ′2 with ‖x ′

3 − x3‖ ≤ 3
4α < α as required.
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Corollary 2.4 Suppose i, j ∈ S with i ≺ j and ε > 0.

1. There exists δ1 = δ1(i, j, ε) > 0 such that whenever δ ∈ (0, δ1), x ∈ Wi and
e ∈ S1, there exists a line segment [x ′, x ′ + δe′] ⊆ W j where x ′ ∈ R

2, e′ ∈ S1

with ‖x ′ − x‖ ≤ εδ and ‖e′ − e‖ ≤ ε.
2. There exists δ2 = δ2(i, j, ε) > 0 such that whenever δ ∈ (0, δ2), x ∈ Wi , u ∈

B(x, δ) and e ∈ S1 there exists a line segment [u′, u′ + δe′] ⊆ W j where u′ ∈
R

2, e′ ∈ S1 with ‖u′ − u‖ ≤ εδ and ‖e′ − e‖ ≤ ε.
3. For v1, v2, v3 ∈ R

2 there exists δ3 = δ3(i, j, ε, v1, v2, v3) > 0 such that whenever
δ ∈ (0, δ3) and x ∈ Wi there exist v′

1, v
′
2, v

′
3 ∈ R

2 such that ‖v′
m − vm‖ ≤ ε and

[x + δv′
1, x + δv′

3] ∪ [x + δv′
3, x + δv′

2] ⊆ W j .

4. There exists δ4 = δ4(i, j, ε) > 0 such that whenever δ ∈ (0, δ4), v1, v2, v3 are in
the closed unit ball D2 of R

2 and x ∈ Wi there exist v′
1, v

′
2, v

′
3 ∈ R

2 such that
‖v′

m − vm‖ ≤ ε and

[x + δv′
1, x + δv′

3] ∪ [x + δv′
3, x + δv′

2] ⊆ W j .

Proof 1. We can find a finite collection of unit vectors in the plane

e1, e2, . . . , er ∈ S1

with rational slopes such that S1 ⊆ ⋃
1≤s≤r B(es, ε). Let

δ1 = min
1≤s≤r

δ0(i, j, ε, es),

where δ0 is given by Theorem 2.2. Then for any δ ∈ (0, δ1), x ∈ Wi and e ∈ S1

find es with ‖es − e‖ ≤ ε. As δ < δ0(i, j, ε, es) there exists a line segment
[x ′, x ′ + δes] ⊆ W j with ‖x ′ − x‖ ≤ εδ as required.

2. Pick any k ∈ S with i ≺ k ≺ j . Let

δ2 = min(δ1(i, k, ε/3), δ1(k, j, ε/3)).

Suppose that δ ∈ (0, δ2) and u ∈ B(x, δ). We can write u = x +δ′ f with 0 ≤ δ′ <
δ and f ∈ S1. Then there exists x ′ ∈ R

2, f ′ ∈ S1 such that [x ′, x ′ + δ f ′] ⊆ Wk

with ‖x ′ − x‖ ≤ εδ/3 and ‖ f ′ − f ‖ ≤ ε/3. As x ′ + δ′ f ′ ∈ Wk we can find
u′ ∈ R

2, e′ ∈ S1 such that [u′, u′ + δe′] ⊆ W j with ‖u′ − (x ′ + δ′ f ′)‖ ≤ εδ/3
and ‖e′ − e‖ ≤ ε/3. Then

‖u′ − u‖ ≤ ‖u′ − (x ′ + δ′ f ′)‖ + ‖x ′ − x‖ + δ′‖ f ′ − f ‖ ≤ εδ

as required.
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A compact null set containing a differentiability point 645

3. Without loss of generality, we may assume that v1, v2, v3 are not collinear and
that ‖v1‖, ‖v2‖, ‖v3‖ ≤ 1

4 . Write

v3 = v1 + t1e1 = v2 + t2e2 (2.13)

where 0 < t1, t2 ≤ 1
2 and e1, e2 ∈ S1. As v1, v2, v3 are not collinear, the vectors

e1 and e2 are not parallel so that 〈e⊥
2 , e1〉 �= 0. We may assume ε ≤ t1, t2. Set

δ3 = δ2(i, j, η),

where η = 1
16 |〈e⊥

2 , e1〉|ε. Let δ ∈ (0, δ3). Write

xm = x + δvm (m = 1, 2) (2.14)

and put lm = [xm, xm + 2δtmem]. As ‖xm − x‖ < δ3, by part (2) of this Corollary
we can find x ′

1, x ′
2 ∈ R

2 and e′
1, e′

2 ∈ S1 with ‖x ′
m − xm‖ ≤ ηδ, ‖e′

m − em‖ ≤ η

and [x ′
m, x ′

m + δe′
m] ⊆ W j for m = 1, 2. Then as t1, t2 ≤ 1

2 we have l ′m ⊆ W j

where l ′m = [x ′
m, x ′

m + 2δtme′
m] for m = 1, 2.

Note that (2.13) and (2.14) imply that x + δv3 = xm + δtmem for m = 1, 2.
Therefore x3 = x + δv3 is a point of intersection of l1 and l2. The conditions of
Lemma 2.3 are readily verified with αm = 2δtm and α = εδ so that l ′1, l ′2 intersect
at a point x ′

3 with ‖x ′
3 − x3‖ ≤ εδ. Writing now x ′

m = x + δv′
m for m = 1, 2, 3

we have ‖v′
m − vm‖ ≤ ε, since ‖x ′

m − xm‖ ≤ εδ, and

[x + δv′
1, x + δv′

3] ∪ [x + δv′
3, x + δv′

2] ⊆ W j .

4. Take w1, w2, . . . , wr in D2 with D2 ⊆ ⋃
1≤s≤r B(ws, ε/2). Set

δ4 = min
1≤s1,s2,s3≤r

δ3(i, j, ε/2, ws1 , ws2 , ws3).

This finishes the proof of the corollary.
Let n ≥ 2. For i ∈ S define Mi ⊆ R

n by

Mi = Wi × R
n−2. (2.15)

Let ‖ · ‖ denote the Euclidean norm on R
n . We use [x, y] ⊆ R

n to denote a closed
line segment, where x, y ∈ R

n .

Theorem 2.5 The family of subsets {Mi ⊆ R
n | i ∈ S} satisfies the following three

statements.

(i) If i ∈ S then Mi is non-empty, closed and has measure zero.
(ii) If i, j ∈ S and i � j then Mi ⊆ M j .
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646 M. Doré, O. Maleva

(iii) If i, j ∈ S with i ≺ j and ε > 0, then there exists α = α(i, j, ε) > 0 such
that whenever δ ∈ (0, α), u1, u2, u3 are in the closed unit ball Dn of R

n and
x ∈ Mi , there exist u′

1, u′
2, u′

3 ∈ R
n with ‖u′

m − um‖ ≤ ε and

[x + δu′
1, x + δu′

3] ∪ [x + δu′
3, x + δu′

2] ⊆ M j .

Proof Recall that for each i ∈ S,Wi is a non-empty closed set of measure zero
and that Wi ⊆ W j whenever i � j . Hence (2.15) implies (i) and (ii). For (iii),
let α = δ4(i, j, ε) from Corollary 2.4, part (4) and δ ∈ (0, α). Suppose x ∈ Mi and
um ∈ Dn,m = 1, 2, 3. Write x = (x ′, y′) and um = (vm, hm)with x ′ ∈ Wi , vm ∈ D2

and y′, hm ∈ R
n−2.

By Corollary 2.4, part (4), we can find v′
1, v

′
2, v

′
3 ∈ R

2 with ‖v′
m − vm‖ ≤ ε and

[x ′ + δv′
1, x ′ + δv′

3] ∪ [x ′ + δv′
3, x ′ + δv′

2] ⊆ W j .

Then setting u′
m = (v′

m, hm) we have ‖u′
m − um‖ = ‖v′

m − vm‖ ≤ ε and

[x + δu′
1, x + δu′

3] ∪ [x + δu′
3, x + δu′

2] ⊆ M j .

3 A point with almost locally maximal directional derivative

In this section we work on a general real Hilbert space H , although eventually we
shall only be concerned with the case in which H is finite dimensional. Let denote
the 〈 , 〉 inner product on H, ‖ · ‖ the norm and let S(H) denote the unit sphere of H .
We shall assume that the family {Mi ⊆ H | i ∈ S} consists of closed sets such that
Mi ⊆ M j whenever i � j , where the index set (S,�) is a dense, chain complete
poset.

For a Lipschitz function h : H → R we write Dh for the set of all pairs (x, e) ∈
H × S(H) such that the directional derivative h′(x, e) exists and, for each i ∈ S, we
let Dh

i be the set of all (x, e) ∈ Dh such that x ∈ Mi . If, in addition, h : H → R is
linear then we write ‖h‖ for the operator norm of h.

Theorem 3.1 Suppose f0 : H → R is a Lipschitz function, i0 ∈ S, (x0, e0) ∈
D f0

i0
, δ0, μ, K > 0 and j0 ∈ S with i0 ≺ j0. Then there exists a Lipschitz func-

tion f : H → R such that f − f0 is linear with norm not greater than μ and a pair
(x, e) ∈ D f

i , where ‖x −x0‖ ≤ δ0 and i ∈ (i0, j0), such that the directional derivative
f ′(x, e) > 0 is almost locally maximal in the following sense. For any ε > 0 there
exists δε > 0 and jε ∈ (i, j0) such that whenever (x ′, e′) ∈ D f

jε
satisfies

(i) ‖x ′ − x‖ ≤ δε, f ′(x ′, e′) ≥ f ′(x, e) and
(ii) for any t ∈ R

|( f (x ′ + te)− f (x ′))− ( f (x + te)− f (x))| ≤ K
√

f ′(x ′, e′)− f ′(x, e)|t |,
(3.1)

then we have f ′(x ′, e′) < f ′(x, e)+ ε.
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We devote the rest of this section to proving Theorem 3.1.
Without loss of generality we may assume Lip( f0) ≤ 1/2 and K ≥ 4. By replacing

e0 with −e0 if necessary we may assume f ′
0(x0, e0) ≥ 0.

If h is a Lipschitz function, the pairs (x, e), (x ′, e′) belong to Dh and σ ≥ 0 we
write

(x, e) ≤
(h,σ )

(x ′, e′) (3.2)

if h′(x, e) ≤ h′(x ′, e′) and for all t ∈ R,

|(h(x ′ + te)− h(x ′))− (h(x + te)− h(x))| ≤ K
(
σ + √

h′(x ′, e′)− h′(x, e)
)

|t |.

We shall construct by recursion a sequence of Lipschitz functions fn : H → R,
sets Dn ⊆ D f0 and pairs (xn, en) ∈ Dn such that the directional derivative f ′

n(xn, en)

is within λn of its supremum over Dn , where λn > 0. We shall show that f = lim fn

and (x, e) = lim(xn, en) have the desired properties. The constants δm will be used
to bound ‖xn − xm‖ for n ≥ m whereas σm will bound ‖en − em‖ and tm will control
‖ fn − fm‖ for n ≥ m.

The recursion starts with f0, i0, j0, x0, e0, δ0 defined in the statement of Theo-
rem 3.1. Let σ0 = 2 and t0 = min(1/4, μ/2). For n ≥ 1 we shall pick

fn, σn, tn, λn, Dn, xn, en, εn, in, jn, δn

in that order where

– in, jn ∈ S with in−1 ≺ in ≺ jn ≺ jn−1,
– Dn are non-empty subsets of D f0 ⊆ H × S(H),
– σn, tn, λn, εn, δn > 0,
– fn : H → R are Lipschitz functions,
– (xn, en) ∈ Dn .

Algorithm 3.2 Given n ≥ 1 choose

(1) fn(x) = fn−1(x)+ tn−1〈x, en−1〉,
(2) σn ∈ (0, σn−1/4),
(3) tn ∈ (0,min(tn−1/2, σn−1/4n)),
(4) λn ∈ (0, tnσ 2

n /2),

(5) Dn to be the set of all pairs (x, e) such that (x, e) ∈ D fn
i = D f0

i for some
i ∈ (in−1, jn−1), ‖x − xn−1‖ < δn−1 and

(xn−1, en−1) ≤
( fn ,σn−1−ε)

(x, e)

for some ε ∈ (0, σn−1),
(6) (xn, en) ∈ Dn such that f ′

n(x, e) ≤ f ′
n(xn, en)+ λn for every (x, e) ∈ Dn ,

(7) εn ∈ (0, σn−1) such that (xn−1, en−1) ≤
( fn ,σn−1−εn)

(xn, en),
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(8) in ∈ (in−1, jn−1) such that xn ∈ Min ,
(9) jn ∈ (in, jn−1) and

(10) δn ∈ (0, (δn−1 − ‖xn − xn−1‖)/2) such that for all t with |t | < δn/εn

|( fn(xn + ten)− fn(xn))− ( fn(xn−1 + ten−1)− fn(xn−1))|
≤ ( f ′

n(xn, en)− f ′
n(xn−1, en−1)+ σn−1)|t |. (3.3)

Note that (5) implies that (xn−1, en−1) ∈ Dn , and so Dn �= ∅; further as fn is
Lipschitz we see sup(x,e)∈Dn

f ′
n(x, e) < ∞. Therefore we are able to pick (xn, en) ∈

Dn with the property of (6).
The definition (5) of Dn then implies that εn and in exist with the properties of

(7)–(8). Further, we have ‖xn − xn−1‖ < δn−1 and

f ′
n(xn, en) ≥ f ′

n(xn−1, en−1). (3.4)

These allow us to choose δn as in (10).
Observe that the positive sequences σn, tn, λn, δn, εn all tend to 0: σn ∈ (0, σn−1/4)

by (2), tn ∈ (0, tn−1/2) by (3), λn ∈ (0, tnσ 2
n /2) by (4), δn ∈ (0, δn−1/2) by (10) and

εn ∈ (0, σn−1) by (7). Further from (10),

B(xn, δn) ⊆ B(xn−1, δn−1). (3.5)

Note that (1) and (3) imply fn(x) = f0(x)+ 〈x,∑n−1
k=0 tkek〉 and, as the Lipschitz

constant Lip( f0) ≤ 1
2 , tk+1 ≤ tk/2 and t0 ≤ 1

4 , we deduce that Lip( fn) ≤ 1 for all n.
Let ε′n > 0 be given by

ε′n = min(εn/2, σn−1/4). (3.6)

Lemma 3.3 The following three statements hold.

(i) If n ≥ 1 and (x, e) ∈ Dn+1, then

(xn−1, en−1) ≤
( fn ,σn−1−ε′n)

(x, e).

(ii) If n ≥ 1 then Dn+1 ⊆ Dn.
(iii) If n ≥ 0 and (x, e) ∈ Dn+1, then ‖e − en‖ ≤ σn.

Proof For n = 0, condition (iii) is satisfied as σ0 = 2. Now it is enough to check
that if n ≥ 1 and the condition (iii) is satisfied for n − 1, then conditions (i)–(iii) are
satisfied for n. The Lemma then will follow by induction.

Assume n ≥ 1 and ‖e′ − en−1‖ ≤ σn−1 for all (x ′, e′) ∈ Dn . Then we have

‖en − en−1‖ ≤ σn−1 (3.7)
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as (xn, en) ∈ Dn . Now fix any (x, e) ∈ Dn+1. Using (1) and (5) of Algorithm 3.2 and
〈e, en〉 ≤ 1 we get

A := f ′
n(x, e)− f ′

n(xn, en)

= f ′
n+1(x, e)− tn〈e, en〉 − f ′

n+1(xn, en)+ tn
≥ f ′

n+1(x, e)− f ′
n+1(xn, en) ≥ 0, (3.8)

so that

f ′
n(x, e) ≥ f ′

n(xn, en) ≥ f ′
n(xn−1, en−1)

by (3.4). If we let B = f ′
n(x, e)− f ′

n(xn−1, en−1) we have

K (
√

B − √
A) ≥ B − A = f ′

n(xn, en)− f ′
n(xn−1, en−1),

since K ≥ 4 and 0 ≤ A ≤ B ≤ 2, using Lip( fn) ≤ 1 in the final inequality. Together
with (3.8) this implies that

( f ′
n(xn, en)− f ′

n(xn−1, en−1))+ K
√

f ′
n+1(x, e)− f ′

n+1(xn, en) ≤ K
√

B. (3.9)

In order to prove (i), we need to establish an upper estimate for

|( fn(x + ten−1)− fn(x))− ( fn(xn−1 + ten−1)− fn(xn−1))|. (3.10)

For every |t | < δn/εn , using

|( fn(x + ten)− fn(x))− ( fn(xn + ten)− fn(xn))|
= |( fn+1(x + ten)− fn+1(x))− ( fn+1(xn + ten)− fn+1(xn))|
≤ K

(
σn +

√
f ′
n+1(x, e)− f ′

n+1(xn, en)
)

|t |

and (3.3), we get from (3.9)

|( fn(x + ten−1)− fn(x))− ( fn(xn−1 + ten−1)− fn(xn−1))|
≤ σn−1|t | + K

(
σn + √

f ′
n(x, e)− f ′

n(xn−1, en−1)
)

|t | + ‖en − en−1‖ · |t |.

Using (3.7) and K ≥ 4 we see that the latter does not exceed

K
(
σn−1/2 + σn + √

f ′
n(x, e)− f ′

n(xn−1, en−1)
)

|t |
≤ K

(
σn−1 − ε′n + √

f ′
n(x, e)− f ′

n(xn−1, en−1)
)

|t |

as σn ≤ σn−1/4 by (2) of Algorithm 3.2 and ε′n ≤ σn−1/4 by (3.6).
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Now we consider the case |t | ≥ δn/εn . We have from (7) of Algorithm 3.2 that
(xn−1, en−1) ≤

( fn ,σn−1−εn)
(xn, en). Using this together with

max {| fn(x)− fn(xn)|, | fn(x + ten−1)− fn(xn + ten−1)|}
≤ ‖x − xn‖ ≤ δn ≤ εn|t | ≤ K εn|t |/4

we get

|( fn(x + ten−1)− fn(x))− ( fn(xn−1 + ten−1)− fn(xn−1))|
≤ K

(
σn−1 − εn/2 + √

f ′
n(xn, en)− f ′

n(xn−1, en−1)
)

|t |
≤ K

(
σn−1 − ε′n + √

f ′
n(x, e)− f ′

n(xn−1, en−1)
)

|t |

because f ′
n(xn, en) ≤ f ′

n(x, e) from (3.8). Thus (i) is proved.
Further, for (x, e) ∈ Dn+1 we have x ∈ B(xn, δn) ⊆ B(xn−1, δn−1), using (3.5),

and x ∈ Mi where

i ∈ (in+1, jn+1) ⊆ (in, jn).

Hence (x, e) ∈ Dn follows from (i). This establishes (ii).
Finally to see (iii), let (x, e) ∈ Dn+1 and recall that (5) of Algorithm 3.2 implies

f ′
n+1(xn, en) ≤ f ′

n+1(x, e). By (1) of Algorithm 3.2, this can be written

f ′
n(xn, en)+ tn〈en, en〉 ≤ f ′

n(x, e)+ tn〈e, en〉.

Since (x, e) ∈ Dn by (ii), we have f ′
n(x, e) ≤ f ′

n(xn, en) + λn . Combining the two
inequalities we get tn ≤ tn〈e, en〉 + λn . Hence 〈e, en〉 ≥ 1 − λn/tn so that

‖e − en‖2 = 2 − 2〈e, en〉 ≤ 2λn/tn ≤ σ 2
n

using (4) of Algorithm 3.2.
This completes the proof of the lemma.

We now show that the sequences xn, en and fn converge and establish some prop-
erties of their limits.

Recall first that in−1 ≺ in ≺ jn ≺ jn−1 for all n ≥ 1. The set {in | n ∈ N}
is thus a non-empty chain in S. Therefore, it has a supremum i ∈ S. Further, as
in ∈ (im+1, jm+1) for n ≥ m + 2, we know i ∈ [im+1, jm+1] ⊆ (im, jm) for all m.

Lemma 3.4 We have xm → x, em → e and fm → f where

(i) f : H → R is a Lipschitz function with Lip( f ) ≤ 1,
(ii) f − fm is linear and ‖ f − fm‖ ≤ 2tm for all m,

(iii) x ∈ Mi , ‖x − xm‖ < δm and ‖e − em‖ ≤ σm,
(iv) f ′(x, e) exists, is positive and f ′

m(xm, em) ↗ f ′(x, e),
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A compact null set containing a differentiability point 651

(v) (xm−1, em−1) ≤
( fm ,σm−1−ε′m )

(x, e) and

(vi) (x, e) ∈ Dm for all m.

Proof Letting f (x) = f0(x)+ 〈x,∑k≥0 tkek〉 we deduce fn → f and (i), (ii) from

fn(x) = f0(x)+ 〈x,∑n−1
k=0 tkek〉,Lip( fn) ≤ 1 and tn+1 ≤ tn/2.

For n ≥ m, by parts (ii) and (iii) of Lemma 3.3 we have (xn, en) ∈ Dn+1 ⊆ Dm+1
and ‖en − em‖ ≤ σm . The former implies ‖xn − xm‖ < δm by the definition of
Dm+1. As δm and σm tend to 0, the sequences (xn) and (en) are Cauchy so that they
converge to some x ∈ H and e ∈ S(H) respectively. Taking the n → ∞ limit we
obtain ‖x − xm‖ ≤ δm and ‖e − em‖ ≤ σm . The former implies x ∈ B(xm, δm) ⊆
B(xm−1, δm−1) for all m ≥ 1, using (3.5).

To complete (iii), note that from (8) of Algorithm 3.2 we have xn ∈ Min ⊆ Mi for
all n, as in � i . Now xn → x and Mi is closed so that x ∈ Mi .

We now show that the directional derivative derivative f ′(x, e) exists.
For n ≥ m we have (xn, en) ∈ Dm+1; therefore by part (i) of Lemma 3.3 we know

(xm−1, em−1) ≤
( fm ,σm−1−ε′m )

(xn, en). (3.11)

Now the sequence
(

f ′
n(xn, en)

)
is strictly increasing and is non-negative as f ′

0(x0, e0)≥
0 and f ′

n(xn, en) < f ′
n+1(xn, en) ≤ f ′

n+1(xn+1, en+1). It is bounded above by
Lip( fn) ≤ 1 so that it converges to some L ∈ (0, 1]. As ‖ f − fn‖ → 0 we also
have f ′(xn, en) → L and f ′

n+1(xn, en) → L . Note then that for each fixed m,

f ′
m(xn, en)− f ′

m(xm−1, em−1) −−−→
n→∞ sm,

where

sm = ( fm − f )(e)+ L − f ′
m(xm−1, em−1) −−−−→

m→∞ 0. (3.12)

As f ′
m(xn, en) ≥ f ′

m(xm−1, em−1) from (3.11) we have sm ≥ 0 for each m. Taking
n → ∞ in (3.11) we thus obtain

|( fm(x + tem−1)− fm(x))− ( fm(xm−1 + tem−1)− fm(xm−1))| ≤ rm |t | (3.13)

for any t ∈ R, where

rm = K (σm−1 − ε′m + √
sm) → 0. (3.14)

Using ‖ f − fm‖ ≤ 2tm, ‖e − em−1‖ ≤ σm−1 and Lip( f ) ≤ 1:

|( f (x + te)− f (x))− ( fm(xm−1 + tem−1)− fm(xm−1))| ≤ (rm + 2tm + σm−1)|t |.
(3.15)
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Let ε > 0. Pick m such that

rm + 2tm + σm−1 ≤ ε/3 and | f ′
m(xm−1, em−1)− L| ≤ ε/3 (3.16)

and δ > 0 with

| fm(xm−1 + tem−1)− fm(xm−1)− f ′
m(xm−1, em−1)t | ≤ ε|t |/3 (3.17)

for all t with |t | ≤ δ. Combining (3.15), (3.16) and (3.17) we obtain

| f (x + te)− f (x)− Lt | ≤ ε|t |

if |t | ≤ δ. Hence the directional derivative f ′(x, e) exists and equals L . As L > 0 and
f ′
n(xn, en) is an increasing sequence that tends to L , we get (iv).

Note further that, as fm − f is linear, the directional derivative f ′
m(x, e) also exists

and equals ( fm − f )(e)+ L . Hence from (3.12)

sm = f ′
m(x, e)− f ′

m(xm−1, em−1).

As sm ≥ 0 for all m, we conclude that f ′
m(x, e) ≥ f ′

m(xm−1, em−1) for all m. Further
from (3.13) and (3.14),

|( fm(x + tem−1)− fm(x))− ( fm(xm−1 + tem−1)− fm(xm−1))|
≤ K

(
σm−1 − ε′m + √

f ′
m(x, e)− f ′

m(xm−1, em−1)
)

|t |

for any t . Hence

(xm−1, em−1) ≤
( fm ,σm−1−ε′m )

(x, e).

This establishes (v). Finally (vi) follows immediately from (iii), (iv), (v) and the
fact i ∈ (im, jm).

Proof of Theorem 3.1 From Lemma 3.4 (i)–(ii) the Lipschitz function f : H → R is
such that f − f0 is linear and ‖ f − f0‖ ≤ 2t0 ≤ μ. Recall that i ∈ (im, jm) for all m;
in particular i ∈ (i0, j0). By parts (iii) and (iv) of Lemma 3.4 we see that (x, e) ∈ D f

i
and f ′(x, e) > 0.

We are left needing to verify that the directional derivative f ′(x, e) is almost locally
maximal in the sense of Theorem 3.1.

Lemma 3.5 If ε > 0 then there exists δε > 0 and jε ∈ (i, j0) such that whenever

(x, e) ≤
( f,0)

(x ′, e′)

with ‖x ′ − x‖ ≤ δε and x ′ ∈ M jε , we have f ′(x ′, e′) < f ′(x, e)+ ε.
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Proof Pick n such that

n ≥ 4/
√
ε and λn, tn ≤ ε/4. (3.18)

Let jε = jn ∈ (i, j0). Find δε > 0 such that

δε < δn−1 − ‖x − xn−1‖ (3.19)

and

|( fn(x + te)− fn(x))− ( fn(xn−1 + ten−1)− fn(xn−1))|
≤ ( f ′

n(x, e)− f ′
n(xn−1, en−1)+ σn−1)|t | (3.20)

for all t with |t | < δε/ε
′
n , where ε′n is given by (3.6). Lemma 3.4 (iii) and the fact

that f ′
n(x, e) − f ′

n(xn−1, en−1) ≥ 0 from Lemma 3.4 (v) guarantee the existence of
such δε.

Now suppose that

⎧
⎪⎪⎨

⎪⎪⎩

(x, e) ≤
( f,0)

(x ′, e′),

‖x ′ − x‖ ≤ δε and x ′ ∈ M jε ,

f ′(x ′, e′) ≥ f ′(x, e)+ ε.

(3.21)

We aim to show that (x ′, e′) ∈ Dn . That will lead to a contradiction since, together
with (6) in Algorithm 3.2 and Lemma 3.4 (iv), this would imply

f ′
n(x

′, e′) ≤ f ′
n(xn, en)+ λn ≤ f ′(x, e)+ λn

so that

f ′(x ′, e′) ≤ f ′(x, e)+ λn + 2tn,

by Lemma 3.4 (ii). This contradicts (3.18) and (3.21).
Since (3.19) and (3.21) imply x ′ ∈ B(xn−1, δn−1) and x ′ ∈ M jε with jε = jn ∈

(in−1, jn−1), to prove (x ′, e′) ∈ Dn it is enough to show that

(xn−1, en−1) ≤
( fn ,σn−1−ε′n/2)

(x ′, e′); (3.22)

see (5) in Algorithm 3.2.
First, note that f ′

n(x
′, e′)− f ′

n(x, e) ≥ f ′(x ′, e′)− f ′(x, e)−2‖ fn− f ‖ ≥ ε−4tn ≥
0, so that f ′

n(x
′, e′) ≥ f ′

n(x, e) ≥ f ′
n(xn−1, en−1).

Let A = f ′(x ′, e′)− f ′(x, e) and B = f ′
n(x

′, e′)− f ′
n(x, e). We have A ≥ ε and

B ≥ 0; therefore by (3) of Algorithm 3.2, Lemma 3.4 (ii) and (3.18)

√
A − √

B ≤ A − B√
ε

= ( f − fn)(e′ − e)√
ε

≤ 4tn√
ε

≤ ntn ≤ σn−1/4.
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Further, let C = f ′
n(x

′, e′) − f ′
n(xn−1, en−1). Since f ′

n(xn−1, en−1) ≤ f ′
n(x, e) and

the Lipschitz constant Lip( fn) does not exceed 1, we have 0 ≤ B ≤ C ≤ 2, so that

K
√

C − K
√

B ≥ C − B = f ′
n(x, e)− f ′

n(xn−1, en−1)

as K ≥ 4. Hence

( f ′
n(x, e)− f ′

n(xn−1, en−1))+ K
√

f ′(x ′, e′)− f ′(x, e)

≤ K
√

C − K
√

B + K (
√

B + σn−1/4)

= K (
√

f ′
n(x

′, e′)− f ′
n(xn−1, en−1)+ σn−1/4). (3.23)

In order to check (3.22), we need to obtain an upper estimate for

|( fn(x
′ + ten−1)− fn(x

′))− ( fn(xn−1 + ten−1)− fn(xn−1))|. (3.24)

If |t | < δε/ε
′
n , we can use

|( fn(x
′ + te)− fn(x

′))− ( fn(x + te)− fn(x))|
= |( f (x ′ + te)− f (x ′))− ( f (x + te)− f (x))| ≤ K

√
f ′(x ′, e′)− f ′(x, e)|t |

and (3.20) to deduce that (3.24) is no greater than

( f ′
n(x, e)− f ′

n(xn−1, en−1)+ σn−1)|t |
+ K

√
f ′(x ′, e′)− f ′(x, e)|t | + ‖e − en−1‖ · |t |

since Lip( fn) ≤ 1. Using (3.23), ‖e − en−1‖ ≤ σn−1, ε
′
n ≤ σn−1/4 and K ≥ 4 we

get that the latter does not exceed

K
(
σn−1 − ε′n/2 + √

f ′
n(x

′, e′)− f ′
n(xn−1, en−1)

)
|t |.

On the other hand, for |t | ≥ δε/ε
′
n we have 2‖x − x ′‖ ≤ 2ε′n|t | ≤ K ε′n|t |/2 so, using

this together with Lemma 3.4 (v), Lip( fn) ≤ 1 and f ′
n(x, e) ≤ f ′

n(x
′, e′), we get

|( fn(x
′ + ten−1)− fn(x

′))− ( fn(xn−1 + ten−1)− fn(xn−1))|
≤ 2‖x ′ − x‖ + K

(
σn−1 − ε′n + √

f ′
n(x, e)− f ′

n(xn−1, en−1)
)

|t |
≤ K

(
σn−1 − ε′n/2 + √

f ′
n(x

′, e′)− f ′
n(xn−1, en−1)

)
|t |.

Hence

(xn−1, en−1) ≤
( fn ,σn−1−ε′n/2)

(x ′, e′)

and we are done.

This finishes the proof of Theorem 3.1.

123



A compact null set containing a differentiability point 655

4 A differentiability lemma

As in the previous section, we shall mostly work on a real Hilbert space H , though our
eventual application will only use the case in which H is finite dimensional. Lemma 4.2
is proved in general real Banach space X . Given x, y in a linear space we use [x, y]
to denote the closed line segment with endpoints x and y.

We start by quoting Lemma 4.1, which is [8, Lemma 3.4]. This lemma can be
understood as an improvement of the standard mean value theorem applied to the
function

h(t) = ϕ(t)− t
ψ(s)− ψ(−s)

2s
− ψ(s)+ ψ(−s)

2
.

Roughly speaking, this “generalised” mean value theorem says that if h(s) = h(−s) =
0 and h(ξ) �= 0 then there is a point τ ∈ [−s, s] such that the derivative h′(τ ) is
bounded away from zero by a term proportional to |h(ξ)|/s and (4.1) holds. The latter
inequality essentially comes from the upper bound for the slope |h(τ + t)− h(τ )|/|t |
by (Mh′)(τ ), where M is the Hardy-Littlewood maximal operator.

We use this statement in order to show in Lemmas 4.2 and 4.3 that if f ′(x, e) exists
and is maximal up to ε among all directional derivatives of f satisfying (4.21), at
points in a δε-neighbourhood of x , then f is Fréchet differentiable at x . Lemma 4.2,
which follows from Lemma 4.1, guarantees that if there is a direction u in which
f (x + ru) − f (x) is not well approximated by f ′(x, e)〈u, e〉 then we can find a
nearby point and direction (x ′, e′), satisfying the constraint (4.21), at which the direc-
tional derivative f ′(x ′, e′) is at least as large as f ′(x, e)+ ε, a contradiction.

Lemma 4.1 Suppose that |ξ | < s < ρ, 0 < ν < 1
32 , σ > 0 and L > 0 are real

numbers and that ϕ and ψ are Lipschitz functions defined on the real line such that
Lip(ϕ)+Lip(ψ) ≤ L , ϕ(t) = ψ(t) for |t | ≥ s and ϕ(ξ) �= ψ(ξ). Suppose, moreover,
that ψ ′(0) exists and that

|ψ(t)− ψ(0)− tψ ′(0)| ≤ σ L|t |

whenever |t | ≤ ρ,

ρ ≥ s
√
(sL)/(ν|ϕ(ξ)− ψ(ξ)|),

and

σ ≤ ν3
(
ϕ(ξ)− ψ(ξ)

sL

)2

.

Then there is a τ ∈ (−s, s) \ {ξ} such that ϕ′(τ ) exists,

ϕ′(τ ) ≥ ψ ′(0)+ ν|ϕ(ξ)− ψ(ξ)|/s,
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and

|(ϕ(τ + t)− ϕ(τ))− (ψ(t)− ψ(0))| ≤ 4(1 + 20ν)
√[ϕ′(τ )− ψ ′(0)]L|t | (4.1)

for every t ∈ R.

Lemma 4.2 Let (X, ‖ · ‖) be a real Banach space, f : X → R be a Lipschitz function
with Lipschitz constant Lip( f ) > 0 and let ε ∈ (0,Lip( f )/9). Suppose x ∈ X, e ∈
S(X) and s > 0 are such that the directional derivative f ′(x, e) exists, is non-negative
and

| f (x + te)− f (x)− f ′(x, e)t | ≤ ε2

160Lip( f )
|t | (4.2)

for |t | ≤ s
√

2Lip( f )
ε

. Suppose further ξ ∈ (−s/2, s/2) and λ ∈ X satisfy

| f (x + λ)− f (x + ξe)| ≥ 240εs, (4.3)

‖λ− ξe‖ ≤ s
√

ε

Lip( f )
(4.4)

and
‖πse + λ‖
|πs + ξ | ≤ 1 + ε

4Lip( f )
(4.5)

for π = ±1. Then if s1, s2, λ
′ ∈ X are such that

max(‖s1 − se‖, ‖s2 − se‖) ≤ ε2

320Lip( f )2
s (4.6)

and

‖λ′ − λ‖ ≤ εs

16Lip( f )
, (4.7)

we can find x ′ ∈ [x − s1, x + λ′] ∪ [x + λ′, x + s2] and e′ ∈ S(X) such that the
directional derivative f ′(x ′, e′) exists,

f ′(x ′, e′) ≥ f ′(x, e)+ ε (4.8)

and for all t ∈ R we have

|( f (x ′ + te)− f (x ′))− ( f (x + te)− f (x))| (4.9)

≤ 25
√
( f ′(x ′, e′)− f ′(x, e))Lip( f )|t |.

Proof Define constants L = 4Lip( f ), ν = 1
80 , σ = ε2

20L2 and ρ = s
√

L
2ε . Let

ψ(t) = f (h(t)) and ϕ(t) = f (g(t)), (4.10)
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where h : R → X is a mapping that is affine on each of the intervals (−∞,−s/2] and
[s/2,∞) with h(t) = x + te for t ∈ [−s/2, s/2] and h(−s) = x − s1, h(s) = x + s2
while g : R → X is a mapping that is affine on [−s, ξ ] and on [ξ, s] with g(ξ) = x +λ′
and g(t) = h(t) for |t | ≥ s.

A simple calculation shows that (4.6) implies

‖h′(t)− e‖ ≤ 2
max(‖s1 − se‖, ‖s2 − se‖)

s
≤ ε2

160Lip( f )2
(4.11)

for t ∈ R \ {−s/2, s/2}.
Now the derivative of g is given by

g′(t) =
{
(λ′ + s1)/(ξ + s) for t ∈ (−s, ξ),
(λ′ − s2)/(ξ − s) for t ∈ (ξ, s).

(4.12)

For t ∈ (−s, ξ),

∥
∥
∥
∥g′(t)− λ+ se

ξ + s

∥
∥
∥
∥ ≤ 2

‖λ′ − λ‖ + ‖s1 − se‖
s

≤ ε

8Lip( f )
+ ε2

160Lip( f )2
≤ ε

4Lip( f )

using |ξ | < s/2, (4.6), (4.7) and ε ≤ Lip( f ). Hence

‖g′(t)‖ ≤ 1 + ε

2Lip( f )
(4.13)

and

‖g′(t)− e‖ ≤ 3
√

ε

Lip( f )
. (4.14)

The former follows from (4.5) and the latter from

∥
∥
∥
∥
λ+ se

ξ + s
− e

∥
∥
∥
∥ =

∥
∥
∥
∥
λ− ξe

ξ + s

∥
∥
∥
∥ ≤ 2

‖λ− ξe‖
s

≤ 2
√

ε

Lip( f )
,

using (4.4) and |ξ | < s/2. A similar calculation shows that (4.13) and (4.14) hold for
t ∈ (ξ, s) too. Finally, these bounds are also true for |t | > s by (4.11), since then
g′(t) = h′(t).

We now prove that ξ, s, ρ, ν, σ, L , ϕ, ψ satisfy the conditions of Lemma 4.1.
We clearly have |ξ | < s < ρ, 0 < ν < 1

32 , σ > 0 and L > 0. From (4.11) and
(4.13) we have Lip(h) ≤ 2 and Lip(g) ≤ 2. Hence, by (4.10), Lip(ϕ) + Lip(ψ) ≤
4Lip( f ) = L . Further, if |t | ≥ s then g(t) = h(t) so that ϕ(t) = ψ(t).

Now as ξ ∈ (−s/2, s/2),
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|ϕ(ξ)− ψ(ξ)| = | f (x + λ′)− f (x + ξe)|
≥ | f (x + λ)− f (x + ξe)| − Lip( f )‖λ− λ′‖
≥ 240εs − εs

16
≥ 160εs (4.15)

by (4.3). Hence ϕ(ξ) �= ψ(ξ).
From (4.10) and the definition of h, we see that the derivative ψ ′(0) exists and

equals f ′(x, e). For |t | ≤ ρ = s
√

L
2ε , we have from (4.2)

| f (x + te)− f (x)− f ′(x, e)t | ≤ ε2

160Lip( f )
|t |,

so that, together with (4.11),

|ψ(t)− ψ(0)− tψ ′(0)| = | f (h(t))− f (x)− f ′(x, e)t |
≤ | f (x + te)− f (x)− f ′(x, e)t | + Lip( f )‖h(t)− x − te‖
≤ ε2

160Lip( f )
|t | + ε2

160Lip( f )
|t | = σ L|t |.

Finally, using (4.15),

s

√
sL

ν|ϕ(ξ)− ψ(ξ)| ≤ s

√
sL

1
80 (160εs)

= ρ,

ν3
( |ϕ(ξ)− ψ(ξ)|

sL

)2

≥ 1

803

(
160εs

sL

)2

= σ.

Therefore, by Lemma 4.1, there exists τ ∈ (−s, s) \ {ξ} such that ϕ′(τ ) exists and

ϕ′(τ ) ≥ ψ ′(0)+ ν|ϕ(ξ)− ψ(ξ)|/s ≥ f ′(x, e)+ 2ε > 0 (4.16)

using (4.15) and ψ ′(0) = f ′(x, e) ≥ 0. Further, by (4.1)

|(ϕ(τ + t)− ϕ(τ))− (ψ(t)− ψ(0))| ≤ 5
√
(ϕ′(τ )− f ′(x, e))L|t | (4.17)

for every t ∈ R.
From (4.14) and ε < Lip( f )/9 we have g′(t) �= 0 for any t ∈ (−s, s) \ {ξ}. Define

x ′ = g(τ ) and e′ = g′(τ )/‖g′(τ )‖. (4.18)

The point x ′ belongs to

g((−s, s) \ {ξ}) = (x − s1, x + λ′) ∪ (x + λ′, x + s2).
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Further, since the function ϕ is differentiable at τ , the directional derivative f ′(x ′, e′)
exists and equals ϕ′(τ )/‖g′(τ )‖. Now by (4.13), (4.16) and Lip(ϕ) ≤ 2Lip( f ) we
have

‖g′(τ )‖ ≤ 2ϕ′(τ )
ϕ′(τ )+ f ′(x, e)

,

so that

f ′(x ′, e′)− f ′(x, e) ≥ ϕ′(τ )− f ′(x, e)

2
. (4.19)

Hence (4.8) follows from (4.16).
Together with L = 4Lip( f ) and the definitions of ϕ,ψ, x ′, the inequalities (4.17)

and (4.19) give

|( f (g(τ + t))− f (x ′)− ( f (h(t))− f (x))|
≤ 20

√
( f ′(x ′, e′)− f ′(x, e))Lip( f )|t |. (4.20)

Using (4.11), (4.14) and ε ≤ Lip( f ) we obtain

‖g(τ + t)− g(τ )− te‖ ≤ 3
√

ε

Lip( f )
|t |,

‖h(t)− h(0)− te‖ ≤
√

ε

Lip( f )
|t |

for all t . Using g(τ ) = x ′, h(0) = x and the Lipschitz property of f ,

| f (g(τ + t))− f (x ′ + te)| ≤ 3
√
εLip( f )|t |,

| f (h(t))− f (x + te)| ≤ √
εLip( f )|t |

for all t .
Putting these together with (4.20) we get

|( f (x ′ + te)− f (x ′)− ( f (x + te)− f (x))|
≤ 20

√
( f ′(x ′, e′)− f ′(x, e))Lip( f )|t | + 3

√
εLip( f )|t | + √

εLip( f )|t |
≤ 25

√
( f ′(x ′, e′)− f ′(x, e))Lip( f )|t |

as ε ≤ f ′(x ′, e′)− f ′(x, e). This is (4.9). We are done.

Lemma 4.3 (Differentiability Lemma) Let H be a real Hilbert space, f : H → R be
a Lipschitz function and (x, e) ∈ H × S(H) be such that the directional derivative
f ′(x, e) exists and is non-negative. Suppose that there is a family of sets {Fε ⊆ H |
ε > 0} such that
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(1) whenever ε, η > 0 there exists δ∗ = δ∗(ε, η) > 0 such that for any δ ∈ (0, δ∗) and
u1, u2, u3 in the closed unit ball of H, one can find u′

1, u′
2, u′

3 with ‖u′
m −um‖ ≤ η

and

[x + δu′
1, x + δu′

3] ∪ [x + δu′
3, x + δu′

2] ⊆ Fε,

(2) whenever (x ′, e′) ∈ Fε × S(H) is such that the directional derivative f ′(x ′, e′)
exists, f ′(x ′, e′) ≥ f ′(x, e) and

|( f (x ′ + te)− f (x ′))− ( f (x + te)− f (x))|
≤ 25

√
( f ′(x ′, e′)− f ′(x, e))Lip( f )|t | (4.21)

for every t ∈ R then

f ′(x ′, e′) < f ′(x, e)+ ε. (4.22)

Then f is Fréchet differentiable at x and its derivative f ′(x) is given by the formula

f ′(x)(h) = f ′(x, e)〈h, e〉 (4.23)

for h ∈ H.

Proof We may assume Lip( f ) = 1. Let ε ∈ (0, 1/9). It is enough to show there exists
� > 0 such that

| f (x + ru)− f (x)− f ′(x, e)〈u, e〉r | < 1000ε1/2r (4.24)

for any u ∈ S(H) and r ∈ (0,�).
We know that the directional derivative f ′(x, e) exists so that there exists � > 0

such that

| f (x + te)− f (x)− f ′(x, e)t | < ε2

160
|t | (4.25)

whenever |t | < 8�/ε. We may pick � < δ∗(ε, ε2/320)ε1/2/4.
Assume now, for a contradiction, that there exist r ∈ (0,�) and u ∈ S(H) such

that the inequality (4.24) does not hold:

| f (x + ru)− f (x)− f ′(x, e)〈u, e〉r | ≥ 1000ε1/2r. (4.26)

Define u1 = −e, u2 = e, u3 = ε1/2u/4, s = 4ε−1/2r, ξ = 〈u, e〉r and λ = ru.
From ‖um‖ ≤ 1, condition (1) of the present Lemma and

s < 4ε−1/2� < δ∗(ε, ε2/320),
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there exist u′
1, u′

2, u′
3 with ‖u′

m − um‖ ≤ ε2/320 and

[x − s1, x + λ′] ∪ [x + λ′, x + s2] ⊆ Fε, (4.27)

where s1 = −su′
1, s2 = su′

2 and λ′ = su′
3.

We check that the assumptions of Lemma 4.2 hold for f, ε, x, e, s, ξ, λ, s1, s2, λ
′

in the Banach space X = H . First we note (4.2) is immediate from (4.25) as s
√

2/ε <
8r/ε < 8�/ε. We also have |ξ | ≤ r < s/2 as ε < 1. Further |ξ | ≤ r < 8�/ε so that
we may apply (4.25) with t = ξ . Combining this inequality with (4.26) we obtain

| f (x + ru)− f (x + ξe)| ≥ 1000ε1/2r − ε2

160
|ξ | > 960ε1/2r = 240εs.

Hence (4.3). As ‖λ− ξe‖ = r‖u − 〈u, e〉e‖ ≤ r ≤ s
√
ε we deduce (4.4).

Now observe that for π = ±1,

πse + λ

πs + ξ
= e + r

πs + ξ
(u − 〈u, e〉e)

and, as the vectors e and u − 〈u, e〉e are orthogonal and ‖πs + ξ‖ ≥ s/2, we obtain

∥
∥
∥
∥
πse + λ

πs + ξ

∥
∥
∥
∥ ≤ 1 + 1

2

r2

(s/2)2
= 1 + ε

8
.

This proves (4.5).
Since ‖u′

m − um‖ ≤ ε2/320, (4.6) follows from the definitions of u1, u2, s1, s2.
Further as λ′ = su′

3 and λ = ru = su3 we have ‖λ′ −λ‖ ≤ sε2/320 ≤ εs/16. Hence
(4.7).

Therefore by Lemma 4.2 there exists x ′ ∈ [x − s1, x + λ′] ∪ [x + λ′, x + s2] and
e′ ∈ S(H) such that f ′(x ′, e′) exists, is at least f ′(x, e)+ ε and such that (4.9) holds.
But x ′ ∈ Fε by (4.27). This contradicts condition (2) of the present Lemma. Hence
the result.

5 Proof of main result

Let n ≥ 2 and Mi ⊆ R
n (i ∈ S) be given by (2.15).

Recall that, by Theorem 2.5 (i)–(ii), the sets Mi are closed, have Lebesgue measure
zero and Mi ⊆ M j if i � j . Here (S,�) is a non-empty, chain complete poset that is
dense and has no minimal elements, by Lemma 2.1.

The following theorem shows that if g : R
n → R is Lipschitz the points of differ-

entiability of g are dense in the set

M =
⋃

i∈S
i≺(1,1,1,... )

Mi .
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Theorem 5.1 If k, l ∈ S with k ≺ l and y ∈ Mk, d > 0 then for any Lipschitz func-
tion g : R

n → R there exists a point x of Fréchet differentiability of g with x ∈ Ml

and ‖x − y‖ ≤ d.

Proof We may assume Lip(g) > 0. Let H be the Hilbert space R
n . As in Sect. 3, for

a Lipschitz function h : R
n → R and i ∈ S we let Dh

i be the set of pairs (x, e) ∈
Mi × Sn−1 such that the directional derivative h′(x, e) exists.

Take i0 ∈ (k, l) and j0 = l. By Theorem 2.5 (iii) we can find a line segment
� ⊆ Mi0 ∩ B(y, d/2) of positive length. The directional derivative of g in the direc-
tion of � exists for almost every point on �, by Lebesgue’s theorem, so that we can pick
a pair (x0, e0) ∈ Dg

i0
with ‖x0 − y‖ ≤ d/2. Set f0 = g, K = 25

√
2Lip(g), δ0 = d/2

and μ = Lip(g).
Let the Lipschitz function f , the pair (x, e), the element of the index set i ∈ (i0, l)

and, for each ε > 0, the positive number δε and the index jε ∈ (i, l) be given
by the conclusion of Theorem 3.1. We verify the conditions of the Differentiability
Lemma 4.3 hold for the function f : R

n → R, the pair (x, e) ∈ D f
i and the family of

sets {Fε ⊆ R
n | ε > 0} where

Fε = M jε ∩ B(x, δε).

We know from Theorem 3.1 that the derivative f ′(x, e) exists and is non-negative.
To verify condition (1) of Lemma 4.3, we may take ε > 0, η ∈ (0, 1) and put

δ∗ = min(α(i, jε, η), δε/2),

where α(i, jε, η) is given by Theorem 2.5 (iii), noting δ(1 + η) < 2δ∗ ≤ δε for every
δ ∈ (0, δ∗). Condition (2) of Lemma 4.3 is immediate from the definition of Fε and
Eq. (3.1) as Lip( f ) ≤ Lip(g)+ μ = 2Lip(g) so that 25

√
Lip( f ) ≤ K .

Therefore, by Lemma 4.3 the function f is differentiable at x . So too, therefore, is
g as g − f is linear. Finally, note that x ∈ Mi ⊆ Ml and

‖x − y‖ ≤ ‖x − x0‖ + ‖x0 − y‖ ≤ δ0 + d/2 = d.

Corollary 5.2 If n ≥ 2 there exists a compact subset S ⊆ R
n of measure 0 that

contains a point of Fréchet differentiability of every Lipschitz function g : R
n → R.

Proof Let l ∈ S. As l is not minimal we can find k ≺ l. Now Mk �= ∅ so that we
may pick y ∈ Mk . Let S = Ml ∩ B(y, d) where d > 0. We know S is closed and
has measure zero. As it is bounded it is also compact. If g : R

n → R is Lipschitz
then by Theorem 5.1 we can find a point x of differentiability of g with x ∈ Ml and
‖x − y‖ ≤ d, so that x ∈ S.
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13. Zajíček, L.: Small non-σ -porous sets in topologically complete metric spaces. Colloquium Mathem-

aticum 77(2), 293–304 (1998)
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