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UNAVOIDABLE SIGMA-POROUS SETS

OLGA MALEVA

Abstract

We prove that every separable metric space which admits an �1-tree as a Lipschitz quotient has a σ-porous
subset which contains every Lipschitz curve up to a set of one-dimensional Hausdorff measure zero. This applies
to any Banach space containing �1. We also obtain an infinite-dimensional counterexample to the Fubini theorem
for the σ-ideal of σ-porous sets.

1. Introduction

1.1. Overview

In the present paper, we are concerned with the question whether porous sets (for definition,
see Subsection 1.2), in a metric space X, are small on Lipschitz curves.

Our interest stems from the discovery in [10] that the problem of describing Banach spaces,
where porous sets are null on many (infinite-dimensional) surfaces, is intimately related to the
well-known problem of existence of common points of Fréchet differentiability of (countably
many) real-valued Lipschitz functions on Banach spaces. This relation has been refined
by J. Lindenstrauss, D. Preiss and J. Tǐser (book in preparation) who show that the problem,
in which spaces porous sets are null on many n-dimensional surfaces, is closely connected to the
problem of existence of many common points of Fréchet differentiability of exactly n Lipschitz
functions. In particular, for n = 1, it is shown in loc. cit. that in every Banach space with
separable dual porous sets are null on residually many C1 curves, and this is related to the
known result [9, 11] that real-valued Lipschitz functions on such spaces have (many) points of
Fréchet differentiability.

However, what happens if the dual X∗ is not separable? On every separable Banach space
with non-separable dual, there is a nowhere Fréchet differentiable Lipschitz function (moreover,
a nowhere Fréchet differentiable equivalent norm; see [2, Proposition 4.12]). It is then natural
to conjecture that Banach spaces, in which porous sets are negligible on curves, necessarily have
separable duals. This conjecture is supported by a result of J. Lindenstrauss, D. Preiss and
J. Tǐser (book in preparation) who show that the space �1 contains a σ-porous subset whose
complement is null on all curves. This is achieved by using a variant of rather complicated
examples [12] of badly non-differentiable Lipschitz functions.

In the present paper, we describe a σ-porous subset S, the complement of which is null on all
Lipschitz curves, in any Banach space containing �1. We refer to such sets S as ‘unavoidable’.
Interestingly, our method of construction of these sets is not related to differentiability. Instead,
we recall that every Banach space containing �1 admits an �1-tree as a Lipschitz quotient ([7];
see Subsections 1.3 and 1.4 for definitions). We notice that, since �1-trees do not contain many
curves, it is relatively easy to construct porous subsets of an �1-tree that are large on curves.
The next idea is to observe that the preimage of a porous set under a Lipschitz quotient
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mapping is porous. However, this pullback by a Lipschitz quotient mapping does not preserve
smallness on curves (a curve may be a preimage of one point). Therefore, we have to make
suitable modifications to the preimage of a σ-porous subset of an �1-tree. In spite of this, our
method is considerably simpler than that of J. Lindenstrauss, D. Preiss and J. Tǐser, and has
the advantage that it works even in metric spaces admitting an �1-tree as a Lipschitz quotient,
where the differentiability approach does not seem to be at all possible.

Our construction does not cover separable Banach spaces with non-separable duals which do
not admit an �1-tree as a Lipschitz quotient. This leads to two open problems: whether such
spaces exist at all (candidates must be separable spaces with non-separable duals which do not
contain �1), and if yes, do they still contain unavoidable σ-porous sets.

1.2. σ-porous sets

Let us recall the notion of porosity. Let (X, d) be a metric space. A set A ⊂ X is called
porous if there is a number λ > 0 with the following property. For every x ∈ A and for each
r > 0, there exist z ∈ X and ρ � r such that ρ > λd(x, z) and B(z, ρ) ∩ A = ∅. A countable
union of porous sets is called σ-porous.

The notion of σ-porosity was introduced by Dolzhenko [3], and since then it has been studied
and used by many authors.

Porous sets are nowhere dense, and hence σ-porous sets are of first category. The Lebesgue
density theorem implies that every σ-porous subset of a finite-dimensional space is of Lebesgue
measure zero.

Further information on porous sets can be found in survey paper [15].

1.3. Lipschitz quotient mappings

A mapping f : X → Y between metric spaces X, Y is called Lipschitz quotient if there exist
constants 0 < c � L < ∞ such that

B(f(x), cr) ⊂ fB(x, r) ⊂ B(f(x), Lr)

for all x ∈ X and r > 0. The biggest possible constant c is called the co-Lipschitz constant of
f , and the smallest possible L is called the Lipschitz constant of f .

The notions of co-uniform and co-Lipschitz mappings were introduced in several texts (for
example, [5, 6, 14]) but were first systematically studied in [1].

1.4. �1-trees

A complete metric space (T, d) is called a metric tree (an R tree in the terminology of [4])
if for any two points x, y in T the interval 〈x, y〉 = {z ∈ T : d(x, z) + d(z, y) = d(x, y)} in T is
isometric to [0, d(x, y)], and any injective continuous path in T which starts at x and ends at
y coincides with 〈x, y〉. In this case, any continuous path in T between x and y contains 〈x, y〉.

An example of a metric tree, which is important for us, is an �1-tree defined in [7].
In order to introduce �1-trees, we first define the �1-union of metric spaces. Suppose that

(Y, dY ) and (Z, dZ) are two metric spaces that intersect at a single point p. The �1 union
Y ∪1 Z of Y and Z is (Y ∪ Z, d), where the metric d agrees with dY on Y × Y , d agrees with
dZ on Z × Z, and if y ∈ Y , z ∈ Z, then d(y, z) is defined to be equal to dY (y, p) + dZ(p, z).

We refer to an image I of an isometric embedding i : [0, +∞) → T as a closed ray and to
p = i(0) as its endpoint.

Now, an �1-tree is defined by the following construction. Let I1 be a closed ray and define
T1 = I1. Having defined Tn, let In+1 be a closed ray; the intersection of the ray with Tn is
the endpoint pn+1 of In+1; put Tn+1 = Tn ∪1 In+1. The completion, T , of

⋃∞
n=1 Tn is called

an �1-tree if the set P = {pn}n�1 of all nodal points is dense in T . We say that (In, Tn)n�1
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describe an allowed construction of T . (There are always many different allowed constructions
of a given �1-tree.) We denote the distance in T by distT (·, ·).

We reiterate that any �1-tree is a metric tree; this is proved in [7, Proposition 4.1].

1.5. Summary of main results

In this paper we prove (Theorem 4.6) that every separable metric space X which admits a
Lipschitz quotient mapping onto an �1-tree, contains a σ-porous set S ⊂ X such that for every
Lipschitz curve γ : [0, 1] → X, the one-dimensional Hausdorff measure of γ([0, 1]) \ S is zero.

When X is a Cartesian product of a separable metric space Y which admits a Lipschitz
quotient mapping onto an �1-tree and a real line R, the σ-porous set S given by Theorem 4.6
is a new counterexample to the Fubini theorem for σ-porous sets in Banach spaces. We explain
this counterexample in Section 6.

Acknowledgements. The author thanks David Preiss for many valuable and inspiring
comments on the subject and Bill Johnson for fruitful discussions.

2. Properties of �1-trees

In this section, we discuss some general properties of an �1-tree which will be used in our
construction later.

Assume that (In, Tn)n�1 describe an allowed construction of T . Recall that P denotes the
set of all nodes in T .

For every n and r > 0, let us denote by pn ⊕ r the unique point of the ray In defined by the
condition distT (pn, pn ⊕ r) = r.

For any point q ∈ T , we define the set A(q) of ancestors of q as follows:

A(q) = {pk ∈ 〈p1, q〉 ∩ P : there exists ε = ε(pk) > 0 such that pk ⊕ r ∈ 〈p1, q〉 for all 0 < r < ε}

(for the definition of the interval 〈x, y〉, see Subsection 1.4). If q ∈ Ik \ {pk}, we say that pk is
a parent of q. It is an immediate consequence of the definition of an �1-union that the parent
of q is one of its ancestors. Some further properties of the set of ancestors are listed in the
following lemma.

Lemma 2.1. Assume that T is an �1-tree and (In, Tn)n�1 describes an allowed construction
of T .

(1) If a point q belongs to one of the rays of T , then the set A(q) of ancestors of q is finite and
is equal to {q(i)}i=0,...,N−1, where q(i−1) is the parent of q(i) for every 1 � i � N , N = #A(q),
q(0) = p1 and q(N) = q. Moreover,

〈p1, q〉 =
⋃

1�i�N

〈q(i−1), q(i)〉. (2.1)

(2) For any q ∈ T and two distinct ancestors pk, pk′ of q, either pk ∈ A(pk′) or pk′ ∈ A(pk).
(3) For any q ∈ T , the set A(q) of its ancestors can be represented as {p1 =

q(0), q(1), q(2), . . . }, where q(i) are such that A(q(i)) = {q(0), . . . , q(i−1)} for all 0 � i < #A(q).
Moreover, for q ∈ T \

⋃
k�1 Ik,

〈p1, q〉 = {q} ∪
⋃
i�1

〈q(i−1), q(i)〉 (2.2)

and q(i) → q as i → ∞.
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Proof. (1) Assume that q ∈ Ik \ {pk}, and let us prove this statement by induction on k. If
k = 1, then the statement clearly holds; in this case, N = 1 and A(q) = {p1}.

Assume that the statement holds for all points in
⋃

j<k Ij , in particular, for the parent
pk of q. Since pk is an ancestor of q and 〈p1, q〉 = 〈p1, pk〉 ∪ 〈pk, q〉, we get by the induction
hypothesis that equality (2.1) holds (where the endpoints of the intervals on the right-hand
side are the ancestors of pk, the point pk = q(N−1) itself and the point q(N) = q).

In order to finish the proof of the first part of the lemma, it is enough to show that A(q) =
{pk} ∪ A(pk). It is obvious that A(q) contains {pk} ∪ A(pk). Let us show that every ancestor
of q other than pk is an ancestor of pk.

Let ps ∈ A(q) \ {pk}, then by (2.1) the node ps belongs to 〈q(i−1), q(i)〉 for some i � N . If
i < N , then by the induction hypothesis ps must be an ancestor of pk. If i = N and ps is an
internal node in the interval 〈pk, q〉, then the point ps ⊕ ε belongs to the ray Is for any ε > 0.
Since s > k, ps ⊕ ε �∈ 〈p1, q〉, a contradiction.

(2) Assume that pk, pk′ ∈ A(q). Let φ : [0, 1] → T be an injective continuous path in T
connecting p1 and q. Assume that t, t′ ∈ (0, 1) are such that φ(t) = pk and φ(t′) = pk′ . Without
loss of generality assume that t < t′. Then pk ∈ 〈p1, pk′〉.

Let ε > 0 be such that pk ⊕ r ∈ 〈p1, q〉 for all 0 < r < ε. Then for r < min{ε, distT (pk, pk′)}
the point pk ⊕ r cannot belong to 〈pk′ , q〉, and thus belongs to 〈p1, pk′〉. This implies that
pk ∈ A(pk′).

(3) If q belongs to one of the rays of T , then the statement follows from the first two parts
of this lemma.

Assume that q ∈ T \
⋃

n�1 In. Note that any �1-tree may be isometrically embedded into
the space �1. Such an embedding is described in the proof of [7, Corollary 2.1]: let {en}n�1
be the standard basis of �1. Let M map I1 isometrically to a ray R

+e1. If the mapping M is
defined on Tn, then we extend M to Tn+1 by mapping the closed ray In+1 isometrically to
M(pn+1) + R

+en+1. Finally, M is uniquely extended from
⋃

n�1 Tn to
⋃

n�1 Tn = T . Assume
now that M(q) = (xi)i�1 and {i1 < i2 < · · · } = {i : xi �= 0}. Let q(k) = M−1(

∑
1�i<ik

xiei).
Then for each k, the point q(k) is an ancestor of q, q(k) → q and (2.2) holds. By part (1),
#A(q(k)) = k.

We now show that the set of ancestors of q does not contain any nodes except q(k). By part
(2), there could not be two distinct ancestors p, p′ of q such that #A(p) = #A(p′). Therefore
if p ∈ A(q), then p = q(#A(p)).

For any point q which belongs to one of the rays of T , we refer to #A(q) as the level of q.

Lemma 2.2. Let T be an �1-tree, and let p �= q be two points in T . Let p(i) be the ancestors
of p and let q(i) be the ancestors of q as in Lemma 2.1. Put

N = max{0 � i < min(#A(p), #A(q)) | p(i) = q(i)}. (2.3)

Then N is a finite number (the set of such indices i is always bounded) and the interval 〈p, q〉
is the concatenation

〈p, p(N+1)〉 ∪ 〈p(N+1), q(N+1)〉 ∪ 〈q(N+1), q〉

of three (possibly degenerate) intervals which do not intersect except at endpoints.

Proof. Note that the set {0 � i < min(#A(p), #A(q)) | p(i) = q(i)} is not empty, since
p(0) = q(0) = p1. Furthermore, N < ∞, as otherwise p = q by Lemma 2.1, part (3).

Assume that min(#A(p), #A(q)) � N + 2. Let φ1, φ2, φ3 : [0, 1] → T be injective continuous
paths in T connecting p with p(N+1), p(N+1) with q(N+1) and q(N+1) with q, respectively. Note
that by (2.2), φ1(0, 1) and φ3(0, 1) do not intersect the ray Ik containing φ2, since the rays the
union of which contains φ1(0, 1) ∪ φ3(0, 1) were added to the �1-tree later than Ik. Also, for
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any point x ∈ φ1(0, 1), the set A(x) contains p(N+1) (Lemma 2.1, part (3)), and for any point
y ∈ φ3(0, 1), the set A(y) does not contain p(N+1) (the node from A(y) with N + 1 ancestors
is q(N+1) �= p(N+1)). Therefore, φ1(0, 1) ∩ φ3(0, 1) = ∅. This means that the concatenation of
φ1, φ2 and φ3 is injective and continuous, and hence coincides with 〈p, q〉.

If #A(p) = N + 1 and #A(q) � N + 2, then we can repeat the previous argument with the
trivial path {p} as φ1.

Finally, if #A(p) = #A(q) = N + 1, then p and q are contained in the same ray of T , and
thus φ1 and φ3 are constant paths (p(N+1) = p and q(N+1) = q).

Lemma 2.3. If T is an �1-tree and γ : [0, 1] → T is a continuous curve which connects two
distinct points in T , then γ([0, 1]) contains infinitely many nodal points of T .

Proof. Let p = γ(0) and q = γ(1). By the property of metric trees, the image of γ contains
the interval 〈p, q〉, which decomposes, by Lemma 2.2, into 〈p, p(N+1)〉 ∪ 〈p(N+1), q(N+1)〉 ∪
〈q(N+1), q〉, where N is defined in (2.3).

Assume first that the interval J = 〈p(N+1), q(N+1)〉 is non-degenerate. Observe that since
p(N+1) and q(N+1) have the same parent p(N) = q(N), this interval lies on a ray in T . If J ∩ P
is finite, then there is a non-degenerate interval J ′ ⊂ J which does not contain any node. Then
the distance between the middle point of J ′ and any node of T is at least half the length of J ′.
Thus the nodes are not dense in T , a contradiction. Therefore J ∩ P is infinite.

If the interval J is degenerate, then consider the interval among 〈p, p(N+1)〉 and 〈q(N+1), q〉
which is non-degenerate, say 〈q(N+1), q〉. By the definition of ancestors, this interval contains
〈q(N+1), q(N+1) ⊕ ε〉 for some ε > 0; the latter is an interval in a ray of T , so the above argument
applies.

Lemma 2.4. Assume that T is an �1-tree and p is a node in T . Let r > ρ be two positive
numbers and x be any point in the ball B(p ⊕ r, ρ). Then p ∈ A(x) and A(x) \ ({p} ∪ A(p)) ⊂
B(p ⊕ r, ρ).

Proof. Denote by z the centre p ⊕ r of the ball B(p ⊕ r, ρ). By Lemma 2.2, the interval 〈z, x〉
is equal to the concatenation 〈z, z(N+1)〉 ∪ 〈z(N+1), x(N+1)〉 ∪ 〈x(N+1), x〉, where N is defined as
in (2.3). If the interval 〈z, z(N+1)〉 is non-degenerate, then its length is at least r = distT (z, p),
since p is a parent of z. This cannot be true, because the length of 〈z, x〉 is less than ρ, which is
less than r. Thus z = z(N+1). Therefore, z(N), as the parent of z, coincides with p. This implies
x(N) = z(N) = p, so p ∈ A(x).

The set A(x) \ ({p} ∪ A(p)) consists of x(N+i), i � 1. Since each x(N+i) is in the interval
〈z, x〉, one has distT (x(N+i), z) � distT (x, z) < ρ.

3. An auxiliary construction in �1-tree

Before we get to the construction of a large σ-porous set in a metric space X admitting an
�1-tree as a Lipschitz quotient, we need to do preliminary work at the level of �1-tree itself.

Let T be an �1-tree. We will use the notation as in Definition 1.4 of an �1-tree. We will now
describe the sets Pn,m,k and the families Fk of balls in T .

Let Pn = P ∩ In \ {pn} be the set of those nodes of the �1-tree T which belong to the nth
open ray (this is the set of nodes with parent pn). As follows from Lemma 2.3, Pn is a dense
subset of In for each n � 1. It is easy to prove that any countable dense subset of a ray can be
split into infinitely many disjoint sets, each of which is dense in this ray. By Pn,m,k we denote
disjoint subsets of Pn (m � k � 1) such that Pn,m,k is dense in In for every pair (m, k). By
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P·,m,k we denote the union
⋃

n�1 Pn,m,k and P·,·,k =
⋃

m�k P·,m,k. Recall that for any point p
which belongs to one of the rays of T , its level is defined as #A(p).

Lemma 3.1. Let T be an �1-tree. For each k = 1, 2, . . . there exists a family Fk of balls in
T with the following properties.

(a) For any node p ∈ P·,m,k there exists r ∈ [10k/2m, 10(k + 1)/2m] such that B(p ⊕ r,
1/2m) ∈ Fk.

(b) Any ball in Fk is of the form B(p ⊕ r, 1/2m), where p ∈ P·,m,k, m � k, and r ∈
[10k/2m, 10(k + 1)/2m].

(c) For any two distinct balls B = B(q, ρ) and B′ = B(q′, ρ′) in Fk either B ∩ B′ = ∅
or B(q, 5ρ) ⊂ B(q′, ρ′) or B(q′, 5ρ′) ⊂ B(q, ρ). If q and q′ are of the same level in T , then
B ∩ B′ = ∅.

Proof. We fix k and construct the family Fk by induction. At step n we build the part Fn
k

of Fk which consists of balls with centres of level n + 1. We will ensure that, after step n, the
family Un

k =
⋃n

i=1 F i
k satisfies condition (a) for all nodes p of level at most n, together with

conditions (b) and (c).
For n = 1, let

F1
k =

{
B

(
p ⊕ 10k

2m
,

1
2m

) ∣∣∣ p ∈ P1,m,k, m � k

}
.

Note that condition (c) holds for F1
k , since balls from F1

k are disjoint.
Assume that the families F i

k of balls are constructed for all i < n. Define

F̃n
k =

⎧⎨⎩B

(
p ⊕ 10k

2m
,

1
2m

) ∣∣∣∣∣ p is of level n, p �∈
⋃

B∈Un−1
k

B, p ∈ P·,m,k for some m � k

⎫⎬⎭ .

It is easy to see that any two balls from F̃n
k are disjoint. That a ball in F̃n

k does not intersect
a ball in Un−1

k follows from Lemma 3.2.

Lemma 3.2. Let p be a node of level n and q be a node of level at most n − 1, and r1 > ρ1
be positive numbers. If a ball B(q ⊕ r1, ρ1) does not contain p, then for any r2 > ρ2 > 0 the
intersection B(q ⊕ r1, ρ1) ∩ B(p ⊕ r2, ρ2) is empty.

Proof. Assume that x ∈ B(q ⊕ r1, ρ1) ∩ B(p ⊕ r2, ρ2). Then p, q ∈ A(x) by Lemma 2.4 and
A(x) \ ({q} ∪ A(q)) ⊂ B(q ⊕ r1, ρ1). Since the level of p is greater than the level of q, we have
p �∈ {q} ∪ A(q). Thus p ∈ B(q ⊕ r1, ρ1), a contradiction.

We now return to the proof of Lemma 3.1 and construct a family ˜̃Fn
k of balls B = B(p ⊕ r,

1/2m) such that p is a node of level n, p ∈ P·,m,k, and there exists a ball from Un−1
k which

contains p. We then put Fn
k = F̃n

k ∪ ˜̃Fn
k .

Fix any such p of level n, and let m0 be such that p ∈ P·,m0,k. Let {Bv}N
v=1 be those balls from

Un−1
k which contain p. By condition (c), the centres of these balls are of different levels (and

hence the number of the balls is finite), and they can be so enumerated that B1 ⊂ B2 ⊂ · · · ⊂
BN . Let Bv = B(qv, 1/2mv ).

Consider the set of indices{
v : both B

(
p ⊕ 10k

2m0
,

1
2m0

)
∩ Bv and B

(
p ⊕ 10k

2m0
,

1
2m0

)
\ Bv are not empty

}
. (3.1)

If this set is not empty, let v0 be the maximal index in it (that is, Bv0 is the biggest ball among
all Bv which non-trivially intersects B (p ⊕ 10k/2m0 , 1/2m0)). Then (10k − 1)/2m0 � 2/2mv0 ,
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because Bv0 must contain the interval [p, p ⊕ (10k − 1)/2m0 ] in T . Therefore, m0 is greater
than mv0 + 2.

If v0 = N , then the ball B = B(p ⊕ (10k + 2)/2m0 , 1/2m0) does not intersect BN . Indeed, the
point in B closest to the centre of BN (which is of level at most n) is p ⊕ (10k + 1)/2m0 ; if BN

contained this point, BN would contain B (p ⊕ (10k)/2m0 , 1/2m0). Therefore, B is disjoint from
any of the balls B1, . . . , BN . Also, B does not intersect other balls from Un−1

k by Lemma 3.2.
In this case, add B = B(p ⊕ (10k + 2)/2m0 , 1/2m0) to the family ˜̃Fn

k .
If v0 < N , then the ball B = B(p ⊕ (10k + 2)/2m0 , 1/2m0) does not intersect Bv0 (proved as

in the previous paragraph), and therefore B is disjoint from any of the balls Bv for v � v0. By
condition (c), B(qv0 , 5/2mv0 ) ⊂ Bv0+1. Since 1/2m0 < (1/2mv0 )/4, we conclude that

B

(
p ⊕ 10k + 2

2m0
,

5
2m0

)
⊂ B

(
p ⊕ 10k − 1

2m0
,

8
2m0

)
⊂ B

(
qv0 ,

3
2mv0

)
⊂ Bv0+1.

Therefore, we may add the ball B = B(p ⊕ (10k + 2)/2m0 , 1/2m0) to the family ˜̃Fn
k : the ball B

does not intersect Bv for v � v0, the ball B(p ⊕ (10k + 2)/2m0 , 5/2m0) is contained in Bv0+1
(and therefore, is contained in all Bv, v0 + 1 � v � N), and B does not intersect other balls
from Un−1

k .
Consider the case when the set (3.1) is empty and the ball B (p ⊕ 10k/2m0 , 1/2m0) is properly

contained in some of the balls Bv. In this case, denote by v1 an index such that mv1 is the largest
(the ball Bv1 is the smallest containing B (p ⊕ 10k/2m0 , 1/2m0)). If B(p ⊕ 10k/2m0 , 5/2m0) is
contained in Bv1 , we add B = B (p ⊕ 10k/2m0 , 1/2m0) to the family ˜̃Fn

k . However, if the ball
B(10k/2m0 , 5/2m0) is not contained in Bv1 , then the ball B = B(p ⊕ (10k + 6)/2m0 , 1/2m0)
does not intersect Bv1 (and thus does not intersect Bv for v � v1). In this case again m0 >
mv1 + 2 and therefore

B

(
p ⊕ 10k + 6

2m0
,

5
2m0

)
⊂ B

(
p ⊕ 10k + 1

2m0
,

10
2m0

)
⊂ B

(
qv1 ,

3.5
2mv1

)
⊂ Bv1+1.

This implies that the ball B(p ⊕ 10k + 6/2m0 , 5/2m0) is contained in all Bv, v � v1, and B

does not intersect with any of the balls Bv, v � v1. Then add B to the family ˜̃Fn
k .

If (3.1) is empty and the ball B = B (p ⊕ 10k/2m0 , 1/2m0) does not intersect any of the balls
Bv, then add it to the family ˜̃Fn

k .
These cases describe all possible situations, since the ball B (p ⊕ 10k/2m0 , 1/2m0) cannot

contain any of the balls Bv (p ∈ Bv and p �∈ B (p ⊕ 10k/2m0 , 1/2m0)).
We carry out the above procedure for all nodes p of level n from P·,m,k, such that there

exists a ball from Un−1
k which contains p. The balls in Fn

k = F̃n
k ∪ ˜̃Fn

k are disjoint, because
any two balls B(p ⊕ r, ρ) and B(p′ ⊕ r′, ρ′) do not intersect when p �= p′ are nodes of the same
level, ρ < r and ρ′ < r′. This guarantees that condition (c) holds for Un

k = Un−1
k ∪ Fn

k . By
construction, conditions (a) and (b) are also satisfied.

4. Main result

We are ready to describe our main construction of the σ-porous set S ⊂ X. Let us start with
the following general lemma.

Lemma 4.1. Assume that X is a separable metric space, T is an �1-tree and f : X → T is
Lipschitz quotient. There exists a countable dense X ⊂ X such that

f(x) ∈ T ′ =
⋃
l�1

Tl for every x ∈ X . (4.1)
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Proof. The preimage of T ′ under f is dense in X since the mapping f is open: for any
x ∈ X and r > 0, let ρ(= cr) be such that fB(x, r) ⊃ B(f(x), ρ); take any t′ ∈ T ′ ∩ B(f(x), ρ)
and find x′ ∈ B(x, r) such that f(x′) = t′.

Since X is separable, we can find a countable dense X ⊂ f−1(T ′).

Lemma 4.2. Assume that X is a separable metric space, T is an �1-tree, f : X → T is a
Lipschitz quotient mapping with Lipschitz constant L and co-Lipschitz constant c, families Fk

of balls in T are as in Lemma 3.1 and X = {x1, x2, . . . } ⊂ X is a countable dense subset such
that (4.1) holds.

There exist balls Bj,m,k = B(x̃j,m,k, 1/(2mL)) (j � 1, m � k, k � 1) in X such that
(1) distX(x̃j,m,k, xj) < (10(k + 1) + 1)/(2mc);
(2) f(x̃j,m,k) are distinct points in T ;
(3) B(f(x̃j,m,k), 1/2m) ∈ Fk.

Proof. For each j, denote by psj the parent of f(xj).
Assume that k � 1 is fixed. There exist distinct nodes uj,m,k ∈ Psj ,m,k (j � 1, m � k) such

that distT (f(xj), uj,m,k) < 1/2m. By property (a) of the family Fk of balls from Lemma 3.1,
there exist balls B(uj,m,k ⊕ rj,m,k, 1/2m) ∈ Fk such that 10k/2m � rj,m,k � 10(k + 1)/2m for
every j � 1, m � k. Denote yj,m,k = uj,m,k ⊕ rj,m,k. Then

yj,m,k ∈ B(f(xj), rj,m,k + 2−m) ⊂ f
(
B

(
xj ,

rj,m,k+2−m

c

))
.

Let x̃j,m,k be a point in the ball B(xj , (rj,m,k + 2−m)c ⊂ B(xj , (10(k + 1) + 1)/(2mc) such
that f(x̃j,m,k) = yj,m,k. Finally, we put Bj,m,k = B(x̃j,m,k, 1/(2mL)).

Lemma 4.3. Assume that X is a separable metric space, T is an �1-tree, f : X → T
is a Lipschitz quotient mapping with Lipschitz constant L and co-Lipschitz constant c,
X = {x1, x2, . . . } ⊂ X is a countable dense subset such that (4.1) holds, and balls Bj,m,k (j � 1,
m � k, k � 1) are such as in Lemma 4.2.

Then for each k � 1, the set

Sk = X \
⋃

j�1,m�k

Bj,m,k. (4.2)

is porous.

Proof. Let k be fixed. Assume that x is a point in Sk and let r > 0. Let m � k be such
that ρ = 1/(2mL) < r. Find xj ∈ X such that the distance between x and xj is less than ρ.
Then the ball Bj,m,k has radius ρ < r, and the distance distX(x, x̃j,m,k) from x to the centre
of Bj,m,k is not greater than ρ(1 + (L/c)(10(k + 1) + 1)).

Since the ball Bj,m,k lies in the complement of Sk, this proves that the set Sk is porous with
constant λ = 1/(1 + L(10(k + 1) + 1)/c).

In the next two lemmas, we show that the union of porous sets Sk constructed in Lemma 4.3
contains (up to a set of one-dimensional Hausdorff measure zero) any bi-Lipschitz piece of
every Lipschitz curve in X.

Lemma 4.4. Assume that X is a separable metric space, T is an �1-tree, f : X → T is a
Lipschitz quotient mapping with Lipschitz constant L and co-Lipschitz constant c, and sets
Sk ⊂ X are as in (4.2).

Let γ : [0, 1] → X be a Lipschitz mapping. Suppose that A ⊂ [0, 1] is a set of positive outer
Lebesgue measure such that the restriction γ|A is a bi-Lipschitz mapping. Then the set γ(A)
intersects the porous set Sk for k large enough.
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Proof. Let the map γ be α-Lipschitz and the map (γ|A)−1 be (1/β)-Lipschitz on γ(A), that
is, for any a1, a2 ∈ A,

β|a1 − a2| � distX(γ(a1), γ(a2)) � α|a1 − a2|.

Assume that γ(A) lies in X \ Sk for arbitrarily large indices k.
If the composition f ◦ γ : [0, 1] → T is not constant, then there exist points 0 � a1 < a2 � 1

such that (f ◦ γ)(a1) �= (f ◦ γ)(a2). Therefore, (f ◦ γ)([a1, a2]) is a continuous path connecting
(f ◦ γ)(a1) and (f ◦ γ)(a2), and thus by Lemma 2.3, it contains a nodal point p ∈ P. Assume
that t ∈ [a1, a2] is such that (f ◦ γ)(t) = p. Without loss of generality, we may assume that
A′ = A ∩ [t, 1] has a positive outer Lebesgue measure (otherwise, consider A ∩ [0, t]).

Let A(p) be the set of ancestors of p. Since this set is finite, there exists k0 such that for any
k � k0 none of the ancestors of p lies in the set P·,·,k.

Let us observe that if z ∈ Bj,m,k, then f(z) ∈ B(f(x̃j,m,k), 1/2m) ∈ Fk (see Lemma 4.2).
By property (b) of the family Fk in Lemma 3.1, we have f(x̃j,m,k) = uj,m,k ⊕ rj,m,k with
uj,m,k ∈ P·,m,k and rj,m,k ∈ [10k/2m, 10(k + 1)/2m].

Note that for k � k0, any path connecting the node p with a point q = f(z) from f(Bj,m,k) ⊂
B(uj,m,k ⊕ rj,m,k, 2−m) must pass through the points uj,m,k ⊕ r for all r ∈ [0, rj,m,k − 1/2m].

Indeed, by Lemma 2.2, any such path is a concatenation of the form 〈p, p(N+1)〉 ∪
〈p(N+1), q(N+1)〉 ∪ 〈q(N+1), q〉 with N as in (2.3). Lemma 2.4 implies that uj,m,k ∈ A(q). Since
uj,m,k ∈ P·,m,k and none of the ancestors of p lies in the set P·,·,k, we get uj,m,k �∈ A(p). Thus
the latter interval 〈q(N+1), q〉 contains uj,m,k. Let M � N + 1 be such that uj,m,k = q(M).
By Lemma 2.4, the node q(M+1) is in the ball B(uj,m,k ⊕ rj,m,k, 2−m), and hence 〈p, q〉 ⊃
〈q(M), q(M+1)〉 � uj,m,k ⊕ r for all r ∈ [0, rj,m,k − 1/2m].

Therefore, if the curve φ = γ|[t,1] intersects Bj,m,k, then the image (f ◦ φ)([t, 1]) contains the
interval

Ej,m,k = 〈uj,m,k, uj,m,k ⊕ (rj,m,k − 1/2m)〉 .

Fix k � k0 such that γ(A′) ⊂ X \ Sk. Let (ji, mi), i � 1 be pairs of indices such that each
of the balls Bji,mi,k intersects γ(A′) and the union ∪iBji,mi,k contains γ(A′).

Since the curve φ intersects Bji,mi,k for each i, we conclude that (f ◦ φ)([t, 1]) contains
Eji,mi,k for each i.

Denote by Aji,mi,k the preimage (f ◦ φ)−1(Eji,mi,k \ P). Note that the sets Ajv,mv,k and
Ajw,mw,k do not intersect for any v �= w; indeed, the straight closed intervals Ejv,mv,k and
Ejw,mw,k may intersect only at one of the nodes of T since all nodes uj,m,k, constructed in
Lemma 4.2, are distinct. It is clear that since (f ◦ φ) is αL-Lipschitz, the set Aji,mi,k ⊂ [t, 1]
is Borel measurable and

L1(Aji,mi,k) � 1
αL

10k − 1
2mi

(4.3)

(this follows from the fact that the one-dimensional Hausdorff measure of Eji,mi,k \ P is at
least rji,mi,k − 1/2mi � (10k − 1)/2mi).

As φ is bi-Lipschitz on A′, we conclude that the diameter of the intersection A′ ∩
φ−1(Bji,mi,k) does not exceed (1/β)diam(Bji,mi,k) = (2/βL)(1/2mi). By (4.3), the latter is
not greater than (2/βL)(αL/(10k − 1))L1(Aji,mi,k).

The outer Lebesgue measure of A′ ∩ φ−1(Bji,mi,k) is bounded from above by its dia-
meter, and thus the outer measure of A′ =

⋃
i

(
A′ ∩ φ−1(Bji,mi,k)

)
is not greater than∑

i(2α/(β(10k − 1)))L1(Aji,mi,k). Since the sets Aji,mi,k are disjoint and measurable, we
conclude that the sum

∑
i L1(Aji,mi,k) is not greater than 1, and therefore, the outer measure

of A′ is not greater than 2α/(β(10k − 1)), for arbitrarily large k � k0. This contradicts the
positivity of the outer measure of A′.

Now we have to treat separately the case when the mapping (f ◦ γ) : [0, 1] → T is a constant
mapping. Denote the constant value of (f ◦ γ) by q.
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Fix any k � 1: assume that γ(A) ⊂ X \ Sk. As before, this means that γ(A) is cove-
red by some of the balls Bj,m,k. Note that if Bj,m,k ∩ γ(A) �= ∅, then q ∈ f(Bj,m,k) ⊂
B(f(x̃j,m,k), 1/2m) ∈ Fk.

Assume that (ji, mi) are pairs of indices such that each of the balls Bji,mi,k intersects
γ(A) and their union

⋃
i Bji,mi,k contains γ(A). Then each of the balls B(f(x̃ji,mi,k), 1/2mi)

contains the point q and therefore these balls intersect pairwise. Property (c) in Lemma 3.1
implies that these balls form a decreasing sequence (with respect to inclusion). Note that the
centres of these balls belong to the rays of T and are distinct by Lemma 4.2. Therefore, balls
themselves are distinct. Property (c) in Lemma 3.1 then implies that their diameters decrease
by factor of at least five each time. Therefore, the sum of their diameters is not greater than
(5/4) maxi diam(Bji,mi,k) � 2.5/(2kL), since each mi is at least k. On the other hand, A is
covered by

⋃
i(A ∩ γ−1(Bji,mi,k)) and diam(A ∩ γ−1(Bji,mi,k)) � (1/β)diam(Bji,mi,k). Thus

diam(A) � 2.5/(2kβL). Since k is arbitrary, this contradicts the positivity of the outer measure
of A.

Lemma 4.5. Assume that X is a separable metric space which admits a Lipschitz quotient
mapping onto an �1-tree, γ : [0, 1] → X is Lipschitz and A is a subset of [0, 1] such that the
restriction γ|A is bi-Lipschitz. Then, for almost every a ∈ A, γ(a) lies in the σ-porous set

S =
⋃
k�1

Sk, (4.4)

where sets Sk ⊂ X are as in (4.2).

Proof. Assume that there exists A ⊂ [0, 1] such that γ|A is bi-Lipschitz and the outer
Lebesgue measure of Ã = A \ γ−1(S) is positive. Then γ|Ã is bi-Lipschitz and γ(Ã) = γ(A) \ S
is contained in X \ Sk for any k � 1, in contradiction to Lemma 4.4.

Theorem 4.6. Assume that X is a separable metric space which admits a Lipschitz
quotient mapping onto an �1-tree. Then there exists a σ-porous set S ⊂ X such that for every
Lipschitz curve γ : [0, 1] → X, the one-dimensional Hausdorff measure of γ([0, 1]) \ S is zero.

Proof. First, embed X into the space C([0, 1]) of continuous functions on the interval, by
an isometry iso : X → C([0, 1]). Since γ is Lipschitz, it is a corollary of [8, Lemma 4] that there
are Borel sets Ek ⊂ [0, 1] on which (iso ◦ γ) is bi-Lipschitz and such that γ([0, 1]) \

⋃
k�1 γ(Ek)

is of one-dimensional Hausdorff measure zero.
Then for the set S defined in (4.4) the statement follows from Lemma 4.5.

5. Remarks

1. If X is a separable Banach space, then the construction of porous sets Sk can be simplified
and made more transparent.

Instead of the family Fk of balls constructed in Lemma 3.1, let us consider the following
family of balls:

Gk =

{
B

(
p ⊕ 10k

2m
,

1
2m

) ∣∣∣∣∣ p ∈ P·,m,k, m � k

}
. (5.1)

Then the balls Bj,m,k (see Lemma 4.2) are so chosen that B(f(x̃j,m,k), 1/2m) ∈ Gk and have
the properties as in Lemma 4.2.

We then define Sk = X \
⋃

j�1,m�k Bj,m,k. They are porous, which is established in the same
way as in Lemma 4.3.
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In the proof of Lemma 4.4 for the simplified porous sets Sk, the case (f ◦ γ) �= const is treated
in the same way as it was in the proof of Lemma 4.4.

The proof in the other case (f ◦ γ) ≡ q is done as follows. Property (c) of the family Fk of
balls, which was instrumental in the original proof, does not hold for the family Gk of balls.
We simply take x0 ∈ X such that f(x0) �= q and define

γ1(t) =

{
(1 − 2t)x0 + 2tγ(0), if t ∈ [0, 1/2]
γ(2t − 1), if t ∈ [1/2, 1].

Since (f ◦ γ1) is not constant, we have that γ(A) = γ1(0.5(A + 1)) intersects Sk for k large
enough.

2. Of course, the same simplification as described in Remark 1 is possible in all separable
metric spaces X for which any two points may be connected by a Lipschitz path. Instead of a
straight-line segment, γ1 is defined using a Lipschitz path connecting x0 and γ(0).

3. Trivially, any �1-tree is a Lipschitz quotient of itself. Hence, Theorem 4.6 applies to �1-trees.
4. Since for every separable Banach space X containing a subspace isomorphic to �1 there

exists a Lipschitz quotient mapping f from X onto an �1-tree [7, Theorem 2.1], we conclude
that Theorem 4.6 holds for every such space.

5. The proof of [7, Theorem 2.1] describes how to construct a Lipschitz quotient mapping
from a separable Banach space X containing a subspace isomorphic to �1 onto an �1-tree.
It would be interesting to combine that construction with ours so as to have a geometric
description of an unavoidable σ-porous set in X. Such a geometric description might help to
understand whether such σ-porous sets exist in all separable Banach spaces with non-separable
duals. Note that currently it is not known whether the existence of a Lipschitz quotient mapping
from X on to an �1-tree implies that X contains a subspace isomorphic to �1.

6. Counterexample to the Fubini theorem for σ-porous sets

Recall that the Fubini theorem for measure spaces implies that if S ⊂ X1 × X2 is null
(with respect to the product measure), then for almost all v ∈ X1, the section Mv = {w ∈
X2 | (v, w) ∈ S} is null.

One would like to consider the Fubini theorem for the σ-ideal of σ-porous sets (instead of null
sets). Preiss and Zaj́ıček [13] show that there exists a σ-porous set M in the plane such that for
each x ∈ R except a first category set, the vertical section Mx is not Lebesgue null (moreover,
its complement R \ Mx is Lebesgue null). Therefore, no statement directly analogous to the
Fubini theorem can hold for the σ-porous sets.

Theorem 4.6 surprisingly gives us a counterexample to the Fubini theorem of a different
nature: a σ-porous set S in every separable metric space X = Y × R (where Y admits a
Lipschitz quotient mapping onto an �1-tree) such that all sections Sy ⊂ R, y ∈ Y , are not
σ-porous. Moreover, for all y ∈ Y , the complement R \ Sy is Lebesgue null.

Indeed, let X be a Cartesian product of a separable metric space Y , which admits a
Lipschitz quotient mapping onto an �1-tree, and the real line R. The distance in X is given by
dX((y1, t1), (y2, t2)) = dY (y1, y2) + |t1 − t2|. Then X itself admits a Lipschitz quotient mapping
onto an �1-tree (a composition of the projection X → Y and a Lipschitz quotient from Y onto
an �1-tree is a Lipschitz quotient mapping). Let S ⊂ X be as in Theorem 4.6. For every y ∈ Y ,
the section Sy can be treated as a subset of R. Since S contains every Lipschitz curve up to
a set of Hausdorff measure zero, its section Sy contains all straight intervals up to a set of
Hausdorff measure zero. Therefore, R \ Sy is Lebesgue null for every y ∈ Y and in particular
Sy is not σ-porous.
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