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COMPONENTS OF LEVEL SETS OF UNIFORM CO-LIPSCHITZ
FUNCTIONS ON THE PLANE

OLGA MALEVA

(Communicated by David Preiss)

Abstract. Consider a co-Lipschitz uniformly continuous function f defined
on the plane. Let n(f) be the maximal number of components of its level set.
In the present paper we settle a question of B. Randrianantoanina, concerning
the dependence of n(f) on the quantitative characteristics of the mapping. We
prove that n(f) is bounded from above by a simple function of the co-Lipschitz
and the “weak Lipschitz” constants of f , and show that our estimate is sharp.
We also prove additional properties of the level sets.

1. Introduction

Consider a mapping f : U → V between two normed spaces U and V . The
function

Ωf (d) = sup
‖X−Y ‖U≤d

‖f(X)− f(Y )‖V

is called the modulus of (uniform) continuity of f . The mapping f is said to be
uniformly continuous if Ωf (d) → 0 as d ↓ 0. In this case the modulus of continuity
is a subadditive monotone continuous function.

One important class of uniformly continuous mappings is the class of Lipschitz
mappings, i.e. those satisfying Ωf (d) ≤ Ld for some positive L. The least such L is
called the Lipschitz constant of the mapping f . Note, however, that any uniformly
continuous mapping is Lipschitz for large distances, because, as one may show, for
any fixed ε > 0,

‖f(X)− f(Y )‖V ≤ Ωf (d)
d

(1 + ε)‖X − Y ‖U

whenever ‖X − Y ‖U ≥ d
ε . Moreover, it is clear that Ωf (d)

d is bounded for d ≥ d0 if
d0 is positive. We call the limit

L∗
f = lim

d→+∞

Ωf (d)
d

= inf
d>0

Ωf (d)
d

< +∞

the weak Lipschitz constant of f . If f is a Lipschitz mapping, L∗
f does not exceed

its Lipschitz constant.
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The definition of Ωf implies that f(Br(x)) ⊂ BΩf (r)(f(x)). In a similar way,
co-uniformly continuous mappings are defined as those satisfying

f(Br(x)) ⊃ Bω(r)(f(x)), r > 0,

for some function ω(r) > 0. A particular case is a co-Lipschitz mapping that
satisfies

f(Br(x)) ⊃ Bcr(f(x)).

We call the best (the largest) such constant c the co-Lipschitz constant of the
mapping f . (Note that in some papers, in particular [JLPS], the co-Lipschitz
constant means the inverse of our c.) Note that c ≤ L∗

f < ∞ if the mapping f is
c-co-Lipschitz and uniformly continuous.

In the present paper we deal with uniformly continuous co-Lipschitz mappings
from R

2 to R. Our subject is the structure of the level sets, i.e. the preimages of
points under such mappings. Some basic examples related to this class of mappings
and their point preimages were given in [JLPS, §5].

Our starting point will be the comprehensive description of the level sets of
uniformly continuous co-Lipschitz functions f defined on the plane given by Ran-
drianantoanina in [R]. By [R, Theorem 2.4] each level set f−1(t) has a finite number
of components. According to [R, Theorem 4.11], every connected component C of
f−1(t) can be represented as

C = C0 ∪
m⋃

j=1

Cj ,

where C0 is a compact tree with m leaves (end points), each Cj is a ray, i.e. a
closed unbounded set homeomorphic with [0,∞), the Cj ’s are disjoint, and Cj has
a unique common point with C0, which is an end point of C0 and the end point of
Cj . Although it is intuitively clear what is an end point of a tree or of a ray, the
topological definition of an end point can be found in [K, Chapter VI, § 51].

The number of ends of such a connected component C is the number of rays
going to infinity (ends are not to be confused with end points), that is, m. The
number of ends of f−1(t) is denoted by #e(f−1(t)) and is the sum of the numbers
of ends of all components of f−1(t).

Note that the number of ends of W = f−1(t) can also be defined in the following
way (see [HR, Definition 1.18]). We say that W has at least k ends if there exists an
open subset V ⊂ W with compact closure V so that W \V has at least k unbounded
components. We say that W has exactly k ends if W has at least k ends but not
at least k + 1 ends. If W has exactly k ends, we will write #e(W ) = k.

We see that if W has exactly k ends, then there exists a positive d such that
W \Bd has exactly k unbounded components (by Br and Br we denote, respectively,
the open and the closed ball of radius r, centered at 0). Let us denote by Θ(W ), say,
the least such d plus one. Then W \Bd has exactly k unbounded components for any
d ≥ Θ(W ). Denote the unbounded components of W \BΘ(W ) by C1(W ), . . . , Ck(W )
so that arg(Ci(W ) ∩ BΘ(W )) < arg(Ci+1(W ) ∩ BΘ(W )) for all i = 1, . . . , k − 1.

Theorem 5.1 in [R] states that for a c-co-Lipschitz uniformly continuous mapping
f : R

2 → R, there exists a constant n = n(f), such that for all t ∈ R,

#e(f−1(t)) = 2n
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and the maximal number of components of f−1(t) (over all t ∈ R) is equal to n.
This n is bounded from above by a number M = M(c, Ωf ). In addition, if {CR,i}2n

i=1

are unbounded components of f−1(t) \ BR, then for all i �= j,

lim
R→∞

dist(CR,i, CR,j) = ∞.

In the present paper we provide an explicit formula for M(c, Ωf ). We show that
there exists a scale 0 < · · · < ρ

(m)
2,1 < · · · < ρ

(1)
2,1 < 1 such that for any uniformly

continuous c-co-Lipschitz mapping f : R
2 → R the condition c/L∗

f > ρ
(m)
2,1 implies

n(f) ≤ m. In fact, such a scale is given by

ρ
(m)
2,1 = sin

π

2(m + 1)
,

so M(c, Ωf) = π
2 arcsin(c/L∗

f ) . We show that these scale values are precise, in the

sense that there exist mappings fm : R
2 → R such that

cfm/L∗
fm

= ρ
(m−1)
2,1 = sin(π/2m) and n(fm) = m.

The idea of a scale of this type was first suggested by the author in [M] for
Lipschitz co-Lipschitz mappings from R

2 to R
2, where the ratio c/L determines the

sharp bound for the cardinality n of point preimages. In fact, one may show that
the following generalization of [M, Theorem 2] holds. For uniformly continuous
c-co-Lipschitz mappings f : R

2 → R
2 one has c/L∗

f ≤ 1/n, where n is the maximal
cardinality of a point preimage. One may observe further analogies between the
(R2, R2) and (R2, R) situations, as mentioned in [R, Remark 5.2].

After constructing the scale for n(f), we finish the paper by strengthening the
property limR→∞ dist(CR,i, CR,j) = ∞. We prove that not only the distance be-
tween the components CR,i and CR,j tends to infinity, but it is bounded from
below by δR for sufficiently large R (see Proposition 1). This property implies, for
example, that f−1(t) cannot contain a parabola.

The author thanks Beata Randrianantoanina for sending her preliminary ver-
sions of [R], for interesting discussions and very helpful comments on the subject,
Joram Lindenstrauss for his valuable remarks on the preprint of this paper, Maxim
Pratusevich for useful comments concerning subadditive functions, and Gideon
Schechtman for all his help.

2.

In this section we construct the scale for uniformly continuous co-Lipschitz map-
pings, as described in the Introduction. The main result is Theorem 1, and the
sharpness of the bounds is demonstrated in the Remark after Theorem 1. We start,
however, with a few technical lemmas.

Lemma 1. If the mapping f : R
2 → R is uniformly continuous and co-Lipschitz,

K is an unbounded component of (R2 \Br) \ f−1(t) for some real t and r > 0, then
f(K) is unbounded.

Proof. Consider r′ > max{r, Θ(f−1(t))}. Then there exists an unbounded compo-
nent K ′ of (R2 \ Br′) \ f−1(t) such that K ′ ⊂ K. Note that ∂K ′ is a union of two
unbounded components C1 and C2 of f−1(t) \ Br′ with a bounded curve Γ whose
ends are C1 ∩ ∂Br′ and C2 ∩ ∂Br′ .
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By [R, Theorem 5.1, (1)] the distance between CR,1 and CR,2, where CR,i is
the unbounded component of Ci \ BR for i = 1, 2, tends to infinity as R tends to
infinity. It follows that the set K ′ \ (Uρ(Γ)∪Uρ(C1)∪Uρ(C2)) is nonempty for any
ρ > 0 (by Us(W ) we denote the s neighbourhood of the set W ). Take any point x
in this set. Then the distance from x to the boundary of K ′ is greater than ρ, that
is, K ′ contains a ball of radius ρ. Therefore, since f is co-Lipschitz, the image of
K ′ under f contains an interval of radius cρ. This finishes the proof of the lemma,
since ρ can be arbitrarily large and f(K) contains f(K ′). �

Corollary 1. Under the assumptions of Lemma 1, f(K) equals either (t, +∞) or
(−∞, t).

Proof. First note that f(x) − t has a constant sign inside K (since the mapping f
is continuous and does not attain the value t inside K). Assume, for example, that
f(x) > t for all x ∈ K. Then the fact that f(K) is unbounded implies that f(K)
contains arbitrarily large real numbers. But this image is also connected and t is
its limit point, so f(K) = (t, +∞). �

The next lemma is purely topological and will be used only in the proof of
Lemma 3. We are going to use the following topological terminology. By an arc
we mean a homeomorphic image of the segment [0, 1] (see [K, §47, V]). We say
that the arc γ connects points ω1 and ω2 if ωi, i = 1, 2, are the end points of γ (or,
equivalently, ω1 = γ(0) and ω2 = γ(1)). A ray means an unbounded homeomorphic
image of [0,∞).

Lemma 2. Let C1 and C2 be two disjoint rays with end points A1 and A2 resp.,
and let Γ be an arc with end points A1 and A2, not intersecting Ci, i = 1, 2, in other
points. Let K be one of the two open connected components of R

2 \ (C1 ∪ Γ ∪ C2)
and x ∈ K. Then there exists R = R(x, K) such that the following holds. If an arc
γ connects A′

i ∈ Ci \ BR, i = 1, 2, and γ is such that γ \ {A′
1, A

′
2} ⊂ K \ BR, then

every unbounded broken line inside K containing x intersects γ.

Proof. Note that ∂K = C1 ∪ Γ ∪ C2. Let L1 �= L2 be two straight lines passing
through x, each containing a point on ∂K. Let Ii = [x, xi] ⊂ Li, i = 1, 2, be
two segments connecting x with point xi, on ∂K so that (x, xi) ⊂ K. Note that
∂K \ {x1, x2} consists of two unbounded and one bounded component. Denote the
closure of the bounded component by τ .

Consider a simple closed curve P1 = τ ∪ I1 ∪ I2. By the Jordan Curve Theorem
(see [K, §61, II, Theorem 1]) P1 divides R

2 into two connected components, which
we will denote by in(P1) and out(P1); in(P1) is bounded and out(P1) is unbounded.

Let R(x, K) be such that in(τ ∪ I1 ∪ I2) ⊂ BR(x,K). Let γ be as described in the
hypothesis of the lemma. Denote by τi, i = 1, 2, the closures of the two bounded
components of (∂K\τ)\{A′

1, A
′
2} so that τi  A′

i. Then the curve P2 = τ∪τ1∪γ∪τ2

is a simple closed curve. To prove the lemma, it is enough to demonstrate now that
(I1∪I2)\{x1, x2} ⊂ in(P2). Indeed, this would imply that x ∈ (I1∪I2)\{x1, x2} ⊂
in(P2). So every unbounded broken line containing x intersects P2. Since the
unbounded broken line is contained in K and τ ∪ τ1 ∪ τ2 ⊂ R

2 \ K, it can only
intersect P2 at a point belonging to γ.

In order to prove that (I1∪I2)\{x1, x2} ⊂ in(P2), note that the points x1 and x2

are connected by three arcs: τ , I1 ∪ I2 and τ1 ∪ γ ∪ τ2. By the Theorem About The
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θ-Curve ([K, §61, II, Theorem 2]), one of those arcs is contained in the bounded
component defined by the two others. If such an arc is I1 ∪ I2, we are done.

Another option: (τ1 ∪ γ ∪ τ2) \ {x1, x2} is a subset of in((I1 ∪ I2) ∪ τ). This is
impossible since the latter is inside the ball BR(x,K), which does not intersect γ.

Third option: τ \ {x1, x2} ⊂ in((I1 ∪ I2) ∪ (τ1 ∪ γ ∪ τ2)). In order to refute this,
we will show now that in((I1 ∪ I2) ∪ (τ1 ∪ γ ∪ τ2)) ⊂ K, and since τ ⊂ R

2 \ K, the
third option is also impossible.

Let P3 = I1 ∪ I2 ∪ τ1 ∪γ ∪ τ2. Clearly, P3 is a subset of the closure K. We would
like to show that in(P3) ⊂ K. Note that R

2 \P3 contains an unbounded component
C̃1 of C1 \ {A′

1}. Therefore, C̃1 ⊂ out(P3). Since out(P3) is open, it contains a
small neighbourhood of some point M ∈ C̃1. Since C1 lies in the boundary of K,
every neighbourhood of M contains points of K ′ = (R2 \ K) \ ∂K (K ′ and K are
the two components of R

2 \ ∂K). Thus, out(P3) contains points from K ′. Since
K ′ ∩ P3 = ∅ and K ′ is connected, we conclude that K ′ ⊂ out(P3). Therefore,
in(P3) ⊂ R

2 \ K ′ = K. But the set in(P3) is open, so in(P3) ⊂ K. �

Lemma 3. Let f : R
2 → R be a uniformly continuous, c-co-Lipschitz mapping

and K be an unbounded component of (R2 \ Bd) \ f−1(t) for some real t and d >
Θ(f−1(t)). Then for any c̃ < c there exists a positive number R(c̃) with the following
property.

Let γ be any arc whose end points γ(0) and γ(1) belong to different unbounded
components of f−1(t) \ Bd and such that γ(s) ∈ K \ BR(c̃) for all s ∈ (0, 1). Then
one can find a point y ∈ γ, such that |f(y) − t| > c̃‖y‖.

Proof. Let ε = Ω−1
f (1). Then |f(X) − f(Y )| ≤ 1 if ‖X − Y ‖ ≤ ε. Without loss

of generality, we may assume that t = 0. Assume also that f is positive inside K.
Then by Corollary 1, f(K) = (0, +∞), and thus we may take x0 ∈ K such that

f(x0) > 1 + max
x∈Bd

|f(x)|.

Consider a ball D0 of radius ε centered at x0. Since f(x0) > 1, the closure D0

contains no point whose image is 0. Moreover, D0 does not intersect Bd, since
f(x0) > 1 + f(x) for any x ∈ Bd. Thus D0 is inside K. But f(D0) contains the
segment [f(x0)− cε, f(x0) + cε]. In particular, there exists x1 ∈ D0 ⊂ K such that
f(x1) = f(x0) + cε.

Now we are going to construct a sequence of points xl ∈ K in the following way.
Suppose xl ∈ K is already constructed, and f(xl) > f(x0) (in the beginning, this
holds for x1). Then we define Dl = B(xl, ε), and notice that Dl is inside K. By co-
Lipschitzness, f(Dl) contains [f(xl)− cε, f(xl)+ cε], so there exists xl+1 ∈ Dl ⊂ K
such that f(xl+1) = f(xl) + cε.

Note that this procedure implies the following equality:

f(xl) = f(x0) + lcε.

In particular, f(xl) → +∞, and thus xl → ∞. Let l0 be the first index such that
l0 > c̃‖x0‖

(c−c̃)ε . Let R(c̃) be R(xl0 , K) from Lemma 2.
Consider any arc γ with properties as in the assumptions of the lemma. Since

the broken line connecting xl0 , xl0+1, . . . is entirely inside K and is unbounded,
there is a point of intersection of this broken line with γ. Consider l1 ≥ l0 such
that the segment [xl1 , xl1+1] intersects γ, and let y be a point of intersection: y ∈
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[xl1 , xl1+1]∩γ. Then ‖y‖ ≤ max{‖xl1‖, ‖xl1+1‖} ≤ ‖x0‖+(l1+1)ε and ‖y−xl1+1‖ ≤
ε. It follows that

f(y) ≥ f(xl1+1) − 1 = f(x0) + (l1 + 1)cε − 1 > (l1 + 1)cε

= c̃(l1 + 1)ε + (l1 + 1)(c − c̃)ε > c̃(l1 + 1)ε + c̃‖x0‖ = c̃((l1 + 1)ε + ‖x0‖),
so we conclude that

|f(y)| = f(y) > c̃‖y‖. �

Corollary 2. Let f : R
2 → R be a uniformly continuous, c-co-Lipschitz mapping

and K be an unbounded component of (R2 \ Bd) \ f−1(t) for some real t and d >
Θ(f−1(t)). Then for any c̃ < c there exists a positive number R(c̃) with the following
property. If r > R(c̃), then one can find a point y in K, of norm r, such that
|f(y) − t| > c̃‖y‖.

Proof. Let C1 and C2 be the two unbounded components of f−1(t) \Bd that lie in
the boundary of K. Take R(c̃) provided by Lemma 3 and enlarge it, if necessary,
so that any circle of radius r > R(c̃) does not intersect the bounded set Γ =
∂K \ (C1 ∪C2). Then for any r > R(c̃) the intersection of K and ∂Br is a union of
disjoint open arcs whose endpoints lie in ∂K ∩ ∂Br ⊂ C1 ∪ C2.

An argument below shows that at least one of these disjoint open arcs, say γ,
has the property that one of the endpoints of γ is in C1, and the other is in C2. To
finish the proof of the corollary, it remains to apply Lemma 3 to γ.

Let us show how to find the open arc γ. By [R, Corollary 5.12] we may assume
d to be such that the distance ε = dist(C1, C2) is positive. Fix any r > R(c̃)
so that Γ ⊂ Br. Denote by Us(W ) the s-neighbourhood of a set W . The set
Γ = ∂K \ (C1 ∪ C2) is not covered by Uε/3(C1) ∪ Uε/3(C2) (otherwise, since Γ
is connected, there would be a point on Γ with distances at most ε/3 both from
C1 and C2, which is impossible). Therefore, there exists a point x ∈ Γ such that
dist(x, Ci) > ε/3, i = 1, 2.

Note that the intersection K ∩ Bε/6(x) is nonempty, since x is a point on the
boundary of K. Take any point y in this intersection. Then the distance dist(y, ∂K)
does not exceed ε/6. Consider z ∈ ∂K such that

‖y − z‖ = dist(y, ∂K) ≤ ε/6.

Then the half-open interval (z, y] is inside K and ‖x−z‖ < ε/3, that is, z �∈ C1∪C2.
Let us construct an unbounded broken line Ly inside K, whose vertices moreover

tend to infinity, which starts at y. We may do it, connecting y with a point y′ ∈ K,
such that |f(y′)−t| > 1+maxw∈B̄d

|f(w)−t| and then using the procedure described
in the proof of Lemma 3. Let L = [z, y] ∪ Ly.

Without loss of generality, we may assume that the vertices of L do not lie on
the circle of radius r, centered at zero. First of all, there may be only finitely many
such vertices (recall that norms of vertices of L tend to infinity). Furthermore,
since K is open, it contains every vertex of L (except z) together with a small open
neighbourhood. So if a vertex lies on ∂Br, then we may replace a small part of L
inside this neighbourhood by a segment so that there is no longer a vertex on the
circle.

This broken line L starts inside Br, since z ∈ Γ ⊂ Br, goes to infinity and has
no vertices on the circle ∂Br. Therefore, L has an odd number of intersections
with ∂Br. Since L \ {z} ⊂ K, all its intersections with the circle of radius r lie in
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K ∩∂Br , which is a union of open disjoint arcs, among which we would like to find
γ such that its endpoints belong to C1 and C2.

Let γ be such an open arc that has an odd number of intersections with L.
Assume towards a contradiction that both endpoints of γ belong to, say, C1. Then
consider a path τ ⊂ C1 connecting those two points. Note that τ ∩ γ = ∅, since
γ ⊂ K, and τ ∩ K ⊂ C1 ∩ K = ∅. Then, since the endpoints of γ and τ coincide,
the union τ ∪γ is a simple closed curve. Since L\{z} ⊂ K and z �∈ C1, we conclude
L∩ τ = ∅. This means that the number of intersections between the broken line L
and the simple closed curve τ ∪ γ is odd. Since the broken line goes to infinity, by
the Jordan Curve Theorem ([K, §61, II, Theorem 1]) its startpoint z is inside the
bounded component of R

2 \ (τ ∪ γ).
Consider one of the two components of ∂K \ {z} that contains C2. This curve

does not intersect C1, and so does not intersect τ ; this curve does not intersect γ,
since γ ⊂ K. With all this, the curve connects the point z, which is inside the
bounded component of R

2 \ (τ ∪ γ), with infinity. This is a contradiction.
Hence both endpoints of the arc γ cannot lie in C1. An identical argument shows

they cannot both lie in C2. Thus, one of the endpoints of γ is in C1 and the other
is in C2. �

Recall that by C1(f−1(t)), . . . , C2n(f−1(t)) we denote the unbounded compo-
nents of f−1(t) \ BΘ(f−1(t)) so that

arg(Ci(f−1(t)) ∩ BΘ(f−1(t))) < arg(Ci+1(f−1(t)) ∩ BΘ(f−1(t)))

for all i = 1, . . . , 2n − 1.

Lemma 4. Let f : R
2 → R be a co-Lipschitz and uniformly continuous mapping

with modulus of continuity Ωf (r). Suppose L∗
f < 1. Take t ∈ R and denote 2n =

#e(f−1(t)). Then for any sufficiently large r,

min
i

max
x∈Γi(r)

|f(x) − t| ≤ r sin(π/2n),

where Γi(r) is the arc of the circle of radius r defined in the following way. For each
r > Θ(f−1(t)) we fix 2n points Ai(r) ∈ Ci(f−1(t)) on the circle of radius r, and
by Γi(r), i = 1, . . . , 2n denote the closed arc going counter-clockwise from Ai(r) to
Ai+1(r) (here A2n+1(r) is identified with A1(r)).

Proof. Assume there are arbitrarily large r’s such that the inequality does not hold.
Note that |f(x)−t| ≤ Ωf (dist(x, f−1(t))) for each x. So we have that for arbitrarily
large r, for each i,

max
x∈Γi(r)

Ωf (dist(x, f−1(t))) > r sin(π/2n).

Since L∗
f < 1, there exists R1 such that Ωf (r) < r for r ≥ R1. If r is so large

that r sin(π/2n) > R1, then r sin(π/2n) > Ωf (r sin(π/2n)), i.e. for arbitrarily large
r and for each i,

max
x∈Γi(r)

Ωf (dist(x, f−1(t))) > Ωf (r sin(π/2n)).

Since Ωf (·) is an increasing function, it follows that

max
x∈Γi(r)

dist(x, f−1(t)) > r sin(π/2n).
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The latter means that for each i there exists xi ∈ Γi(r) such that the closed ball
Di of radius r sin(π/2n) centered at xi does not intersect f−1(t). This implies that
Di is contained in the same component of R

2 \ f−1(t) as xi.
Consider the case n > 1. Since r can be chosen arbitrarily large, we may assume

that r − r sin(π/2n) > Θ(f−1(t)), so we conclude that Di is contained in the same
component of (R2 \ BΘ(f−1(t))) \ f−1(t) as xi. In particular, Di ∩ Dj = ∅ for any
i �= j.

In the case n = 1, x1 and x2 (and therefore D1 and D2) will be in two disjoint
components of R

2 \ f−1(t), so again D1 ∩ D2 = ∅.
On the other hand, it is impossible to find m ≥ 2 points on a circle of radius r so

that the closed balls of radius r sin(π/m) centered at those points will be disjoint.
(Otherwise, the polygon with vertices at those points would have perimeter greater
than 2mr sin(π/m); but the latter is the perimeter of the regular m-gon, which is
maximal among all perimeters of m-gons inscribed in the circle of radius r.) This
simple geometric observation finishes the proof of the lemma. �

Theorem 1. Let f : R
2 → R be a c-co-Lipschitz and uniformly continuous mapping

with modulus of continuity Ωf (r) and n be the maximal number of components of
the level sets f−1(t). Then c/L∗

f ≤ sin(π/2n).

Proof. Assume c/L∗
f > sin(π/2n). Then by rescaling we may assume that L∗

f < 1
and c > sin(π/2n). Let c̃ = sin(π/2n); then c > c̃. For each unbounded component
Ki, i = 1, . . . , 2n, of (R2 \BΘ(f−1(0))) \ f−1(0) we may find Ri(c̃) from Corollary 2.
Then for all r > maxi Ri(c̃) there exist 2n points yi ∈ Ki such that ‖yi‖ = r and
|f(yi)| > c̃‖yi‖ = c̃r. Therefore for all r > maxi Ri(c̃),

min
i

max
x∈Γi(r)

|f(x)| > c̃r = r sin(π/2n).

This contradicts Lemma 4. �

Remark. Note that the estimate given in Theorem 1 is sharp. It is attained at the
following mapping f . In Figure 1, denote by f(x) the distance from x to the union
of the n solid lines, multiplied, in each component of the complement of the solid
lines, by the sign indicated. Then f is 1-weakly Lipschitz (and actually 1-Lipschitz),
sin(π/2n) co-Lipschitz, and 2n = #e(f−1(0)).

3.

We prove here that the distance between any two different unbounded compo-
nents of f−1(t) \ BR is bounded from below by δR for sufficiently large R.

Proposition 1. Let f : R
2 → R be a c-co-Lipschitz and uniformly continuous

mapping with modulus of continuity Ωf (r). Then there exists a positive δ > 0
that depends only on c and Ωf with the following property. For any t there exists
σ = σ(t) > 0 such that dist(Ci,R, Cj,R) ≥ δR for R > σ and i �= j. Here Ci,R is
the unbounded component of Ci(f−1(t)) \ BR.

Proof. Fix any real t. Let 2n = #e(f−1(t)), and let Ci = Ci(f−1(t)) for all
i = 1, . . . , 2n.
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Figure 1. The angle between any two adjacent rays is π/n.

By rescaling we may assume that L∗
f < 1. Fix d0 such that Ωf (d) < d for all

d ≥ d0. Choose any c̃ < c, and let δ = c̃
√

2. Consider

σ =
(√

1 − (δ/2)2
)−1

max

{
d0

√
2

δ
, max
1≤i<j≤2n

Ri,j(c̃), Θ(f−1(t))

}
,

where Ri,j(c̃) is the maximum of two constants from Lemma 3 for two components
of Si,j = (R2 \ BΘ(f−1(t))) \ (Ci ∪ Cj).

Consider any i �= j, and assume that dist(Ci,R, Cj,R) < δR for R > σ. This
means that there exist x1 ∈ Ci,R and x2 ∈ Cj,R such that ‖x1−x2‖ = dist(Ci,R, Cj,R)
< δR. Since ‖x1‖, ‖x2‖ ≥ R and ‖x1 − x2‖ < δR, for any point p ∈ [x1, x2] one
has ‖p‖ ≥ R

√
1 − (δ/2)2 > σ

√
1 − (δ/2)2 ≥ Θ(f−1(t)). Then the open interval

(x1, x2) lies inside one of the two components of Si,j . Moreover, the norm of each
point belonging to [x1, x2] is at least Ri,j(c̃); thus [x1, x2] ∩ BRi,j(c̃) = ∅.

Then by Lemma 3 applied to γ = [x1, x2], there exists y ∈ [x1, x2] such that
|f(y) − t| > c̃‖y‖. On the other hand, if both ‖y − x1‖ and ‖y − x2‖ are greater
than d0, then

|f(y) − t| = |f(y) − f(x1)| = |f(y) − f(x2)|
≤ min{Ωf(‖y − x1‖), Ωf (‖y − x2‖)} ≤ min{‖y − x1‖, ‖y − x2‖}

≤ δR/2 ≤ δ

2
√

1 − (δ/2)2
‖y‖ ≤ δ‖y‖/

√
2 = c̃‖y‖.

If, say, ‖y − x1‖ ≤ d0, then

|f(y) − t| ≤ Ωf (d0) < d0 ≤ δσ
√

1 − (δ/2)2√
2

<
δR

√
1 − (δ/2)2√

2
≤ δ‖y‖/

√
2 = c̃‖y‖.
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In either case we get a contradiction. So the assumption that the distance between
Ci,R and Cj,R is less than δR was wrong. �
Corollary 3. If f : R

2 → R is a uniformly continuous co-Lipschitz mapping, then
its level set cannot contain a whole parabola. �
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