A PATHOLOGICAL EXAMPLE OF A UNIFORM QUOTIENT MAPPING BETWEEN EUCLIDEAN SPACES

OLGA MALEVA

ABSTRACT. A uniform quotient Lipschitz mapping between Euclidean spaces of dimensions n and n-1, which annihilates the unit ball of a hyperplane, is constructed.

1. **Introduction.** This work is inspired by the paper [BJLPS], where Lipschitz quotient mappings and uniform quotient mappings are studied. A map $f: X \to Y$, where X and Y are metric spaces, is called a uniform quotient if

$$B_{\Omega(r)}(f(x)) \supset f(B_r(x)) \supset B_{\omega(r)}(f(x))$$

for any $x \in X$ and r > 0, where $\omega(r)$, $\Omega(r)$ are functions of the radius r independent of the point x, such that $\omega(r) > 0$ for r > 0 and $\Omega(r) \to 0$ as $r \downarrow 0$. If the first inclusion holds, f is called uniformly continuous; if the second holds, f is called co-uniformly continuous or co-uniform. If $\omega(r) \geq cr$, $\Omega(r) \leq Cr$ for some c, C > 0, f is said to be a Lipschitz quotient mapping (co-Lipschitz if the first inequality holds and Lipschitz if the second inequality holds).

There is a developed theory of uniform / Lipschitz quotient mappings which are one-to-one ([BL]), but not much is known in the general case.

For example, if X, Y are Banach spaces then the Gorelik principle ([G], [JLS]) says, that one-to-one uniform quotient mapping cannot carry the unit ball in a finite codimensional subspace of X into a "small" neighborhood of an infinite codimensional subspace of Y. The proof of the Gorelik principle actually shows that a bi-uniform homeomorphism cannot map a ball in a subspace of codimension k into a small neighborhood of a subspace of codimension k + 1. This holds regardless of whether X and Y are finite or infinite dimensional.

One may ask, if a similar principle holds for uniform quotient mappings, which are not one-to-one. It turns out, that this is not the case even for finite dimensional spaces.

Supported by the Israel Science Foundation.

O. MALEVA

2

As it was proved in [BJLPS], for each n there is a uniform quotient mapping from \mathbb{R}^{2n+1} onto \mathbb{R}^n which maps the unit ball of the hyperplane to zero. Moreover, there is a stronger example for low dimensions: A Lipschitz and co-uniform mapping from \mathbb{R}^3 onto \mathbb{R}^2 which annihilates the unit ball of a hyperplane.

In the present paper we generalize this construction to the case of arbitrary dimension. The result of the paper reads as follows:

For $n \geq 1$ there is a Lipschitz and co-uniform mapping T from $\mathbb{R}^{n+2} = \mathbb{R}^{n+1} \oplus \mathbb{R}$ onto \mathbb{R}^{n+1} such that $T(B_1^{\mathbb{R}^{n+1} \oplus 0}(0)) = \{0\}.$

2. The idea of the construction. Before going into the technical details we briefly describe the example and the proof in an informal way. The space \mathbb{R}^{n+2} is decomposed into the direct sum $\mathbb{R}^{n+1} \oplus \mathbb{R} = \{(x,a) \mid x \in \mathbb{R}^{n+1}, a \in \mathbb{R}\}$, and the mapping is of the form $T(x,a) = \varphi_a(\|x\|) \cdot U_{\psi_a(\|x\|)}x$, where $U_{(\cdot)}$ is a family of orthogonal operators acting on \mathbb{R}^{n+1} . This family together with the functions $\varphi_a(\|x\|)$ and $\psi_a(\|x\|)$ are chosen in such a way that the mapping T is clearly Lipschitz.

The main part of the proof deals with the co-uniformity of T, namely we check the inclusion $TB_r(x,a) \supset B_{\omega(r)}(T(x,a))$ for a fixed radius r > 0. It turns out that if a or ||x|| is large enough, more exactly if $||x|| > 1 + \alpha_1 r^n$ or if $|a| > \alpha_2 r$ for suitably chosen constants α_1 and α_2 , then for a fixed and y close to $f_a(x) = T(x,a)$ in \mathbb{R}^n , the gradient of $f_a^{-1}(y)$ is uniformly bounded in norm by a certain constant c, depending on r. So $TB_r(x,a) \supset T(B_r(x),a) \supset B_{r/c}(T(x,a))$.

The other case is: ||x|| is less than 1 (or not much greater than 1) and $|a| \leq \alpha_2 r$. In this case the inclusion $TB_r(x,a) \supset B_{\omega(r)}$ is of different nature. If x remains fixed and a runs over $[0,\alpha_2 r]$ (so the point (x,a) does not leave the ball of radius r), the point T(x,a) "draws" a curve which is "dense" in the ball $B_{||x||c(r)}(0)$ in the sense that its small neighborhood contains $B_{||x||c(r)}(0) \supset B_{\omega(r)}(T(x,a))$. This small neighborhood is contained, say, in the image of $B_{r/2}(x) \times [0,\alpha_2 r] \subset B_r(x,a)$, so the inclusion follows. This remarkable Lipschitz curve $T(x,[0,\alpha_2 r])$ looks like a spiral of infinitely many turns around 0, when $x \in \mathbb{R}^2$ (see Fig. 1 below). In higher dimensions the curve is some spatial analogue of such a spiral.

In this part we use a special lemma, which allow us to approximate a fixed finite sequence of angles by residues of $\frac{2\pi}{\gamma}$, $\frac{2\pi}{\gamma^2}$, ..., $\frac{2\pi}{\gamma^n}$ modulo 2π .

The question, whether there exists a Lipschitz quotient mapping from \mathbb{R}^n onto \mathbb{R}^m which annihilates an object of dimension greater than n-m, remains open.

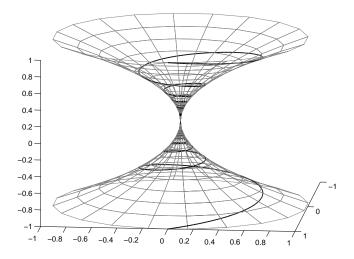


FIGURE 1. The image $T((0,1),a), -1 \le a \le 1$ is the projection of the bolded curve onto the bottom plane

This work will form part of a Ph.D. thesis written under the supervision of Professor Gideon Schechtman. The author thanks Professor Gideon Schechtman for suggesting the problem and for useful discussions.

3. The construction.

Theorem. For $n \geq 1$ there is a Lipschitz mapping T from $\mathbb{R}^{n+2} = \mathbb{R}^{n+1} \oplus \mathbb{R}$ onto \mathbb{R}^{n+1} such that T is a co-uniform quotient mapping and $T(B_1^{\mathbb{R}^{n+1} \oplus 0}(0)) = \{0\}$.

Proof. Let x_k be the kth coordinate vector of the space \mathbb{R}^{n+1} , and Ox_kx_{k+1} denote the coordinate plane spanned by x_k, x_{k+1} . We interpret \mathbb{R}^k as the subspace of \mathbb{R}^{n+1} spanned by x_1, \ldots, x_k . Denote by π_k the standard orthogonal projection $\mathbb{R}^{n+1} \to \mathbb{R}^k$. Let S_r^k denote a sphere in \mathbb{R}^{k+1} of radius r, centered at zero. By $R_{Ox_kx_{k+1}}^{\alpha}$ we mean the orthogonal transformation of the space, which acts as planar rotation by α in the kth and (k+1)th coordinates, leaving the rest of the coordinates unchanged. Note that

(1) if
$$||v|| = ||w||$$
 and $v - w \in Ox_k x_{k+1}$,
then $w = R^{\alpha}_{Ox_k x_{k+1}} v$ for some $\alpha \in [0, 2\pi]$.

O. MALEVA

We define the orthogonal operator $U_{\alpha_1,\ldots,\alpha_k}^{[k+1]}$ inductively by

$$\begin{split} U_{\alpha}^{[\,2\,]} &= R_{Ox_1x_2}^{\alpha}, \\ U_{\alpha_1,\dots,\alpha_k}^{[\,k+1\,]} &= (U_{\alpha_2,\dots,\alpha_k}^{[\,k\,]})^{-1} R_{Ox_kx_{k+1}}^{\alpha_1} U_{\alpha_2,\dots,\alpha_k}^{[\,k\,]}. \end{split}$$

For x fixed and α_j running over $[0, 2\pi]$ independently, $U_{\alpha_1, \dots, \alpha_n}^{[n+1]}(x)$ runs over the whole sphere in \mathbb{R}^{n+1} of radius ||x||, centered at the origin.

To show this, let us note first that $\{U_{\alpha}^{[2]}(x) \mid \alpha \in [0,2\pi]\} = S_{\|x\|}^1$ for $x \in \mathbb{R}^2$. Assume that $U_{\alpha_1,\ldots,\alpha_{k-1}}^{[k]}(x)$ runs over the whole sphere $S_{\|x\|}^{k-1}$ for fixed $x \in \mathbb{R}^k$. Now fix $x \in \mathbb{R}^{k+1}$ and take arbitrary $y \in S_{\|x\|}^k$. Since $\pi_k(x-y) \in \mathbb{R}^k$, there exist α_2,\ldots,α_k such that $U_{\alpha_2,\ldots,\alpha_k}^{[k]}\pi_k(x-y) = \pi_k U_{\alpha_2,\ldots,\alpha_k}^{[k]}(x-y) = \|\pi_k(x-y)\|x_k$. Then $U_{\alpha_2,\ldots,\alpha_k}^{[k]}(x-y)$ lies in Ox_kx_{k+1} . By (1), there exists α_1 such that

$$U_{\alpha_2,\dots,\alpha_k}^{[k]}y = R_{Ox_kx_{k+1}}^{\alpha_1} U_{\alpha_2,\dots,\alpha_k}^{[k]} x.$$

By definition this means that $U_{\alpha_1,\ldots,\alpha_k}^{[k+1]}x=y$.

For $u \in \mathbb{R}$, let $d_u : \mathbb{R}_+ \to [0,1]$ be the continuous function such that $d_u(t) = \min(|u|,1)$ for $t \leq 1$, $d_u(t) = 1$ for $t \geq 2$, $d_u(t)$ is linear for $1 \leq t \leq 2$.

Define
$$T: \mathbb{R}^{n+1} \times \mathbb{R} \to \mathbb{R}^{n+1}$$
 by

$$T(x,a) = d_{a^n}^2(\|x\|) U_{2\pi/d_a(\|x\|),2\pi/d_{a^2}(\|x\|),...,2\pi/d_{a^n}(\|x\|)}^{[n+1]} x.$$

Note that for n = 1 this reduces to the construction in [BJLPS].

Let us check that T is a Lipschitz mapping. For $||x|| \ge 2$ this is clear, since T(x,a) = x. The restriction of T to the set $\{(x,a) : ||x|| \le 2\}$ is the composition of a Lipschitz mapping

$$(x,a) \mapsto (x,d_a(\|x\|),d_{a^2}(\|x\|),\ldots,d_{a^n}(\|x\|)),$$

with

$$(x, t_1, \dots, t_n) \in \{(x, t_1, \dots, t_n) : ||x|| \le 2, 0 \le t_n \le \dots \le t_1 \le 1\}$$

 $\mapsto t_n^2 U_{2\pi/t_1, \dots, 2\pi/t_n}^{[n+1]} x;$

the latter is 1-Lipschitz in x, and each entry of the matrix

$$t_n^2 U_{2\pi/t_1,...,2\pi/t_n}^{[\,n+1\,]}$$

is a combination of $\sin \frac{2\pi}{t_i}$ and $\cos \frac{2\pi}{t_i}$, multiplied by t_n^2 ; as $t_n^2 \leq t_i^2$, such an expression has bounded partial derivatives in t_i .

Let us begin the proof of the co-uniformity of T with the following Lemma.

Lemma 1. For $0 < \rho < 1$ there exists a constant c_{ρ} depending only on ρ and n, such that

$$T(B_{\rho}(x), a) \supset B_{c_{\rho}}(T(x, a)), \text{ if either } a^n > \rho \text{ or } ||x|| > 1 + \rho.$$

Proof. Note that for each nonzero a the inverse of the mapping

$$f_a(x) = T(x,a) \colon \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$$

can be obtained as

$$f_a^{-1}(y) = \frac{p_a(\|y\|)}{\|y\|} \left(U_{2\pi/d_a(p_a(\|y\|)), \dots, 2\pi/d_{a^n}(p_a(\|y\|))}^{[n+1]} \right)^{-1} y,$$

where $p_a(t)$ is the inverse of $q_a(t) = td_{a^n}^2(t)$ (the above holds also for a = 0 as long as $\|x\| > 1$). For $t \in (0,1) \cup (1,2) \cup (2,\infty)$, the derivative of $q_a(t)$ is bounded below by $d_{a^n}^2(t)$, i.e. is not less than $a^{2n} \wedge 1$; moreover, $d_{a^n}^2(t)$ is bounded below by ρ^2 , when $t > 1 + \rho$. Thus, if either $a^n \geq \rho > 0$ or $\|x\| \geq 1 + \rho$, the derivative $p'_a(\|y\|)$ is not greater than $\frac{1}{\rho^2}$ for $y = f_a(x)$. Let us compute the *i*th partial derivative of f_a^{-1} at $y = f_a(x)$; note that $p_a(\|y\|) = \|x\|$:

$$(2) \quad \frac{\partial f_{a}^{-1}(y)}{\partial y_{i}} = \frac{p'_{a}(\|y\|)y_{i}}{\|y\|^{2}} U(p_{a}(\|y\|))y - \frac{p_{a}(\|y\|)y_{i}}{\|y\|^{3}} U(p_{a}(\|y\|))y + \frac{p_{a}(\|y\|)}{\|y\|} U(p_{a}(\|y\|))e_{i} + \frac{p_{a}(\|y\|)}{\|y\|} p'_{a}(\|y\|) \frac{y_{i}}{\|y\|} \cdot U'(p_{a}(\|y\|))y,$$

where U(t) stands for $(U_{2\pi/d_a(t),...,2\pi/d_a^n(t)}^{[n+1]})^{-1}$. The norm of the first summand is less than or equal to $\frac{1}{\rho^2}$, the norm of the second is less than or equal to $\frac{p_a(\|y\|)}{\|y\|} = \frac{1}{d_a^2 n(\|x\|)} \le \frac{1}{\rho^2}$, the norm of the third is less than or equal to $\frac{p_a(\|y\|)}{\|y\|} \le \frac{1}{\rho^2}$. If $t = p_a(\|y\|) \ge 2$ then U'(t) = 0, therefore the norm of the fourth summand is less than or equal to $\frac{2}{\|y\|} \frac{1}{\rho^2} \|U'(t)\| \|y\|$. It remains to estimate the norm of the matrix $\|U'(t)\|$. The matrix $(U_{\alpha_1,...,\alpha_n}^{[n+1]})^{-1}$ is the product of $2^n - 1$ rotations in 2-dimensional planes by $\pm \alpha_i$; the derivative of such a rotation with respect to α_j is either zero (if $i \ne j$) or an orthogonal matrix, so $\|\frac{\partial}{\partial \alpha_j}(U_{\alpha_1,...,\alpha_n}^{[n+1]})^{-1}\| \le 2^n - 1$. Therefore

$$||U'(t)|| \le (2^n - 1) \sum_{j=1}^n |(\frac{2\pi}{d_{aj}(t)})'| \le 2\pi (2^n - 1) \sum_{j=1}^n \frac{d'_{aj}(t)}{d_{aj}^2(t)}$$

$$\le \frac{2\pi (2^n - 1)n}{d_{an}^2(t)} \le \frac{C}{\rho^2},$$

as $d_{a^n}(t) \leq d_{a^j}(t)$ and $d'_{a^j}(t) \leq 1$. Thus, the last summand in the right-hand side of (2), as well as the whole gradient of f_a^{-1} at the point $f_a(x)$, has norm not greater than $\frac{c}{a^4}$ for some c depending on n.

O. MALEVA

6

We have proved an intermediate result: if either $a^n > \rho$ or the norm $||p_a(y)|| > 1 + \rho$, then $||\nabla f_a^{-1}(y)|| \le c\rho^{-4}$ for some constant $c \ge 1$ depending only on n.

Now in the case $a^n \geq \rho$ the norm of the gradient of $f_a^{-1}(y)$ is bounded by the same constant $c\rho^{-4}$ at all the points y, so the preimage $f_a^{-1}(B_{\rho^5/c}(f_a(x)))$ is contained in $B_{\rho}(x)$, which is equivalent to $T(B_{\rho}(x), a) \supset B_{\rho^5/c}(T(x, a))$.

Let us examine the other case: $||x|| \ge 1 + \rho$. Note that

$$q_a(||x||) - q_a(1 + \frac{\rho}{2}) \ge \frac{\rho}{2} \min_{\xi \ge 1 + \rho/2} q'_a(\xi) \ge (\frac{\rho}{2})^3.$$

Therefore for all $z \in B_{\rho^5/16c}(f_a(x))$ we have $||z|| \ge ||f_a(x)|| - \rho^5/16c \ge ||f_a(x)|| - \rho^3/8 \ge q_a(1+\frac{\rho}{2})$, so the norm of the gradient of f_a^{-1} at z is bounded above by $\frac{16c}{\rho^4}$, as $p_a(||z||) \ge 1 + \frac{\rho}{2}$. This means that $f_a^{-1}(B_{\rho^5/16c}(f_a(x))) \subset B_{\rho}(x)$, which is equivalent to $T(B_{\rho}(x), a) \supset B_{\rho^5/16c}(T(x, a))$.

Now let us show that T is co-uniform. We may consider only (x, a) in \mathbb{R}^{n+2} with $a \geq 0$ and assume that the radius r lies between 0 and 1.

FIRST CASE. $r \leq 2^{n+9}a$ or $||x|| > 1 + (\frac{r}{2^{n+9}})^n$. Let $\rho = (\frac{r}{2^{n+9}})^n$ then Lemma 1 implies that

$$TB_r(x,a) \supset T(B_\rho(x),a) \supset B_{c_\rho}(T(x,a)).$$

SECOND CASE. $r > 2^{n+9}a$ and $||x|| \le 1$. Let us show that the set

$$\{T(\tfrac{c}{\gamma^{2n}}y,\gamma) \mid \tfrac{1}{k+1} \leq \gamma \leq \tfrac{1}{k}, \|y\| = \|x\|, \|y-x\| \leq \tfrac{r}{4}\}$$

coincides with the sphere $S_{c||x||}$ of radius c||x||, centered at zero, whenever $k \geq \frac{2^{n+5}}{r}$ is an integer and $\frac{1}{(k+2)^{2n}} \leq c \leq \frac{1}{(k+1)^{2n}}$.

Take $z \in \mathbb{R}^{n+1}$ of norm c||x||. Fix $\varphi_1, \ldots, \varphi_n \in [0, 2\pi]$ such that $U_{\varphi_1, \ldots, \varphi_n}^{[n+1]} x = \frac{z}{\sigma}$. The following lemma will be proved later:

Lemma 2. For any $\varphi_1, \varphi_2, \ldots, \varphi_n \in [0, 2\pi]$ and any positive integer $k \geq 2$ there exists $\gamma \in [\frac{1}{k+1}, \frac{1}{k}]$ such that

(3)
$$||U_{\varphi_1,\varphi_2,...,\varphi_n}^{[n+1]}x - U_{\frac{2\pi}{\gamma},\frac{2\pi}{\gamma^2},...,\frac{2\pi}{\gamma^n}}^{[n+1]}x|| \le \frac{2^{n+1}\pi}{k}$$

for all $x: ||x|| \leq 1$.

Now find $\gamma \in \left[\frac{1}{k+1}, \frac{1}{k}\right]$, such that (3) holds. Then

$$\frac{z}{c} \in B_{2^{n+1}\pi/k}(U^{[n+1]}_{\frac{2\pi}{\gamma},\frac{2\pi}{\gamma^2},\dots,\frac{2\pi}{\gamma^n}}(x)) = U^{[n+1]}_{\frac{2\pi}{\gamma},\frac{2\pi}{\gamma^2},\dots,\frac{2\pi}{\gamma^n}}B_{2^{n+1}\pi/k}(x),$$

i.e. $\frac{z}{c} = U_{\frac{2\pi}{\gamma}, \frac{2\pi}{\gamma^2}, \dots, \frac{2\pi}{\gamma^n}}^{\lfloor n+1 \rfloor}(y)$ for some $y \in B_{2^{n+1}\pi/k}(x) \cap S_{\|x\|}$. This means that $z = T(\frac{c}{\gamma^{2n}}y, \gamma), \|y\| = \|x\|$ and $\|y - x\| \le 2^{n+1}\pi/k \le r\frac{2^{n+1}\pi}{2^{n+5}} \le r/4$, which proves the statement.

We have

$$\|(x,a) - (\frac{c}{2^{2n}}y,\gamma)\|^2 \le (\|x-y\| + |1 - \frac{c}{2^{2n}}|)^2 + |a-\gamma|^2.$$

Now let k run over all integers greater than $\frac{2^{n+5}}{r}$. For each k, let γ run over $\left[\frac{1}{k+1},\frac{1}{k}\right]$, c run over $\left[\frac{1}{(k+2)^{2n}},\frac{1}{(k+1)^{2n}}\right]$ and y run over the set $\{y\mid \|y\|=\|x\|,\|y-x\|\leq \frac{r}{4}\}$. For such γ , c and y we have

$$1 - \frac{c}{\gamma^{2n}} = (1 - \frac{\sqrt{c}}{\gamma^n})(1 + \frac{\sqrt{c}}{\gamma^n}) \le 2(1 - \frac{\sqrt{c}}{\gamma^n})$$
$$\le 2(1 - \frac{k^n}{(k+2)^n}) \le 4\frac{n(k+2)^{n-1}}{(k+2)^n} \le \frac{4n}{k} \le \frac{4n}{2^{n+5}}r;$$

since $0 \le a < \frac{r}{2^{n+5}}$, $0 < \gamma \le \frac{1}{k} \le \frac{r}{2^{n+5}}$ we obtain $|a-\gamma|^2 \le (\frac{r}{2^{n+5}})^2$ and thus

$$(\|x-y\|+|1-\tfrac{c}{\gamma^{2n}}|)^2+|a-\gamma|^2\leq (\tfrac{r}{4}+\tfrac{4rn}{2^{n+5}})^2+(\tfrac{r}{2^{n+5}})^2< r^2.$$

It means that all the points $(\frac{c}{\gamma^{2n}}y,\gamma)$ as above lie in the ball $B_r(x,a)$. Consequently,

(4)
$$TB_r(x,a) \supset \bigcup_{0 \le c \le (\frac{r}{2n+6})^{2n}} S_{c\|x\|} = B_{\|x\|_{r^{2n}/(2^{n+6})^{2n}}}(0),$$

as c runs over $\left[0, \left(\frac{r}{2r+2^{n+5}}\right)^{2n}\right] \supset \left[0, \left(\frac{r}{2^{n+6}}\right)^{2n}\right]$. Note that formula (4) holds for all x, a, r such that $0 \le a < \frac{r}{2^{n+5}}$ and $||x|| \le 1$.

Since

$$||T(x,a)|| = a^{2n} ||x|| \le \left(\frac{r}{2^{n+9}}\right)^{2n} ||x|| \le \frac{r^{2n} ||x||}{4(2^{n+6})^{2n}},$$

we conclude that

$$TB_r(x,a) \supset B_{\|x\|_r^{2n}/(2^{n+9})^{2n}}(T(x,a)).$$

Now if $||x|| \ge r/2$ then

$$TB_r(x,a) \supset B_{r/2 \cdot r^{2n}/(2^{n+9})^{2n}}(T(x,a)) = B_{\frac{r^{2n+1}}{2(2^{n+9})^{2n}}}(T(x,a)),$$

while if ||x|| < r/2 then, putting y = rx/(2||x||),

$$TB_{r}(x,a) \supset TB_{r/2}(rx/(2||x||),a) = TB_{r/2}(y,a)$$

$$\supset B_{\|y\|(r/2)^{2n}/(2^{n+6})^{2n}}(0) = B_{\frac{r^{2n+1}}{2^{2n+1}(2^{n+6})^{2n}}}(0) \supset B_{\frac{r^{2n+1}}{2^{2n+2}(2^{n+6})^{2n}}}(z)$$

O MALEVA

for all $||z|| \leq \frac{r^{2n+1}}{2^{2n+2}(2^{n+6})^{2n}}$. Here formula (4) is valid for the triple y, a, r/2, since the conditions $0 \le a < \frac{r/2}{2^{n+5}}$ and $\|y\| \le 1$ hold. But

$$||T(x,a)|| = a^{2n} ||x|| \le \left(\frac{r}{2^{n+9}}\right)^{2n} \cdot r/2 \le \frac{r^{2n+1}}{2^{2n+2}(2^{n+6})^{2n}}$$

so
$$TB_r(x,a) \supset B_{\frac{r^{2n+1}}{2^{2n+2}(2^{n+6})^{2n}}}(T(x,a)).$$

Third case. $r > 2^{n+9}a$ and $1 < ||x|| \le 1 + (\frac{r}{2^{n+9}})^n$. By (4)

$$TB_r(x,a)\supset TB_{r(1-\frac{1}{(2^{n+9})^n})}(\frac{x}{\|x\|},a)\supset B_{(r(1-\frac{1}{(2^{n+9})^n}))^{2n}/(2^{n+6})^{2n}}(0).$$

Now formula (4) is valid since $a < r/2^{n+9} < r(1 - \frac{1}{(2^{n+9})^n})/2^{n+5}$. Since

$$d_{a^n}(\|x\|) \le a^n + \|x\| - 1 \le a^n + (\frac{r}{2^{n+9}})^n \le 2 \cdot (\frac{r}{2^{n+9}})^n,$$

we obtain

8

$$||T(x,a)|| \le (2 \cdot (\frac{r}{2^{n+9}})^n)^2 ||x|| \le 4 \frac{r^{2n}}{(2^{n+9})^{2n}} (1 + (\frac{r}{2^{n+9}})^n) < \frac{1}{2} (r(1 - \frac{1}{(2^{n+9})^n})/2^{n+6})^{2n}.$$

Therefore

$$TB_r(x,a) \supset B_{\frac{1}{2}r^{2n}((1-\frac{1}{(2^{n+9})^n})/2^{n+6})^{2n}}(T(x,a)).$$

Remark. One can see that the order of the co-uniformity module $\omega(r)$ at zero varies for different cases: in the first case $\omega(r) \sim r^{5n}$, in the second $\omega(r) \sim r^{2n+1}$ and in the third it is of order r^{2n} .

Proof of lemma 2. Note that the matrix $\frac{\partial}{\partial \varphi_j} U_{\varphi_1, \varphi_2, \dots, \varphi_n}^{[n+1]}$ has operator norm not greater than 2^{j-1} , because it is a sum of 2^{j-1} matrices of norm 1. Therefore

$$||U_{\varphi_{1},\varphi_{2},...,\varphi_{n}}^{[n+1]} - U_{\widetilde{\varphi}_{1},\widetilde{\varphi}_{2},...,\widetilde{\varphi}_{n}}^{[n+1]}|| \leq \sum_{j=1}^{n} 2^{j-1} [(\varphi_{j} - \widetilde{\varphi}_{j}) \mod 2\pi].$$

Hence if $\gamma \in \left[\frac{1}{k+1}, \frac{1}{k}\right]$ satisfies (5) below, then for all x such that $||x|| \leq 1$

$$||U_{\frac{2\pi}{\gamma},\frac{2\pi}{\gamma^2},\dots,\frac{2\pi}{\gamma^n}}^{[n+1]}x - U_{\varphi_1,\varphi_2,\dots,\varphi_n}^{[n+1]}x|| \le \sum_{j=1}^{n-1} 2^{j-1} \frac{4\pi}{k} \le \frac{2^{n+1}\pi}{k}.$$

Lemma 3. For any $\varphi_1, \varphi_2, \ldots, \varphi_n \in [0, 2\pi]$ and any positive integer $k \geq 2$ there exists $\gamma \in \left[\frac{1}{k+1}, \frac{1}{k}\right]$ such that

(5)
$$\varphi_j - \frac{2\pi}{\gamma^j} \mod 2\pi \le \frac{4\pi}{k} \text{ for all } j = 1, \dots, n-1$$

$$and \ \varphi_n - \frac{2\pi}{\gamma^n} \mod 2\pi = 0.$$

Proof. Let $N(j)=(k+1)^j-k^j-1$. We define the sequence $\{a_m^{[n]}\}_{m=0}^{N(n)}$ by $a_m^{[n]}=2\pi(k^n+m)+\varphi_n.$

Now for each $j=n,\ldots,2$ having constructed the sequence $\{a_m^{[j]}\}_{m=0}^{N(j)}$ such that

$$a_m^{[j]} \in [2\pi(k^j+m), 2\pi(k^j+m+1)]$$
 and $a_m^{[j]} - \varphi_j \mod 2\pi \le \frac{4\pi}{k}$

we construct $\{a_m^{\lceil j-1 \rceil}\}_{m=0}^{N(j-1)}$ as follows. Note first that the derivative of the function $q_j(t)=2\pi(\frac{t}{2\pi})^{\frac{j-1}{j}}$ is less than $\frac{1}{k}$ for $t\in [2\pi k^j,2\pi(k+1)^j]$. This implies that

$$q_j(a_0^{[j]}) - q_j(2\pi k^j) \le (a_0^{[j]} - 2\pi k^j) \frac{1}{k} \le \frac{2\pi}{k}$$

and, for $0 \le m \le N(j) - 1$,

$$q_j(a_{m+1}^{\left[j\right]}) - q_j(a_m^{\left[j\right]}) \leq (a_{m+1}^{\left[j\right]} - a_m^{\left[j\right]}) \frac{1}{k} \leq \frac{4\pi}{k}.$$

Also

$$q_j(2\pi(k+1)^j) - q_j(a_{N(j)}^{[j]}) \le (2\pi(k+1)^j - a_{N(j)}^{[j]})^{\frac{1}{k}} \le \frac{2\pi}{k}.$$

It follows that we can choose $\{a_m^{[j-1]}\}_{m=0}^{N(j-1)}$ among $\{q_j(a_m^{[j]})\}_{m=0}^{N(j)}$ so that

$$a_m^{[j-1]} \in [2\pi(k^{j-1}+m), 2\pi(k^{j-1}+m+1)]$$

and
$$a_m^{[j-1]} - \varphi_{j-1} \mod 2\pi \leq \frac{4\pi}{k}$$
.

Consider $\{a_m^{[j]}\}_{m=0}^{N(j)}$ for j=1— this is one point. Let us define $\gamma=\frac{2\pi}{a_0^{[1]}}$. Then $\frac{2\pi}{\gamma^j}$ belongs to $\{a_m^{[j]}\}_{m=0}^{N(j)}$ for each j, so (5) holds.

References

- [BJLPS] S. Bates, W. B. Johnson, J. Lindenstrauss, D. Preiss, and G. Schechtman, Affine approximation of Lipschitz functions and nonlinear quotients, Geom. Funct. Anal. 9 (1999), 1092-1127.
- [BL] Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis, Volume 1, Colloquium Publications AMS, vol. 48 (1999).
- [G] E. Gorelik, The uniform nonequivalence of L_p and ℓ_p , Israel J. Math. 87 (1994), 1-8.
- [JLS] W. B. Johnson, J. Lindenstrauss, and G. Schechtman, Banach spaces determined by their uniform structures, Geom. Funct. Anal. 6 (1996), no. 3, 430—470.

Department of Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel, E-mail: maleva@wisdom.weizmann.ac.il