A PATHOLOGICAL EXAMPLE OF A UNIFORM QUOTIENT MAPPING BETWEEN EUCLIDEAN SPACES

OLGA MALEVA

Abstract

A uniform quotient Lipschitz mapping between Euclidean spaces of dimensions n and $n-1$, which annihilates the unit ball of a hyperplane, is constructed.

1. Introduction. This work is inspired by the paper [BJLPS], where Lipschitz quotient mappings and uniform quotient mappings are studied. A map $f: X \rightarrow$ Y, where X and Y are metric spaces, is called a uniform quotient if

$$
B_{\Omega(r)}(f(x)) \supset f\left(B_{r}(x)\right) \supset B_{\omega(r)}(f(x))
$$

for any $x \in X$ and $r>0$, where $\omega(r), \Omega(r)$ are functions of the radius r independent of the point x, such that $\omega(r)>0$ for $r>0$ and $\Omega(r) \rightarrow 0$ as $r \downarrow 0$. If the first inclusion holds, f is called uniformly continuous; if the second holds, f is called co-uniformly continuous or co-uniform. If $\omega(r) \geq c r, \Omega(r) \leq C r$ for some $c, C>0, f$ is said to be a Lipschitz quotient mapping (co-Lipschitz if the first inequality holds and Lipschitz if the second inequality holds).

There is a developed theory of uniform / Lipschitz quotient mappings which are one-to-one ([BL]), but not much is known in the general case.

For example, if X, Y are Banach spaces then the Gorelik principle ([G], [JLS]) says, that one-to-one uniform quotient mapping cannot carry the unit ball in a finite codimensional subspace of X into a "small" neighborhood of an infinite codimensional subspace of Y. The proof of the Gorelik principle actually shows that a bi-uniform homeomorphism cannot map a ball in a subspace of codimension k into a small neighborhood of a subspace of codimension $k+1$. This holds regardless of whether X and Y are finite or infinite dimensional.

One may ask, if a similar principle holds for uniform quotient mappings, which are not one-to-one. It turns out, that this is not the case even for finite dimensional spaces.

[^0]As it was proved in [BJLPS], for each n there is a uniform quotient mapping from $\mathbb{R}^{2 n+1}$ onto \mathbb{R}^{n} which maps the unit ball of the hyperplane to zero. Moreover, there is a stronger example for low dimensions: A Lipschitz and co-uniform mapping from \mathbb{R}^{3} onto \mathbb{R}^{2} which annihilates the unit ball of a hyperplane.

In the present paper we generalize this construction to the case of arbitrary dimension. The result of the paper reads as follows:

For $n \geq 1$ there is a Lipschitz and co-uniform mapping T from $\mathbb{R}^{n+2}=\mathbb{R}^{n+1} \oplus \mathbb{R}$ onto \mathbb{R}^{n+1} such that $T\left(B_{1}^{\mathbb{R}^{n+1} \oplus 0}(0)\right)=\{0\}$.
2. The idea of the construction. Before going into the technical details we briefly describe the example and the proof in an informal way. The space \mathbb{R}^{n+2} is decomposed into the direct sum $\mathbb{R}^{n+1} \oplus \mathbb{R}=\left\{(x, a) \mid x \in \mathbb{R}^{n+1}, a \in \mathbb{R}\right\}$, and the mapping is of the form $T(x, a)=\varphi_{a}(\|x\|) \cdot U_{\psi_{a}(\|x\|)} x$, where $U_{(\cdot)}$ is a family of orthogonal operators acting on \mathbb{R}^{n+1}. This family together with the functions $\varphi_{a}(\|x\|)$ and $\psi_{a}(\|x\|)$ are chosen in such a way that the mapping T is clearly Lipschitz.

The main part of the proof deals with the co-uniformity of T, namely we check the inclusion $T B_{r}(x, a) \supset B_{\omega(r)}(T(x, a))$ for a fixed radius $r>0$. It turns out that if a or $\|x\|$ is large enough, more exactly if $\|x\|>1+\alpha_{1} r^{n}$ or if $|a|>\alpha_{2} r$ for suitably chosen constants α_{1} and α_{2}, then for a fixed and y close to $f_{a}(x)=T(x, a)$ in \mathbb{R}^{n}, the gradient of $f_{a}^{-1}(y)$ is uniformly bounded in norm by a certain constant c, depending on r. So $T B_{r}(x, a) \supset T\left(B_{r}(x), a\right) \supset B_{r / c}(T(x, a))$.

The other case is: $\|x\|$ is less than 1 (or not much greater than 1) and $|a| \leq \alpha_{2} r$. In this case the inclusion $T B_{r}(x, a) \supset B_{\omega(r)}$ is of different nature. If x remains fixed and a runs over [$0, \alpha_{2} r$] (so the point (x, a) does not leave the ball of radius $r)$, the point $T(x, a)$ "draws" a curve which is "dense" in the ball $B_{\|x\| c(r)}(0)$ in the sense that its small neighborhood contains $B_{\|x\| c(r)}(0) \supset B_{\omega(r)}(T(x, a))$. This small neighborhood is contained, say, in the image of $B_{r / 2}(x) \times\left[0, \alpha_{2} r\right] \subset$ $B_{r}(x, a)$, so the inclusion follows. This remarkable Lipschitz curve $T\left(x,\left[0, \alpha_{2} r\right]\right)$ looks like a spiral of infinitely many turns around 0 , when $x \in \mathbb{R}^{2}$ (see Fig. 1 below). In higher dimensions the curve is some spatial analogue of such a spiral.

In this part we use a special lemma, which allow us to approximate a fixed finite sequence of angles by residues of $\frac{2 \pi}{\gamma}, \frac{2 \pi}{\gamma^{2}}, \ldots, \frac{2 \pi}{\gamma^{n}}$ modulo 2π.

The question, whether there exists a Lipschitz quotient mapping from \mathbb{R}^{n} onto \mathbb{R}^{m} which annihilates an object of dimension greater than $n-m$, remains open.

Figure 1. The image $T((0,1), a),-1 \leq a \leq 1$ is the projection of the bolded curve onto the bottom plane

This work will form part of a Ph.D. thesis written under the supervision of Professor Gideon Schechtman. The author thanks Professor Gideon Schechtman for suggesting the problem and for useful discussions.

3. The construction.

Theorem. For $n \geq 1$ there is a Lipschitz mapping T from $\mathbb{R}^{n+2}=\mathbb{R}^{n+1} \oplus \mathbb{R}$ onto \mathbb{R}^{n+1} such that T is a co-uniform quotient mapping and $T\left(B_{1}^{\mathbb{R}^{n+1} \oplus 0}(0)\right)=\{0\}$.

Proof. Let x_{k} be the k th coordinate vector of the space \mathbb{R}^{n+1}, and $O x_{k} x_{k+1}$ denote the coordinate plane spanned by x_{k}, x_{k+1}. We interpret \mathbb{R}^{k} as the subspace of \mathbb{R}^{n+1} spanned by x_{1}, \ldots, x_{k}. Denote by π_{k} the standard orthogonal projection $\mathbb{R}^{n+1} \rightarrow \mathbb{R}^{k}$. Let S_{r}^{k} denote a sphere in \mathbb{R}^{k+1} of radius r, centered at zero. By $R_{O x_{k} x_{k+1}}^{\alpha}$ we mean the orthogonal transformation of the space, which acts as planar rotation by α in the k th and $(k+1)$ th coordinates, leaving the rest of the coordinates unchanged. Note that
(1) if $\|v\|=\|w\|$ and $v-w \in O x_{k} x_{k+1}$,

$$
\text { then } w=R_{O x_{k} x_{k+1}}^{\alpha} v \text { for some } \alpha \in[0,2 \pi]
$$

We define the orthogonal operator $U_{\alpha_{1}, \ldots, \alpha_{k}}^{[k+1]}$ inductively by

$$
\begin{aligned}
U_{\alpha}^{[2]} & =R_{O x_{1} x_{2}}^{\alpha} \\
U_{\alpha_{1}, \ldots, \alpha_{k}}^{[k+1]} & =\left(U_{\alpha_{2}, \ldots, \alpha_{k}}^{[k]}\right)^{-1} R_{O x_{k} x_{k+1}}^{\alpha_{1}} U_{\alpha_{2}, \ldots, \alpha_{k}}^{[k]}
\end{aligned}
$$

For x fixed and α_{j} running over [$\left.0,2 \pi\right]$ independently, $U_{\alpha_{1}, \ldots, \alpha_{n}}^{[n+1]}(x)$ runs over the whole sphere in \mathbb{R}^{n+1} of radius $\|x\|$, centered at the origin.

To show this, let us note first that $\left\{U_{\alpha}^{[2]}(x) \mid \alpha \in[0,2 \pi]\right\}=S_{\|x\|}^{1}$ for $x \in \mathbb{R}^{2}$. Assume that $U_{\alpha_{1}, \ldots, \alpha_{k-1}}^{[k]}(x)$ runs over the whole sphere $S_{\|x\|}^{k-1}$ for fixed $x \in \mathbb{R}^{k}$. Now fix $x \in \mathbb{R}^{k+1}$ and take arbitrary $y \in S_{\|x\|}^{k}$. Since $\pi_{k}(x-y) \in \mathbb{R}^{k}$, there exist $\alpha_{2}, \ldots, \alpha_{k}$ such that $U_{\alpha_{2}, \ldots, \alpha_{k}}^{[k]} \pi_{k}(x-y)=\pi_{k} U_{\alpha_{2}, \ldots, \alpha_{k}}^{[k]}(x-y)=\left\|\pi_{k}(x-y)\right\| x_{k}$. Then $U_{\alpha_{2}, \ldots, \alpha_{k}}^{[k]}(x-y)$ lies in $O x_{k} x_{k+1}$. By (1), there exists α_{1} such that

$$
U_{\alpha_{2}, \ldots, \alpha_{k}}^{[k]} y=R_{O x_{k} x_{k+1}}^{\alpha_{1}} U_{\alpha_{2}, \ldots, \alpha_{k}}^{[k]} x
$$

By definition this means that $U_{\alpha_{1}, \ldots, \alpha_{k}}^{[k+1]} x=y$.
For $u \in \mathbb{R}$, let $d_{u}: \mathbb{R}_{+} \rightarrow[0,1]$ be the continuous function such that $d_{u}(t)=$ $\min (|u|, 1)$ for $t \leq 1, d_{u}(t)=1$ for $t \geq 2, d_{u}(t)$ is linear for $1 \leq t \leq 2$.

Define $T: \mathbb{R}^{n+1} \times \mathbb{R} \rightarrow \mathbb{R}^{n+1}$ by

$$
T(x, a)=d_{a^{n}}^{2}(\|x\|) U_{2 \pi / d_{a}(\|x\|), 2 \pi / d_{a^{2}}(\|x\|), \ldots, 2 \pi / d_{a^{n}}(\|x\|)}^{[n+1]}
$$

Note that for $n=1$ this reduces to the construction in [BJLPS].
Let us check that T is a Lipschitz mapping. For $\|x\| \geq 2$ this is clear, since $T(x, a)=x$. The restriction of T to the set $\{(x, a):\|x\| \leq 2\}$ is the composition of a Lipschitz mapping

$$
(x, a) \mapsto\left(x, d_{a}(\|x\|), d_{a^{2}}(\|x\|), \ldots, d_{a^{n}}(\|x\|)\right)
$$

with

$$
\begin{aligned}
\left(x, t_{1}, \ldots, t_{n}\right) \in\left\{\left(x, t_{1}, \ldots, t_{n}\right):\|x\| \leq 2,0 \leq t_{n} \leq \cdots \leq\right. & \left.t_{1} \leq 1\right\} \\
& \mapsto t_{n}^{2} U_{2 \pi / t_{1}, \ldots, 2 \pi / t_{n}}^{[n+1]} x
\end{aligned}
$$

the latter is 1 -Lipschitz in x, and each entry of the matrix

$$
t_{n}^{2} U_{2 \pi / t_{1}, \ldots, 2 \pi / t_{n}}^{[n+1]}
$$

is a combination of $\sin \frac{2 \pi}{t_{i}}$ and $\cos \frac{2 \pi}{t_{i}}$, multiplied by t_{n}^{2}; as $t_{n}^{2} \leq t_{i}^{2}$, such an expression has bounded partial derivatives in t_{i}.

Let us begin the proof of the co-uniformity of T with the following Lemma.

Lemma 1. For $0<\rho<1$ there exists a constant c_{ρ} depending only on ρ and n, such that

$$
T\left(B_{\rho}(x), a\right) \supset B_{c_{\rho}}(T(x, a)), \text { if either } a^{n}>\rho \text { or }\|x\|>1+\rho
$$

Proof. Note that for each nonzero a the inverse of the mapping

$$
f_{a}(x)=T(x, a): \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}
$$

can be obtained as

$$
f_{a}^{-1}(y)=\frac{p_{a}(\|y\|)}{\|y\|}\left(U_{\left.2 \pi / d_{a}\left(p_{a}(\|y\|)\right), \ldots, 2 \pi / d_{a^{n}}\left(p_{a}(\|y\|)\right)\right)^{[n+1]} y, ~ \text {, }}\right.
$$

where $p_{a}(t)$ is the inverse of $q_{a}(t)=t d_{a^{n}}^{2}(t)$ (the above holds also for $a=0$ as long as $\|x\|>1)$. For $t \in(0,1) \cup(1,2) \cup(2, \infty)$, the derivative of $q_{a}(t)$ is bounded below by $d_{a^{n}}^{2}(t)$, i.e. is not less than $a^{2 n} \wedge 1$; moreover, $d_{a^{n}}^{2}(t)$ is bounded below by ρ^{2}, when $t>1+\rho$. Thus, if either $a^{n} \geq \rho>0$ or $\|x\| \geq 1+\rho$, the derivative $p_{a}^{\prime}(\|y\|)$ is not greater than $\frac{1}{\rho^{2}}$ for $y=f_{a}(x)$. Let us compute the i th partial derivative of f_{a}^{-1} at $y=f_{a}(x)$; note that $p_{a}(\|y\|)=\|x\|$:

$$
\begin{align*}
& \frac{\partial f_{a}^{-1}(y)}{\partial y_{i}}=\frac{p_{a}^{\prime}(\|y\|) y_{i}}{\|y\|^{2}} U\left(p_{a}(\|y\|)\right) y-\frac{p_{a}(\|y\|) y_{i}}{\|y\|^{3}} U\left(p_{a}(\|y\|)\right) y \tag{2}\\
& \quad+\frac{p_{a}(\|y\|)}{\|y\|} U\left(p_{a}(\|y\|)\right) e_{i}+\frac{p_{a}(\|y\|)}{\|y\|} p_{a}^{\prime}(\|y\|) \frac{y_{i}}{\|y\|} \cdot U^{\prime}\left(p_{a}(\|y\|)\right) y
\end{align*}
$$

where $U(t)$ stands for $\left(U_{2 \pi / d_{a}(t), \ldots, 2 \pi / d_{a^{n}}(t)}^{[n+1}\right)^{-1}$. The norm of the first summand is less than or equal to $\frac{1}{\rho^{2}}$, the norm of the second is less than or equal to $\frac{p_{a}(\|y\|)}{\|y\|}=$ $\frac{1}{d_{a^{n}}^{2}(\|x\|)} \leq \frac{1}{\rho^{2}}$, the norm of the third is less than or equal to $\frac{p_{a}(\|y\|)}{\|y\|} \leq \frac{1}{\rho^{2}}$. If $t=p_{a}(\|y\|) \geq 2$ then $U^{\prime}(t)=0$, therefore the norm of the fourth summand is less than or equal to $\frac{2}{\|y\|} \frac{1}{\rho^{2}}\left\|U^{\prime}(t)\right\|\|y\|$. It remains to estimate the norm of the matrix $\left\|U^{\prime}(t)\right\|$. The matrix $\left(U_{\alpha_{1}, \ldots, \alpha_{n}}^{[n+1]}\right)^{-1}$ is the product of $2^{n}-1$ rotations in 2-dimensional planes by $\pm \alpha_{i}$; the derivative of such a rotation with respect to α_{j} is either zero (if $i \neq j$) or an orthogonal matrix, so $\left\|\frac{\partial}{\partial \alpha_{j}}\left(U_{\alpha_{1}, \ldots, \alpha_{n}}^{[n+1]}\right)^{-1}\right\| \leq 2^{n}-1$. Therefore

$$
\begin{aligned}
\left\|U^{\prime}(t)\right\| \leq\left(2^{n}-1\right) \sum_{j=1}^{n}\left|\left(\frac{2 \pi}{d_{a^{j}}(t)}\right)^{\prime}\right| \leq 2 \pi\left(2^{n}-1\right) \sum_{j=1}^{n} \frac{d_{a^{j}}^{\prime}(t)}{d_{a^{j}}^{2}(t)} & \\
& \leq \frac{2 \pi\left(2^{n}-1\right) n}{d_{a^{n}}^{2}(t)} \leq \frac{C}{\rho^{2}}
\end{aligned}
$$

as $d_{a^{n}}(t) \leq d_{a^{j}}(t)$ and $d_{a^{j}}^{\prime}(t) \leq 1$. Thus, the last summand in the right-hand side of (2), as well as the whole gradient of f_{a}^{-1} at the point $f_{a}(x)$, has norm not greater than $\frac{c}{\rho^{4}}$ for some c depending on n.

We have proved an intermediate result: if either $a^{n}>\rho$ or the norm $\left\|p_{a}(y)\right\|>$ $1+\rho$, then $\left\|\nabla f_{a}^{-1}(y)\right\| \leq c \rho^{-4}$ for some constant $c \geq 1$ depending only on n.

Now in the case $a^{n} \geq \rho$ the norm of the gradient of $f_{a}^{-1}(y)$ is bounded by the same constant $c \rho^{-4}$ at all the points y, so the preimage $f_{a}^{-1}\left(B_{\rho^{5} / c}\left(f_{a}(x)\right)\right)$ is contained in $B_{\rho}(x)$, which is equivalent to $T\left(B_{\rho}(x), a\right) \supset B_{\rho^{5} / c}(T(x, a))$.

Let us examine the other case: $\|x\| \geq 1+\rho$. Note that

$$
q_{a}(\|x\|)-q_{a}\left(1+\frac{\rho}{2}\right) \geq \frac{\rho}{2} \min _{\xi \geq 1+\rho / 2} q_{a}^{\prime}(\xi) \geq\left(\frac{\rho}{2}\right)^{3}
$$

Therefore for all $z \in B_{\rho^{5} / 16 c}\left(f_{a}(x)\right)$ we have $\|z\| \geq\left\|f_{a}(x)\right\|-\rho^{5} / 16 c \geq\left\|f_{a}(x)\right\|-$ $\rho^{3} / 8 \geq q_{a}\left(1+\frac{\rho}{2}\right)$, so the norm of the gradient of f_{a}^{-1} at z is bounded above by $\frac{16 c}{\rho^{4}}$, as $p_{a}(\|z\|) \geq 1+\frac{\rho}{2}$. This means that $f_{a}^{-1}\left(B_{\rho^{5} / 16 c}\left(f_{a}(x)\right)\right) \subset B_{\rho}(x)$, which is equivalent to $T\left(B_{\rho}(x), a\right) \supset B_{\rho^{5} / 16 c}(T(x, a))$.

Now let us show that T is co-uniform. We may consider only (x, a) in \mathbb{R}^{n+2} with $a \geq 0$ and assume that the radius r lies between 0 and 1 .

First case. $r \leq 2^{n+9} a$ or $\|x\|>1+\left(\frac{r}{2^{n+9}}\right)^{n}$. Let $\rho=\left(\frac{r}{2^{n+9}}\right)^{n}$ then Lemma 1 implies that

$$
T B_{r}(x, a) \supset T\left(B_{\rho}(x), a\right) \supset B_{c_{\rho}}(T(x, a))
$$

SEcond case. $r>2^{n+9} a$ and $\|x\| \leq 1$. Let us show that the set

$$
\left\{T\left(\frac{c}{\gamma^{2 n}} y, \gamma\right) \left\lvert\, \frac{1}{k+1} \leq \gamma \leq \frac{1}{k}\right.,\|y\|=\|x\|,\|y-x\| \leq \frac{r}{4}\right\}
$$

coincides with the sphere $S_{c\|x\|}$ of radius $c\|x\|$, centered at zero, whenever $k \geq$ $\frac{2^{n+5}}{r}$ is an integer and $\frac{1}{(k+2)^{2 n}} \leq c \leq \frac{1}{(k+1)^{2 n}}$.

Take $z \in \mathbb{R}^{n+1}$ of norm $c\|x\|$. Fix $\varphi_{1}, \ldots, \varphi_{n} \in[0,2 \pi]$ such that $U_{\varphi_{1}, \ldots, \varphi_{n}}^{[n+1]} x=$ $\frac{z}{c}$. The following lemma will be proved later:

Lemma 2. For any $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \in[0,2 \pi]$ and any positive integer $k \geq 2$ there exists $\gamma \in\left[\frac{1}{k+1}, \frac{1}{k}\right]$ such that

$$
\begin{equation*}
\left\|U_{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}}^{[n+1]} x-U_{\frac{2 \pi}{\gamma}, \frac{2 \pi}{\gamma^{2}}, \ldots, \frac{2 \pi}{\gamma^{n}}}^{[n+1]} x\right\| \leq \frac{2^{n+1} \pi}{k} \tag{3}
\end{equation*}
$$

for all $x:\|x\| \leq 1$.
Now find $\gamma \in\left[\frac{1}{k+1}, \frac{1}{k}\right]$, such that (3) holds. Then

$$
\frac{z}{c} \in B_{2^{n+1} \pi / k}\left(U_{\frac{2 \pi}{\gamma}, \frac{2 \pi}{\gamma^{2}}, \ldots, \frac{2 \pi}{\gamma^{n}}}^{[n+1]}(x)\right)=U_{\frac{2 \pi}{\gamma}, \frac{2 \pi}{\gamma^{2}}, \ldots, \frac{2 \pi}{\gamma^{n}}}^{[n+1]} B_{2^{n+1} \pi / k}(x)
$$

i.e. $\frac{z}{c}=U_{\frac{2 \pi}{\gamma}, \frac{2 \pi}{\gamma^{2}}, \ldots, \frac{2 \pi}{\gamma^{n}}}^{[n+1]}(y)$ for some $y \in B_{2^{n+1} \pi / k}(x) \cap S_{\|x\|}$. This means that
$z=T\left(\frac{c}{\gamma^{2 n}} y, \gamma\right),\|y\|=\|x\|$ and $\|y-x\| \leq 2^{n+1} \pi / k \leq r \frac{2^{n+1} \pi}{2^{n+5}} \leq r / 4$, which proves the statement.

We have

$$
\left\|(x, a)-\left(\frac{c}{\gamma^{2 n}} y, \gamma\right)\right\|^{2} \leq\left(\|x-y\|+\left|1-\frac{c}{\gamma^{2 n}}\right|\right)^{2}+|a-\gamma|^{2}
$$

Now let k run over all integers greater than $\frac{2^{n+5}}{r}$. For each k, let γ run over $\left[\frac{1}{k+1}, \frac{1}{k}\right], c$ run over $\left[\frac{1}{(k+2)^{2 n}}, \frac{1}{(k+1)^{2 n}}\right]$ and y run over the set $\{y\|y\|=\|x\|, \| y-$ $\left.x \| \leq \frac{r}{4}\right\}$. For such γ, c and y we have

$$
\begin{aligned}
1-\frac{c}{\gamma^{2 n}}=\left(1-\frac{\sqrt{c}}{\gamma^{n}}\right)\left(1+\frac{\sqrt{c}}{\gamma^{n}}\right) \leq & 2\left(1-\frac{\sqrt{c}}{\gamma^{n}}\right) \\
& \leq 2\left(1-\frac{k^{n}}{(k+2)^{n}}\right) \leq 4 \frac{n(k+2)^{n-1}}{(k+2)^{n}} \leq \frac{4 n}{k} \leq \frac{4 n}{2^{n+5}} r
\end{aligned}
$$

since $0 \leq a<\frac{r}{2^{n+5}}, 0<\gamma \leq \frac{1}{k} \leq \frac{r}{2^{n+5}}$ we obtain $|a-\gamma|^{2} \leq\left(\frac{r}{2^{n+5}}\right)^{2}$ and thus

$$
\left(\|x-y\|+\left|1-\frac{c}{\gamma^{2 n}}\right|\right)^{2}+|a-\gamma|^{2} \leq\left(\frac{r}{4}+\frac{4 r n}{2^{n+5}}\right)^{2}+\left(\frac{r}{2^{n+5}}\right)^{2}<r^{2} .
$$

It means that all the points $\left(\frac{c}{\gamma^{2 n}} y, \gamma\right)$ as above lie in the ball $B_{r}(x, a)$. Consequently,

$$
\begin{equation*}
T B_{r}(x, a) \supset \bigcup_{0 \leq c \leq\left(\frac{r}{2^{n+\sigma}}\right)^{2 n}} S_{c\|x\|}=B_{\|x\| r^{2 n} /\left(2^{n+6}\right)^{2 n}}(0) \tag{4}
\end{equation*}
$$

as c runs over $\left[0,\left(\frac{r}{2 r+2^{n+5}}\right)^{2 n}\right] \supset\left[0,\left(\frac{r}{2^{n+6}}\right)^{2 n}\right]$. Note that formula (4) holds for all x, a, r such that $0 \leq a<\frac{r}{2^{n+5}}$ and $\|x\| \leq 1$.

Since

$$
\|T(x, a)\|=a^{2 n}\|x\| \leq\left(\frac{r}{2^{n+9}}\right)^{2 n}\|x\| \leq \frac{r^{2 n}\|x\|}{4\left(2^{n+6}\right)^{2 n}}
$$

we conclude that

$$
T B_{r}(x, a) \supset B_{\|x\| r^{2 n} /\left(2^{n+9}\right)^{2 n}}(T(x, a))
$$

Now if $\|x\| \geq r / 2$ then

$$
T B_{r}(x, a) \supset B_{r / 2 \cdot r^{2 n} /\left(2^{n+9}\right)^{2 n}}(T(x, a))=B_{\frac{r^{2 n+1}}{2\left(2^{n+9}\right)^{2 n}}}(T(x, a))
$$

while if $\|x\|<r / 2$ then, putting $y=r x /(2\|x\|)$,

$$
\begin{aligned}
T B_{r}(x, a) & \supset T B_{r / 2}(r x /(2\|x\|), a)=T B_{r / 2}(y, a) \\
& \supset B_{\|y\|(r / 2)^{2 n} /\left(2^{n+6}\right)^{2 n}}(0)=B \frac{r^{2 n+1}}{2^{2 n+1}\left(2^{n+6}\right)^{2 n}}(0) \supset B_{\frac{r^{2 n+1}}{2^{2 n+2}\left(2^{n+6}\right)^{2 n}}}(z)
\end{aligned}
$$

for all $\|z\| \leq \frac{r^{2 n+1}}{2^{2 n+2}\left(2^{n+6}\right)^{2 n}}$. Here formula (4) is valid for the triple $y, a, r / 2$, since the conditions $0 \leq a<\frac{r / 2}{2^{n+5}}$ and $\|y\| \leq 1$ hold. But

$$
\|T(x, a)\|=a^{2 n}\|x\| \leq\left(\frac{r}{2^{n+9}}\right)^{2 n} \cdot r / 2 \leq \frac{r^{2 n+1}}{2^{2 n+2}\left(2^{n+6}\right)^{2 n}}
$$

so $T B_{r}(x, a) \supset B \underset{2^{2 n+2}\left(2^{n+6}\right)^{2 n}}{ }(T(x, a))$.
Third case. $r>2^{n+9} a$ and $1<\|x\| \leq 1+\left(\frac{r}{2^{n+9}}\right)^{n}$. By (4)

$$
T B_{r}(x, a) \supset T B_{r\left(1-\frac{1}{\left(2^{n+9}\right)^{n}}\right)}\left(\frac{x}{\|x\|}, a\right) \supset B_{\left(r\left(1-\frac{1}{\left(2^{n+9}\right)^{n}}\right)\right)^{2 n} /\left(2^{n+6}\right)^{2^{n}}}(0)
$$

Now formula (4) is valid since $a<r / 2^{n+9}<r\left(1-\frac{1}{\left(2^{n+9}\right)^{n}}\right) / 2^{n+5}$. Since

$$
d_{a^{n}}(\|x\|) \leq a^{n}+\|x\|-1 \leq a^{n}+\left(\frac{r}{2^{n+9}}\right)^{n} \leq 2 \cdot\left(\frac{r}{2^{n+9}}\right)^{n}
$$

we obtain

$$
\begin{aligned}
&\|T(x, a)\| \leq\left(2 \cdot\left(\frac{r}{2^{n+9}}\right)^{n}\right)^{2}\|x\| \leq 4 \frac{r^{2 n}}{\left(2^{n+9}\right)^{2 n}}\left(1+\left(\frac{r}{2^{n+9}}\right)^{n}\right) \\
& \quad<\frac{1}{2}\left(r\left(1-\frac{1}{\left(2^{n+9}\right)^{n}}\right) / 2^{n+6}\right)^{2 n}
\end{aligned}
$$

Therefore

$$
T B_{r}(x, a) \supset B_{\frac{1}{2} r^{2 n}\left(\left(1-\frac{1}{\left(2^{n+9}\right)^{n}}\right) / 2^{n+6}\right)^{2 n}}(T(x, a))
$$

Remark. One can see that the order of the co-uniformity module $\omega(r)$ at zero varies for different cases: in the first case $\omega(r) \sim r^{5 n}$, in the second $\omega(r) \sim r^{2 n+1}$ and in the third it is of order $r^{2 n}$.

Proof of lemma 2. Note that the matrix $\frac{\partial}{\partial \varphi_{j}} U_{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}}^{[n+1]}$ has operator norm not greater than 2^{j-1}, because it is a sum of 2^{j-1} matrices of norm 1 . Therefore

$$
\left\|U_{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}}^{[n+1]}-U_{\widetilde{\varphi}_{1}, \widetilde{\varphi}_{2}, \ldots, \widetilde{\varphi}_{n}}^{[n+1]}\right\| \leq \sum_{j=1}^{n} 2^{j-1}\left[\left(\varphi_{j}-\widetilde{\varphi}_{j}\right) \bmod 2 \pi\right]
$$

Hence if $\gamma \in\left[\frac{1}{k+1}, \frac{1}{k}\right]$ satisfies (5) below, then for all x such that $\|x\| \leq 1$

$$
\left\|U_{\frac{2 \pi}{\gamma}, \frac{2 \pi}{\gamma^{2}}, \ldots, \frac{2 \pi}{\gamma^{n}}}^{[n+1]} x-U_{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}}^{[n+1]} x\right\| \leq \sum_{j=1}^{n-1} 2^{j-1} \frac{4 \pi}{k} \leq \frac{2^{n+1} \pi}{k}
$$

Lemma 3. For any $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \in[0,2 \pi]$ and any positive integer $k \geq 2$ there exists $\gamma \in\left[\frac{1}{k+1}, \frac{1}{k}\right]$ such that
(5) $\varphi_{j}-\frac{2 \pi}{\gamma^{j}} \bmod 2 \pi \leq \frac{4 \pi}{k}$ for all $j=1, \ldots, n-1$

$$
\text { and } \varphi_{n}-\frac{2 \pi}{\gamma^{n}} \bmod 2 \pi=0
$$

Proof. Let $N(j)=(k+1)^{j}-k^{j}-1$. We define the sequence $\left\{a_{m}^{[n]}\right\}_{m=0}^{N(n)}$ by

$$
a_{m}^{[n]}=2 \pi\left(k^{n}+m\right)+\varphi_{n} .
$$

Now for each $j=n, \ldots, 2$ having constructed the sequence $\left\{a_{m}^{[j]}\right\}_{m=0}^{N(j)}$ such that

$$
a_{m}^{[j]} \in\left[2 \pi\left(k^{j}+m\right), 2 \pi\left(k^{j}+m+1\right)\right] \text { and } a_{m}^{[j]}-\varphi_{j} \bmod 2 \pi \leq \frac{4 \pi}{k}
$$

we construct $\left\{a_{m}^{[j-1]}\right\}_{m=0}^{N(j-1)}$ as follows. Note first that the derivative of the function $q_{j}(t)=2 \pi\left(\frac{t}{2 \pi}\right)^{\frac{j-1}{j}}$ is less than $\frac{1}{k}$ for $t \in\left[2 \pi k^{j}, 2 \pi(k+1)^{j}\right]$. This implies that

$$
q_{j}\left(a_{0}^{[j]}\right)-q_{j}\left(2 \pi k^{j}\right) \leq\left(a_{0}^{[j]}-2 \pi k^{j}\right) \frac{1}{k} \leq \frac{2 \pi}{k}
$$

and, for $0 \leq m \leq N(j)-1$,

$$
q_{j}\left(a_{m+1}^{[j]}\right)-q_{j}\left(a_{m}^{[j]}\right) \leq\left(a_{m+1}^{[j]}-a_{m}^{[j]}\right) \frac{1}{k} \leq \frac{4 \pi}{k}
$$

Also

$$
q_{j}\left(2 \pi(k+1)^{j}\right)-q_{j}\left(a_{N(j)}^{[j]}\right) \leq\left(2 \pi(k+1)^{j}-a_{N(j)}^{[j]}\right) \frac{1}{k} \leq \frac{2 \pi}{k}
$$

It follows that we can choose $\left\{a_{m}^{[j-1]}\right\}_{m=0}^{N(j-1)}$ among $\left\{q_{j}\left(a_{m}^{[j]}\right)\right\}_{m=0}^{N(j)}$ so that

$$
a_{m}^{[j-1]} \in\left[2 \pi\left(k^{j-1}+m\right), 2 \pi\left(k^{j-1}+m+1\right)\right]
$$

$$
\text { and } a_{m}^{[j-1]}-\varphi_{j-1} \bmod 2 \pi \leq \frac{4 \pi}{k}
$$

Consider $\left\{a_{m}^{[j]}\right\}_{m=0}^{N(j)}$ for $j=1$ - this is one point. Let us define $\gamma=\frac{2 \pi}{a_{0}^{[1]}}$.
Then $\frac{2 \pi}{\gamma^{j}}$ belongs to $\left\{a_{m}^{[j]}\right\}_{m=0}^{N(j)}$ for each j, so (5) holds.

References

[BJLPS] S. Bates, W. B. Johnson, J. Lindenstrauss, D. Preiss, and G. Schechtman, Affine approximation of Lipschitz functions and nonlinear quotients, Geom. Funct. Anal. 9 (1999), 1092-1127.
[BL] Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis, Volume 1, Colloquium Publications AMS, vol. 48 (1999).
[G] E. Gorelik, The uniform nonequivalence of L_{p} and ℓ_{p}, Israel J. Math. 87 (1994), 1-8.
[JLS] W. B. Johnson, J. Lindenstrauss, and G. Schechtman, Banach spaces determined by their uniform structures, Geom. Funct. Anal. 6 (1996), no. 3, 430-470.

Department of Mathematics, The Weizmann Institute of Science, Rehovot 76100, ISRAEL, E-MAIL: MALEVA@WISDOM.WEIZMANN.AC.IL

[^0]: Supported by the Israel Science Foundation.

