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Monitoring of pest insects is an important part of the integrated pest management. It aims to provide
information about pest insect abundance at a given location. This includes data collection, usually using traps,
and their subsequent analysis and/or interpretation. However, interpretation of trap count (number of insects
caught over a fixed time) remains a challenging problem. First, an increase in either the population density
or insects activity can result in a similar increase in the number of insects trapped (the so called “activity-
density” problem). Second, a genuine increase of the local population density can be attributed to qualitatively
different ecological mechanisms such as multiplication orimmigration. Identification of the true factor causing
an increase in trap count is important as different mechanisms require different control strategies. In this
paper, we consider a mean-field mathematical model of insect trapping based on the diffusion equation.
Although the diffusion equation is a well-studied model, its analytical solution in closed form is actually
available only for a few special cases, whilst in a more general case the problem has to be solved numerically.
We choose finite differences as the baseline numerical method and show that numerical solution of the
problem, especially in the realistic 2D case, is not at all straightforward as it requires a sufficiently accurate
approximation of the diffusion fluxes. Once the numerical method is justified and tested, we apply it to the
corresponding boundary problem where different types of boundary forcing describe different scenarios of
pest insect immigration and reveal the corresponding patterns in the trap count growth.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Pest insect monitoring is an important component of the inte-
grated pest management (IPM) [6,20,28]. Its purpose is to obtain a
reliable estimate of the pest abundance based on data collected in
the field. A reliable estimate is required in order to help the IPM
specialists to make an informed decision about control measures,
e.g. application of chemical pesticides when the pest density ex-
ceeds a certain threshold [16,38] and yet to avoid their unjustified
use.

Data on insect abundance are usually collected with traps [26,36].
After a trap is set up in the field and has been exposed for a certain
time, it catches a certain number n; of insects of a given species. This
number is called a trap count; if, for instance, the trap was exposed for
one day, itis called the daily count. In case ny > 0, this can be regarded
as proof that the species is present in the vicinity of the trap. However,
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relating the trap count to the population density is a much more
difficult problem. Previous approaches tended to provide a relative
rather than absolute estimate [40]. Recently, [34,35] showed that,
if information is available about the insect movement pattern, the
population density can be obtained by placing the sequence of daily
counts against the predictions of a relevant mean-field mathematical
model of the population dispersal. The simplest model of this type
is the diffusion equation, which assumes that insects perform the
Brownian motion, and indeed there is considerable evidence that
they often do so [41] although this may not always be readily seen
from data [19,33].

The diffusion equation is a well-known and well-studied model
and, in case of one spatial dimension, its general solution can
usually be found analytically, albeit not always in a compact form.
The situation is essentially different in case of higher dimension.
In a 2D case, analytical solution of the diffusion equation is only
possible if the domain possess a certain symmetry, e.g. has the
shape of a rectangle or a disk. Even then, however, the analytical
solution often becomes impractical. For instance, in a disk-shaped
domain, the solution can only be obtained as an infinite series
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where the coefficients are solutions of transcendent algebraic equa-
tions and hence can only be found numerically. In this situation,
i.e. when numerical methods have to be used anyway, a reasonable
alternative approach is to solve the diffusion equation numerically
right away instead of using the semi-analytical method described
above.

In this paper, we use a combination of analytical and numerical
approaches to investigate the patterns in the trap count resulting
from different boundary conditions as given by different ecological
situations. One of the goals of pest insect monitoring is to detect
an early sign of population growth in order to prevent a pest out-
break. It is therefore important to understand how an increase in
the population density can be reflected by the trap count. It seems
intuitively obvious that a larger population size should eventually
result in a larger trap count. The rate of increase can, however, be
different as an increase in the total population size can be attributed
to different reasons. It can result from the growth of the local pop-
ulation, i.e. the population inside the given field, and indeed some
insect species are capable of producing several generations in one
year. It can also result from migration of the pest into the field from
an external source, i.e. from another habitat. For the goals of pest
control, it is important to distinguish between these situations (as
the control measures are likely to be different) as well as between
different immigration patterns. Misidentification of the reason be-
hind the pest abundance increase can result in a completely wrong
estimate of the pest population density and that can have a detri-
mental effect on the efficiency of control measures. Here we are
mostly concerned with the effect of immigration as the most com-
mon scenario; the effect of local population growth will be considered
elsewhere.

There are a variety of numerical methods that can be used to
solve numerically the diffusion equation; e.g. see [39]. However, we
mention here that that their applicability and efficiency depend on the
geometry of the domain. A typical domain in the trapping problem is
not simply connected as it has an external boundary (i.e. the boundary
of the monitored farm field) and the internal boundary (the boundary
of the trap). Moreover, the size of the trap is usually much less than
the size of a typical farm field; therefore, the problem has at least
two clearly different spatial scales. Application of standard methods
to a system like this may bring significant computational difficulties
[32]. Besides, in order to calculate the trap count, one has to calculate
the population density gradient at the trap boundary. This can be a
challenging task, especially at the corner points if the trap has a shape
other than circular, and indeed use of traps of various shapes and
designs has been increasingly common (cf. [12]). Thus, we have to pay
a special attention to numerical issues before discussing ecological
results.

The paper is organized as follows. In Section 2.1, we describe the
mathematical model and provide a comprehensive analytical study
of trap count in the baseline 1D case under various migration scenar-
ios. Although the 1D case is hardly realistic, it provides an important
theoretical background for the understanding of a more realistic 2D
case. We then briefly revisit the finite-difference method for numer-
ical solution of the diffusion equation and show how it can be used
to calculate the trap count in the 1D case (Section 2.2). In Section 3,
we carefully test our computational technique against the analyti-
cal results in the 1D case. In Section 4, we apply our approach to
a hypothetical 1D system in order to reveal generic patterns in the
trap count arising from different ecological scenarios. In Section 5,
we consider an extension of our method onto the more realistic 2D
case and discuss the arising computational issues. We then provide
a thorough analysis of trap count for different immigration scenar-
ios by solving the 2D diffusion equation numerically (Section 6).
Finally, in Section 7 we discuss the ecological implications of our
results.

2. Mathematical model and numerical method, 1D case
2.1. Model

Since the focus of this paper is on the effect of immigration, we
neglect the population reproduction, thus assuming that trap counts
are collected in the period between the generations. Additionally,
for the sake of simplicity, we neglect the population losses due to
mortality. The equation describing the population dynamics in space
is then essentially the mass conservation law which, in the 1D case,
has the following form:
dux,t) .0

gt T oax =0 M

where u(x, t) is the population density at the position x and time t, and
j is the population density flux in the direction of axis x. The mathe-
matical description of the flux depends on the type of the individual
movement. In a relatively general case, individual insects perform
a combination of the non-directed random-like movement that can
often be regarded as the Brownian motion [25,41], and a directed
movement with a certain speed v. The corresponding population flux
is then given by

au(x, t)
dax

where D is the diffusion coefficient. Whilst the directed movement
becomes important in the presence of environmental gradients, the
non-directed random-like motion is an inherent property of almost
all ecological populations.

Insect monitoring is done with traps. Once an insect encounters
the trap, it is caught with a certain probability pg < 1 where pg de-
pends on the species traits and the trap design. Throughout this paper,
we assume that the trap design is sufficiently efficient so that pg ~ 1.
Indeed, this is often the case with walking insects, even for a simple
pitfall trap design. With regard to the effect of species traits and/or the
movement mode, many insects combine flying with walking. Whilst
flying is the preferred movement mode when insects travel over long
distances (e.g. looking for a new feeding or breeding ground), their
movement on the feeding site is typically a combination of walking
and very short flights. Correspondingly, here we assume that, once the
insects arrive at the farm-field, they mostly move around by walking.

Regarding the trap design, traps can be either baited or non-
baited. Baited traps use a certain substance (e.g. pheromone) or agent
(e.g. light or color) in order to attract insects to the trap. This intro-
duces an advective component to the insect movement as they are
more likely move towards the trap rather than in any other direction.
In contrast, non-baited traps do not introduce any directional bias as
they capture insects just because of their random encounters with the
trap. In this paper, we focus on non-baited traps only; consideration
of baited traps involves an essentially different set of assumptions
(in particular, about the insect’s behavioral response to the attracting
agent) and hence will be done elsewhere [3].

Let us consider an idealized 1D farm-field described by the domain
0 < x < L. We assume that the field is homogeneous and the trap is
non-baited. Correspondingly, inside this domain - but not necessarily
outside, see below - the monitored insect population performs only
random motion, i.e. v =0 in Eq. (2). From Eqs. (1) and (2), we then
obtain the diffusion equation:

ou(x, t) 9%u(x, t)
=D . 3
at ax2 (3)
The trap, which we assume to be escape-proof, is installed at the

left-hand side boundary of the domain, i.e. at x = 0. The corresponding
condition at the trap boundary is

u(0,t)=0. (4)

jx,t)= -D +vu(x, t), (2)
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Fig. 1. A sketch of the boundary forcing of the monitored habitat (farm-field) because
of the insect immigration from the adjacent (non-farmed) habitat described by the
population flux; see details in the text.

Once the solution u(x, t) of the diffusion equation is known, the cor-
responding trap count over time t can be obtained as

AU() = /0 jo(@)dr, (5)
where
oty =00 ©)

is the population density flux into the trap. Note that the minus in
the right-hand side of Eq. (2) has now changed to plus because of our
choice of the trap location, i.e. because the population flux into the
trap goes against axis x.

In order to make the mathematical problem complete, the diffu-
sion equation must be complemented with the initial condition and
with a boundary condition at x = L. In this paper, we are mostly inter-
ested in the effect of the conditions at the field boundary arising from
different ecological situations. Hence, in order to avoid unnecessary
complexity, for the initial condition we consider the simplest case
when the population is distributed uniformly around the domain:

ux,0)=Uy, forO<x<L, (7)

where Up > 0 is a parameter with the obvious meaning.

The situation at the field boundary (i.e. at x = L) requires a much
more careful consideration. In order to understand what form of the
boundary condition may be relevant, one has to consider the popu-
lation dynamics not only inside the domain of interest (farm-field)
but also in the adjacent habitat (non-farmed field); see Fig. 1. More-
over, sometimes the inter-habitat boundary itself may have to be
accounted for as a separate domain, in particular, in the cases where
the boundary has an inner structure and may by itself be a habitat.

The focus of this paper is the population dynamics in a given do-
main resulting from immigration. Correspondingly, a relevant starting
pointis the quantification of the immigration’s impact. The population
flux (cf. Eq.(2)) is the number of individuals crossing the boundary per
unit time and hence is a relevant quantity. Note that, whilst we have
assumed that inside the domain 0 < x < L insects move randomly,
outside of the domain insects can perform either a random motion or
a directed movement, or a combination of both. With regard to the
relative importance of the directed and non-directed movement, we
consider two different cases.

Case L. The insect movement in the adjacent habitat is not affected
by the presence of the neighboring farm-field (i.e. there is no odor or
smell that could act as an attractant). The insects move randomly in a
diffusive manner, i.e. there is no advection. Additionally, we assume
that the population density distribution over the non-farmed habitat

is approximately uniform. Then at any locationx = L + € > L, we have
jx+e€,t)=-Dou(x+€,t)/0x ~ 0, i.e. the left-hand and right-hand
diffusive fluxes compensate each other. The population in the non-
farmed domain is therefore at an equilibrium state. The insects that
move around in the close vicinity of the boundary x = L can, because
of the randomness of their movement, occasionally move across the
habitat boundary x = L, i.e. to the farm-field. However, this loss of
individuals is immediately compensated by arrival, due to diffusion,
of insects from areas further inside the non-farmed domain so that
the value of the population density at any location L+ € close to
the boundary remains unchanged. We consider that this value, say
Uy, does not depend on time. Thus, since the population density is a
continuous function of space, we arrive at the following Dirichlet-type
condition:

u(L, t) = Up,. (8)

Below we will refer to this case as the diffusive boundary forcing
referring to the fact that the population outside of the domain (i.e. in
the non-farmed field) performs diffusive movement.

Case Il. There is an attractant emanating from the farm-field into the
adjacent non-farmed habitat. In the non-farmed habitat, it results in
the directed movement of the insects from inner areas towards the
inter-habitat boundary. Because of this, the left-hand and right-hand
fluxes do not compensate each other and, at any location x =L + €
sufficiently close to the boundary (€ is small), there is a population
flux towards the boundary. We now additionally assume that the
boundary has no capacity, that is, the number of the individuals per
unit time coming to the boundary from the right (from the non-
farmed habitat, see Fig. 1) must be balanced by the same number
going away from the boundary to the left (to the farmed habitat).
The advective flux J at the right-hand side of the boundary must
therefore be balanced by the purely diffusion flux at the left-hand
side of the boundary, so that we arrive at the Neumann-type boundary
condition:

du(x, t)
0X |

where G = J/D is thus the value of the density gradient. For the sake
of simplicity, we assume that J is constant, so that G is constant as
well. Below we refer to this case as the advective boundary forcing re-
ferring to the fact that outside of the domain the population performs
advective movement.

We mention here that the above interpretation of the boundary
conditions to some extent depends on the assumptions about the
population dynamics outside of the monitored region 0 < x < L. In
particular, in a more complicated case when the environmental het-
erogeneity in the adjacent non-farmed habitat x > L cannot be ne-
glected (which, for instance, can be a result of population losses due
to mortality, e.g. see [22]), both the nature of the movement process of
the organisms and the nature of the underlying habitat can influence
the density and flux of organisms arriving at the interface x = L. The
boundary condition then may be better described by the Robin-type
condition. However, we do not consider this situation here in detail
in order to avoid unnecessary complexity.

du(L,t) _

D =] or —- G, 9)

Now we are going to consider what is the mathematical expression
for the trap count in case of different boundary conditions as given by
Cases I and Il above.

Impenetrable boundary. We begin with the simplest case where there
is no forcing at all, i.e. no insect immigration or emigration, because
the boundary is impenetrable:
du(L,t)
~—~ =0. 10
X (10)

The problem (3), (4) and (7) together with (10) can be solved
analytically using the separation of variables method (e.g. [43]). The




146 D. Bearup et al./ Mathematical Biosciences 263 (2015) 143-160

solution u(x, t) is given by the following infinite series:

4U, 2k + 1)mx
uk. 0 = OZ(21<+1) < oL )

(2k +1)?7%Dt
xexp(—T). (11)
From (11), the diffusion flux (6) at the trap boundary is obtained
as
. 2DUp & 2k +1)?2Dt
jo(©) = 25 Y exp (- CEE T (12

k=0
and, correspondingly, the number of insects caught over time t of the
trap exposure is calculated as

8LU0 2k + 122Dt
AU = —2 Z (2k+1)2 [1 —exp (-T)] (13)

where LUy is the total number of insects for x > 0 at t = 0. Note that,
since
72

2 Gk iE T8 (14)

in the large-time limit AU(t) — LUy, i.e. all insects are trapped.
It also follows from (13) that the trap count can be approximated
as

_ 2Uo
AU(t) ~ 7= VD, (15)
which shows a very good accuracy when either time t is sufficiently
small or the domain length L is sufficiently large, or both; see [34] for
details of this approximation. A straightforward derivation of Eq. (15)
in case of a semi-infinite domain x > 0 can be found in [35].

Diffusive boundary. We now consider the case of the diffusive forcing,
i.e. the diffusion problem (3), (4) and (7) together with the condition
(8). Using the same method as above, we arrive at the following ex-
pression for the trap count:

DU, ZUbL ( 1)k Dk2m2t
Tt+ =) 2 12 [lfexp<— 2 )]

E 1o 2577

(16)

A U(l’)Dir —

Advective boundary. Finally, in the case of advective forcing, we con-
sider (3), (4) and (7) together with (9). The corresponding expression
for the trap count is:

AU(t)Neu
16GI%2 & (—1) Dk — 1272t
=P S Lk iy ()]

8U0L

p (—7]3(2’( ;le)znzt)] . (7)

Z(21<71)2[ B

In the special case ofimpenetrable boundary, i.e.forG=] = 0,(17)
coincides with (13).

Solutions (13), (16) and (17) will be used below to test the numer-
ical method.

We mention here that, in case of any more complicated boundary
condition at the external field boundary (e.g. of the Robin type), the so-
lution of the corresponding diffusion problem would not be available
in closed form. Each term in the series would include a coefficient
that could only be obtained numerically by solving a transcendent
algebraic equation. This emphasizes the need for an alternative, nu-
merical method to solve the diffusion equation that will be discussed
below.

2.2. Numerical method

In this section, we look at the numerical method we use to ob-
tain the solution, i.e., a finite difference method. We aim to discuss
finite difference discretization of the 1D problem in detail, as most of
computational issues arising when the 2D problem is considered are
already present in the 1D case.

Let us introduce a uniform computational grid G in the domain
x € [0,L] in order to discretize the diffusion equation (3). We have
X1 =0,x1 =x;+h,i=1,...,N, where h = L/N is the grid step size,
and N is the number of grid subintervals.

Let u(x, ty) be the solution to the problem (3), (4), (7) (comple-
mented with a relevant boundary condition at the external boundary,
as discussed in Section 2.1) at the fixed time t = t;. Let also u(x, tp,1)
be the solution at the fixed time t = t;, .1, where tp. 1 = t, + 7, T > 0.
A finite difference discretization scheme is a method widely used
for numerical solution of parabolic differential equations (e.g. see
[15,17,18,23]. The scheme defines the approximate solution u(x, t,1)
at each grid node x; of a uniform grid G from solving a system of linear
algebraic equations

1
— (=) = Afou + (1 o], (18)
where we use the notation ul' = u(x;, tn) and u?“ = u(xj, thy1)- The
definition of discrete spatial operator A is

D
Alvi] = hj(VHl —2Vi+ Vi), (19)

where v; is a discrete function defined at nodes of the grid G, h is the
grid step size and D is the diffusion coefficient.

The weight parameter o defines a type of the scheme. The weight
coefficient o = 1 provides us with an implicit (and therefore uncon-
ditionally stable) scheme. The weight o = 0 results in an explicit
scheme, where the solution u““ at time t,, is readily computed
from the solution uf taken from the previous time layer t,. In our
work we employ the latter version of the scheme with o = 0. The
theoretical approximation error related to this scheme is O(h? + )
and the scheme is stable if the following condition holds:

pr _1
h?z —2°

While we are fully aware of the issues of the stability and accu-
racy raised when the explicit scheme o = 0 is used, we advocate our
choice because of simplicity of computations. Let us note that we are
interested in the solution at small times t, where we assume that the
approximate solution is not noticeably affected by approximation er-
ror O(7) of the scheme. This assumption is further carefully checked
inaseries of numerical tests discussed in Section 3. Also, the condition
(20) implies a very small time step size T on fine grids with h « 1,
but it does not significantly increase the cost of our computations at
small times.

Equations (18) are solved fori=2, ..., N. For the discretization
of the boundary conditions (4)-(10), at any time t, > 0 we have the
following equations

(20)

it =0 for x=0,

21
n+1 21D 21

UNTY = UNy + =5 % (uy — for x =L.

Un1)
Equations (21) provide us with the second order approximation of the
boundary conditions (e.g. see [39]) and is therefore consistent with
the accuracy of approximation (18).

Similarly, we have

n+1 21D

Unyy = Uyt + 5 2 (uy —ugyy +hG)  for x =L, (22)
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when the boundary condition (9) is used. The discretization of the
boundary condition (16) is straightforward and results in

uptl =U, for x=L. (23)
Finally, the discretization of the initial condition (47) is
u=Up, i=2....N (24)

Calculation of trap count. Let the solution u(x, t,, 1) be known to us
at any fixed time t = t;. 1. In our further discussion in this section
we omit the notation ¢, for the sake of convenience and consider
a spatial distribution u(x). The flux j(x) of the population density u(x)
at point x is given by the formula (6). Hence the flux computation
dut) at grid node x; = 0.
The accuracy of this approximation should be consistent with the
accuracy of finite difference approximation (18), that is the approxi-
mation error should be O(h?). It is explained in Appendix A that the
required order of accuracy can be achieved by using the following flux
approximation at the trap boundary x = 0:

requires approximation of the derivative

. D
j(0) ~ ﬁ|4u2—u3|. (25)

Once the flux j(0) has been computed, an approximation of the
total number of insects AU™+1 crossing the trap boundary between
time t; and t,, is obtained as AU™"1 = j(0)t. The cumulative trap
count AU(tpq1) = AU™! at time t,,; is then computed by adding
this value to that obtained at the previous time t;:

AU"‘H =AU"+ AU"'”H. (26)
3. 1D case: Validation of the method and numerical tests

In this section we validate our finite difference discretization
through a number of numerical tests. Our first test case is to check the
spatial convergence of a numerical solution on a sequence of refined
grids. The convergence graph is shown in Fig. 2a where the trap count
error is computed as a difference between the analytical solution (13)
and a numerical solution (26). The time ¢ is fixed as t = 100 and the
diffusion coefficient is D = 1. We conclude from the slope of the con-
vergence graph that our spatial discretization is indeed second order
accurate.

Consider now the temporal-spatial discretization. The trap count
obtained from a numerical solution have been computed for various
time t on a sequence of grids with grid step size varying from h = 0.5
to h = 0.05. The results are shown in Fig. 2b. It can be seen from the
figure that the trap count obtained from the numerical solution are,
over the given time, visually indistinguishable from those produced
by the truncated exact solution on the scale used.

More accurate validation of the numerical solution requires com-
putation of the trap count error. We introduce the trap count error
e™1 at time t = t,,1, n =0, 1... as the relative difference between
the exact trap count AUZ{ L, and the approximate trap count AU oy
obtained from a numerical solution,

ALY — AU

approx

AUn+1

exact

en+1 —

(27)

In computation of the error (27) the exact solution (13) was truncated
as

8LU, 2L 1 2k + 1)272Dt

(28)

The truncated solution has been verified against the approxima-
tion (15) at small times to guarantee that K = 200 terms in the above
sum is sufficient to approximate an infinite series. The error e™t! is

2
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Fig. 2. (a) Spatial convergence of the numerical solution on a sequence of uniformly
refined spatial grids. (b) Trap count obtained by (15) on a sequence of refined grids with
the grid step size h (see inset key) in comparison with the truncated exact solution (28).
The six different curves are visually indistinguishable. (c) The trap count error (27) as
a function of time. In all cases (a-c), the parameters are L = 49.5, D = 1.0, T = 1/1600
and Up = 10.

shown in Fig. 2¢ as a function of time. It has been computed on a se-
quence of grids refined from h = 0.5 to h = 0.05. Obviously, the finer
the grid is the smaller the relative error. Overall the relative errors
obtained on any sufficiently fine grid (e.g. with h < 0.125) are very
small (on the order of 1% or smaller) at any time point.

Let us note that, for the validation of our numerical method, we
have used the exact solution obtained for the simplest boundary and
initial conditions as given by (4), (7) and (10). In the case that a dif-
ferent, more complicated boundary condition and/or initial condition
are used in the diffusion problem, the exact solution may not always
be available in an explicit form; in particular, it is rarely available in



148 D. Bearup et al./ Mathematical Biosciences 263 (2015) 143-160

the 2D case (considered in Sections 5 and 6). Therefore, an alternative
approach is required to corroborate a numerical solution. Thus our
next test is to compare the trap count obtained from flux calculations
with trap count calculated by a different method.

We mention here that, in the strict sense, validation of the nu-
merical method in the absence of the exact solution is hardly possi-
ble: indeed, having calculated the solution on a sequences of refined
grids, what can we compare it to? Note that good agreement be-
tween the results obtained by two different methods does not, by
itself, prove anything as, generally speaking, both methods can be
equally wrong. Yet if we can reproduce the results (i.e. trap count)
by using a different numerical method, that, albeit not being a proof
as such, should be regarded as an indirect evidence of the results’
plausibility.

As an alternative method, we consider the numerical integration
of the solution u(x, t,). The integration gives the size of the ‘free’ pop-
ulation inside the computational domain at time t,. Recall that our
population model assumes no reproduction or mortality of individu-
als within the domain. Furthermore, for the boundary condition (10),
the impermeable external boundary admits no migration into or out
of the domain. As such the population changes only as a result of
trapping. Hence the sum of the free population and the trap count re-
mains constant and is equal to the initial population LUy at any given
time.

The free population U™t is calculated by numerical integration of
the population density distribution over the domain x € [0, L] at the
time t,, 1. Once the population density u(x, t;,1) has been defined at
the nodes of a uniform computational grid G, a composite rule of nu-
merical integration can be applied to integrate the spatial distribution
u(x) at the fixed time t 1,

L N+1
UM = Uen) = [ ude~ Y- o, (29)
0 -
i=1
whereu; = u?“,i =1,...,N+ 1are function values at grid nodes and

the weights w; are defined according to the chosen rule of numerical
integration. In our work we apply the trapezoidal rule, where the
weights are wq = wy 1 =h/2, wj=h,i=2,...,N. The accuracy of
this integration rule on a uniform grid with the grid step size h is
0(h?) (e.g. see [10]).

The trap count can then be computed as

AU™! = LUy — U™, (30)

where LUy and U™t are the free population at time t = 0 and t = t;,,4
respectively.

The results of numerical integration (29)-(30) are presented in
Fig. 3. The spatial convergence of a numerical solution on a sequence
of refined grids is shown in Fig. 3a, where the time t is fixed as t = 100
and the other parameters are L =49.5, D = 1. In order to calculate
the error, we compare a solution obtained by numerical integra-
tion of the density function with the truncated integral of the exact
density.

The trap count as a function of time is shown in Fig. 3b on a se-
quence of grids with grid step size varying from h = 0.5 to h = 0.05.
The trap count obtained from the numerical solution appear to be
visually indistinguishable from those produced by integrating trun-
cated exact density. This conclusion is further confirmed by compu-
tation of the error (27), where Augggmx is now a numerical solution
(30). The relative error as a function of time is shown in Fig. 3¢ on
spatial grids with the grid step size from h = 0.5 to h = 0.05. It is clear
from the figure that the accuracy of computation is very good on any
grid used.

Let us now compare the trap count obtained by the two different
methods, i.e. by the flux calculation at the trap boundary, see Egs. (25)
and (26), and by the numerical integration of the population density of
the free population, see Eq. (30). Fig. 4 shows the absolute value of the
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Fig. 3. (a) Spatial convergence test. The error is computed as a difference between
the solution (30) and the integral of the truncated density function on a sequence of
uniformly refined spatial grids. (b) Plots of trap count obtained using numerical inte-
gration on increasingly fine grids (see inset key) in comparison with the exact solution
obtained as the integral of the truncated exact density function. The six different curves
are visually indistinguishable. (c) Relative differences between the numerical solution
and the exact solution plotted against time. In all cases (a-c), the parameters are the
same as in Fig. 2.

relative difference between the two numerical solutions obtained on a
fine grid with h = 0.05 for parameters L = 49.5 and D = 1. It is readily
seen that the two methods are in a very good agreement between
themselves, and both numerical solutions are very close to the exact
solution of the problem; see also Figs. 2 and 3. We therefore assume
that, when the exact solution is not available, the trap count obtained
from numerical integration can be used to verify those obtained from
flux calculations. This conclusion is going to be practically important
for the analysis of the 2D problem.



D. Bearup et al./ Mathematical Biosciences 263 (2015) 143-160 149

10 . .
S 10 1
o
ko
::C=7
(0]
=
&5
$10°F\, J
10° : :
0 200 Time 400 600
(a)

Fig.4. Comparison of two numerical solutions on a fine grid with h = 0.05. The relative
difference between the solution obtained from direct flux calculation and the solution
by numerical integration is computed as a function of time.

4. 1D results for various ecological conditions

We are now going to consider the trap count dynamics subject
to different types of forcing at the external boundary as given by
Egs. (8) and (9). In doing this, we combine analytical approaches with
numerical simulations. The diffusion problem in the 1D case can be
studied analytically, e.g. see Eqs. (16) and (17) and the theorem at the
end of this section. However, basic properties of the corresponding
solutions are sometimes easier to see from numerical simulations. We
therefore begin with numerical results and their semi-quantitative,
heuristic analysis.

Recall that in the 1D system the analytical expression for the trap
count is available, cf. Egs. (16) and (17). It is readily seen that a trun-
cated series with a sufficiently large number of terms provides a very
good approximation to the exact solution. This approximate solution
is used below to analyze the trap count for different conditions. Some
of those approximate-analytical results are also reproduced using the
numerical method described in the previous section, thus using the
analytical solution as a test, with the idea to later apply numerical
simulations extensively in the 2D case where the analytical solution
is not available.

In order to provide a convenient framework for the understanding
of the trap count dynamics, we notice that, both for diffusive forcing
(8) and advective forcing (9), the solution of the diffusion equation
has stationary large-time asymptotics, iip(x) and iiy (x) respectively,
where

- Upx
lip(x) = I
We therefore obtain that, in the large-time limit, the trap count is
a linear function of time, that is
respectively, where the value of the constants C; and C; results from
the transient short-time and intermediate-time dynamics; in partic-
ular, it depends on the initial conditions. If we consider G = Uy/L,
then the only difference between the two types of forcing is due to
the transient stage. In order to make the solutions for diffusive and
advective forcing comparable, throughout this section we choose G
to be equal to Up/L.

Diffusion is a slow process; whatever the type of the bound-
ary forcing, it clearly takes some time for its effect to propagate
through the domain and to reach the trap (we will address this is-
sue more quantitatively below). It is less clear which type of forcing
may result in a stronger effect. Intuitively, the Neumann-type advec-
tive boundary condition corresponds to a more active forcing (see

and iiy(x) = Gx. (31)

AU(t)Dir ~ and AU(t)Neu ~ DGt + Gy, (32)
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Fig. 5. Trap count versus time as given by the series (16) (upper curve) and (17)
(lower curve), i.e. for diffusive and advective forcing respectively, and as obtained from
numerical solutions of the corresponding systems. Parameters are: D = 1,L = 45, Uy =
0, U, = 10 and G = U, /L. Red curves correspond to the analytical solutions (truncated
at 100 terms), black symbols correspond to numerical solutions. Note the excellent
agreement between the analytical and numerical results. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

Cases 1 and 2 in Section 2.1), hence it seems reasonable to expect
that the trap count should grow faster in that case than in case of the
diffusive, Dirichlet-type, boundary condition. Interestingly, this intu-
itive argument appears to be misleading. Fig. 5 shows the trap count
obtained both analytically (red curves) and numerically (black sym-
bols) for diffusive forcing (upper curve) and advective forcing (lower
curve). As was expected, the effect of the external forcing is not seen
until after a considerable delay. However, diffusive forcing appears to
have a much stronger effect on the trap count than advective forcing.

In order to make a more detailed insight into the effect of the
domain length, we introduce a certain threshold count and consider
how the time t; required for the trap count to reach the threshold
depends on the distance L between the trap and the external boundary
(i.e. the domain length). Fig. 6 shows this time t; vs L for the threshold
count equal to one, i.e., effectively, the time when the first insect from
the monitored population is caught. We therefore observe that, the
larger is the distance L the higher is the efficiency of diffusive forcing
compared to advective forcing.

The faster-than-linear (approximately quadratic) growth in the
time t; as a function of L can be explained using the dimensions
analysis [1]. From the quantities t1, L, D, Uy and U, or G one can
make exactly two dimensionless combinations, that is IT = t; DL2
and either I1; = Uy/ U, or I1, = Uy /(GL), for diffusive and advective
forcing, respectively. Then, according to the [1-theorem ([5]; also [1]),
one of these dimensionless combinations must be a function of the
other, i.e.,

IM=fI1) or IT=f(I1), (33)

for diffusive or advective forcing, respectively, where f; and f, are
certain ‘universal’ functions. For time t;, we therefore obtain:

12 12
t = Bfl (ITy) or 6= Efz(nz) (34)

Functions f; and f, are not known; however, we observe that,
in the special but important case Uy = 0, their argument is zero as
I1; = I1, = 0. The values f; (0) and f,(0) then just act as coefficients.
We therefore obtain that t; is proportional to L2, which agrees very
well with Fig. 6.

The above results were obtained for Uy = 0, i.e. when there is no
native population in the domain and the trap count only account for
the boundary forcing resulting from the immigration. The dynamics
becomes different and somewhat more complicated when the native
population is present, i.e. for Uy > 0. This, for instance, can be seen
from Eqs. (34) where time t; remains proportional to L in case of
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Fig. 7. Trap count versus time as obtained from Eqs. (16) and (17). Solid and dashed curves correspond to the Dirichlet (diffusive) and Neumann (advective) boundary conditions,

respectively. Parameters are: D = 1, L = 45, Uy = 10, U, = 50 and G = U /L.

diffusive forcing but turns into a more complicated relation in case
of advective forcing as L now enters the argument of f,. For Uy > 0,
the trap count growth at small ¢ (i.e. before the effects of the bound-
ary reach the trap) is determined solely by the effect of the initial
conditions (i.e. by the native population) and is known to increase as
V't [34]. If considered over a long time, the pattern in the trap count
growth can be regarded as a transition between the two asymptotics,
i.e. the small time behavior AU ~ +/t and the large-time behavior
AU ~ t (cf. Egs. (32)); this transition is clearly seen in Fig. 7. Note
that, at small ¢, the trap count are the same irrespective of the bound-
ary condition as only the initial conditions are having effect.

The effect of the initial conditions does complicate the behaviour
of the system. We showed above that for Uy = 0 diffusive forcing
always has a stronger effect on the trap count than the equivalent!
advective forcing. For Uy > 0, the type of forcing that results in a
larger trap count (or in a faster growth of the trap count with time)
depends on parameters Uy, and G. For a given Uy, diffusive forcing is
stronger than advective forcing for a large U, (Fig. 7) but it gives way to
the equivalent advective forcing when U, becomes sufficiently small;
see Fig. 8. Similarly, for a given Uy, the diffusive forcing is stronger
for small Uy, but the advective forcing is stronger for large Uy. The
value of U, where the relative strength of the different forcing types

! That is, when G = Uy /L.

interchanges depends on Uy. We also observe that the shape of the
curves describing the trap count dynamics changes as well; from
being convex for small values of Uy (Fig. 8) they become sigmoidal for
large U, (Fig. 7). Recall that for Uy = 0 the generic shape of the curve
is concave, cf. Fig. 5.

The above results were obtained numerically. However, the rela-
tion between the trap count obtained for the two types of boundary
forcing can also be addressed analytically, as is shown by the follow-
ing theorem.

Theorem 1. Consider the diffusion equation in the domain 0 <x <L
with the condition at the left-hand side boundary as u(0, t) = 0 (as cor-
responds to the trap) and the initial condition u(x, 0) = ug(x). Let up(x, t)
and uy(x, t) be the solutions obtained for the Dirichlet and Neumann
boundary conditions at the right-hand side boundary, i.e. foru(L, t) = Uy,
and du(L, t)/dx = G, respectively. Consider the trap count AU(t) as de-
fined by (5-6). Let the parameters be related as Uy, = GL. Then the fol-
lowing statements hold:

if ug(x) < Gx then AU®)PT > AUV,
if up(x) > Gx then AU®)PT < AUV,

(35)
(36)
Proof. We first recall that, under the condition U, = GL, both the

Dirichlet and the Neumann problems have the same stationary solu-
tion iip (x) = tiy(x) = Gx.
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Let us consider condition (35), i.e. ug(x) < Gx. Since both ug(x) and
Gx satisfy the diffusion equation and the same boundary conditions,
up(0) = 0 and ug(L) = GL = Uy, by virtue of the comparison theorem
for parabolic PDEs (also known as the monotonicity principle, cf. [42])
we obtain that up(x, t) < Gx for any t > 0 and all 0 < x < L. Assume
that there exist certain x, < (0, L) and t, such as up(x,, t.) = Gx,. By
virtue of the strong maximum principle, we then obtain thatup(x, t) =
Gxin (0, L) for any t > 0. But up(x, t) does not coincide with Gx at any
finite t. Therefore (x,, t,) does not exist and hence up(x, t) < Gx for all
0 < x < L, in particular in the vicinity of x = L. Applying then Hopf’s
lemma (boundary point principle), we obtain that

dup (L, t)
ax

Recall that G is the value of the gradient in the Neumann boundary
condition; relation (37) therefore reads as

dup(L,t) dun(,t)
x ox

We therefore obtain that up(x, t) and uy(x, t) satisfy the same dif-
fusion equation, the same initial condition ug(x) and the same left-
hand side boundary condition up(0, t) = uy(0, t) = 0 but have differ-
ent value of the gradient at the right-hand side boundary as given by
(38). Then, by virtue of the comparison theorem, up(x, t) > uy(x, t) for
any t > 0 and all 0 < x < L. Similar to the above, let us assume that
there exist x* € (0, L) and t* such as up(x*, t*) = uyn(x*, t*). Applying
the strong maximum principle, we obtain that up(x, t) = uy(x, t) in
(0, L) forany t > 0, which is impossible. Therefore (x*, t*) does not ex-
istand up(x, t) > un(x, t) for all 0 < x < L, in particular in the vicinity
of x = 0. Applying now Hopf’s lemma to the left-hand side boundary,
we obtain that

(2000 _ ()00, (39)

(where —1 accounts for different direction of the outwards normal
vector) so that

8uD(O, l’) 8111\1(0, t)
ax ox

It then immediately follows from (5)-(6) that the population flux
joir > jNeu and hence the corresponding trap count AU(t)PT >
AU(H)Nev,

In the opposite case, i.e. where u(x, 0) > Gx, a very similar argu-
ment (subject to signs reversed in relevant places) could be used to
show that the flux into the trap is less with Dirichlet forcing than with
Neumann forcing, i.e. the statement (36) holds. O

G. (37)

(38)

(40)

Obviously, the results shown in Figs. 5 and 8 correspond to the
conditions (35) and (36), respectively. Note that the intermediate
case where the initial condition uq (x) and the line Gx have intersection
points in the interval 0 < x < L (i.e. when 0 < Uy < U}, for the initial
condition (7), cf. Fig. 7) is not addressed by the theorem.

5. The 2D problem
5.1. Model

Having established how our numerical solutions behave in a 1D
system we now move on to the more complex, more realistic 2D case.
The diffusion equation in the 2D case is written as

u 0%u  9%u
at =2 (5 + s ) @

where u(x, y, t) is the density of the pest insect population, D is the
diffusion coefficient. Equation (41) is considered in the domain Q2 =
{&,y): |x| <Ly, ly| <Ly} where 2L, thus gives the overall size of the
domain.

We will focus on a case where a single trap is installed at the ori-
gin, i.e. in the center of the domain. Generally speaking, the shape of
the trap can be different and that may significantly affect the com-
plexity of the computational problem. However, it was shown by
Petrovskii et al. [34] that, for the insects performing the Brownian
motion (which is the pattern of individual movement corresponding
to the diffusion equation, e.g. see [4,8]), the trap count depend on the
perimeter of the trap but not on its shape. Correspondingly, in order
to avoid unnecessary computational complexity, we consider the trap
of asquare shape, S = {(x,y) : |x| < 1/2, |y| < 1/2}, where lis thus the
trap size.

Hence, the solution of the diffusion equation is sought in the fol-
lowing domain:

Q={(xy): /2 <|x| <Lg, 1/2 < |y| <Lg}.

Equation (41) must be augmented by boundary conditions and ini-
tial conditions. Note that the computational domain €25 is not simply-
connected (see Fig. 9 below) and has the external boundary, which
we denote as 92, and the internal boundary (i.e. the boundary of the
trap S), which we denote as 9S.

As well as in the 1D case, we assume that the trap is escape-proof
and use the following condition at the internal boundary 9S:

u(x,y,t)=0 forany (x,y) € oS. (42)
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At the external boundary of the domain, aiming at taking into
accountdifferent types of boundary forcing, we consider the condition
in the following general form:

dux,y,t) K
on

kiu,y, t)+ ko forany (x,y) € 092, (43)

where n is the outward unit normal vector to 9€2, and k; 53 are
parameters. Obviously, for a different choice of ki ;3 the bound-
ary condition (43) can describe either diffusive or advective forcing,
that is

dux,y, t)
a) ulx,y,t)=U, —_—
(@) ulx.y,t)=U n
(obtained for k;y =1, kp =0, k3=Up and k; =0, ky =1, k3 =G,
respectively). The no-flux case corresponding to the impenetrable
boundary is obtained for k; = k3 = 0 when (43) turns into

du(x,y.t)

on
When condition (45)is applied at every point of the external boundary
0€2, the number of insects in the domain can only change as a result
of trapping, i.e. because of the flux through the internal boundary
dS. As a relevant alternative, for ky = k3 = 0, Eq. (43) describes an
‘absorbing’ boundary with zero population density:

ux,y,t)=0 at 9, (46)

which can be used, for instance, to take into account the emigration
of the insects into a hostile environment outside of the field.

Note that, in the 2D system, different conditions can be used at dif-
ferent parts of the external boundary if needed to account for the given
ecological scenario, e.g. if insect immigration takes place through one
edge only. Obviously, this more general case can still be described by
(43) with k; ; 3 being piecewise constant functions along the domain
boundary 0.

With regard to the initial condition, as our main focus is on the
effect of the boundary forcing, we consider the baseline case of the
uniform population distribution:

u(x,y,0)=Uy > 0 forany (x,y) e s, (47)

at 9 or (b) =G at 9Q (44)

0 at 9. (45)

where Uy is a parameter.

For convenience, we now introduce dimensionless variables by
considering the length [ of the trap side as a characteristic spatial
scale in the problem so that X =x/l, y = y/l. We then have a trap
as the unit square S = {(®,7) : |%| < 1/2. |J| < 1/2} installed at the
origin of the square domain 2 with the linear size scaledasL = L;/I.In
the below, the tildes are omitted for the sake of notations simplicity.

5.2. Discretization of the 2D problem

We use a finite difference method for numerical solution of
the problem (41)-(43),(47). A two-dimensional Cartesian grid G is
defined in the domain s as a tensor product of the two one-
dimensional grids. We first generate a 1D grid in the x-direction
with grid nodes given by x; = —L, x;,1 =x;+h,i=1,...,2Nm, and
Xonm+1 = L, where h = 1/(2m) for integer parameters m and N used
in the problem. Similarly, a 1D grid in the y-direction is y; = —L,
Yis1 =X +h, j=1,...,2Nm. It follows from the definition of 1D
grids that the trap boundaries x;, = —1/2,ij = (N - D)m + 1,x;, = 1/2,
in=WN+1Dm+1,y,=-1/2,jij=N-1)m+1, and y;, = 1/2, jy =
(N+1)m +1 are accurately represented on the 2D grid and a grid
node is placed at each corner of the trap (see Fig. 9). It is also worth
noting here that we can take an advantage from the problem sym-
metry and to solve it in the sub-domain x > 0,y > 0 only, if the initial
condition (47) is employed. However, we choose to solve the problem
in the entire domain €25 as we bear in mind further asymmetric cases,
e.g. application of an asymmetric initial distribution, installation of
several traps in the domain, etc.

(-L.L) b LL)

1,11
4 it oitl]

L)
ij
(-L,0)
C

(-L,-L) B (0,-L) (L,-L)

Fig. 9. A computational grid in the domain ;. The trap is placed at the origin (0, 0).
The discretization of Eq. (41) at the grid node n;; requires the values of the function
u(x,y. t) at the nodes njj;, ni_yj, ni.1j, Mj_1 and nji,4. Letters A, B, C and D denote the
domain edges where different boundary conditions can be used; see Section 6.

Let u(x, y, tp) be the solution to the problem (41)-(43), (47) at the
fixed time t = t, and u(x,y, t,.1) be the solution at the fixed time
t = ty.1, where t;,.1 =ty + 7, T > 0. Again, we use a finite differ-
ence discretization of (41)-(43), (47) in order to compute the solution
u(x,y, tpyq) from the solution u(x, y, tn). The discretization scheme for
Eq. (41) is written as

7 (17" = u5) = A+ A ], (48)

where we use the notation ug. = u(x;. yj. tn) and u;}“ = u(X;. Yj. th1)-
Discrete spatial operators A and A, act upon any two-dimensional
function v;; = v(x;, y;) as follows

D
Aqlvy] = hﬁ("iﬂ,j = 2vjj +Vi1j),

D
Aalvy] = hj("i,jﬂ — 2Vjj + Vij_1). (49)

As in the 1D case, the discretization (48) is an explicit scheme.
Again, our choice of the scheme is advocated by simplicity of compu-
tations. It is important to note here that the explicit scheme allows us
to avoid inversion of the discretization matrix that is required when
implicit schemes are used. While in the current problem the struc-
ture of the discretization matrix is relatively simple, our future work
should be to investigate several traps installed at arbitrary locations
of the domain 2. Such geometry of the domain may in turn result in a
complex structure of a discretization matrix, thus we want to inves-
tigate a simple explicit 2D scheme first and move to a more sophis-
ticated discretization scheme if and only if the explicit discretization
has been proved to be unacceptable for our purpose.

Equations (48) are solved fori=2,...,ij—1,iy+1,...,2Nmand
ji=2,..., Jgi—lig+1,..., 2Nm. The discretization of boundary con-
ditions at the external boundaries is based on the results of the 1D
case for which a detailed discussion has been provided. Consider, for
example, the boundary x = 0 and the boundary condition (45). We
have the following approximation

2

n+1 n n n n n _
D (“1.j - ”1,j> FAuY - 2uy Uy - U, =0,

forj=2,...,2Nm. (50)

The discrete boundary conditions at the rest of external boundary
have a similar structure.
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The condition at the trap boundary at any time ;1 > 0 is

1
Uit =0, (51)
for i =i, j=ji....,jiy (the left boundary of the trap) and i =iy,j =
Jjis - .. ju (the right boundary of the trap). The condition (51) is also
imposed for j=jj,i=1j,...,iy, and j=jy.i=1ij,...,i (the bottom
and top boundaries of the trap).

The discretization of the initial condition (47) is

uW=Uy, i=1,2,....,2Nm+1, j=1,2,...,2Nm+1. (52)
ij

The idea behind trap count approximation in the 2D case is similar
to our approach in the 1D problem. Several specific approximation
issues arise because of the geometry of a 2D domain and we refer the
interested reader to Appendix B where those issues are discussed.

Validation of the 2D discretization. In the 2D case, we cannot compare
a numerical solution with the exact solution to the problem because
the exact solution is not available. Therefore, we look for alternative
ways to validate our discretization scheme. One approach can be to
consider the numerical integration of the density function and com-
pare it with the results obtained by the flux calculation (but see the
paragraphs after Eq. (28) in Section 3 for a discussion of arising issues).
Namely, we consider the test case where the boundary condition (45)
is employed in the problem. For the condition (45) it is possible to
obtain the number of insects in the trap by direct integration over the
domain €2;. The integral

g+l ://Q ux, y, tny1)dxdy (53)

gives us the number of insects left in the domain 2 at time t =
tn1. The trapezoidal rule of integration can be readily applied for
integration over a two-dimensional domain [10]. We then compute
the integral

U0 = // u(x, y, 0)dxdy (54)
Qs

for the initial distribution u(x, y, 0) and the difference

aun-ﬂ — Un+l _ UO (55)

will provide us with the number of insects in the trap at time ¢, 1. The
trap count obtained by direct integration is then compared with the
trap count obtained by the flux calculation across the trap boundary
as discussed in the previous paragraphs.

The validation tests for the 2D problem are shown in Fig. 10. The
convergence test is presented in Fig. 10a where cumulated trap count
has been computed on a sequence of refined spatial grids for time
t € [0,600]. The problem parameters are L =40, D =0.1, Uy = 10,
[ = 1.0 (trap size). It can be seen from the figure that transition from a
computational grid with the grid step size h = 0.5 to a finer grid with
h = 0.1 does not make significant difference to the results. The same
conclusion can be derived from the consideration of graph in Fig. 10b
where trap count on a sequence of spatial grids has been obtained as
a result of direct integration (55). Hence, we compare the trap count
obtained by flux computation on the finest grid with h = 0.1 with
the trap count obtained on the same grid by direct integration. The
relative difference between the two solutions is shown in Fig. 10c. It
can be seen from the figure that while the relative error gets bigger
as the time progresses the two methods still remain in a very good
agreement for the whole time interval where we are interested in the
solution. Hence we believe that our discretization scheme meets the
accuracy requirements and we intend to use it for further study of
ecologically relevant test cases.

6. Numerical results for the 2D problem

There are several aspects that make the 2D problem different from
the corresponding 1D problem. To mention just a few, first, the bound-
ary condition on the field boundary (i.e. on the external boundary of
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Fig. 10. Validation tests for the 2D problem. (a) Convergence of the trap count obtained
by calculating the population flux through the trap boundary, see Eqs. (62)-(64); (b)
Convergence of the numerical integration method, see Eqs. (53)-(55); (c) Comparison
between the two approaches on the finest grid h = 0.1 (showing the difference between
the two solutions versus time).

the computational domain) can be a combination of different types
applied at different parts of the boundary. And second, the 2D prob-
lem has several spatial scales such the trap size [, the field size L and
the distance d between the trap and the closest boundary of the field
through which immigration can occur.

In this section, we present the simulation results obtained for 2D
domains with various geometries. We consider the case where pest
immigration takes place through one edge of a square-shaped field,
say edge A (see Fig. 9). The immigration is described by considering
either diffusive or advective forcing, with the boundary conditions
(44a) or (44b) respectively, or by their combination as given by the
more general mixed-type boundary condition (43). The edges on the
sides of the domain, i.e. B and D, are assumed to be impenetrable
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Fig. 11. Trap count obtained from numerical solution of the 2D problem in Field 2 (L = 19 and d = 9) with other parameters as D = 1 and Uy = 10 and diffusive forcing with U, = 0

(solid curve), U, = 10 (dashed curve) and U, = 20 (dotted curve).

boundaries and hence the Neumann ‘no-flux’ condition (45) is used
there. The edge C opposite to the forcing boundary A can be either
impenetrable, with the no-flux condition (45), or absorbing, with the
condition (46).

With regard to the spatial arrangements, we consider that, in the
square field, the square trap of a fixed size [ = 1 (recall our choice of
dimensionless variables) is either placed in the center of the square
domain (see Fig. 9) or off center, closer to the forcing boundary. We
consider three different cases: Field 1 is a small field (2L = 9) with
the central trap (so that d = 4), Field 2 is a large field (2L = 19) with
the central trap (so that d = 9), and Field 3 is a large field (2L = 19)
with an off center trap (so that d = 4).

We begin with the case when the field edge C is an impenetrable
boundary and the immigration through the edge A is described by
diffusive forcing. Fig. 11 shows the trap count obtained when Field
2 is subjected to diffusive boundary forcing (solid curve for U, = 0,
dashed curve for U, = 10, dotted curve for U, = 20). The results are
intuitively clear and qualitatively similar to those obtained in the 1D
case as more intense forcing is expected to lead to larger trap count.
Also, we observe that the trap count obtained for different U, only
becomes different after a certain time, i.e. when the perturbation
introduced by the boundary forcing reaches the trap. However, we
note that, although the shape of the curves is similar to that observed
in the 1D case (cf. Figs. 7 and 8), the actual value of the trap count is
more than ten times larger in the 2D case.

The effect of proximity to the field boundary is revealed in Fig. 12.
The top panel of Fig. 12 shows the trap count for the special case
Uy = 0,i.e. in the case when the forcing boundary acts as a sink rather
than a source. It is readily seen that d is a controlling parameter as the
trap count is lower in Field 3 (dotted curve) than in Field 2 (dashed
curve). For the cases with the same d (cf. solid and dotted curves), it
is the field size that determines the rate of the trap count growth; the
larger the field size the larger the trap count is.

However, the situation is different and somewhat counter-
intuitive when Uy, is large; see Fig. 12, middle, obtained for U, = 20.1In
this case, the boundary forcing becomes the main factor affecting the
trap count. Correspondingly, the effect of distance d on the trap count
becomes more prominent and different from the above. Although the
highest rate of the trap count growth is still reached for the combi-
nation “small d - large L” (dotted curve), small d may actually result
in larger trap count when L is small; compare the solid and dashed
curves in Fig. 12, middle. In the intermediate case when the magni-
tude of the boundary forcing (as described by Up) is the same as the
effect of the initial population (as described by Uy), see the bottom
panel of Fig. 12, the pattern observed in the trap count growth can be
regarded as a competition between the two factors: the field size is

more important (hence resulting in larger trap count) during the early
stage, i.e. until the perturbation from the forcing boundary reaches
the trap, afterwards the proximity of the trap to the forcing boundary
becomes the main controlling parameter. This interplay between the
two factors results in the intersect of the solid and dashed curves seen
in Fig. 12, bottom. Once again, we notice that the trap count is much
larger in the 2D case (more than an order of magnitude) compared to
what was observed in the corresponding 1D case.

We now consider how much the rate of the trap count growth can
be affected by changing the type of the boundary forcing. Fig. 13 shows
the trap count obtained in case of advective forcing, see Eq. (44b), in
case the opposite boundary of the domain is either impenetrable (top)
or absorbing (bottom), as described by Eqs. (45) and (46), respectively.
Clearly, the type of the boundary condition on the opposite boundary
has little effect on the shape of the curves, although it does affect
the value of the trap count, which is about 50% larger in case of the
impenetrable boundary. Comparing the results of Fig. 13 with those
of Fig. 12 (bottom), we observe that, as well as in the 1D case, diffusive
forcing results in trap count several times larger than the trap count
for corresponding ‘equivalent’ advective forcing (see the lines below
Eq. (32)), although we mention here that, rigorously speaking, the
conditions of equivalency do not apply in the 2D case.

Finally, in order to provide a somewhat broader view of the sys-
tem’s properties, we consider the case where the forcing at the field
boundary is of a mixed type as described by the boundary condition
(43). Fig. 14 shows the simulation results obtained for the spatial ar-
rangement of Field 2 with the homogeneous initial condition Uy = 10
for the mixed forcing (43) with k; =1, k3 = 10 (Fig. 14a), k3 = 20
(Fig. 14b) and the values of k; =0, 0.1, 0.2,..., 2.0 (curves top to
bottom, respectively). Interestingly, in this case the trap count roughly
follows the pattern observed in the case of diffusive forcing. In fact,
for each of the two cases shown in Fig. 14, the whole family of trap
count curves lie between the two curves obtained for purely diffu-
sive forcing (shown by red colour) where the upper bound obviously
corresponds to the case Uy = k3 and the lower bound is obtained
for U, ~ 0.7k3 (where the coefficient 0.7 is found empirically). The
presence of the density gradient in the boundary condition does not
contribute much to the trap count dynamics. Therefore, in agreement
with our results shown above, we conclude that the diffusive compo-
nent of the forcing has much stronger effect on the trap count than
the advective component.

7. Discussion and concluding remarks

Understanding of trap count is an important component of pest
insect monitoring. Control measures are likely to be more efficient
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Fig. 12. Trap count obtained from numerical solution of the 2D problem in different spatial arrangements (solid curve for Field 1, dashed curve for Field 2 and dotted curve for
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when the process behind the trap count increase is correctly identi-
fied. In this paper, we have considered how trap count can be used to
monitor the insect pest population growth when the growth is occur-
ring due to the immigration through the habitat boundary. Indeed,
short- and long-distance dispersal is known to be a common phe-
nomenon for many insect species (in particular for flying/wind-borne
species, cf. [9]) and it can bring severe problems for farmers and pest
control specialists (e.g. [24]).

The purpose of this paper is threefold. First, we want to draw
the attention to the important and largely overlooked (by mathe-
matical ecologists) problem of the trap count interpretation with the
ultimate purpose to identify the population dynamics resulting in
given trap count and to evaluate the population abundance. Traps
are routinely used in insect monitoring as well as in general insect
studies and the need for a relevant theory has long been recognized
(e.g.[7,27,40]). Yet a consistent mathematical theory allowing for trap
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count modeling and simulation is missing, although some attempts to Table 1

develop such theory have recently been made [30,31,34,35]. Second, Maximum relative error (27) obtained in the 1D system for linear and

our aim is to provide a sufficiently accurate, consistent and reliable quadratic flux approximation at the trap boundary. Parameters are: D =

“ready-to-use” computational algorithm that can be used for under- 1.0,L=49.5,Up = 10.

standing trap count across a variety of possible ecological scenarios Nodes per unit length 3 5 9 11 21

and applications, a roadmap for potential users of the 1de§s, tools and Linear (x10-) 112 644 335 207 959

methods of the computational ecology [32]. And third, using the algo- Quadratic (x10-3) 328 104 2.70 721 5.00

rithms revisited and/or developed in this paper, we want to make an

insight into the problem of pest insect monitoring subject to different bl

: : : Table 2

lmmlgratlon patterns. . . Maximum relative error (27) obtained in the 1D system for linear and quadratic
With regard to the m:'merlcal accuracy, one Of.OUI‘ more specific flux approximation at the external boundary. Forcing is described by the Neumann

goals here is to emphasize that an adequate choice of the numer- boundary condition (9) with G = 0.5, other parameters are D = 1.0, L = 49.5, Uy = 0.

ical method is essential. We have shown that the commonly used Nodes per unit length 3 5 5 " .

linear approximation of the diffusion fluxes (cf. [23,37,39]) can lead
to results of unacceptably low accuracy compared to the quadratic Linear (x107) B 359 183 92.4 74.1 37.2
approximation on the same numerical grid; see Tables 1 and 2. The Quadratic (<107 0-949 0288 0110 0194 ~ 0.100
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linear approximation of the diffusion flux at the trap boundary leads
to the relative error in the calculated trap count which is consistently
3-5 times larger (more than 10 times larger on some grids) than the
corresponding error in the case of quadratic approximation (Table 1).
Approximation of the flux at the external ‘forcing’ boundary can have
even bigger effect (Table 2); here the relative error of the linear ap-
proximation can be 102 — 103 times larger than the error induced by
the quadratic approximation!

In our approach, in order to solve the diffusion equation and to cal-
culate the diffusion fluxes, we used the finite difference method. We
mention here that, in principle, this is not the only possible option.
One alternative is the method of lines. Another alternative numerical

approach to diffusion equation could be based on the finite elements
method. Indeed, this method has been applied successfully to sev-
eral ecological and biological problems [13,14] and it is known to be
particularly efficient for problems with curvilinear geometry. How-
ever, for a domain with rectangular geometry, this technique seems
to be excessive; being more elaborate and hence more expensive in
terms of the code development, it does not provide any new insights
and, on a given numerical grid, does not provide a higher accuracy
either.

With regard to our use of the explicit scheme (e.g. as given by
Eqgs. (48) and (49) in the 2D case), we mention that the obvious ad-
vantage of its implicit counterpart is unconditional stability. However,
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this advantage of being able to choose a larger value of the time-step
T does not appear to be essential for our problem. The spatiotempo-
ral accuracy of the considered scheme is O(h? + 7). It is important to
have a second order approximation as we have demonstrated for the
spatial terms, cf. Tables 1 and 2. It means that, in order to reach the re-
quired accuracy, T should be chosen on the order of h2. Therefore, the
restriction on T comes from the accuracy requirement rather than
from the stability condition. On the other hand, the computational
simplicity of the explicit scheme is important as our ultimate aim is
to create a simple and practical computational approach that could
eventually be used by a broad interdisciplinary community.

In our numerical simulations, see Figs. 5-8 and 11-14, we have fol-
lowed the trap count dynamics over a long time, until it reaches the
large-time asymptotics which is determined solely by the boundary
forcing, cf. Eqs. (31)-(32). This gives the overall view of the solu-
tion properties and helps to better understand the trap count behav-
ior, e.g. to estimate the time when the effect of the initial condition
would give up to the effect of the boundary forcing. However, for the
actual ecological problem of insect pest monitoring, the large-time
asymptotics is largely irrelevant. A realistic trap count dynamics is
essentially transient. Indeed, the goal of the pest control is not only
to detect the pest at a given location but, importantly, to do it as early
as possible. Trap data are often used as a part of the early-warning
system in order to apply control measures before the growing pest
population can bring any significant damage to the crops. Therefore,
the large time asymptotics as predicted by our model (which does not
take into account control measures) can hardly ever be observed in
reality. The human intervention (e.g. application of pesticides) would
change the system dynamics considerably by reducing almost in-
stantly the pest density to a much lower value. The subsequent trap
count dynamics would then reflect the transient stage resulting from
this new population density, until the growing trap count would in-
flict another round of control measures, and so on.

With regard to the insect immigration through the habitat bound-
ary, we mention here that the effect of boundary forcing on the sys-
tem’s dynamics is a challenging problem in ecology as it can have a
complicated and sometimes counter-intuitive effect on the popula-
tion dynamics and population abundance ([11,44,45]). Note that the
whole issue as to what can be a proper description of the habitat
boundary - which acts as an interface between the given habitat and
its surroundings - is complex and controversial. Contrary to similar
problems in physics and chemistry, the width of this interface is of-
ten not small compared with the size of the habitat and may have
its own structure (cf. [21]) and that makes application of standard
techniques questionable. In fact, it is often not clear even where the
exact position of the boundary is and/or what its exact shape is (cf.
[11]). Also, the boundary is expected to affect the movement behavior
of the animals (e.g. insects) but, yet again, it is not always clear what
exactly the effect is [2].

Altogether, these various sources of uncertainty make the ques-
tion about the ‘precise’ mathematical formulation of the boundary
condition rather senseless. Instead, one should rather check how sen-
sitive the properties of the system are with respect to the choice of
the boundary condition. The high uncertainty and insufficient knowl-
edge about the processes going on at the interface makes it necessary
to check how different can be the predictions obtained from a model
when different boundary conditions are used, e.g. Dirichlet or Neu-
mann types, and this is where our study is going to contribute. In par-
ticular, we have shown that the trap count obtained in the 2D system
for three different types of forcing, i.e. diffusive (Dirichlet), advective
(Neumann) and mixed (Robin), exhibits qualitatively similar patterns.
However, we have also shown that, somewhat counter-intuitively,
diffusive forcing results in larger trap count than advective forcing.
This observation may have an important message for the insect pest
management: as larger trap count is usually associated with a larger
population density, misidentification of the pest immigration pattern
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Fig. 15. A sketch of multiple trapping with the spatial arrangements making possible
to ‘split’ the system into several individual subdomains, each of them having one trap
only. Solid line shows the boundary of the field, grey squares show the position of the
traps, dashed vertical lines indicate the position of the virtual boundaries where the
no-flux conditions can be applied due to the symmetry of the problem.

can result in an unjustified application of pesticides, something that
the IPM specialists would definitely like to avoid.

In conclusion, we mention that, in this paper, we have considered
the case of a single trap installed in the monitored field. However, our
results can be applicable, at least partially, to a more general case of
multiple traps if the traps are installed on a line along the field bound-
ary; see Fig. 15. Indeed, assuming the spatially homogeneous initial
population distribution and the uniform boundary forcing (i.e. that
the coefficients k; 3 have the same value everywhere along the
boundary), the mathematical problem obviously attains symmetri-
cal properties so that the whole field can be split to several mutually
independent subdomains or ‘cells’, each of them being described by
our model.
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Appendix A. Accurate calculation of the 1D flux

Polynomial approximation of the density function. Our aim is to con-
struct an accurate approximation of the flux function j(x) in the
formula (6). Let us approximate the density u(x) by a quadratic
polynomial, i.e. u(x) = pi(X) = ap + ayx + axx?. We then have j(x) ~
D|%| and therefore the flux at the trap boundary x=0 is
approximated as

JO)~ Dlay|. (56)

The polynomial coefficient a; in the flux approximation (56) is
defined from the conditions p(x;) = u;, i = 1, 2, 3, where the function
values u; = u(x;) are taken at corresponding grid nodes x;. We have

p(0)=a0=u1, p(h)=a0+a1h+azh2:u2,
p(2h) = ag + 2a;h + 4axh? = us. (57)

Solving these equations and taking into account that uy = 0 at the
trap boundary we arrive at a; = 4“22E”3 . Hence the approximation of

the flux is given by j(0) ~ £ |4u; — us).

The order of approximation. Let us show that the quadratic approx-
imation (56) of flux is second order accurate, i.e. the approximation
(25) has the error O(h2). Consider a one-dimensional function v(x) on
a uniform computational grid with the grid step size h. Let the func-
tion v(x) be defined at points x;, X; .1 = X; + h and x;., = X; + 2h. The
function approximation by a quadratic polynomial passing through
Xi, Xi11, Xi;2 gives us the following value of the derivative at the
point x;

dv(x)  4v(ip1) — v(Xii2)
dx 2h

(58)
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where we require that v; = 0. The Taylor series expansion of the func-
tion v(x) around the point x; is

2
e
dv(x;) dv(x,)

V(Xit2) = v(x;)) + 2h + 5 (2/1)2

)

dx

where n € [x;, X, 1] and © € [x;, x;,2].
Substituting the above expressions in the approximation
w and taking into account that v(x;) = 0 we arrive at

AvXip1) = VXipa) _ dvx) 2 (B dPv(p)
2h dx *h ( e o ) (59)
In other words, we have
dvx) 4V — Vi 2
ix = h +0(h?), (60)

where v; = v(x;). Let us note that a well-known upwind approxima-
tion of the derivative at point ; is first order accurate,

dv(xi)  Vig Vi
x - h +0(h), (61)

and is therefore not consistent with the accuracy of the scheme (18).

Appendix B. The issues of flux approximation in a 2D domain

Flux approximation at the trap boundaries. Letthe solutionu(x, y, tpy1)
be computed at time ¢, over a computational grid generated in the
domain €. In the following discussion of 2D flux computation we
omit the notation t,,; for the sake of convenience and consider a
spatial distribution u(x, y). The flux density j(x,y) at point (x,y) is
given by the directional derivative:

) =D|ghex )|, (62)

where n is the outward unit normal vector along the trap bound-
ary. Hence the flux density computation requires approximation of
the derivatives w or %’;w at grid nodes that belong to the trap
boundary. Similar to the 1D case, the accuracy of this approximation
should be consistent with the accuracy of finite difference approxi-
mation (48). As we have discussed in Appendix A, such accuracy of ap-
proximation can be achieved by constructing a quadratic polynomial
ux.y) ~ pi(s) = af + aks + aks?, where k = 1, 2, 3, 4 is the number of
the trap edge and we use the numeration in the counterclockwise di-
rection from the left boundary of the trap. The distance s is measured
along the direction of the outward normal vector to the trap edge k
as s = x, if the left (k = 1) and the right (k = 3) boundaries of the trap
are considered, s = y at the bottom (k = 2) and top (k = 4) boundary
of the trap. We also require s = 0 at the corresponding trap boundary.
We then havej(x, y) ~ | d’(’j—(ss) | and therefore the flux density at the trap
boundaries is approximated as

j®.y) ~ Dld¥]. (63)

The polynomial coefficient a’l‘ k=1,..., 4 in the flux approxima-
tion (63) is defined from the conditions p(s) = u;;, where the function
values u;; are taken at grid nodes along the direction of the outward
normal vector to the trap edge k. Consider for instance the left bound-
ary (k = 1) of the trap. We require that the parameter s is s = 0 at the
boundary. We also consider the polynomial p1 (s) at points s = —h and
s = —2h and require that

p1(0) = aj = uj;,
pi(=h)=a} —alh +alh? = u;_4;,

p1(=2h) = a} — 2alh +4alh® = u;_,;,

for any fixed j =jj, ..., jy. Solving these equations and taking into
account that u;; = 0 we arrive at

g = Yim2g — A1y
! 2h

Similar expressions are then obtained for a’f, k=2,3,4.

Approximation at the corners. The flux density approximation (62)
can be computed at all grid points belonging to the trap boundary
except for the corner points (x;., y;,), i, ¥;,) &, yj,)» and (i, yj,)-
The approximation at corner points is obtained by averaging the flux
values computed at the neighboring points. In our method we assume
that the flux density at any corner point depends on the flux in two
orthogonal directions and therefore directional derivatives must be
computed according to (62) at all neighboring points involved into
the flux computation at the corner. For example, in order to compute
the flux density j(x;,, y;,) we first compute it at grid nodes (x;_1. y;,),
®ip1, Yih Ki2. Yjp)» &i V-1, &, Yjy 1) and (g, ¥j,42)- Given the flux
density values at these points, we then use quadratic polynomial
interpolation in order to obtain the flux density j(x;, y;,). Namely, we
approximate the function j(x, y) as

6
~ Z qnPn (. ).

n=0

jx.y)

The polynomial basis functions ¢;(x,y) are defined as ¢,(x,y) =
x—x)*@ - yjl)ﬂ, where o and 8 are nonnegative integers such as
their sum s = « + f should take the values s = 0, 1, 2. We therefore
have j(x;.y;) = qo, where the coefficient qq is found from the ap-
proximation above. The flux density values at the other corners of
the trap are computed in a similar way. Let us note here that our
approach to the flux computation at corner points is, of course, not
unique and may require further discussion. Meanwhile, the findings
of this paper along with the results of our previous work [29] demon-
strate that a quadratic approximation of the flux, while being a more
challenging technical task, gives a much more accurate answer than
a linear approximation when a regular geometric grid is used in the
problem.

Calculation of the total flux. Once flux densities have been computed
at each grid node on the trap boundary, they are converted to a total
flux J(9S) by numerical integration of the flux density j(x, y) along the
boundary edges. The flux density is considered as a one-dimensional
function j(x, y) = f(y) at each trap boundary, where —-1/2 <y < 1/2.
At any trap boundary we have 2m + 1 nodes of a computational grid
where the function f(y) is defined. Hence the trapezoidal rule of
numerical integration can be applied to integrate the flux density
along the trap edge,

2m+1

12
[ S0y = 3 o (64)

p=1

where fp, p=1,...,2m + 1 are function values at grid nodes on the
trap edge where the integration is carried out, and the weights wp are
defined as in the integration rule (29).

Given the flux J(9S), an approximation of the total number of in-
sects AU crossing the trap boundary between time t, and t,,
is obtained as AU™™1 = J(3S)t. The cumulative trap count is then
computed by the formula (26).
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