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a b s t r a c t

Monitoring of pest insects is an important part of the integrated pest management. It aims to provide

information about pest insect abundance at a given location. This includes data collection, usually using traps,

and their subsequent analysis and/or interpretation. However, interpretation of trap count (number of insects

caught over a fixed time) remains a challenging problem. First, an increase in either the population density

or insects activity can result in a similar increase in the number of insects trapped (the so called “activity-

density” problem). Second, a genuine increase of the local population density can be attributed to qualitatively

different ecological mechanisms such as multiplication or immigration. Identification of the true factor causing

an increase in trap count is important as different mechanisms require different control strategies. In this

paper, we consider a mean-field mathematical model of insect trapping based on the diffusion equation.

Although the diffusion equation is a well-studied model, its analytical solution in closed form is actually

available only for a few special cases, whilst in a more general case the problem has to be solved numerically.

We choose finite differences as the baseline numerical method and show that numerical solution of the

problem, especially in the realistic 2D case, is not at all straightforward as it requires a sufficiently accurate

approximation of the diffusion fluxes. Once the numerical method is justified and tested, we apply it to the

corresponding boundary problem where different types of boundary forcing describe different scenarios of

pest insect immigration and reveal the corresponding patterns in the trap count growth.

© 2015 Elsevier Inc. All rights reserved.
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. Introduction

Pest insect monitoring is an important component of the inte-

rated pest management (IPM) [6,20,28]. Its purpose is to obtain a

eliable estimate of the pest abundance based on data collected in

he field. A reliable estimate is required in order to help the IPM

pecialists to make an informed decision about control measures,

.g. application of chemical pesticides when the pest density ex-

eeds a certain threshold [16,38] and yet to avoid their unjustified

se.

Data on insect abundance are usually collected with traps [26,36].

fter a trap is set up in the field and has been exposed for a certain

ime, it catches a certain number n1 of insects of a given species. This

umber is called a trap count; if, for instance, the trap was exposed for

ne day, it is called the daily count. In case n1 > 0, this can be regarded

s proof that the species is present in the vicinity of the trap. However,
∗ Corresponding author. Tel.: +44 116 252 3916; fax: +44 116 252 3915.
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elating the trap count to the population density is a much more

ifficult problem. Previous approaches tended to provide a relative

ather than absolute estimate [40]. Recently, [34,35] showed that,

f information is available about the insect movement pattern, the

opulation density can be obtained by placing the sequence of daily

ounts against the predictions of a relevant mean-field mathematical

odel of the population dispersal. The simplest model of this type

s the diffusion equation, which assumes that insects perform the

rownian motion, and indeed there is considerable evidence that

hey often do so [41] although this may not always be readily seen

rom data [19,33].

The diffusion equation is a well-known and well-studied model

nd, in case of one spatial dimension, its general solution can

sually be found analytically, albeit not always in a compact form.

he situation is essentially different in case of higher dimension.

n a 2D case, analytical solution of the diffusion equation is only

ossible if the domain possess a certain symmetry, e.g. has the

hape of a rectangle or a disk. Even then, however, the analytical

olution often becomes impractical. For instance, in a disk-shaped

omain, the solution can only be obtained as an infinite series

http://dx.doi.org/10.1016/j.mbs.2015.02.008
http://www.ScienceDirect.com
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2015.02.008&domain=pdf
mailto:sp237@le.ac.uk
http://dx.doi.org/10.1016/j.mbs.2015.02.008


144 D. Bearup et al. / Mathematical Biosciences 263 (2015) 143–160

2

2

n

a

f

m

i

h

w

j

m

m

a

o

m

i

j

w

b

n

a

t

p

w

I

p

m

fl

d

m

a

i

b

(

d

m

I

t

t

o

(

a

0

n

o

r

o

l

c

u

where the coefficients are solutions of transcendent algebraic equa-

tions and hence can only be found numerically. In this situation,

i.e. when numerical methods have to be used anyway, a reasonable

alternative approach is to solve the diffusion equation numerically

right away instead of using the semi-analytical method described

above.

In this paper, we use a combination of analytical and numerical

approaches to investigate the patterns in the trap count resulting

from different boundary conditions as given by different ecological

situations. One of the goals of pest insect monitoring is to detect

an early sign of population growth in order to prevent a pest out-

break. It is therefore important to understand how an increase in

the population density can be reflected by the trap count. It seems

intuitively obvious that a larger population size should eventually

result in a larger trap count. The rate of increase can, however, be

different as an increase in the total population size can be attributed

to different reasons. It can result from the growth of the local pop-

ulation, i.e. the population inside the given field, and indeed some

insect species are capable of producing several generations in one

year. It can also result from migration of the pest into the field from

an external source, i.e. from another habitat. For the goals of pest

control, it is important to distinguish between these situations (as

the control measures are likely to be different) as well as between

different immigration patterns. Misidentification of the reason be-

hind the pest abundance increase can result in a completely wrong

estimate of the pest population density and that can have a detri-

mental effect on the efficiency of control measures. Here we are

mostly concerned with the effect of immigration as the most com-

mon scenario; the effect of local population growth will be considered

elsewhere.

There are a variety of numerical methods that can be used to

solve numerically the diffusion equation; e.g. see [39]. However, we

mention here that that their applicability and efficiency depend on the

geometry of the domain. A typical domain in the trapping problem is

not simply connected as it has an external boundary (i.e. the boundary

of the monitored farm field) and the internal boundary (the boundary

of the trap). Moreover, the size of the trap is usually much less than

the size of a typical farm field; therefore, the problem has at least

two clearly different spatial scales. Application of standard methods

to a system like this may bring significant computational difficulties

[32]. Besides, in order to calculate the trap count, one has to calculate

the population density gradient at the trap boundary. This can be a

challenging task, especially at the corner points if the trap has a shape

other than circular, and indeed use of traps of various shapes and

designs has been increasingly common (cf. [12]). Thus, we have to pay

a special attention to numerical issues before discussing ecological

results.

The paper is organized as follows. In Section 2.1, we describe the

mathematical model and provide a comprehensive analytical study

of trap count in the baseline 1D case under various migration scenar-

ios. Although the 1D case is hardly realistic, it provides an important

theoretical background for the understanding of a more realistic 2D

case. We then briefly revisit the finite-difference method for numer-

ical solution of the diffusion equation and show how it can be used

to calculate the trap count in the 1D case (Section 2.2). In Section 3,

we carefully test our computational technique against the analyti-

cal results in the 1D case. In Section 4, we apply our approach to

a hypothetical 1D system in order to reveal generic patterns in the

trap count arising from different ecological scenarios. In Section 5,

we consider an extension of our method onto the more realistic 2D

case and discuss the arising computational issues. We then provide

a thorough analysis of trap count for different immigration scenar-

ios by solving the 2D diffusion equation numerically (Section 6).

Finally, in Section 7 we discuss the ecological implications of our

results.
. Mathematical model and numerical method, 1D case

.1. Model

Since the focus of this paper is on the effect of immigration, we

eglect the population reproduction, thus assuming that trap counts

re collected in the period between the generations. Additionally,

or the sake of simplicity, we neglect the population losses due to

ortality. The equation describing the population dynamics in space

s then essentially the mass conservation law which, in the 1D case,

as the following form:

∂u(x, t)

∂t
+ ∂ j(x, t)

∂x
= 0, (1)

here u(x, t) is the population density at the position x and time t, and

is the population density flux in the direction of axis x. The mathe-

atical description of the flux depends on the type of the individual

ovement. In a relatively general case, individual insects perform

combination of the non-directed random-like movement that can

ften be regarded as the Brownian motion [25,41], and a directed

ovement with a certain speed v. The corresponding population flux

s then given by

(x, t) = − D
∂u(x, t)

∂x
+ vu(x, t), (2)

here D is the diffusion coefficient. Whilst the directed movement

ecomes important in the presence of environmental gradients, the

on-directed random-like motion is an inherent property of almost

ll ecological populations.

Insect monitoring is done with traps. Once an insect encounters

he trap, it is caught with a certain probability p0 < 1 where p0 de-

ends on the species traits and the trap design. Throughout this paper,

e assume that the trap design is sufficiently efficient so that p0 ≈ 1.

ndeed, this is often the case with walking insects, even for a simple

itfall trap design. With regard to the effect of species traits and/or the

ovement mode, many insects combine flying with walking. Whilst

ying is the preferred movement mode when insects travel over long

istances (e.g. looking for a new feeding or breeding ground), their

ovement on the feeding site is typically a combination of walking

nd very short flights. Correspondingly, here we assume that, once the

nsects arrive at the farm-field, they mostly move around by walking.

Regarding the trap design, traps can be either baited or non-

aited. Baited traps use a certain substance (e.g. pheromone) or agent

e.g. light or color) in order to attract insects to the trap. This intro-

uces an advective component to the insect movement as they are

ore likely move towards the trap rather than in any other direction.

n contrast, non-baited traps do not introduce any directional bias as

hey capture insects just because of their random encounters with the

rap. In this paper, we focus on non-baited traps only; consideration

f baited traps involves an essentially different set of assumptions

in particular, about the insect’s behavioral response to the attracting

gent) and hence will be done elsewhere [3].

Let us consider an idealized 1D farm-field described by the domain

< x < L. We assume that the field is homogeneous and the trap is

on-baited. Correspondingly, inside this domain – but not necessarily

utside, see below – the monitored insect population performs only

andom motion, i.e. v = 0 in Eq. (2). From Eqs. (1) and (2), we then

btain the diffusion equation:

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
. (3)

The trap, which we assume to be escape-proof, is installed at the

eft-hand side boundary of the domain, i.e. at x = 0. The corresponding

ondition at the trap boundary is

(0, t) = 0. (4)
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Fig. 1. A sketch of the boundary forcing of the monitored habitat (farm-field) because

of the insect immigration from the adjacent (non-farmed) habitat described by the

population flux; see details in the text.
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nce the solution u(x, t) of the diffusion equation is known, the cor-

esponding trap count over time t can be obtained as

U(t) =
∫ t

0

j0(τ )dτ , (5)

here

0(t) = D
∂u(0, t)

∂x
≥ 0 (6)

s the population density flux into the trap. Note that the minus in

he right-hand side of Eq. (2) has now changed to plus because of our

hoice of the trap location, i.e. because the population flux into the

rap goes against axis x.

In order to make the mathematical problem complete, the diffu-

ion equation must be complemented with the initial condition and

ith a boundary condition at x = L. In this paper, we are mostly inter-

sted in the effect of the conditions at the field boundary arising from

ifferent ecological situations. Hence, in order to avoid unnecessary

omplexity, for the initial condition we consider the simplest case

hen the population is distributed uniformly around the domain:

(x, 0) = U0, for 0 < x < L , (7)

here U0 ≥ 0 is a parameter with the obvious meaning.

The situation at the field boundary (i.e. at x = L) requires a much

ore careful consideration. In order to understand what form of the

oundary condition may be relevant, one has to consider the popu-

ation dynamics not only inside the domain of interest (farm-field)

ut also in the adjacent habitat (non-farmed field); see Fig. 1. More-

ver, sometimes the inter-habitat boundary itself may have to be

ccounted for as a separate domain, in particular, in the cases where

he boundary has an inner structure and may by itself be a habitat.

The focus of this paper is the population dynamics in a given do-

ain resulting from immigration. Correspondingly, a relevant starting

oint is the quantification of the immigration’s impact. The population

ux (cf. Eq. (2)) is the number of individuals crossing the boundary per

nit time and hence is a relevant quantity. Note that, whilst we have

ssumed that inside the domain 0 < x < L insects move randomly,

utside of the domain insects can perform either a random motion or

directed movement, or a combination of both. With regard to the

elative importance of the directed and non-directed movement, we

onsider two different cases.

ase I. The insect movement in the adjacent habitat is not affected

y the presence of the neighboring farm-field (i.e. there is no odor or

mell that could act as an attractant). The insects move randomly in a

iffusive manner, i.e. there is no advection. Additionally, we assume

hat the population density distribution over the non-farmed habitat
s approximately uniform. Then at any location x = L + ε > L, we have

(x + ε, t) = −D∂u(x + ε, t)/∂x ≈ 0, i.e. the left-hand and right-hand

iffusive fluxes compensate each other. The population in the non-

armed domain is therefore at an equilibrium state. The insects that

ove around in the close vicinity of the boundary x = L can, because

f the randomness of their movement, occasionally move across the

abitat boundary x = L, i.e. to the farm-field. However, this loss of

ndividuals is immediately compensated by arrival, due to diffusion,

f insects from areas further inside the non-farmed domain so that

he value of the population density at any location L + ε close to

he boundary remains unchanged. We consider that this value, say

b, does not depend on time. Thus, since the population density is a

ontinuous function of space, we arrive at the following Dirichlet-type

ondition:

(L, t) = Ub. (8)

Below we will refer to this case as the diffusive boundary forcing

eferring to the fact that the population outside of the domain (i.e. in

he non-farmed field) performs diffusive movement.

ase II. There is an attractant emanating from the farm-field into the

djacent non-farmed habitat. In the non-farmed habitat, it results in

he directed movement of the insects from inner areas towards the

nter-habitat boundary. Because of this, the left-hand and right-hand

uxes do not compensate each other and, at any location x = L + ε
ufficiently close to the boundary (ε is small), there is a population

ux towards the boundary. We now additionally assume that the

oundary has no capacity, that is, the number of the individuals per

nit time coming to the boundary from the right (from the non-

armed habitat, see Fig. 1) must be balanced by the same number

oing away from the boundary to the left (to the farmed habitat).

he advective flux J at the right-hand side of the boundary must

herefore be balanced by the purely diffusion flux at the left-hand

ide of the boundary, so that we arrive at the Neumann-type boundary

ondition:

∂u(x, t)

∂x

∣∣∣∣
x=L

= J or
∂u(L, t)

∂x
= G, (9)

here G = J/D is thus the value of the density gradient. For the sake

f simplicity, we assume that J is constant, so that G is constant as

ell. Below we refer to this case as the advective boundary forcing re-

erring to the fact that outside of the domain the population performs

dvective movement.

We mention here that the above interpretation of the boundary

onditions to some extent depends on the assumptions about the

opulation dynamics outside of the monitored region 0 < x < L. In

articular, in a more complicated case when the environmental het-

rogeneity in the adjacent non-farmed habitat x > L cannot be ne-

lected (which, for instance, can be a result of population losses due

o mortality, e.g. see [22]), both the nature of the movement process of

he organisms and the nature of the underlying habitat can influence

he density and flux of organisms arriving at the interface x = L. The

oundary condition then may be better described by the Robin-type

ondition. However, we do not consider this situation here in detail

n order to avoid unnecessary complexity.

Now we are going to consider what is the mathematical expression

or the trap count in case of different boundary conditions as given by

ases I and II above.

mpenetrable boundary. We begin with the simplest case where there

s no forcing at all, i.e. no insect immigration or emigration, because

he boundary is impenetrable:

∂u(L, t)

∂x
= 0. (10)

The problem (3), (4) and (7) together with (10) can be solved

nalytically using the separation of variables method (e.g. [43]). The
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solution u(x, t) is given by the following infinite series:

u(x, t) = 4U0

π

∞∑
k=0

1

(2k + 1)
sin

(
(2k + 1)πx

2L

)

× exp

(
− (2k + 1)2π2Dt

4L2

)
. (11)

From (11), the diffusion flux (6) at the trap boundary is obtained

as

j0(t) = 2DU0

L

∞∑
k=0

exp

(
− (2k + 1)2π2Dt

4L2

)
, (12)

and, correspondingly, the number of insects caught over time t of the

trap exposure is calculated as

�U(t) = 8LU0

π2

∞∑
k=0

1

(2k + 1)2

[
1 − exp

(
− (2k + 1)2π2Dt

4L2

)]
, (13)

where LU0 is the total number of insects for x > 0 at t = 0. Note that,

since
∞∑

k=0

1

(2k + 1)2
= π2

8
, (14)

in the large-time limit �U(t) → LU0, i.e. all insects are trapped.

It also follows from (13) that the trap count can be approximated

as

�U(t) ≈ 2U0√
π

√
Dt, (15)

which shows a very good accuracy when either time t is sufficiently

small or the domain length L is sufficiently large, or both; see [34] for

details of this approximation. A straightforward derivation of Eq. (15)

in case of a semi-infinite domain x > 0 can be found in [35].

Diffusive boundary. We now consider the case of the diffusive forcing,

i.e. the diffusion problem (3), (4) and (7) together with the condition

(8). Using the same method as above, we arrive at the following ex-

pression for the trap count:

�U(t)Dir = DUb

L
t + 2UbL

π2

∞∑
k=1

(−1)k

k2

[
1 − exp

(
−Dk2π2t

L2

)]

+ 4U0L

π2

∞∑
k=1

1

(2k − 1)2

[
1 − exp

(
−D(2k − 1)2π2t

L2

)]
.

(16)

Advective boundary. Finally, in the case of advective forcing, we con-

sider (3), (4) and (7) together with (9). The corresponding expression

for the trap count is:

�U(t)Neu

= GDt + 16GL2

π3

∞∑
k=1

(−1)k

(2k − 1)3

[
1 − exp

(
−D(2k − 1)2π2t

4L2

)]

+ 8U0L

π2

∞∑
k=1

1

(2k − 1)2

[
1 − exp

(
−D(2k − 1)2π2t

4L2

)]
. (17)

In the special case of impenetrable boundary, i.e. for G = J = 0, (17)

coincides with (13).

Solutions (13), (16) and (17) will be used below to test the numer-

ical method.

We mention here that, in case of any more complicated boundary

condition at the external field boundary (e.g. of the Robin type), the so-

lution of the corresponding diffusion problem would not be available

in closed form. Each term in the series would include a coefficient

that could only be obtained numerically by solving a transcendent

algebraic equation. This emphasizes the need for an alternative, nu-

merical method to solve the diffusion equation that will be discussed
below.
.2. Numerical method

In this section, we look at the numerical method we use to ob-

ain the solution, i.e., a finite difference method. We aim to discuss

nite difference discretization of the 1D problem in detail, as most of

omputational issues arising when the 2D problem is considered are

lready present in the 1D case.

Let us introduce a uniform computational grid G in the domain

∈ [0, L] in order to discretize the diffusion equation (3). We have

1 = 0, xi+1 = xi + h, i = 1, . . . , N, where h = L/N is the grid step size,

nd N is the number of grid subintervals.

Let u(x, tn) be the solution to the problem (3), (4), (7) (comple-

ented with a relevant boundary condition at the external boundary,

s discussed in Section 2.1) at the fixed time t = tn. Let also u(x, tn+1)
e the solution at the fixed time t = tn+1, where tn+1 = tn + τ , τ > 0.

finite difference discretization scheme is a method widely used

or numerical solution of parabolic differential equations (e.g. see

15,17,18,23]. The scheme defines the approximate solution u(x, tn+1)
t each grid node xi of a uniform grid G from solving a system of linear

lgebraic equations

1

τ

(
un+1

i
− un

i

)
= �

[
σun+1

i
+ (1 − σ)un

i

]
, (18)

here we use the notation un
i

≡ u(xi, tn) and un+1
i

≡ u(xi, tn+1). The

efinition of discrete spatial operator � is

[vi] = D

h2
(vi+1 − 2vi + vi−1), (19)

here vi is a discrete function defined at nodes of the grid G, h is the

rid step size and D is the diffusion coefficient.

The weight parameter σ defines a type of the scheme. The weight

oefficient σ = 1 provides us with an implicit (and therefore uncon-

itionally stable) scheme. The weight σ = 0 results in an explicit

cheme, where the solution un+1
i

at time tn+1 is readily computed

rom the solution un
i

taken from the previous time layer tn. In our

ork we employ the latter version of the scheme with σ = 0. The

heoretical approximation error related to this scheme is O(h2 + τ)
nd the scheme is stable if the following condition holds:

Dτ

h2
≤ 1

2
. (20)

While we are fully aware of the issues of the stability and accu-

acy raised when the explicit scheme σ = 0 is used, we advocate our

hoice because of simplicity of computations. Let us note that we are

nterested in the solution at small times t, where we assume that the

pproximate solution is not noticeably affected by approximation er-

or O(τ ) of the scheme. This assumption is further carefully checked

n a series of numerical tests discussed in Section 3. Also, the condition

20) implies a very small time step size τ on fine grids with h � 1,

ut it does not significantly increase the cost of our computations at

mall times.

Equations (18) are solved for i = 2, . . . , N. For the discretization

f the boundary conditions (4)–(10), at any time tn > 0 we have the

ollowing equations

un+1
1 = 0 for x = 0,

un+1
N+1 = un

N+1 + 2τD

h2

(
un

N − un
N+1

)
for x = L.

(21)

quations (21) provide us with the second order approximation of the

oundary conditions (e.g. see [39]) and is therefore consistent with

he accuracy of approximation (18).

Similarly, we have

un+1
N+1 = un

N+1 + 2τD
2

(
un

N − un
N+1 + hG

)
for x = L, (22)
h
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Fig. 2. (a) Spatial convergence of the numerical solution on a sequence of uniformly

refined spatial grids. (b) Trap count obtained by (15) on a sequence of refined grids with

the grid step size h (see inset key) in comparison with the truncated exact solution (28).

The six different curves are visually indistinguishable. (c) The trap count error (27) as

a function of time. In all cases (a–c), the parameters are L = 49.5, D = 1.0, τ = 1/1600

and U0 = 10.
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hen the boundary condition (9) is used. The discretization of the

oundary condition (16) is straightforward and results in

un+1
N+1 = Ub for x = L. (23)

Finally, the discretization of the initial condition (47) is

0
i = U0, i = 2, . . . , N. (24)

alculation of trap count. Let the solution u(x, tn+1) be known to us

t any fixed time t = tn+1. In our further discussion in this section

e omit the notation tn+1 for the sake of convenience and consider

spatial distribution u(x). The flux j(x) of the population density u(x)
t point x is given by the formula (6). Hence the flux computation

equires approximation of the derivative
du(x)

dx
at grid node x1 = 0.

he accuracy of this approximation should be consistent with the

ccuracy of finite difference approximation (18), that is the approxi-

ation error should be O(h2). It is explained in Appendix A that the

equired order of accuracy can be achieved by using the following flux

pproximation at the trap boundary x = 0:

(0) ≈ D

2h
|4u2 − u3|. (25)

Once the flux j(0) has been computed, an approximation of the

otal number of insects �Un,n+1 crossing the trap boundary between

ime tn and tn+1 is obtained as �Un,n+1 = j(0)τ . The cumulative trap

ount �U(tn+1) = �Un+1 at time tn+1 is then computed by adding

his value to that obtained at the previous time tn:

Un+1 = �Un + �Un,n+1. (26)

. 1D case: Validation of the method and numerical tests

In this section we validate our finite difference discretization

hrough a number of numerical tests. Our first test case is to check the

patial convergence of a numerical solution on a sequence of refined

rids. The convergence graph is shown in Fig. 2a where the trap count

rror is computed as a difference between the analytical solution (13)

nd a numerical solution (26). The time t is fixed as t = 100 and the

iffusion coefficient is D = 1. We conclude from the slope of the con-

ergence graph that our spatial discretization is indeed second order

ccurate.

Consider now the temporal-spatial discretization. The trap count

btained from a numerical solution have been computed for various

ime t on a sequence of grids with grid step size varying from h = 0.5

o h = 0.05. The results are shown in Fig. 2b. It can be seen from the

gure that the trap count obtained from the numerical solution are,

ver the given time, visually indistinguishable from those produced

y the truncated exact solution on the scale used.

More accurate validation of the numerical solution requires com-

utation of the trap count error. We introduce the trap count error
n+1 at time t = tn+1, n = 0, 1 . . . as the relative difference between

he exact trap count �Un+1
exact and the approximate trap count �Un+1

approx

btained from a numerical solution,

n+1 =

∣∣∣�Un+1
exact − �Un+1

approx

∣∣∣
�Un+1

exact

. (27)

n computation of the error (27) the exact solution (13) was truncated

s

U(t) = 8LU0

π2

K=200∑
k=0

1

(2k + 1)2

[
1 − exp

(
− (2k + 1)2π2Dt

4L2

)]
.

(28)

The truncated solution has been verified against the approxima-

ion (15) at small times to guarantee that K = 200 terms in the above

um is sufficient to approximate an infinite series. The error en+1 is
hown in Fig. 2c as a function of time. It has been computed on a se-

uence of grids refined from h = 0.5 to h = 0.05. Obviously, the finer

he grid is the smaller the relative error. Overall the relative errors

btained on any sufficiently fine grid (e.g. with h ≤ 0.125) are very

mall (on the order of 1% or smaller) at any time point.

Let us note that, for the validation of our numerical method, we

ave used the exact solution obtained for the simplest boundary and

nitial conditions as given by (4), (7) and (10). In the case that a dif-

erent, more complicated boundary condition and/or initial condition

re used in the diffusion problem, the exact solution may not always

e available in an explicit form; in particular, it is rarely available in
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Fig. 3. (a) Spatial convergence test. The error is computed as a difference between

the solution (30) and the integral of the truncated density function on a sequence of

uniformly refined spatial grids. (b) Plots of trap count obtained using numerical inte-

gration on increasingly fine grids (see inset key) in comparison with the exact solution

obtained as the integral of the truncated exact density function. The six different curves

are visually indistinguishable. (c) Relative differences between the numerical solution

and the exact solution plotted against time. In all cases (a–c), the parameters are the

same as in Fig. 2.
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the 2D case (considered in Sections 5 and 6). Therefore, an alternative

approach is required to corroborate a numerical solution. Thus our

next test is to compare the trap count obtained from flux calculations

with trap count calculated by a different method.

We mention here that, in the strict sense, validation of the nu-

merical method in the absence of the exact solution is hardly possi-

ble: indeed, having calculated the solution on a sequences of refined

grids, what can we compare it to? Note that good agreement be-

tween the results obtained by two different methods does not, by

itself, prove anything as, generally speaking, both methods can be

equally wrong. Yet if we can reproduce the results (i.e. trap count)

by using a different numerical method, that, albeit not being a proof

as such, should be regarded as an indirect evidence of the results’

plausibility.

As an alternative method, we consider the numerical integration

of the solution u(x, tn). The integration gives the size of the ‘free’ pop-

ulation inside the computational domain at time tn. Recall that our

population model assumes no reproduction or mortality of individu-

als within the domain. Furthermore, for the boundary condition (10),

the impermeable external boundary admits no migration into or out

of the domain. As such the population changes only as a result of

trapping. Hence the sum of the free population and the trap count re-

mains constant and is equal to the initial population LU0 at any given

time.

The free population Un+1 is calculated by numerical integration of

the population density distribution over the domain x ∈ [0, L] at the

time tn+1. Once the population density u(x, tn+1) has been defined at

the nodes of a uniform computational grid G, a composite rule of nu-

merical integration can be applied to integrate the spatial distribution

u(x) at the fixed time tn+1,

Un+1 ≡ U(tn+1) =
∫ L

0

u(x)dx ≈
N+1∑
i=1

ωiui, (29)

where ui ≡ un+1
i

, i = 1, . . . , N + 1 are function values at grid nodes and

the weights ωi are defined according to the chosen rule of numerical

integration. In our work we apply the trapezoidal rule, where the

weights are ω1 = ωN+1 = h/2, ωi = h, i = 2, . . . , N. The accuracy of

this integration rule on a uniform grid with the grid step size h is

O(h2) (e.g. see [10]).

The trap count can then be computed as

�Un+1 = LU0 − Un+1, (30)

where LU0 and Un+1 are the free population at time t = 0 and t = tn+1

respectively.

The results of numerical integration (29)–(30) are presented in

Fig. 3. The spatial convergence of a numerical solution on a sequence

of refined grids is shown in Fig. 3a, where the time t is fixed as t = 100

and the other parameters are L = 49.5, D = 1. In order to calculate

the error, we compare a solution obtained by numerical integra-

tion of the density function with the truncated integral of the exact

density.

The trap count as a function of time is shown in Fig. 3b on a se-

quence of grids with grid step size varying from h = 0.5 to h = 0.05.

The trap count obtained from the numerical solution appear to be

visually indistinguishable from those produced by integrating trun-

cated exact density. This conclusion is further confirmed by compu-

tation of the error (27), where �Un+1
approx is now a numerical solution

(30). The relative error as a function of time is shown in Fig. 3c on

spatial grids with the grid step size from h = 0.5 to h = 0.05. It is clear

from the figure that the accuracy of computation is very good on any

grid used.

Let us now compare the trap count obtained by the two different

methods, i.e. by the flux calculation at the trap boundary, see Eqs. (25)

and (26), and by the numerical integration of the population density of

the free population, see Eq. (30). Fig. 4 shows the absolute value of the
elative difference between the two numerical solutions obtained on a

ne grid with h = 0.05 for parameters L = 49.5 and D = 1. It is readily

een that the two methods are in a very good agreement between

hemselves, and both numerical solutions are very close to the exact

olution of the problem; see also Figs. 2 and 3. We therefore assume

hat, when the exact solution is not available, the trap count obtained

rom numerical integration can be used to verify those obtained from

ux calculations. This conclusion is going to be practically important

or the analysis of the 2D problem.
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Fig. 4. Comparison of two numerical solutions on a fine grid with h = 0.05. The relative

difference between the solution obtained from direct flux calculation and the solution

by numerical integration is computed as a function of time.
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. 1D results for various ecological conditions

We are now going to consider the trap count dynamics subject

o different types of forcing at the external boundary as given by

qs. (8) and (9). In doing this, we combine analytical approaches with

umerical simulations. The diffusion problem in the 1D case can be

tudied analytically, e.g. see Eqs. (16) and (17) and the theorem at the

nd of this section. However, basic properties of the corresponding

olutions are sometimes easier to see from numerical simulations. We

herefore begin with numerical results and their semi-quantitative,

euristic analysis.

Recall that in the 1D system the analytical expression for the trap

ount is available, cf. Eqs. (16) and (17). It is readily seen that a trun-

ated series with a sufficiently large number of terms provides a very

ood approximation to the exact solution. This approximate solution

s used below to analyze the trap count for different conditions. Some

f those approximate-analytical results are also reproduced using the

umerical method described in the previous section, thus using the

nalytical solution as a test, with the idea to later apply numerical

imulations extensively in the 2D case where the analytical solution

s not available.

In order to provide a convenient framework for the understanding

f the trap count dynamics, we notice that, both for diffusive forcing

8) and advective forcing (9), the solution of the diffusion equation

as stationary large-time asymptotics, ūD(x) and ūN(x) respectively,

here

¯D(x) = Ubx

L
and ūN(x) = Gx. (31)

We therefore obtain that, in the large-time limit, the trap count is

linear function of time, that is

U(t)Dir � DUbt

L
+ C1 and �U(t)Neu � DGt + C2, (32)

espectively, where the value of the constants C1 and C2 results from

he transient short-time and intermediate-time dynamics; in partic-

lar, it depends on the initial conditions. If we consider G = Ub/L,

hen the only difference between the two types of forcing is due to

he transient stage. In order to make the solutions for diffusive and

dvective forcing comparable, throughout this section we choose G

o be equal to Ub/L.

Diffusion is a slow process; whatever the type of the bound-

ry forcing, it clearly takes some time for its effect to propagate

hrough the domain and to reach the trap (we will address this is-

ue more quantitatively below). It is less clear which type of forcing

ay result in a stronger effect. Intuitively, the Neumann-type advec-

ive boundary condition corresponds to a more active forcing (see
ases 1 and 2 in Section 2.1), hence it seems reasonable to expect

hat the trap count should grow faster in that case than in case of the

iffusive, Dirichlet-type, boundary condition. Interestingly, this intu-

tive argument appears to be misleading. Fig. 5 shows the trap count

btained both analytically (red curves) and numerically (black sym-

ols) for diffusive forcing (upper curve) and advective forcing (lower

urve). As was expected, the effect of the external forcing is not seen

ntil after a considerable delay. However, diffusive forcing appears to

ave a much stronger effect on the trap count than advective forcing.

In order to make a more detailed insight into the effect of the

omain length, we introduce a certain threshold count and consider

ow the time t1 required for the trap count to reach the threshold

epends on the distance L between the trap and the external boundary

i.e. the domain length). Fig. 6 shows this time t1 vs L for the threshold

ount equal to one, i.e., effectively, the time when the first insect from

he monitored population is caught. We therefore observe that, the

arger is the distance L the higher is the efficiency of diffusive forcing

ompared to advective forcing.

The faster-than-linear (approximately quadratic) growth in the

ime t1 as a function of L can be explained using the dimensions

nalysis [1]. From the quantities t1, L, D, U0 and Ub or G one can

ake exactly two dimensionless combinations, that is 
 = t1DL−2

nd either 
1 = U0/Ub or 
2 = U0/(GL), for diffusive and advective

orcing, respectively. Then, according to the 
-theorem ([5]; also [1]),

ne of these dimensionless combinations must be a function of the

ther, i.e.,

= f1(
1) or 
 = f2(
2), (33)

or diffusive or advective forcing, respectively, where f1 and f2 are

ertain ‘universal’ functions. For time t1, we therefore obtain:

1 = L2

D
f1(
1) or t1 = L2

D
f2(
2). (34)

Functions f1 and f2 are not known; however, we observe that,

n the special but important case U0 = 0, their argument is zero as

1 = 
2 = 0. The values f1(0) and f2(0) then just act as coefficients.

e therefore obtain that t1 is proportional to L2, which agrees very

ell with Fig. 6.

The above results were obtained for U0 = 0, i.e. when there is no

ative population in the domain and the trap count only account for

he boundary forcing resulting from the immigration. The dynamics

ecomes different and somewhat more complicated when the native

opulation is present, i.e. for U0 > 0. This, for instance, can be seen

rom Eqs. (34) where time t1 remains proportional to L2 in case of
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Fig. 6. The time t1 at which trap count exceed one against length L of domain. Crosses for diffusive (Dirichlet) forcing, circles for advective (Neumann) forcing. Parameters are:

D = 1, U0 = 0, Ub = 10 and G = Ub/L.
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Fig. 7. Trap count versus time as obtained from Eqs. (16) and (17). Solid and dashed curves correspond to the Dirichlet (diffusive) and Neumann (advective) boundary conditions,
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diffusive forcing but turns into a more complicated relation in case

of advective forcing as L now enters the argument of f2. For U0 > 0,

the trap count growth at small t (i.e. before the effects of the bound-

ary reach the trap) is determined solely by the effect of the initial

conditions (i.e. by the native population) and is known to increase as√
t [34]. If considered over a long time, the pattern in the trap count

growth can be regarded as a transition between the two asymptotics,

i.e. the small time behavior �U ∼ √
t and the large-time behavior

�U ∼ t (cf. Eqs. (32)); this transition is clearly seen in Fig. 7. Note

that, at small t, the trap count are the same irrespective of the bound-

ary condition as only the initial conditions are having effect.

The effect of the initial conditions does complicate the behaviour

of the system. We showed above that for U0 = 0 diffusive forcing

always has a stronger effect on the trap count than the equivalent1

advective forcing. For U0 > 0, the type of forcing that results in a

larger trap count (or in a faster growth of the trap count with time)

depends on parameters Ub and G. For a given U0, diffusive forcing is

stronger than advective forcing for a large Ub (Fig. 7) but it gives way to

the equivalent advective forcing when Ub becomes sufficiently small;

see Fig. 8. Similarly, for a given Ub, the diffusive forcing is stronger

for small U0, but the advective forcing is stronger for large U0. The

value of U where the relative strength of the different forcing types
b

1 That is, when G = Ub/L.

P

D

t

nterchanges depends on U0. We also observe that the shape of the

urves describing the trap count dynamics changes as well; from

eing convex for small values of Ub (Fig. 8) they become sigmoidal for

arge Ub (Fig. 7). Recall that for U0 = 0 the generic shape of the curve

s concave, cf. Fig. 5.

The above results were obtained numerically. However, the rela-

ion between the trap count obtained for the two types of boundary

orcing can also be addressed analytically, as is shown by the follow-

ng theorem.

heorem 1. Consider the diffusion equation in the domain 0 < x < L

ith the condition at the left-hand side boundary as u(0, t) = 0 (as cor-

esponds to the trap) and the initial condition u(x, 0) = u0(x). Let uD(x, t)
nd uN(x, t) be the solutions obtained for the Dirichlet and Neumann

oundary conditions at the right-hand side boundary, i.e. for u(L, t) = Ub

nd ∂u(L, t)/∂x = G, respectively. Consider the trap count �U(t) as de-

ned by (5–6). Let the parameters be related as Ub = GL. Then the fol-

owing statements hold:

f u0(x) < Gx then �U(t)Dir > �U(t)Neu, (35)

f u0(x) > Gx then �U(t)Dir < �U(t)Neu. (36)

roof. We first recall that, under the condition Ub = GL, both the

irichlet and the Neumann problems have the same stationary solu-

ion ūD(x) = ūN(x) = Gx.
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and Neumann boundary conditions, respectively. Note that, contrary to the case shown in Fig. 7, diffusive forcing (Dirichlet) now results in lower trap count than advective forcing
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Let us consider condition (35), i.e. u0(x) < Gx. Since both u0(x)and

x satisfy the diffusion equation and the same boundary conditions,

0(0) = 0 and u0(L) = GL = Ub, by virtue of the comparison theorem

or parabolic PDEs (also known as the monotonicity principle, cf. [42])

e obtain that uD(x, t) ≤ Gx for any t > 0 and all 0 ≤ x ≤ L. Assume

hat there exist certain x∗ ∈ (0, L) and t∗ such as uD(x∗, t∗) = Gx∗. By

irtue of the strong maximum principle, we then obtain that uD(x, t) ≡
x in (0, L) for any t > 0. But uD(x, t) does not coincide with Gx at any

nite t. Therefore (x∗, t∗)does not exist and hence uD(x, t) < Gx for all

< x < L, in particular in the vicinity of x = L. Applying then Hopf’s

emma (boundary point principle), we obtain that

∂uD(L, t)

∂x
> G. (37)

Recall that G is the value of the gradient in the Neumann boundary

ondition; relation (37) therefore reads as

∂uD(L, t)

∂x
>

∂uN(L, t)

∂x
. (38)

We therefore obtain that uD(x, t) and uN(x, t) satisfy the same dif-

usion equation, the same initial condition u0(x) and the same left-

and side boundary condition uD(0, t) = uN(0, t) = 0 but have differ-

nt value of the gradient at the right-hand side boundary as given by

38). Then, by virtue of the comparison theorem, uD(x, t) ≥ uN(x, t) for

ny t > 0 and all 0 ≤ x ≤ L. Similar to the above, let us assume that

here exist x∗ ∈ (0, L) and t∗ such as uD(x∗, t∗) = uN(x∗, t∗). Applying

he strong maximum principle, we obtain that uD(x, t) ≡ uN(x, t) in

0, L) for any t > 0, which is impossible. Therefore (x∗, t∗)does not ex-

st and uD(x, t) > uN(x, t) for all 0 < x < L, in particular in the vicinity

f x = 0. Applying now Hopf’s lemma to the left-hand side boundary,

e obtain that

−1)
∂uD(0, t)

∂x
< (−1)

∂uN(0, t)

∂x
, (39)

where −1 accounts for different direction of the outwards normal

ector) so that

∂uD(0, t)

∂x
>

∂uN(0, t)

∂x
. (40)

t then immediately follows from (5)–(6) that the population flux
Dir
0 > jNeu

0 and hence the corresponding trap count �U(t)Dir >

U(t)Neu.

In the opposite case, i.e. where u(x, 0) > Gx, a very similar argu-

ent (subject to signs reversed in relevant places) could be used to

how that the flux into the trap is less with Dirichlet forcing than with

eumann forcing, i.e. the statement (36) holds.
Obviously, the results shown in Figs. 5 and 8 correspond to the

onditions (35) and (36), respectively. Note that the intermediate

ase where the initial condition u0(x)and the line Gx have intersection

oints in the interval 0 < x < L (i.e. when 0 < U0 < Ub for the initial

ondition (7), cf. Fig. 7) is not addressed by the theorem.

. The 2D problem

.1. Model

Having established how our numerical solutions behave in a 1D

ystem we now move on to the more complex, more realistic 2D case.

he diffusion equation in the 2D case is written as

∂u

∂t
= D

(
∂2u

∂x2
+ ∂2u

∂y2

)
, (41)

here u(x, y, t) is the density of the pest insect population, D is the

iffusion coefficient. Equation (41) is considered in the domain � =
(x, y) : |x| < Ld, |y| < Ld} where 2Ld thus gives the overall size of the

omain.

We will focus on a case where a single trap is installed at the ori-

in, i.e. in the center of the domain. Generally speaking, the shape of

he trap can be different and that may significantly affect the com-

lexity of the computational problem. However, it was shown by

etrovskii et al. [34] that, for the insects performing the Brownian

otion (which is the pattern of individual movement corresponding

o the diffusion equation, e.g. see [4,8]), the trap count depend on the

erimeter of the trap but not on its shape. Correspondingly, in order

o avoid unnecessary computational complexity, we consider the trap

f a square shape, S = {(x, y) : |x| < l/2, |y| < l/2}, where l is thus the

rap size.

Hence, the solution of the diffusion equation is sought in the fol-

owing domain:

s = {(x, y) : l/2 < |x| < Ld, l/2 < |y| < Ld}.
Equation (41) must be augmented by boundary conditions and ini-

ial conditions. Note that the computational domain �s is not simply-

onnected (see Fig. 9 below) and has the external boundary, which

e denote as ∂�, and the internal boundary (i.e. the boundary of the

rap S), which we denote as ∂S.

As well as in the 1D case, we assume that the trap is escape-proof

nd use the following condition at the internal boundary ∂S:

(x, y, t) = 0 for any (x, y) ∈ ∂S. (42)
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Fig. 9. A computational grid in the domain �s . The trap is placed at the origin (0, 0).

The discretization of Eq. (41) at the grid node nij requires the values of the function

u(x, y, t) at the nodes nij , ni−1j , ni+1j , nij−1 and nij+1. Letters A, B, C and D denote the

domain edges where different boundary conditions can be used; see Section 6.
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have a similar structure.
At the external boundary of the domain, aiming at taking into

account different types of boundary forcing, we consider the condition

in the following general form:

k1u(x, y, t)+ k2
∂u(x, y, t)

∂n
= k3 for any (x, y) ∈ ∂�, (43)

where n is the outward unit normal vector to ∂�, and k1,2,3 are

parameters. Obviously, for a different choice of k1,2,3 the bound-

ary condition (43) can describe either diffusive or advective forcing,

that is

(a) u(x, y, t) = Ub at ∂� or (b)
∂u(x, y, t)

∂n
= G at ∂� (44)

(obtained for k1 = 1, k2 = 0, k3 = Ub and k1 = 0, k2 = 1, k3 = G,

respectively). The no-flux case corresponding to the impenetrable

boundary is obtained for k1 = k3 = 0 when (43) turns into

∂u(x, y, t)

∂n
= 0 at ∂�. (45)

When condition (45) is applied at every point of the external boundary

∂�, the number of insects in the domain can only change as a result

of trapping, i.e. because of the flux through the internal boundary

∂S. As a relevant alternative, for k2 = k3 = 0, Eq. (43) describes an

‘absorbing’ boundary with zero population density:

u(x, y, t) = 0 at ∂�, (46)

which can be used, for instance, to take into account the emigration

of the insects into a hostile environment outside of the field.

Note that, in the 2D system, different conditions can be used at dif-

ferent parts of the external boundary if needed to account for the given

ecological scenario, e.g. if insect immigration takes place through one

edge only. Obviously, this more general case can still be described by

(43) with k1,2,3 being piecewise constant functions along the domain

boundary ∂�.

With regard to the initial condition, as our main focus is on the

effect of the boundary forcing, we consider the baseline case of the

uniform population distribution:

u(x, y, 0) = U0 > 0 for any (x, y) ∈ �s, (47)

where U0 is a parameter.

For convenience, we now introduce dimensionless variables by

considering the length l of the trap side as a characteristic spatial

scale in the problem so that x̃ = x/ l, ỹ = y/ l. We then have a trap

as the unit square S̃ = {(x̃, ỹ) : |x̃| < 1/2, |ỹ| < 1/2} installed at the

origin of the square domain �̃ with the linear size scaled as L = Ld/ l. In

the below, the tildes are omitted for the sake of notations simplicity.

5.2. Discretization of the 2D problem

We use a finite difference method for numerical solution of

the problem (41)–(43),(47). A two-dimensional Cartesian grid G is

defined in the domain �s as a tensor product of the two one-

dimensional grids. We first generate a 1D grid in the x-direction

with grid nodes given by x1 = −L, xi+1 = xi + h, i = 1, . . . , 2Nm, and

x2Nm+1 = L, where h = 1/(2m) for integer parameters m and N used

in the problem. Similarly, a 1D grid in the y-direction is y1 = −L,

yj+1 = xj + h, j = 1, . . . , 2Nm. It follows from the definition of 1D

grids that the trap boundaries xiI
= −1/2, iI = (N − 1)m + 1, xiII

= 1/2,

iII = (N + 1)m + 1, yjI
= −1/2, jI = (N − 1)m + 1, and yjII

= 1/2, jII =
(N + 1)m + 1 are accurately represented on the 2D grid and a grid

node is placed at each corner of the trap (see Fig. 9). It is also worth

noting here that we can take an advantage from the problem sym-

metry and to solve it in the sub-domain x > 0, y > 0 only, if the initial

condition (47) is employed. However, we choose to solve the problem

in the entire domain �s as we bear in mind further asymmetric cases,

e.g. application of an asymmetric initial distribution, installation of

several traps in the domain, etc.
Let u(x, y, tn) be the solution to the problem (41)–(43), (47) at the

xed time t = tn and u(x, y, tn+1) be the solution at the fixed time

= tn+1, where tn+1 = tn + τ , τ > 0. Again, we use a finite differ-

nce discretization of (41)–(43), (47) in order to compute the solution

(x, y, tn+1) from the solution u(x, y, tn). The discretization scheme for

q. (41) is written as

1

τ

(
un+1

ij
− un

ij

)
= (�1 + �2)

[
un

ij

]
, (48)

here we use the notation un
ij

≡ u(xi, yj, tn) and un+1
ij

≡ u(xi, yj, tn+1).

iscrete spatial operators �1 and �2 act upon any two-dimensional

unction vij ≡ v(xi, yj) as follows

1[vij] = D

h2
(vi+1,j − 2vij + vi−1,j),

2[vij] = D

h2
(vi,j+1 − 2vij + vi,j−1). (49)

As in the 1D case, the discretization (48) is an explicit scheme.

gain, our choice of the scheme is advocated by simplicity of compu-

ations. It is important to note here that the explicit scheme allows us

o avoid inversion of the discretization matrix that is required when

mplicit schemes are used. While in the current problem the struc-

ure of the discretization matrix is relatively simple, our future work

hould be to investigate several traps installed at arbitrary locations

f the domain �. Such geometry of the domain may in turn result in a

omplex structure of a discretization matrix, thus we want to inves-

igate a simple explicit 2D scheme first and move to a more sophis-

icated discretization scheme if and only if the explicit discretization

as been proved to be unacceptable for our purpose.

Equations (48) are solved for i = 2, . . . , iI − 1, iII + 1, . . . , 2Nm and

= 2, . . . , jI − 1, iII + 1, . . . , 2Nm. The discretization of boundary con-

itions at the external boundaries is based on the results of the 1D

ase for which a detailed discussion has been provided. Consider, for

xample, the boundary x = 0 and the boundary condition (45). We

ave the following approximation

h2

τD

(
un+1

1,j
− un

1,j

)
+ 4un

1,j+1 − 2un
2,j − un

1,j+1 − un
1,j−1 = 0,

for j = 2, . . . , 2Nm. (50)

The discrete boundary conditions at the rest of external boundary
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Fig. 10. Validation tests for the 2D problem. (a) Convergence of the trap count obtained

by calculating the population flux through the trap boundary, see Eqs. (62)–(64); (b)

Convergence of the numerical integration method, see Eqs. (53)–(55); (c) Comparison

between the two approaches on the finest grid h = 0.1 (showing the difference between

the two solutions versus time).
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The condition at the trap boundary at any time tn+1 > 0 is

n+1
ij

= 0, (51)

or i = iI, j = jI, . . . , jII (the left boundary of the trap) and i = iII, j =
I, . . . , jII (the right boundary of the trap). The condition (51) is also

mposed for j = jI, i = iI, . . . , iII , and j = jII, i = iI, . . . , iII (the bottom

nd top boundaries of the trap).

The discretization of the initial condition (47) is

0
ij = U0, i = 1, 2, . . . , 2Nm + 1, j = 1, 2, . . . , 2Nm + 1. (52)

The idea behind trap count approximation in the 2D case is similar

o our approach in the 1D problem. Several specific approximation

ssues arise because of the geometry of a 2D domain and we refer the

nterested reader to Appendix B where those issues are discussed.

alidation of the 2D discretization. In the 2D case, we cannot compare

numerical solution with the exact solution to the problem because

he exact solution is not available. Therefore, we look for alternative

ays to validate our discretization scheme. One approach can be to

onsider the numerical integration of the density function and com-

are it with the results obtained by the flux calculation (but see the

aragraphs after Eq. (28) in Section 3 for a discussion of arising issues).

amely, we consider the test case where the boundary condition (45)

s employed in the problem. For the condition (45) it is possible to

btain the number of insects in the trap by direct integration over the

omain �s. The integral

n+1 =
∫ ∫

�s

u(x, y, tn+1)dxdy (53)

ives us the number of insects left in the domain �s at time t =
n+1. The trapezoidal rule of integration can be readily applied for

ntegration over a two-dimensional domain [10]. We then compute

he integral

0 =
∫ ∫

�s

u(x, y, 0)dxdy (54)

or the initial distribution u(x, y, 0) and the difference

Un+1 = Un+1 − U0 (55)

ill provide us with the number of insects in the trap at time tn+1. The

rap count obtained by direct integration is then compared with the

rap count obtained by the flux calculation across the trap boundary

s discussed in the previous paragraphs.

The validation tests for the 2D problem are shown in Fig. 10. The

onvergence test is presented in Fig. 10a where cumulated trap count

as been computed on a sequence of refined spatial grids for time

∈ [0, 600]. The problem parameters are L = 40, D = 0.1, U0 = 10,

= 1.0 (trap size). It can be seen from the figure that transition from a

omputational grid with the grid step size h = 0.5 to a finer grid with

= 0.1 does not make significant difference to the results. The same

onclusion can be derived from the consideration of graph in Fig. 10b

here trap count on a sequence of spatial grids has been obtained as

result of direct integration (55). Hence, we compare the trap count

btained by flux computation on the finest grid with h = 0.1 with

he trap count obtained on the same grid by direct integration. The

elative difference between the two solutions is shown in Fig. 10c. It

an be seen from the figure that while the relative error gets bigger

s the time progresses the two methods still remain in a very good

greement for the whole time interval where we are interested in the

olution. Hence we believe that our discretization scheme meets the

ccuracy requirements and we intend to use it for further study of

cologically relevant test cases.

. Numerical results for the 2D problem

There are several aspects that make the 2D problem different from

he corresponding 1D problem. To mention just a few, first, the bound-

ry condition on the field boundary (i.e. on the external boundary of
he computational domain) can be a combination of different types

pplied at different parts of the boundary. And second, the 2D prob-

em has several spatial scales such the trap size l, the field size L and

he distance d between the trap and the closest boundary of the field

hrough which immigration can occur.

In this section, we present the simulation results obtained for 2D

omains with various geometries. We consider the case where pest

mmigration takes place through one edge of a square-shaped field,

ay edge A (see Fig. 9). The immigration is described by considering

ither diffusive or advective forcing, with the boundary conditions

44a) or (44b) respectively, or by their combination as given by the

ore general mixed-type boundary condition (43). The edges on the

ides of the domain, i.e. B and D, are assumed to be impenetrable
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Fig. 11. Trap count obtained from numerical solution of the 2D problem in Field 2 (L = 19 and d = 9) with other parameters as D = 1 and U0 = 10 and diffusive forcing with Ub = 0

(solid curve), Ub = 10 (dashed curve) and Ub = 20 (dotted curve).
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boundaries and hence the Neumann ‘no-flux’ condition (45) is used

there. The edge C opposite to the forcing boundary A can be either

impenetrable, with the no-flux condition (45), or absorbing, with the

condition (46).

With regard to the spatial arrangements, we consider that, in the

square field, the square trap of a fixed size l = 1 (recall our choice of

dimensionless variables) is either placed in the center of the square

domain (see Fig. 9) or off center, closer to the forcing boundary. We

consider three different cases: Field 1 is a small field (2L = 9) with

the central trap (so that d = 4), Field 2 is a large field (2L = 19) with

the central trap (so that d = 9), and Field 3 is a large field (2L = 19)

with an off center trap (so that d = 4).

We begin with the case when the field edge C is an impenetrable

boundary and the immigration through the edge A is described by

diffusive forcing. Fig. 11 shows the trap count obtained when Field

2 is subjected to diffusive boundary forcing (solid curve for Ub = 0,

dashed curve for Ub = 10, dotted curve for Ub = 20). The results are

intuitively clear and qualitatively similar to those obtained in the 1D

case as more intense forcing is expected to lead to larger trap count.

Also, we observe that the trap count obtained for different Ub only

becomes different after a certain time, i.e. when the perturbation

introduced by the boundary forcing reaches the trap. However, we

note that, although the shape of the curves is similar to that observed

in the 1D case (cf. Figs. 7 and 8), the actual value of the trap count is

more than ten times larger in the 2D case.

The effect of proximity to the field boundary is revealed in Fig. 12.

The top panel of Fig. 12 shows the trap count for the special case

Ub = 0, i.e. in the case when the forcing boundary acts as a sink rather

than a source. It is readily seen that d is a controlling parameter as the

trap count is lower in Field 3 (dotted curve) than in Field 2 (dashed

curve). For the cases with the same d (cf. solid and dotted curves), it

is the field size that determines the rate of the trap count growth; the

larger the field size the larger the trap count is.

However, the situation is different and somewhat counter-

intuitive when Ub is large; see Fig. 12, middle, obtained for Ub = 20. In

this case, the boundary forcing becomes the main factor affecting the

trap count. Correspondingly, the effect of distance d on the trap count

becomes more prominent and different from the above. Although the

highest rate of the trap count growth is still reached for the combi-

nation “small d – large L” (dotted curve), small d may actually result

in larger trap count when L is small; compare the solid and dashed

curves in Fig. 12, middle. In the intermediate case when the magni-

tude of the boundary forcing (as described by Ub) is the same as the

effect of the initial population (as described by U0), see the bottom

panel of Fig. 12, the pattern observed in the trap count growth can be

regarded as a competition between the two factors: the field size is
ore important (hence resulting in larger trap count) during the early

tage, i.e. until the perturbation from the forcing boundary reaches

he trap, afterwards the proximity of the trap to the forcing boundary

ecomes the main controlling parameter. This interplay between the

wo factors results in the intersect of the solid and dashed curves seen

n Fig. 12, bottom. Once again, we notice that the trap count is much

arger in the 2D case (more than an order of magnitude) compared to

hat was observed in the corresponding 1D case.

We now consider how much the rate of the trap count growth can

e affected by changing the type of the boundary forcing. Fig. 13 shows

he trap count obtained in case of advective forcing, see Eq. (44b), in

ase the opposite boundary of the domain is either impenetrable (top)

r absorbing (bottom), as described by Eqs. (45) and (46), respectively.

learly, the type of the boundary condition on the opposite boundary

as little effect on the shape of the curves, although it does affect

he value of the trap count, which is about 50% larger in case of the

mpenetrable boundary. Comparing the results of Fig. 13 with those

f Fig. 12 (bottom), we observe that, as well as in the 1D case, diffusive

orcing results in trap count several times larger than the trap count

or corresponding ‘equivalent’ advective forcing (see the lines below

q. (32)), although we mention here that, rigorously speaking, the

onditions of equivalency do not apply in the 2D case.

Finally, in order to provide a somewhat broader view of the sys-

em’s properties, we consider the case where the forcing at the field

oundary is of a mixed type as described by the boundary condition

43). Fig. 14 shows the simulation results obtained for the spatial ar-

angement of Field 2 with the homogeneous initial condition U0 = 10

or the mixed forcing (43) with k1 = 1, k3 = 10 (Fig. 14a), k3 = 20

Fig. 14b) and the values of k2 = 0, 0.1, 0.2, . . . , 2.0 (curves top to

ottom, respectively). Interestingly, in this case the trap count roughly

ollows the pattern observed in the case of diffusive forcing. In fact,

or each of the two cases shown in Fig. 14, the whole family of trap

ount curves lie between the two curves obtained for purely diffu-

ive forcing (shown by red colour) where the upper bound obviously

orresponds to the case Ub = k3 and the lower bound is obtained

or Ub ≈ 0.7k3 (where the coefficient 0.7 is found empirically). The

resence of the density gradient in the boundary condition does not

ontribute much to the trap count dynamics. Therefore, in agreement

ith our results shown above, we conclude that the diffusive compo-

ent of the forcing has much stronger effect on the trap count than

he advective component.

. Discussion and concluding remarks

Understanding of trap count is an important component of pest

nsect monitoring. Control measures are likely to be more efficient
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Fig. 12. Trap count obtained from numerical solution of the 2D problem in different spatial arrangements (solid curve for Field 1, dashed curve for Field 2 and dotted curve for

Field 3, see details in the text) and for different value of diffusive boundary forcing: top for Ub = 0, middle for Ub = 20 and bottom for Ub = 10. Other parameters are D = 1 and

U0 = 10.
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hen the process behind the trap count increase is correctly identi-

ed. In this paper, we have considered how trap count can be used to

onitor the insect pest population growth when the growth is occur-

ing due to the immigration through the habitat boundary. Indeed,

hort- and long-distance dispersal is known to be a common phe-

omenon for many insect species (in particular for flying/wind-borne

pecies, cf. [9]) and it can bring severe problems for farmers and pest

ontrol specialists (e.g. [24]).
The purpose of this paper is threefold. First, we want to draw

he attention to the important and largely overlooked (by mathe-

atical ecologists) problem of the trap count interpretation with the

ltimate purpose to identify the population dynamics resulting in

iven trap count and to evaluate the population abundance. Traps

re routinely used in insect monitoring as well as in general insect

tudies and the need for a relevant theory has long been recognized

e.g. [7,27,40]). Yet a consistent mathematical theory allowing for trap
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Fig. 13. Trap count obtained from numerical solution of the 2D problem in the spatial configuration of Field 1 with advective forcing (Neumann boundary condition) at the forcing

boundary and for different boundary condition at the opposite boundary: (a) for no-flux condition, Eq. (45), (b) for the absorbing boundary, Eq. (46). In each panel, the value of the

boundary gradient G varies from 0 to 20, bottom to top, respectively.

Table 1

Maximum relative error (27) obtained in the 1D system for linear and

quadratic flux approximation at the trap boundary. Parameters are: D =
1.0, L = 49.5, U0 = 10.

Nodes per unit length 3 5 9 11 21

Linear (×10−3) 112 64.4 33.5 20.7 9.59

Quadratic (×10−3) 32.8 10.4 2.70 7.21 5.00

Table 2

Maximum relative error (27) obtained in the 1D system for linear and quadratic

flux approximation at the external boundary. Forcing is described by the Neumann

boundary condition (9) with G = 0.5, other parameters are D = 1.0, L = 49.5, U0 = 0.

Nodes per unit length 3 5 9 11 21

Linear (×10−4) 359 183 92.4 74.1 37.2

Quadratic (×10−4) 0.949 0.288 0.110 0.194 0.100
count modeling and simulation is missing, although some attempts to

develop such theory have recently been made [30,31,34,35]. Second,

our aim is to provide a sufficiently accurate, consistent and reliable

“ready-to-use” computational algorithm that can be used for under-

standing trap count across a variety of possible ecological scenarios

and applications, a roadmap for potential users of the ideas, tools and

methods of the computational ecology [32]. And third, using the algo-

rithms revisited and/or developed in this paper, we want to make an

insight into the problem of pest insect monitoring subject to different

immigration patterns.

With regard to the numerical accuracy, one of our more specific

goals here is to emphasize that an adequate choice of the numer-

ical method is essential. We have shown that the commonly used

linear approximation of the diffusion fluxes (cf. [23,37,39]) can lead

to results of unacceptably low accuracy compared to the quadratic

approximation on the same numerical grid; see Tables 1 and 2. The
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Fig. 14. Trap count obtained from numerical solution of the 2D problem in the spatial configuration of Field 2 with mixed forcing at the forcing boundary as given by the mixed

boundary condition (43), top for (a) k3 = 10 and (b) k3 = 20. In each panel, k1 = 1 and the value of k2 varies from 0 to 20, bottom to top, respectively. Red curves show the upper

and lower bounds for the trap count obtained for ‘equivalent’ diffusive forcing (Dirichlet boundary conditions); see details in the text. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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inear approximation of the diffusion flux at the trap boundary leads

o the relative error in the calculated trap count which is consistently

–5 times larger (more than 10 times larger on some grids) than the

orresponding error in the case of quadratic approximation (Table 1).

pproximation of the flux at the external ‘forcing’ boundary can have

ven bigger effect (Table 2); here the relative error of the linear ap-

roximation can be 102 − 103 times larger than the error induced by

he quadratic approximation!

In our approach, in order to solve the diffusion equation and to cal-

ulate the diffusion fluxes, we used the finite difference method. We

ention here that, in principle, this is not the only possible option.

ne alternative is the method of lines. Another alternative numerical
pproach to diffusion equation could be based on the finite elements

ethod. Indeed, this method has been applied successfully to sev-

ral ecological and biological problems [13,14] and it is known to be

articularly efficient for problems with curvilinear geometry. How-

ver, for a domain with rectangular geometry, this technique seems

o be excessive; being more elaborate and hence more expensive in

erms of the code development, it does not provide any new insights

nd, on a given numerical grid, does not provide a higher accuracy

ither.

With regard to our use of the explicit scheme (e.g. as given by

qs. (48) and (49) in the 2D case), we mention that the obvious ad-

antage of its implicit counterpart is unconditional stability. However,
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Fig. 15. A sketch of multiple trapping with the spatial arrangements making possible

to ‘split’ the system into several individual subdomains, each of them having one trap

only. Solid line shows the boundary of the field, grey squares show the position of the

traps, dashed vertical lines indicate the position of the virtual boundaries where the

no-flux conditions can be applied due to the symmetry of the problem.
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this advantage of being able to choose a larger value of the time-step

τ does not appear to be essential for our problem. The spatiotempo-

ral accuracy of the considered scheme is O(h2 + τ). It is important to

have a second order approximation as we have demonstrated for the

spatial terms, cf. Tables 1 and 2. It means that, in order to reach the re-

quired accuracy, τ should be chosen on the order of h2. Therefore, the

restriction on τ comes from the accuracy requirement rather than

from the stability condition. On the other hand, the computational

simplicity of the explicit scheme is important as our ultimate aim is

to create a simple and practical computational approach that could

eventually be used by a broad interdisciplinary community.

In our numerical simulations, see Figs. 5–8 and 11–14, we have fol-

lowed the trap count dynamics over a long time, until it reaches the

large-time asymptotics which is determined solely by the boundary

forcing, cf. Eqs. (31)–(32). This gives the overall view of the solu-

tion properties and helps to better understand the trap count behav-

ior, e.g. to estimate the time when the effect of the initial condition

would give up to the effect of the boundary forcing. However, for the

actual ecological problem of insect pest monitoring, the large-time

asymptotics is largely irrelevant. A realistic trap count dynamics is

essentially transient. Indeed, the goal of the pest control is not only

to detect the pest at a given location but, importantly, to do it as early

as possible. Trap data are often used as a part of the early-warning

system in order to apply control measures before the growing pest

population can bring any significant damage to the crops. Therefore,

the large time asymptotics as predicted by our model (which does not

take into account control measures) can hardly ever be observed in

reality. The human intervention (e.g. application of pesticides) would

change the system dynamics considerably by reducing almost in-

stantly the pest density to a much lower value. The subsequent trap

count dynamics would then reflect the transient stage resulting from

this new population density, until the growing trap count would in-

flict another round of control measures, and so on.

With regard to the insect immigration through the habitat bound-

ary, we mention here that the effect of boundary forcing on the sys-

tem’s dynamics is a challenging problem in ecology as it can have a

complicated and sometimes counter-intuitive effect on the popula-

tion dynamics and population abundance ([11,44,45]). Note that the

whole issue as to what can be a proper description of the habitat

boundary – which acts as an interface between the given habitat and

its surroundings – is complex and controversial. Contrary to similar

problems in physics and chemistry, the width of this interface is of-

ten not small compared with the size of the habitat and may have

its own structure (cf. [21]) and that makes application of standard

techniques questionable. In fact, it is often not clear even where the

exact position of the boundary is and/or what its exact shape is (cf.

[11]). Also, the boundary is expected to affect the movement behavior

of the animals (e.g. insects) but, yet again, it is not always clear what

exactly the effect is [2].

Altogether, these various sources of uncertainty make the ques-

tion about the ‘precise’ mathematical formulation of the boundary

condition rather senseless. Instead, one should rather check how sen-

sitive the properties of the system are with respect to the choice of

the boundary condition. The high uncertainty and insufficient knowl-

edge about the processes going on at the interface makes it necessary

to check how different can be the predictions obtained from a model

when different boundary conditions are used, e.g. Dirichlet or Neu-

mann types, and this is where our study is going to contribute. In par-

ticular, we have shown that the trap count obtained in the 2D system

for three different types of forcing, i.e. diffusive (Dirichlet), advective

(Neumann) and mixed (Robin), exhibits qualitatively similar patterns.

However, we have also shown that, somewhat counter-intuitively,

diffusive forcing results in larger trap count than advective forcing.

This observation may have an important message for the insect pest

management: as larger trap count is usually associated with a larger

population density, misidentification of the pest immigration pattern
an result in an unjustified application of pesticides, something that

he IPM specialists would definitely like to avoid.

In conclusion, we mention that, in this paper, we have considered

he case of a single trap installed in the monitored field. However, our

esults can be applicable, at least partially, to a more general case of

ultiple traps if the traps are installed on a line along the field bound-

ry; see Fig. 15. Indeed, assuming the spatially homogeneous initial

opulation distribution and the uniform boundary forcing (i.e. that

he coefficients k1,2,3 have the same value everywhere along the

oundary), the mathematical problem obviously attains symmetri-

al properties so that the whole field can be split to several mutually

ndependent subdomains or ‘cells’, each of them being described by

ur model.
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ppendix A. Accurate calculation of the 1D flux

olynomial approximation of the density function. Our aim is to con-

truct an accurate approximation of the flux function j(x) in the

ormula (6). Let us approximate the density u(x) by a quadratic

olynomial, i.e. u(x) ≈ pk(x) = a0 + a1x + a2x2. We then have j(x) ≈
| dp(x)

dx
| and therefore the flux at the trap boundary x = 0 is

pproximated as

(0) ≈ D|a1|. (56)

The polynomial coefficient a1 in the flux approximation (56) is

efined from the conditions p(xi) = ui, i = 1, 2, 3, where the function

alues ui ≡ u(xi) are taken at corresponding grid nodes xi. We have

(0) = a0 = u1, p(h) = a0 + a1h + a2h2 = u2,

(2h) = a0 + 2a1h + 4a2h2 = u3. (57)

olving these equations and taking into account that u1 = 0 at the

rap boundary we arrive at a1 = 4u2−u3
2h

. Hence the approximation of

he flux is given by j(0) ≈ D
2h

|4u2 − u3|.

he order of approximation. Let us show that the quadratic approx-

mation (56) of flux is second order accurate, i.e. the approximation

25) has the error O(h2). Consider a one-dimensional function v(x)on

uniform computational grid with the grid step size h. Let the func-

ion v(x) be defined at points xi, xi+1 = xi + h and xi+2 = xi + 2h. The

unction approximation by a quadratic polynomial passing through

i, xi+1, xi+2 gives us the following value of the derivative at the

oint xi

dv(xi) ≈ 4v(xi+1)− v(xi+2)
(58)
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here we require that vi = 0. The Taylor series expansion of the func-

ion v(x) around the point xi is

(xi+1) = v(xi)+ h
dv(xi)

dx
+ 1

2
h2 d2v(xi)

dx2
+ 1

6
h3 d3v(η)

dx3
,

(xi+2) = v(xi)+ 2h
dv(xi)

dx
+ 1

2
(2h)2 d2v(xi)

dx2
+ 1

6
(2h)3 d3v(μ)

dx3
,

here η ∈ [xi, xi+1] and μ ∈ [xi, xi+2].

Substituting the above expressions in the approximation
4v(xi+1)−v(xi+2)

2h
and taking into account that v(xi) = 0 we arrive at

4v(xi+1)− v(xi+2)

2h
= dv(xi)

dx
+ 1

3
h2

(
d3v(η)

dx3
− 2

d3v(μ)

dx3

)
. (59)

n other words, we have

dv(xi)

dx
= 4vi+1 − vi+2

2h
+ O(h2), (60)

here vi ≡ v(xi). Let us note that a well-known upwind approxima-

ion of the derivative at point xi is first order accurate,

dv(xi)

dx
= vi+1 − vi

h
+ O(h), (61)

nd is therefore not consistent with the accuracy of the scheme (18).

ppendix B. The issues of flux approximation in a 2D domain

lux approximation at the trap boundaries. Let the solution u(x, y, tn+1)
e computed at time tn+1 over a computational grid generated in the

omain �s. In the following discussion of 2D flux computation we

mit the notation tn+1 for the sake of convenience and consider a

patial distribution u(x, y). The flux density j(x, y) at point (x, y) is

iven by the directional derivative:

(x, y) = D

∣∣∣∣ du

dn
(x, y)

∣∣∣∣ , (62)

here n is the outward unit normal vector along the trap bound-

ry. Hence the flux density computation requires approximation of

he derivatives ∂u(x,y)
∂x

or ∂u(x,y)
∂y

at grid nodes that belong to the trap

oundary. Similar to the 1D case, the accuracy of this approximation

hould be consistent with the accuracy of finite difference approxi-

ation (48). As we have discussed in Appendix A, such accuracy of ap-

roximation can be achieved by constructing a quadratic polynomial

(x, y) ≈ pk(s) = ak
0 + ak

1s + ak
2s2, where k = 1, 2, 3, 4 is the number of

he trap edge and we use the numeration in the counterclockwise di-

ection from the left boundary of the trap. The distance s is measured

long the direction of the outward normal vector to the trap edge k

s s = x, if the left (k = 1) and the right (k = 3) boundaries of the trap

re considered, s = y at the bottom (k = 2) and top (k = 4) boundary

f the trap. We also require s = 0 at the corresponding trap boundary.

e then have j(x, y) ≈ | dp(s)
ds

| and therefore the flux density at the trap

oundaries is approximated as

(x, y) ≈ D|ak
1|. (63)

The polynomial coefficient ak
1, k = 1, . . . , 4 in the flux approxima-

ion (63) is defined from the conditions pk(s) = uij, where the function

alues uij are taken at grid nodes along the direction of the outward

ormal vector to the trap edge k. Consider for instance the left bound-

ry (k = 1) of the trap. We require that the parameter s is s = 0 at the

oundary. We also consider the polynomial p1(s)at points s = −h and

= −2h and require that

1(0) = a1
0 = uiIj,

1(−h) = a1
0 − a1

1h + a1
2h2 = uiI−1,j,

1(−2h) = a1
0 − 2a1

1h + 4a1
2h2 = uiI−2,j,
or any fixed j = jI, . . . , jII . Solving these equations and taking into

ccount that uiIj
= 0 we arrive at

1
1 = uiI−2,j − 4uiI−1,j

2h
.

imilar expressions are then obtained for ak
1, k = 2, 3, 4.

pproximation at the corners. The flux density approximation (62)

an be computed at all grid points belonging to the trap boundary

xcept for the corner points (xiI
, yjI

), (xiII
, yjI

), (xiI
, yjII

), and (xiII
, yjII

).
he approximation at corner points is obtained by averaging the flux

alues computed at the neighboring points. In our method we assume

hat the flux density at any corner point depends on the flux in two

rthogonal directions and therefore directional derivatives must be

omputed according to (62) at all neighboring points involved into

he flux computation at the corner. For example, in order to compute

he flux density j(xiI
, yjI

) we first compute it at grid nodes (xiI−1, yjI
),

xiI+1, yjI
),(xiI+2, yjI

), (xiI
, yjI−1),(xiI

, yjI+1)and (xiI
, yjI+2). Given the flux

ensity values at these points, we then use quadratic polynomial

nterpolation in order to obtain the flux density j(xiI
, yjI

). Namely, we

pproximate the function j(x, y) as

(x, y) ≈
6∑

n=0

qnφn(x, y).

he polynomial basis functions φn(x, y) are defined as φn(x, y) =
x − xiI

)α(y − yjI
)β , where α and β are nonnegative integers such as

heir sum s = α + β should take the values s = 0, 1, 2. We therefore

ave j(xiI
, yjI

) = q0, where the coefficient q0 is found from the ap-

roximation above. The flux density values at the other corners of

he trap are computed in a similar way. Let us note here that our

pproach to the flux computation at corner points is, of course, not

nique and may require further discussion. Meanwhile, the findings

f this paper along with the results of our previous work [29] demon-

trate that a quadratic approximation of the flux, while being a more

hallenging technical task, gives a much more accurate answer than

linear approximation when a regular geometric grid is used in the

roblem.

alculation of the total flux. Once flux densities have been computed

t each grid node on the trap boundary, they are converted to a total

ux J(∂S)by numerical integration of the flux density j(x, y)along the

oundary edges. The flux density is considered as a one-dimensional

unction j(x, y) = f (γ )at each trap boundary, where −1/2 ≤ γ ≤ 1/2.

t any trap boundary we have 2m + 1 nodes of a computational grid

here the function f (γ ) is defined. Hence the trapezoidal rule of

umerical integration can be applied to integrate the flux density

long the trap edge,

1/2

−1/2

f (γ )dγ ≈
2m+1∑
p=1

ωpfp, (64)

here fp, p = 1, . . . , 2m + 1 are function values at grid nodes on the

rap edge where the integration is carried out, and the weights ωp are

efined as in the integration rule (29).

Given the flux J(∂S), an approximation of the total number of in-

ects �Un,n+1 crossing the trap boundary between time tn and tn+1

s obtained as �Un,n+1 = J(∂S)τ . The cumulative trap count is then

omputed by the formula (26).
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