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A B S T R A C T

Numerical integration is a popular technique that can be successfully applied to evaluating the pest

insect abundance in an agricultural field. In this paper we apply numerical integration in the problem

where data about insects obtained as a result of a trapping procedure have random error (noise). We

compare several methods of numerical integration that have different accuracy of evaluation when

precise data are considered. In particular, we consider the composite trapezoidal and composite

Simpson’s rules of integration, and compare them with a statistical approach to obtaining an estimate

based on the sample mean. The comparison is first done in the case when the number of traps where the

data are available is large. It will be shown in the paper that noise in the data badly affects the accuracy of

evaluation on fine grids of traps, so the different methods of numerical integration no longer differ in

terms of their accuracy. We then consider an ecologically relevant case of a small number of traps, i.e.

when the data available for evaluation are sparse. It will be discussed in the paper that the impact of

noise is negligible on coarse grids of traps and therefore we can keep the accuracy hierarchy of numerical

integration methods established from the consideration of precise data. We are then able to give

recommendations on how to use methods of numerical integration to evaluate pest abundance. Our

results are illustrated by numerical experiments.

� 2014 Elsevier B.V. All rights reserved.

Nomenclature

Ẽmax upper limit of the credible interval of Ẽrel

Ẽmin lower limit of the credible interval of Ẽrel

Erel relative error of the estimate Ia (noise is absent)

Ẽrel relative error of the estimate Ĩ (noise is present)

f pest population density function

I exact pest abundance

Ĩ estimate of pest abundance formulated from noisy

density data

Ia estimate of pest abundance formulated from exact

density data

uðĨÞ uncertainty associated with the estimate Ĩ

mðẼrelÞ mean of the error quantity Ẽrel

s Ĩ standard deviation of the estimate Ĩ
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1. Introduction

Accurate evaluation of pest insect abundance is a key
component in any integrated pest management (IPM) programme
used in agriculture (Burn et al., 1987; Metcalf and Luckmann,
1982). The decision of whether or not to implement a control
action to manage the pest population is made by comparing an
estimate to some threshold value(s) (Stern, 1973; Stern et al.,
1959). The decision can be considered to be correct if the same
conclusion would have been reached if the true abundance had
been known. However, by definition of the problem the true
abundance is unknown, thus we require information about the
reliability of the estimate in order to have confidence about the
management decision. Knowledge of the accuracy of an estimate
can give us an indication of the relationship between the true pest
abundance and the threshold value(s) and thus we can establish if
there is a risk of an incorrect decision. The risk grows smaller as the
estimate becomes more accurate.

Evaluation is based on the results of sampling and its accuracy
depends on a sampling technique. Trapping is a sampling
procedure widely employed in monitoring. The idea is that trap
counts can be converted into the pest population density at trap
locations in order to obtain an estimate of the total pest population
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size (Byers et al., 1989; Raworth and Choi, 2001). The accuracy of
such evaluation depends strongly on how the data are collected
and the crucial factor with regard to data collection is the number
of traps available in the monitoring procedure. Under routine
monitoring, financial conditions and other restrictions do not
normally allow for a big number of traps and that, in turn, may
result in poor accuracy of evaluation.

Apart from the methodology of data collection another
important issue is how the trap counts are processed. Methods
of numerical integration are a well-known family of methods
designed to handle discrete data (Davis and Rabinowitz, 1975).
Their application in the pest insect monitoring problem has been
studied in Embleton and Petrovskaya (2013), Petrovskaya and
Embleton (2013), Petrovskaya and Petrovskii (2010), Petrovskaya
et al. (2012, 2013), and Petrovskaya and Venturino (2011). It
was discussed in Petrovskaya and Embleton (2014) that the
application of more advanced numerical integration techniques
often results in a more accurate evaluation of pest abundance than
straightforward statistical computation of the mean density,
cf. Davis (1994) and Snedecor and Cochran (1980).

The initial study of numerical integration techniques for the
pest abundance evaluation problem has been made under the
assumption that density data obtained as a result of trapping are
precise. The above assumption is not entirely realistic and the
results should therefore be extended to the case when the density
measurements have random error. The measurements of density
are thus associated with some uncertainty rather than being
definitively known quantities and this gives rise to uncertainty in
the abundance estimate and in turn in the accuracy of this
estimate. It is important to mention that the measurements
obtained via trapping are also dependent on the activity of the
target species as well as their density. In order to truly reflect the
density, the measurements must be calibrated somehow (Pet-
rovskii et al., 2012; Raworth and Choi, 2001). This calibration
induces another error into the estimate, however, within this paper
we ignore this error. Instead, we assume that the measurements
already reflect the pest density but that there is some additional
random error (noise) present.

The accuracy of a selected method of numerical integration (the
trapezoidal rule) applied to data measured with random error has
been investigated in our recent paper (Embleton and Petrovskaya,
2014). It was shown in Embleton and Petrovskaya (2014) that the
results of numerical integration of noisy data depends strongly on
the number of traps where the data are collected. Namely, if the
number of traps is large, noise becomes a dominant feature of the
pest abundance approximation and the results may differ from an
estimate of the pest abundance obtained from precise data by
several orders of magnitude. On the other hand, noise does not
have a lot of impact on the accuracy of a pest abundance estimate
when the number of traps is small.

As we have already mentioned, the conclusions of the paper
(Embleton and Petrovskaya, 2014) concern the trapezoidal rule of
integration only. Meanwhile, it is possible to employ a different
method of numerical integration to evaluate the total pest
population size. The results of Petrovskaya and Embleton (2014)
and Petrovskaya et al. (2012) have revealed that so-called higher
order methods of integration provide better accuracy when exact
data are considered. Thus the question arises if higher order
methods will have an advantage in accuracy when the pest
abundance is approximated based on noisy data and this question
is the focus of the present paper.

Keeping in mind the results of our previous study (Petrovskaya
and Embleton, 2014; Petrovskaya and Petrovskii, 2010), the
question of accuracy must be investigated separately for the case
of a small number of traps (i.e. coarse grids of traps) and a large
number of traps (fine grids), as different approaches have to be
applied in order to validate the accuracy in the former and latter
case. Hence the paper is organised as follows. In the next section,
we briefly explain basic numerical integration techniques under
the assumption that an estimate of pest abundance is based on
precise data. In Section 3 we recall the results of our paper
(Embleton and Petrovskaya, 2014) to establish how random error
in data translates to error in a pest abundance estimate. We then
apply the results of Section 3 to compare three methods of
numerical integration on fine grids in Section 4, where the
convergence rate of the mean error is discussed. The same methods
of numerical integration are compared on coarse grids in Section 5.
The results of previous sections are illustrated by designed
numerical examples in Section 6 for ecologically relevant test
cases. Finally, concluding remarks are provided in Section 7.

2. Numerical integration as a means of estimating pest
abundance

In this section we discuss the implementation of numerical
integration methods within the framework of pest monitoring. For
the sake of simplicity, we reduce the problem to one dimension
and essentially consider an agricultural field as a straight line. Let
us note, however, that the results of our study can readily be
expanded to multi-dimensional problems.

Once information on the pest population in an agricultural field
has been collected by some chosen means of sampling, an estimate
of the abundance can be formed. Typically the estimate used
within the ecological community depends on the sample mean
(Davis, 1994). Counts obtained from sampling can be manipulated
to give the pest density at each sample unit location (Byers et al.,
1989; Raworth and Choi, 2001). We shall use the notation fi to
denote the pest population density at the sample unit location xi,
i = 1, . . ., N. An estimate Ia to the true abundance I can be calculated
thusly

I� Ia ¼ L f̄; f̄ ¼ 1

N

XN

i¼1

f i;

where L is the length of the field, f̄ is the sample mean pest density,
and N is the total number of sample units. Let the domain of the
agricultural field be further represented by the unit interval [0, 1],
since a simple linear transformation can be applied to yield an
interval of arbitrary length L. The above estimate of the abundance
then becomes equivalent to the sample mean pest density, namely,

I� Ia ¼
1

N

XN

i¼1

f i: (1)

The formula (1) calculates an estimate of the pest insect
abundance as a weighted sum of the density function values. This
approach can be further generalised to arrive at a family of
numerical integration methods as discussed in Petrovskaya and
Embleton (2014). Theoretically speaking, the exact pest population
abundance I could be obtained by integrating analytically the pest
population density function f(x),

I ¼
Z 1

0
f ðxÞdx;

if we knew a continuous density function f(x) on the interval [0, 1].
In reality, however, information on the pest density is provided by
sampling the population and the population density function is
consequently discrete, namely, f(x) � fi, i = 1, . . ., N. The above
integral thus cannot be evaluated and we must instead seek an
approximation Ia to the exact pest abundance I by means of
numerical integration.
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The general formula for numerical integration is given by the
weighted sum (e.g. see (Davis and Rabinowitz, 1975))

I� Ia ¼
XN

i¼1

wi f i (2)

where the weights wi; i ¼ 1; . . . ;N depend on the specific method of
numerical integration chosen to be employed. It is easy to see on
comparing the formula (2) with the definition of the sample mean
density (1) that this estimate can be considered as a simple form of
a numerical integration method where the weights are uniformly
defined as

wi ¼
1

N
; i ¼ 1; . . . ;N: (3)

There are of course many other possible combinations of weight
coefficients which can be used in the formula (2) to yield an estimate
Ia. The scope of this paper is restricted to the consideration of
just three particular examples of weight coefficients as explained
below.

Alongside the sample mean density (3) we study estimates
formed from two members of the composite Newton–Cotes
family of numerical integration methods (e.g. see Davis and
Rabinowitz (1975)). To apply a method belonging to this family
the locations xi at which the function values fi are available are
required to be regularly spaced. Such a sampling plan is indeed
often used in pest monitoring (Ferguson et al., 2000; Holland
et al., 1999). The weights of a composite Newton–Cotes
formula are derived by piecewise polynomial interpolation of
the discrete function f(x) � fi, i = 1, . . . N for a chosen degree of
interpolating polynomial. The composite trapezoidal rule is
formed by piecewise linear polynomial interpolation and has the
weights

wi ¼ h; i ¼ 2; . . . ;N � 1; wi ¼
h

2
; i ¼ 1; or i ¼ N: (4)

where h = 1/(N � 1) is the fixed distance between sampling points.
The number N of traps is required to satisfy the condition N � 2.

Another method we discuss in the paper is the composite
Simpson’s rule. This integration technique uses piecewise qua-
dratic polynomial interpolation and requires an additional
restriction to be imposed, namely, that the number of sampling
locations N must be odd and such that N � 3. The weights are
described by

wi ¼
4h

3
; i ¼ 2;4; . . . ;N � 1;

wi ¼
2h

3
; i ¼ 3;5; . . . ;N � 2; wi ¼

h

3
; i ¼ 1; or i ¼ N:

(5)

In order to make comparisons between the methods (3)–(5) we
henceforth consider the following regular distribution of the
sampling locations xi across the unit interval:

xi ¼
i� 1

N � 1
; i ¼ 1; . . . ;N; (6)

where the number N � 3 of sampling points is odd.
If the exact pest abundance I is known then the accuracy of an

estimate Ia can be assessed by considering the approximation error.
Since the pest abundance is I > 0, the relative approximation error
Erel is defined as

Erel ¼
jI � Iaj

I
: (7)

Clearly the smaller the relative error, the more accurate the
corresponding estimate Ia. A more accurate estimate gives rise to
greater confidence that the correct decision of whether or not to
implement a control action can be made. Therefore, we impose the
following condition on the relative error Erel:

Erel � t; (8)

for some specified accuracy tolerance t. In ecological applications a
tolerance t such that t 2 [0.2, 0.5] is considered acceptable (Pascual
and Kareiva, 1996; Pedigo and Rice, 2009).

3. The uncertainty introduced by random error

A trap count can be manipulated to provide a measurement of
the pest density at the trap location, however, a measurement is
subject to measurement error. Let us denote the measured pest
density at the trap location xi by f̃i, and now fi is used to represent
the corresponding exact pest density. The relationship between the
measured pest density f̃i and the true pest density fi is then f i ¼
f̃i þ emi

where emi
is the measurement error. A measurement error

is considered to consist of two components: a random component,
and a systematic component (BIPM, 2008). In other words, the
measurement error emi

can be expressed as emi
¼ eri

þ esi
where eri

and esi
represent the random and systematic error, respectively.

The random error is the result of noise in the data and thus any
eri
; i ¼ 1; . . . N can be either positive or negative with equal

probability. The systematic error on the other hand is caused by
some source of bias and therefore every esi

; i ¼ 1; . . . N is
consistently either positive or negative. This paper focuses on
the impact of noise in the data and as such we ignore the
systematic contribution to the measurement error. That is to say
we redefine the relationship between the measured quantity f̃i

and the true value fi as

f i ¼ f̃i þ eri
:

The random error component eri
of a measured pest density f̃i

given in the above equation is in essence a realisation of a random
variable. We consider the true pest density fi to be some unknown
constant. Since f̃i is the sum of an unknown constant fi and a
realisation eri

of a random variable, it can in turn also be considered
a realisation of another random variable. There is thus an
uncertainty associated with a measured pest density f̃i. We follow
the procedure outlined in our previous work (Embleton and
Petrovskaya, 2014) and consider each eri

to be a realisation of a
normal distribution where we make the assumption that the mean
is zero. This means each f̃i; i ¼ 1; . . . N is thus a realisation of a
normally distributed random variable Fi with mean mi = fi and
standard deviation si. Furthermore, since each f̃i is a realisation of
a normally distributed random variable Fi, a measurement f̃i

belongs to the range

f̃i 2 ½ f̃
min

i ; f̃
max

i � ¼ ½ f i � zsi; f i þ zsi� (9)

with probability

PðzÞ ¼ erf
zffiffiffi
2
p
� �

; (10)

where erf(z) is the error function.
To define the standard deviation si we further impose the

condition that the range of each of the measured quantities f̃i shall
be restricted as belonging to the following interval with probability
P(z):

f̃i 2 ½ f̃
min

i ; f̃
max

i � ¼ ½ð1� nÞ f i; ð1þ nÞ f i�; (11)

where n 2 (0, 1) is the measurement tolerance defined by the
conditions of the experiment. Equating the ranges (9) and (11)
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gives an expression for the standard deviation si as

si ¼
n f i

z
: (12)

We note that the definition f̃i does not depend on how long traps
are exposed in the field (see our previous work (Embleton and
Petrovskaya, 2014) for further discussion of this topic).

Applying a method of numerical integration (2) to a measured
data set f̃i; i ¼ 1; . . . ;N instead of the exact values fi, i = 1, . . ., N

yields an estimate based on measured data Ĩ:

Ĩ ¼
XN

i¼1

wi f̃i: (13)

We recall that I > 0, thus the relative approximation error of such
an estimate which we denote Ẽrel is defined as

Ẽrel ¼
jI � Ĩj

I
: (14)

It can readily be seen from (13) and (14) that both the estimate Ĩ

and the corresponding relative error Ẽrel depend on the measured
values f̃i; i ¼ 1; . . . ;N. It follows that the uncertainty associated
with these measured pest densities will give rise to uncertainty in
the quantities Ĩ and Ẽrel. In our previous work (Embleton and
Petrovskaya, 2014) we established the credible interval ½Ẽmin; Ẽmax�
to which the relative approximation error Ẽrel of an estimate
Ĩ belongs with probability P(z). Below we briefly summarise these
results as they are important for our further discussion. Meanwhile,
the interested reader is referred to the text (Embleton and
Petrovskaya, 2014) for the detailed formulation and justification.

The standard deviation of a random variable provides a
measure of its associated uncertainty. We recall that we consider
a measured pest population density f̃i to be a realisation of a
normally distributed random variable Fi with mean mi = fi and
standard deviation si, where si is given by (12). The uncertainty
associated with a measured value f̃i which we will denote uð f̃ iÞ is
quantified thusly:

uð f̃iÞ ¼ si:

From (13) it can be seen that the estimate of pest abundance Ĩ is a
linear combination of the measured densities f̃i; i ¼ 1; . . . ;N. As
such, an estimate Ĩ is also a realisation of a normally distributed
random variable ĨF , where

ĨF ¼
XN

i¼1

wiFi:

The random variable ĨF has mean mĨ ¼ Ia and standard deviation s Ĩ.
As explained in Cox (2007) the uncertainty uðĨÞ associated with the
estimate Ĩ can be obtained by propagating the uncertainty
associated with the measured values uð f̃iÞ; i ¼ 1; . . . ;N by means
of the law of the propagation of uncertainty (BIPM, 2008). Assuming
the data are uncorrelated we arrive at

uðĨÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

w2
i u2ð f̃iÞ

vuut ; (15)

and we have uðĨÞ ¼ s Ĩ.
Let us now consider the relative error quantity Ẽrel as given by

(14). Clearly, this quantity is the absolute value of a linear function
of Ĩ. As detailed above, Ĩ is a realisation of a normally distributed
random variable, hence, Ẽrel is in turn a realisation of a random
variable ẼF with a folded normal distribution (Leone et al., 1961).
Expressions for the mean and variance of such a distribution are
known and standard formulas are given in Leone et al. (1961).
Using these results, we are able to give the mean of the integration
error as

mðẼrelÞ ¼ 1� Ia

I

� �
1� 2F

Ia � I

s Ĩ

� �� �

þ
s Ĩ

I

ffiffiffiffi
2

p

r
exp �1

2

Ia � I

s Ĩ

� �2
( )

; (16)

where F is the standard normal cumulative distribution function.
The standard deviation is

sẼrel
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ia

I

� �2

þ
s Ĩ

I

� �2

�m2
Ẽrel

s
:

In our previous work (Embleton and Petrovskaya, 2014) we
showed that a realisation Ẽrel of the random variable ẼF belongs to
the range ½Ẽmin; Ẽmax� with the probability P(z) as defined by (10).
The range ½Ẽmin; Ẽmax� is called the credible interval of Ẽrel (e.g. see
Bolstad (2007)). The lower limit Ẽmin of the credible interval is
given by

Ẽmin ¼
0; for Erel � z

s Ĩ

I
;

Erel �
zs Ĩ

I
; for Erel > z

s Ĩ

I
:

8><
>: (17)

The upper limit Ẽmax is defined as

Ẽmax ¼

Erel þ
s Ĩ

I
F�1 2FðzÞ �F zþ 2IErel

s Ĩ

� �� �
; for Erel � z

s Ĩ

I
;

Erel þ
s Ĩ

I
F�1

FðzÞ �F z� 2IErel

s Ĩ

� �

�F zþ 2IErel

s Ĩ

� �
þ 1

2
6664

3
7775; for Erel > z

s Ĩ

I
;

8>>>>>>>><
>>>>>>>>:

(18)

where F is the standard normal cumulative distribution function
and F�1 is its inverse.

4. The accuracy on integration of noisy data: fine grids

In this section we analyse the formula (16) along with the
credible interval ½Ẽmin; Ẽmax� of Ẽrel for the case when the number N

of traps where data are available is large. It can be seen from (17)
and (18) that the lower and upper bounds of the interval
½Ẽmin; Ẽmax� induced by noise in the pest population density data
depend on the accuracy Erel of evaluation obtained when exact
density values are considered. Thus we first have to discuss a pest
abundance estimate calculated from precise data and below we
recall the concept of convergence for the relative error Erel.

4.1. Convergence on fine grids

Consider an estimate Ia and the corresponding relative error Erel

obtained as a result of pest abundance approximation using precise
data. It follows from (2) that the error Erel depends on the number N

of sample units taken. In order to be a viable method of numerical
integration as N increases, the error must decrease. That is to say
we have convergence of the relative error to zero, as we increase
the number of traps,

Erel!0 as N!1:

The rate at which this convergence occurs depends on the choices
of the weights wi in the formula (2). Exploitation of the
convergence rate could prove a useful tool in the evaluation of
pest abundance. As explained in Section 1, the nature of the pest
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Fig. 1. Evaluating the pest abundance by means of numerical integration. (a) A toy example of a pest population density function f(x) defined by Eq. (19). The simulated

sampled pest population densities fi, i = 1, . . ., N (filled diamonds) are shown at locations (6) for the number N = 5 of sample units. (b) Convergence of the relative

approximation error Erel (7) for estimates obtained using the numerical integration formula (2) with different weight choices. The relative error corresponding to the sample

mean density estimate (3) is denoted Estat
rel (filled circles, solid line). Etrap

rel
(filled squares, solid line) represents the error of the estimates obtained on implementing the

trapezoidal rule (4), and ESimp
rel

(filled triangles, solid line) is the error for the Simpson’s rule estimates (5). The accuracy tolerance (8) is set as t = 0.2 (dotted line). An estimate is

considered to be sufficiently accurate when its relative error lies below this threshold.
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monitoring problem means that the number of sample units N that
can be used is limited. As such, employing a method with a faster
rate of convergence thus achieving the required level of accuracy
(8) for a smaller value of N seems preferable.

Let us consider an example to compare the convergence rate of
estimates Ia obtained via methods (3)–(5) for precise values of the
density function f(x). To calculate the relative error (7) we require
the exact quantity I. Furthermore, in order to study the
convergence rate of an estimate we also need to be able to
evaluate each estimate over a series of increasingly refined grids of
sample units. Consequently, for the purposes of this example we
take the pest population density function to be mathematically
defined by a function f(x) as

f ðxÞ ¼
ffiffiffiffiffi
x7
p
þ 1

10
x2 ½0;1� (19)

which is shown in Fig. 1a. Integrating analytically we obtain
I ¼ 29

90 � 0:3222. A regular grid of sample unit locations is generated
according to the formula (6) for a fixed value of N. We simulate
the sampling procedure by evaluating the function (19) at
the computed points xi, i = 1, . . ., N to produce a discrete set of
data fi, i = 1, . . ., N. An estimate Ia is found by means of formula (2)
with the selected set of weights, and the relative approximation
error Erel is calculated according to (7). The convergence rate is
established by computing Erel over a series of grids as defined by
(6). The first grid is formed by fixing N = N1 for some initial value
N1, where N1 is odd. The subsequent grid is then generated by
recomputing the number of grid nodes as Ns = 2Ns�1 � 1, where Ns

is the number of nodes on the new grid and Ns�1 is the number
of nodes on the previous grid. This process is repeated as many
times as desired.

Convergence curves for the error of estimates formed using the
weight choices (3)–(5) are plotted in Fig. 1b. The motivation for
considering an estimate other than the sample mean population
density is well illustrated by this graph. It can be seen that the
relative error of an estimate formed using the trapezoidal rule (4)
converges to zero at a faster rate than that of the sample mean (3).
Meanwhile Simpson’s rule (5) yields even faster convergence. To
clarify the implication of this faster convergence rate let us fix the
accuracy tolerance as t = 0.2. Whereas the sample mean density
requires a grid of N � 9 sample units to satisfy the condition (8)
that the relative error lies below the tolerance t, the trapezoidal
rule requires a grid of only N � 5 units. Furthermore, Simpson’s
rule achieves the desired accuracy on the initial grid of only N = 3
sample units. In fact, for N = 3 we have Estat

rel �0:4363 and
ESimp

rel �0:0105; the estimate formed by Simpson’s rule is over
forty times more accurate than that provided by the sample mean
density.

Unlike in the above example the exact quantity I is unlikely to
be available in the real life pest monitoring problem. Thus, the
accuracy cannot be assessed by considering the relative approxi-
mation error Erel as defined by (7). Instead, the usual way to
conclude about an accuracy of an estimate formed by numerical
integration is to consider the asymptotic error estimates. These are
usually given in the form (e.g. see (Davis and Rabinowitz, 1975))

EðhÞ ¼ Chk
; (20)

where h is the fixed distance between the sample units and h is
required to be small in order to provide asymptotic convergence at
the rate k. The constant C and the convergence rate k in (20) depend
on the numerical integration method of choice. It can be shown
that when the sample locations are defined by (6) that the
convergence rate for the sample mean is k = 1, and it is well known
that the convergence rate is k = 2 and k = 4 for the trapezoidal rule
(4) and Simpson’s rule (5), respectively (e.g. see Davis and
Rabinowitz (1975)). From these error estimates, we typically
expect that the higher the order of convergence of a method, the
more accurate the estimates produced will be.

The above discussion demonstrates that choosing the weights
of the formula (2) differently to those defined by the formula (3),
the estimate often used in pest monitoring, has potential benefits.
Firstly there is the potential for obtaining a more accurate estimate
of the pest abundance Ia, and furthermore, a prescribed accuracy
tolerance t may be achieved for a smaller number N of sample
units. However, let us emphasise again that the above discussion is
based on the assumption of precise data. Hence, in the next
subsection we investigate asymptotic convergence of the mean
error (16) calculated from noisy data.

4.2. Convergence of the evaluation error in the presence of noise

In order to outline the potential effect noise could have on the
accuracy of an estimate and the convergence rate of a numerical
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integration method we consider the behaviour of the mean mðẼrelÞ
and the limits of the interval ½Ẽmin; Ẽmax� to which Ẽrel belongs with
probability P(z). Once the estimate of the pest abundance based on
measured data becomes sufficiently close to the true pest
abundance I, the quantity Ẽmin becomes zero. Since z and I are
constant, the behaviour of the convergence of mðẼrelÞ and Ẽmax is
dictated by the quantities I � Ia and s Ĩ. In other words, it is
determined by the relationship between the exact pest abundance
I and the approximation Ia formulated from exact values of the pest
population density, as well as the uncertainty associated with the
estimate Ĩ formulated from measured pest densities. The conver-
gence I � Ia! 0 has been discussed in the previous sub-section and
we now look at the convergence of the uncertainty uðĨÞ. Let us
introduce the term umax such that

umax ¼ max
i2f1;...;Ng

uð f iÞ:

From the above and Eq. (15) it follows that

uðĨÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

w2
i u2ð f̃iÞ

vuut � umax

ffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

w2
i

vuut :

Let us first consider the uncertainty associated with an estimate
Ĩstat formed by the sample mean density. Substituting the weights
(3) into the above and recalling the distance between the traps is
fixed as h = 1/(N � 1) we obtain

uðĨstatÞ �
umaxffiffiffiffi

N
p ¼ 1

h
þ 1

� ��ð1=2Þ
umax:

For small h we have

umax
1

h
þ 1

� ��ð1=2Þ
�h1=2umax;

thus the convergence of the uncertainty uðĨstatÞ is of the order
k = 1/2. Similar expressions can be found for the uncertainty
associated with an estimate Ĩtrap formed by implementation of the
trapezoidal rule (4)

uðĨtrapÞ � h
1

h
� 1

2

� �1=2

umax�h1=2umax;

and likewise that associated with the estimate ĨSimp formulated
from Simpson’s rule (5)

uðĨSimpÞ �
h

3

10

h
� 2

� �1=2

umax�h1=2umax:

Thus the orders of convergence of the uncertainty terms uðĨtrapÞ and
uðĨSimpÞ are, as for uðĨstatÞ, also k = 1/2 provided the distance h

between traps is small.
In our previous study (Embleton and Petrovskaya, 2014) of the

effect noise has on the accuracy of an estimate formed by the
trapezoidal rule, we found that when the number of traps N is
large, the uncertainty uðĨÞ associated with the estimate is the
dominant contribution to the error of an estimate Ĩ. Therefore, in
our present study of the three methods (3)–(5) we anticipate that
as N increases, the quantities mðẼrelÞ and Ẽmax will converge at a
rate of k = 1/2 in accordance with the behaviour of the uncertainty
associated with the estimate Ĩ as described above rather than the
order k as described by the error estimate (20). This important
conclusion will be further illustrated in Section 6.
5. The accuracy on integration of noisy data: coarse grids

We now turn our attention to the ecologically relevant case of
coarse grids of traps where data available for integration are
sparse. It is a widespread situation in ecological monitoring that
financial, ecological and other restrictions require the number of
traps installed in an agricultural field to be relatively small (Mayor
and Davies, 1976; Northing, 2009). For example, the number of
traps installed over an agricultural field in the United Kingdom
very rarely exceed a few dozen (Blackshaw, 1983; Ferguson et al.,
2000; Holland et al., 1999), where a linear size of the field is
typically of the order of a few hundred metres.

In our previous work a coarse grid was defined as a grid where
the asymptotic error estimate (20) does not hold and we should
expect poor accuracy of pest abundance evaluation. In many cases
having a small number of traps installed in the field means that we
have a coarse grid of traps. However, we cannot always provide a
direct link between poor accuracy and a small number of traps. We
have discussed in Petrovskaya and Embleton (2013, 2014),
Petrovskaya and Petrovskii (2010), and Petrovskaya et al. (2012)
that the definition of a coarse grid of traps should be based on the
properties of the population density distribution rather than a
number of traps installed in the field. In particular, grid coarseness
is related to the degree of heterogeneity, highly aggregated density
distributions being the most difficult case for pest abundance
evaluation. It has been shown in Petrovskaya and Embleton (2013)
and Petrovskaya and Petrovskii (2010) that an estimate of pest
abundance can be very inaccurate when the total pest population
size is evaluated from a strongly heterogeneous density pattern,
while the same grid of traps will provide very good accuracy for
another, quasi-homogeneous, density distribution.

Since ecologists and farmers often have to deal with pest insect
density distributions that have a considerable degree of aggrega-
tion (Comins et al., 1992; Malchow et al., 2008; Okubo, 1986), the
study of coarse grids becomes an important topic in integrated pest
monitoring programmes. Our results in Petrovskaya and Embleton
(2014), Petrovskaya and Petrovskii (2010), and Petrovskaya et al.
(2012) have been obtained for the evaluation from exact data and
we now need to further investigate the accuracy on coarse grids in
the case that data are randomly perturbed.

On coarse grids, we cannot rely upon the convergence rate to
conclude about the accuracy of the mean error associated with a
selected method of numerical integration. Generally, the mean
error and the bounds of the credible interval are determined by the
following quantities:
1. U
ncertainty associated with the estimate Ĩ formulated from
measured pest densities.
2. T
he error Erel obtained when the exact pest abundance I and the
approximation Ia are formulated from exact values of the pest
population density.

We begin our study of coarse grids by discussing the
uncertainty in the estimate Ĩ. Below we compare the uncertainty
in the estimate obtained when the trapezoidal rule (4) is employed
with the uncertainty for the sample mean (3) and Simpson’s rule
(5) estimates on coarse grids.

From (15) it is clear that the uncertainty associated with an
estimate formed from measured data Ĩ will increase in magnitude
as the magnitude of the weights of the numerical integration
method increase. On comparing the weights of the sample mean
density estimate (3), the trapezoidal rule (4), and Simpson’s rule
(5) it can be seen that none of these methods has uniformly larger
weights than another. For example, we recall that the weights of
the trapezoidal rule are w1 ¼ wN ¼ h=2 and wi ¼ h; i ¼ 2; . . . N � 1
whereas for the sample mean density estimate they are uniformly
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wi�1=N. Thus, whilst the weights corresponding to the interior
nodes are larger for the trapezoidal rule than the sample mean
density estimate, the converse is true for those at the exterior
nodes. Consequently, employing a method which by the asymp-
totic error estimate (20) is ordinarily considered more accurate,
could in fact lead to a larger associated uncertainty. For instance
the use of Simpson’s rule (5) may result in a larger uncertainty in
the estimate Ĩ than that yielded by the trapezoidal rule (4). This
occurs when the following condition is satisfied

h2

9
ðu2

1 þ u2
NÞ þ

16h2

9

XðN�1Þ=2

i¼1

u2
2i þ

4h2

9

XðN�1Þ=2

i¼2

u2
2i�1 >

h2

4
ðu2

1 þ u2
NÞ

þ h2
XN�1

i¼2

u2
i ;

where ui � u(fi). The above can be expressed as

u2
1 þ u2

N <C1

XðN�1Þ=2

i¼1

u2
2i � C2

XðN�1Þ=2

i¼2

u2
2i�1; (21)

where the coefficients are C1 = 28/5 and C2 = 4.
Likewise, Simpson’s rule could lead to a greater uncertainty

associated with the estimate Ĩ than that associated with the sample
mean density (3). This will happen when we have

h2

9
ðu2

1 þ u2
NÞ þ

16h2

9

XðN�1Þ=2

i¼1

u2
2i þ

4h2

9

XðN�1Þ=2

i¼2

u2
2i�1 >

1

N2

XN

i¼1

u2
i :

Using the fact that h = 1/(N � 1) and rearranging gives

u2
1 þ u2

N <C3

XðN�1Þ=2

i¼1

u2
2i � C4

XðN�1Þ=2

i¼2

u2
2i�1; (22)

where we have C3 = (7N2 + 18N � 9)/(8N2 � 18N + 9) and
C4 = (5N2 � 18N + 9)/(8N2 � 18N + 9).

Finally, implementing the trapezoidal rule will give rise to a
larger uncertainty than the sample mean density when the
following condition is satisfied:

u2
1 þ u2

N <C5

XN�1

i¼2

u2
i ; (23)

where C5 = (8N � 4)/(3N2 � 8N + 4).
The conditions (21)–(23) can be used to decide which method is

best to use on a coarse grid of traps in order to reduce the
uncertainty of evaluation. Consider, for example, the condition
(23) and let a very coarse grid of N = 3 traps be installed in the
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Fig. 2. A sketch of the density distribution f(x) where evaluation of the pest abundance is

x2 and x3 of a regular grid of traps. (a) The density is localised close to the centre of th
domain. The inequality (23) is then written as u2
1 þ u2

3 <C5u2
2,

where C5 = 20/7 �3. Hence, if the spatial pattern of a density
distribution is such that the density is concentrated close to the
domain centre (see a sketch of the density function shown in
Fig. 2a), the inequality (23) holds. The uncertainty generated by the
trapezoidal rule (4) is in this case larger than the uncertainty
generated by the method (3). On the contrary, if the density is
localised close to the boundaries (see Fig. 2b) then the trapezoidal
rule yields a smaller uncertainty of evaluation. Similar analysis can
be done for conditions (21) and (22).

It follows from the conditions (21)–(23) that the error in the
pest abundance evaluation on coarse grids depends on the spatial
pattern of the density function when noisy data are used for
evaluation. This result is in line with the results of our previous
work (Petrovskaya and Petrovskii, 2010; Petrovskaya et al., 2012)
where the error of evaluation on exact data has been discussed.
Thus we want to reiterate here a conclusion already made for the
case of exact data in our work (Petrovskaya and Embleton, 2014).
Namely, we conclude that the knowledge of spatial pattern of the
pest insect density distribution is crucial when pest abundance is
evaluated on coarse grids and any information about spatial
pattern must be used to its fullest extent.

Another factor that makes an impact on the accuracy of
evaluation from perturbed data is the error Erel calculated from
exact data. As we have already mentioned the asymptotic error
estimates (20) do not hold on coarse grids of traps and that
impedes any theoretical discussion of the error (7). Meanwhile, a
key result of the work (Embleton and Petrovskaya, 2014) was that
when the number N of traps is too small, the dominant
contribution to the error of an estimate Ĩ formed from measured
data is the relationship between an estimate formed from exact
data Ia and the true pest abundance I. In other words, it was found
that if for small N the error Erel incurred by approximating the pest
abundance by means of numerical integration on exact data is
already significant, then the additional error caused by noise in the
data has little relative impact. This conclusion in Embleton and
Petrovskaya (2014) came from numerical experiments conducted
for the trapezoidal method of numerical integration. Hence in the
next section we design several ecologically meaningful test cases
in order to investigate the contribution of the error Erel on coarse
grids for various methods of numerical integration. For each of
those test cases the accuracy on fine grids will also be investigated.

6. Numerical test cases

In this section we test the conclusions of the previous section
for a variety of ecologically meaningful data. First, we outline how
done on a coarse grid of N = 3 traps. The measured data are available at the points x1,

e domain. (b) The density is localised close to the boundaries.
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we acquire such data. Then, estimates of the pest abundance are
obtained by employing the methods (3)–(5) over a series of
increasingly refined grids of traps, i.e. for increasing values of the
number N of traps. The mean error of estimates formed from
measured data mðẼrelÞ is calculated for each value of N, as are the
lower and upper limits of the a = 100P(z) percent credible interval
½Ẽmin; Ẽmax� using (16)–(18), respectively. To assess the impact of
noise on the accuracy of an estimate, a comparison is made with
the relative errors of the estimates based on exact data Erel. Plots of
the convergence curves of all error quantities are given and the
results are discussed.

6.1. Generating ecologically meaningful test cases

To form convergence curves of the quantities Erel;mðẼrelÞ; Ẽmin

and Ẽmax, we require the ability to form estimates on a series of
increasingly refined grids of traps. Since it is difficult to obtain
field data which satisfy these conditions, particularly in 1D, we
instead choose to use computer simulated data to test the
hypotheses from the previous section. The data are generated
using the spatially explicit form of a predator prey model with the
Allee effect (Murray, 1989; Turchin, 2003), which is given below in
its dimensionless form:

@ f ðx; tÞ
@t

¼ d
@2

f

@x2
þ f ð1� f Þ � fg

f þ p
;

@gðx; tÞ
@t

¼ d
@2

g

@x2
þk

fg

f þ p
�mg:

(24)

The terms f(x, t) and g(x, t) represent the population density of
the prey and predator, respectively, at the position in space x at
some time t > 0. The parameters in the system are as follows: d is
the diffusion coefficient, p is the half-saturation prey density, k is
the food assimilation efficiency coefficient, and m is the predator
mortality. We consider the prey to be the pest insect. The pest
population density f(x, t) is found by numerically solving the above
system of equations and considering a numerical solution at the
fixed time t ¼ t̂>0. Since the time is fixed we shall henceforth
denote the pest population density as f(x). The interested reader is
referred to (Petrovskaya and Petrovskii, 2010) for the details of the
non-dimensionalisation, as well as the numerical solving of the
system of equations (24).

Since we intend to investigate the accuracy of numerical
integration for a broad variety of density patterns, we generate six
ecologically significant test cases from the model by inputting
different parameter values. Plots of the resulting pest density
functions are shown in Fig. 3a–f. The test cases are chosen such that
the level of difficulty in obtaining an accurate estimate of pest
abundance increases as we move from test case 1 through to test
case 6. A test case is considered more difficult the higher the
number N of traps needed to obtain a sufficiently accurate estimate
(cf. (Petrovskaya and Petrovskii, 2010; Petrovskaya et al., 2013)).
Test case 1, as shown in Fig. 3a, is a smooth, monotonous function.
The structure of the density function can therefore be detected
from a small amount of data i.e. a small number N of installed traps
and an accurate estimate of abundance can be readily produced.
The number of peaks present in the density function increases in
the subsequent test cases until we reach test case 5 as shown in
Fig. 3e which has a complicated multi-peak structure. More
information about the pest density function, which corresponds to
a higher number N of installed traps, will be required to detect
the more complex peak structure and thus obtain an accurate
estimate. Meanwhile, test case 6 provides an example of the most
difficult case whereby the pest population is located within a small
subdomain of the field. The difficulties of handling such distribu-
tions, also known as peak functions have been discussed in detail in
our previous works (Embleton and Petrovskaya, 2013; Petrovskaya
and Embleton, 2013). If we consider a fixed number N of installed
traps, we expect the estimate of abundance to be most accurate for
test case 1 and least accurate for test case 6.

6.2. Results and discussion

We now investigate the impact of noise on an estimate of pest
abundance for the six ecologically meaningful test cases intro-
duced in the previous subsection. The quantities Erel, mðẼrelÞ, Ẽmin

and Ẽmax, we need to assess the impact of noise on an estimate of
pest abundance, all depend on the true value of the pest abundance
I. In order to obtain I the system of equations (24) was solved on a
very fine regular grid as defined by (6). For all test cases shown in
Fig. 3 the number of nodes on the fine grid was fixed as Nf = 4097.
The data f(x) obtained on the fine grid was then integrated using
the trapezoidal rule (4) and the result was taken to be the ‘exact’
pest abundance I. The method (4) was selected as opposed to a
more sophisticated method to limit the effect of round off error
incurred on such a fine grid.

An estimate of pest abundance based on exact data Ia is
obtained using each of the weight choices (3)–(5), on a series of
regular grids of traps and the error Erel is calculated as (7). The
initial grid has the number of traps fixed as N = N1, where N1 is odd.
The number of traps in subsequent grids is then calculated as
Ns = 2Ns�1 � 1 for s � 2. This process is repeated as many times as
necessary to fully show the behaviour of the convergence. The
quantities mðẼrelÞ; Ẽmin and Ẽmax are then evaluated for each value
of N from (16)–(18) where the measurement tolerance has been set
as n = 0.3. We have fixed z = 3 so the probability that a single
realisation of the error Ẽrel lies within the range ½Ẽmin; Ẽmax� is
P(3) � 0.9973.

Fig. 4a–f compare the error Erel of an estimate formed from exact
data with the mean error mðẼrelÞ of an estimate formed from noisy
data. The figures confirm that once the grid of traps becomes
sufficiently refined, the convergence rate of the error quantity Erel

behaves according to the asymptotic error estimates (20) and
Simpson’s rule (5) yields a more accurate estimate than the
trapezoidal rule (4), which in turn is superior than the estimate
provided by the sample mean density (3).

Meanwhile, it can also be seen from Fig. 4 that for each method
of numerical integration the mean error of an estimate formed
from noisy data, mðẼrelÞ, converges at the slower rate of k = 1/2 as
explained in Section 4. The difference in the convergence rates of
Erel and mðẼrelÞ as shown in 4a—f demonstrates that when the
number N of traps is large, the accuracy of an estimate could be
severely hampered by the presence of noise. In the presence of
noise Simpson’s rule (5) is not superior to the methods (3) and (4),
as happens when precise data are used on fine grids. It should be
noted, however, that as N grows large the estimate of pest
abundance based on exact data Ia tends to the true pest abundance
I and hence the error of an estimate based on exact data Erel tends to
zero. Consequently, the probability mass function of the quantity
Ẽrel transitions to a special case of the folded normal distribution,
namely the half normal distribution (Daniel, 1959). In other
words, the probability mass function skews towards zero, thus it
becomes more probable that a smaller rather than a larger error
will be obtained.

Fig. 5a–f show the mean errors mðẼrelÞ more clearly, as well as
the quantity Ẽmax. The curves of Ẽmax are shown to be parallel
to that of mðẼrelÞ for larger N, therefore confirming that the
convergence rate of Ẽmax is also k = 1/2 as expected. Thus for
large N, the uncertainty associated with the estimate of pest
abundance Ĩ caused by noise in the data f̃i; i ¼ 1; . . . ;N is the
dominant factor affecting the accuracy of an estimate. One
interesting feature shown in Fig. 5a–f is that when the number
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Fig. 3. Ecologically significant test cases. A spatial distribution f(x) of the pest population density function is obtained from the model (24) at different times t and for different

values of the diffusivity d. (a) Test case 1, d = 10�4, t = 5. (b) Test case 2, d = 10�4, t = 50. (c) Test case 3, d = 10�5, t = 50. (d) Test case 4, d = 10�5, t = 100. (e) Test case 5, d = 10�5,

t = 400. (f) Test case 6, d = 3 �10�6, t = 10. Other parameters k = 2, h = 0.3 and m = 0.7.
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N of traps is large, the difference between the values of the quantity
mðẼrelÞ for each of the methods of numerical integration (3)–(5) is
very small, as is the difference between the values of Ẽmax. This
confirms our previous conclusion that whilst the more sophisti-
cated Simpson’s method (5) outperforms the trapezoidal rule (4)
and the sample mean density (3) as a means of estimating pest
abundance on fine grids of traps when the data on the pest
population density are precise, there is little difference between
the methods when the data is noisy.

Table 1a–f gives the values of Ẽmin for the test cases 1–6. As can
be seen from (17), the definition of this quantity depends on the
distance between the estimated pest abundance based on exact
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Fig. 4. Convergence curves for the density distributions f(x) depicted in Fig. 3a–f, respectively. The mean error mðẼrelÞ of an estimate formed from noisy data (dashed lines) is

compared with the error Erel of an estimate constructed from exact data (solid lines). The caption in all figures is as given above. The superscripts ‘stat’, ‘trap’ and ‘Simp’

indicate that the estimate of the pest abundance was calculated either as the mean density (3), or was formed using the trapezoidal rule (4) or Simpson’s rule (5).
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data Ia and the true pest abundance I. A sufficiently accurate
estimate Ia is needed for the quantity Ẽmin to be zero, thus the grid
of N traps needs to be sufficiently refined to resolve the
heterogeneity of the pest population density. Table 1a–f confirms
that the point at which Ẽmin becomes consistently zero varies
depending on the spatial pattern of the pest population density
function of the corresponding test case (compare with Fig. 3a–f).
For the easier to handle spatial density distributions e.g. the
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Fig. 5. Convergence curves for the density distributions f(x) depicted in Fig. 3a–f, respectively. Plots of the mean error quantity mðẼrelÞ are shown (solid lines) alongside the

quantity Ẽmax (dashed lines). The caption in all figures is as given above and the same superscript notation is used as in Fig. 4.
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monotone function of test case 1 (see Fig. 3a), the quantity Ẽmin is
non-zero only for the estimate formed by the sample mean density
(3) on the grid of N = 3 traps (see Table 1). Test cases 5 and 6 as
shown in Fig. 3e and f on the other hand require further grid
refinement before Ẽmin becomes consistently zero. This happens
for all numerical integration methods considered in the paper after
the grid has been refined to N = 33 and N = 65 traps for test case 5
and test case 6, respectively.

Now let us consider the behaviour of the error quantities when
the number N of traps is small. Fig. 4a–f confirms the findings of our



Table 1
The quantity Ẽmin for the test cases shown in Fig. 3a–f, respectively. The same

superscript notation is used as in Fig. 4. For the larger values of N where the values of

Ẽmin are not displayed, they are uniformly zero.

N Ẽ
stat

min Ẽ
trap

min Ẽ
Simp

min

(a)

3 0.0057 0 0

5 0 0 0

9 0 0 0

(b)

3 0.6088 0.6415 0.6686

5 0 0.1391 0.4180

9 0 0 0

(c)

3 0.0819 0.2363 0.3724

5 0 0 0.1423

9 0 0 0

17 0 0 0

(d)

3 0 0 0.1590

5 0 0 0.1742

9 0 0.1742 0

17 0 0 0

(e)

3 0.0452 0 0

5 0.0600 0.0252 0.0118

9 0.1407 0.1308 0.1499

17 0.0679 0.0568 0.0170

33 0 0 0

65 0 0 0

(f)

3 0.9982 0.9980 0.9977

5 0.9984 0.9984 0.9985

9 0.9985 0.9985 0.9985

17 0.5949 0.5697 0.4267

33 0.3757 0.3562 0.2627

65 0 0 0

Table 2
Contributions to the error of an estimate calculated from noisy data. For grids of a

small number of traps and for each of the numerical integration methods (3)–(5),

the quantities uðĨÞ, Erel, and mðẼrelÞ are compared. The same superscript notation is

used as in Fig. 4. For a fixed value of N, the greatest of each quantity is highlighted in

bold and the lowest is given in grey text. The position of the bold/grey text in the

mðẼrelÞ row matches that of the Erel row.

N 3 5 9

(a)

uðĨ statÞ 0.0121 0.0081 0.0055

uðĨ trapÞ 0.0099 0.0067 0.0049

uðĨ SimpÞ 0.0085 0.0068 0.0054

Estat
rel 0.2838 0.1327 0.0643

Etrap
rel

0.1409 0.0235 0.0011

ESimp
rel

0.0021 0.0156 0.0063

mðẼ stat

rel Þ 0.2839 0.1335 0.0668

mðẼ trap

rel Þ 0.1428 0.0452 0.0304

mðẼ Simp

rel Þ 0.0521 0.0439 0.0332

(b)

uðĨ statÞ 0.0042 0.0229 0.0132

uðĨ trapÞ 0.0037 0.0285 0.0148

uðĨ SimpÞ 0.0036 0.0379 0.0108

Estat
rel 0.6681 0.3138 0.0048

Etrap
rel 0.6948 0.5459 0.0823

ESimp
rel

0.7214 0.9595 0.0723

mðẼ stat

rel Þ 0.6681 0.3139 0.0502

mðẼ trap

rel Þ 0.6948 0.5459 0.0907

mðẼ Simp

rel Þ 0.7214 0.9595 0.0760

(c)

uðĨ statÞ 0.0403 0.0244 0.0170

uðĨ trapÞ 0.0518 0.0263 0.0262

uðĨ SimpÞ 0.0659 0.0182 0.0176

Estat
rel 0.3701 0.0628 0.0824

Etrap
rel 0.6069 0.0526 0.0798

ESimp
rel

0.8438 0.2725 0.0888

mðẼ stat

rel Þ 0.3701 0.0711 0.0830

mðẼ trap

rel Þ 0.6069 0.0666 0.0806

mðẼ Simp

rel Þ 0.8438 0.2725 0.0893

(d)

uðĨ statÞ 0.0407 0.0255 0.0175

uðĨ trapÞ 0.0306 0.0177 0.0145

uðĨ SimpÞ 0.0205 0.0157 0.0164

Estat
rel 0.2205 0.0414 0.0369

Etrap
rel

0.0568 0.2455 0.1384

ESimp
rel

0.3341 0.3084 0.1027

mðẼ stat

rel Þ 0.2230 0.0670 0.0501

mðẼ trap

rel Þ 0.0837 0.2455 0.1384

mðẼ Simp

rel Þ 0.3341 0.3084 0.1031

(e)

uðĨ statÞ 0.0190 0.0150 0.0105

uðĨ trapÞ 0.0210 0.0160 0.0108

uðĨ SimpÞ 0.0248 0.0176 0.0110

Estat
rel 0.2009 0.1828 0.2268

Etrap
rel 0.1579 0.1567 0.2193

ESimp
rel

0.1148 0.1563 0.2401

mðẼ stat

rel Þ 0.2009 0.1828 0.2268

mðẼ trap

rel Þ 0.1580 0.1567 0.2193

mðẼ Simp

rel Þ 0.1173 0.1563 0.2401
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earlier paper (Embleton and Petrovskaya, 2014). It can be seen
from Fig. 4 that for small N the accuracy of an estimate of pest
abundance formed from noisy data is determined by the accuracy
of an estimate based on exact data. That is, for small N the quantity
Ẽrel is strongly dependent on Erel and is just slightly affected by the
uncertainty caused by noise being present in the data. This is
evident from the fact that in general the curves representing the
mean error mðẼrelÞ of the estimates formed from noisy data lie close
to their corresponding curves Erel when N is small. In some cases
the estimate of the pest abundance Ia based on exact data already
achieves good levels of accuracy even when N is small. For
example, for test case 1 (see Fig. 4a), this is evident for the
estimates formed by implementing Simpson’s rule. Here, there is a
clear difference between the quantities ESimp

rel and mðẼ Simp

rel Þ even on
very coarse grids of N = 3 and N = 5 traps (compare the solid red
line with closed triangles with the dashed red line). Whereas
considering the estimates formed by the sample mean density (3)
on the same coarse grids, it can be seen that there is little difference
between Estat

rel and mðẼ stat

rel Þ since the accuracy remains poor until the
grid of traps is further refined (compare the solid green line with
closed circles with the dashed green line).

Figs. 4f and 5f exhibit the behaviour on grids with a small
number N of traps whereby the quantities Erel;mðẼrelÞ; Ẽmax and also
Ẽmin (see Table 1f) lie very close to each other. As discussed in
Embleton and Petrovskaya (2014) this is the result of how we
consider the noisy data f̃i to be related to the true population
density values fi. At the nodes of these grids the values of fi are very
small. Since we essentially consider the f̃i to be a percentage of the
corresponding fi, in this instance the noisy data will lie close to the
true data.

We continue to consider the ecologically relevant scenario
where the number of grid nodes N is small. Table 2a–f provides



Table 2 (Continued )

N 3 5 9

(f)

uðĨ statÞ 1.30eS06 9.53eS07 6.87eS06

uðĨ trapÞ 1.54e�06 1.03e�06 7.13eS07

uðĨ SimpÞ 1.89eS06 1.05eS06 7.41e�07

Estat
rel 0.99852 0.99867 0.998711

Etrap
rel

0.99833 0.99861 0.99869

ESimp
rel 0.99815 0.99871 0.998714

mðẼ stat

rel Þ 0.99852 0.99867 0.998711

mðẼ trap

rel Þ 0.99833 0.99861 0.99869

mðẼ Simp

rel Þ 0.99815 0.99871 0.998714
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further evidence to support the assertion that for each numerical
integration method, the magnitude of mðẼrelÞ is mainly defined by
Erel on coarse grids of traps. In other words, the impact of the
uncertainty associated with the estimate uðĨÞ caused by noise in
the density data is dominated by the error Erel which is imparted
by the means of obtaining an estimate i.e. the method of numerical
integration. Table 2a–f gives uðĨÞ, alongside the quantities Erel and
mðẼrelÞ for all test cases on the grids of N = 3, 5 and 9 nodes. For each
fixed value of N, the uncertainties uðĨÞ associated with an estimate
are compared for each numerical integration method. The
maximum of these uncertainties is given in bold, and the
minimum is given in grey text. The same comparison is made
for the relative errors Erel of an estimate based on exact data,
and the mean errors mðẼrelÞ of an estimate formulated from noisy
data.

It is shown in Table 2a–f that the numerical integration method
which yields the maximum or minimum value of mðẼrelÞ for a fixed
number N of traps is the same as that which generates the
maximum or minimum value of Erel for all test cases. Therefore, the
accuracy of an estimate based on exact data should be used to
assess which method is superior when N is small. The tables also
demonstrate the point made in Section 5, that there are instances
when the uncertainty associated with an estimate generated by
Simpson’s rule is greater than that which arises as a result of
employing the trapezoidal rule and/or using the sample mean
density to estimate pest abundance. For example, this occurs for
test case 2 when N = 5 as shown in Table 2b as well as for test case 3
when N = 3. Other examples of this happening can be seen in the
remaining tables, as can examples of when the uncertainty
associated with an estimate formed by the trapezoidal rule
exceeds that associated with the corresponding sample mean
density estimate.

The accuracy control on coarse grids remains, perhaps, the most
difficult issue in the general problem of pest abundance evaluation.
Let us emphasise again that the asymptotic error estimates (20)
(which are the conventional way of assessing a method of
numerical integration) do not necessarily hold when N is small.
This is evident by inspection of the convergence curves in figures
4a–f and has been discussed at length in Embleton and Petrovskaya
(2013), Petrovskaya and Embleton (2013), Petrovskaya et al.
(2013), and Petrovskaya and Embleton (2013). As explained in
Petrovskaya and Embleton (2013), on coarse grids the error can be
considered a random variable and we have thus recommended
that a method of numerical integration should instead be assessed
probabilistically. In other words, the probability of obtaining a
desired level of accuracy should be calculated rather than the error
of an estimate. An initial methodology for such an assessment is
presented in Petrovskaya and Embleton (2013) for exact data only,
however the findings of this paper indicate that the results would
also apply for noisy data as the effects of noise can be ignored on
coarse grids.
7. Concluding remarks

We have considered the problem of pest abundance evaluation
when data used for such evaluation have random error. Several
methods of numerical integration employed in the evaluation
problem have been compared in terms of their accuracy. For each
method of numerical integration we have studied the behaviour of
the mean error mðẼrelÞ arising when pest abundance is evaluated
from randomly perturbed data. We have also investigated the
credible interval ½Ẽmin; Ẽmax� to which the error of evaluation
belongs with a given probability P(z). Whilst the motivation for this
work was to shed light on the problem of estimating pest insect
abundance, the results could be applicable to abundance estimates
for other kinds of species. This would be the case so long as the
evaluation of abundance for that species requires the pest density,
and that the results of the measurements made can indeed be
converted to the density. Furthermore, it should be reasonable to
assume that there is random error present in the density data and
that it is normally distributed about the true density values.

In our study we have distinguished between evaluation with a
large number of traps and a small number of traps, as different
accuracy criteria should be applied in the former and latter case. If
the number of traps is large (a fine grid of traps) the methods of
numerical integration can be compared based on their conver-
gence rate. The convergence of the mean error has been
investigated for three different methods of numerical integration.
It has been demonstrated in the paper that the mean error of an
estimate formed from noisy data converges to zero at the same
rate. This is despite the fact that the methods have different
convergence rates when applied to exact data. The result of our
paper confirm that for a large number of traps noise becomes a
dominant feature of the approximation (cf. (Embleton and
Petrovskaya, 2014)). This conclusion, however, does not immedi-
ately result in the recommendation to dismiss more advanced (and
therefore more accurate on exact data) methods of pest abundance
evaluation for the sake of methods less accurate yet easy to
implement. It has been noted in the paper that it becomes more
probable that a smaller rather than a larger error will be obtained
in the theoretical limit when the number of traps N!1. Hence a
more accurate method of numerical integration can still be
superior when perturbed data are considered on fine grids of traps.
Further careful study of this topic is required and that will be a
focus of our future research.

We have also studied an ecologically important case when the
number N of traps is small (a coarse grid of traps). On coarse grids,
there is no convergence rate and another approach should be
designed to compare methods of pest abundance evaluation.
Generally, the mean error and the bounds of the credible interval
are determined by the uncertainty associated with the estimate Ĩ

formulated from measured pest densities as well as the relation-
ship between the exact pest abundance I and the approximation Ia

formulated from exact values of the pest population density. We
have shown that the uncertainty depends on the spatial pattern of
the density function when two integration methods are compared
on coarse grids. Hence, any a priori knowledge about the density
distribution can be helpful in order to decide what integration
method should be used to reduce uncertainty of the evaluation and
obtaining such information will become a topic of our future work.

Meanwhile, it has been discussed in the paper that on coarse
grids the most significant contribution to the error of an estimate Ĩ

formed from measured data is the relationship between an
estimate formed from exact data Ia and the true pest abundance I.
Our numerical experiments confirmed that the impact of the
uncertainty uðĨÞ was negligible in many ecologically meaningful
test cases where the difference jI � Iaj was large. Thus on coarse
grids of traps it is better to use a method that has a smaller error
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when exact data are considered and our further research will be
focused on careful investigation of evaluation methods that can
provide good accuracy on coarse grids.

Our study leaves several open questions, the issue of reliability
being one of them. We have assumed in the paper that trap counts
can be accurately converted into the values of the pest population
density function and therefore our approach does not take into
account errors related to such conversion. Meanwhile accurate
interpretation of indirect measurements is considered as one of the
most challenging issues in integrated pest monitoring, where a
unified theory has not yet been developed despite various
conversion techniques having been discussed in the literature
(Arbogast and Mankin, 1999; Browde et al., 1992; Evans et al.,
1983; Jansen, 1979; Petrovskii et al., 2012). Clearly, inaccurate
conversion of trap counts into the pest population density
distribution can significantly affect the results of pest abundance
evaluation. This is especially true when trap counts are small, as
any small change in a small trap count will result in a relatively big
change in the value of the pest population density (Daniel, 1978).
Hence estimating the conversion error and incorporating it into
our approach to obtain a reliable estimate of the pest abundance is
a challenging task that requires further careful investigation.

It should also be noted that the theoretical quantities mðẼrelÞ,
Ẽmin and Ẽmax used in this paper to assess the impact of noise on an
estimate rely on the assumption that any measured pest density f̃i

is normally distributed about the true pest density fi and belongs to
the range (11) with probability P(z). The counterpart to this
assumption is that there is a chance that any f̃i can lie outside of
this range. In particular the theory does not discount a measured
pest density f̃i being negative. Of course a negative pest density is
senseless, therefore instead each measured pest density should be
considered to belong to a truncated normal distribution. The
effects of such a truncation on the quantities mðẼrelÞ, Ẽmin and Ẽmax

will be the focus of future work.
Also, in the present paper we have considered uncorrelated

noise making an implicit assumption that there is no interference
between traps. In reality there may exist some correlation between
trap counts in neighbouring traps, in particular when traps are
installed sufficiently close to each other. Correlated noise may
affect accuracy of pest abundance evaluation in a different way,
and we therefore intend to investigate a topic of correlation in our
future work.

Finally, another important direction of our research will be to
investigate two-dimensional problems to extend our previous
study of 2 � d density distributions based on exact data. Our
approach to pest abundance evaluation on randomly perturbed
data can readily be applied to 2� d problems and our next goal is to
implement various methods of numerical integration in problems
where field data are available from real-life measurements.
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