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It has long been recognized that numerical modelling and computer simulations can be used
as a powerful research tool to understand, and sometimes to predict, the tendencies and
peculiarities in the dynamics of populations and ecosystems. It has been, however, much
less appreciated that the context of modelling and simulations in ecology is essentially differ-
ent from those that normally exist in other natural sciences. In our paper, we review the
computational challenges arising in modern ecology in the spirit of computational mathemat-
ics, i.e. with our main focus on the choice and use of adequate numerical methods. Somewhat
paradoxically, the complexity of ecological problems does not always require the use of com-
plex computational methods. This paradox, however, can be easily resolved if we recall that
application of sophisticated computational methods usually requires clear and unambiguous
mathematical problem statement as well as clearly defined benchmark information for model
validation. At the same time, many ecological problems still do not have mathematically
accurate and unambiguous description, and available field data are often very noisy, and
hence it can be hard to understand how the results of computations should be interpreted
from the ecological viewpoint. In this scientific context, computational ecology has to deal
with a new paradigm: conventional issues of numerical modelling such as convergence and
stability become less important than the qualitative analysis that can be provided with the
help of computational techniques. We discuss this paradigm by considering computational
challenges arising in several specific ecological applications.

Keywords: computational ecology; predictive modelling; conceptual modelling
1. INTRODUCTION

Ecology is a science with a long and fruitful history.
First attempts to understand the relations between
the living nature and the non-living environment were
made as early as in ancient Greece [1], i.e. at about
the same time when the cornerstones of natural history
were laid. However, through the centuries, ecology had
long remained in a dormant stage being a rather
descriptive field of knowledge. While, for instance,
physics became an analytical science already in the
Renaissance (e.g. recall the work by Galileo Galilei),
ecology had not become really quantitative and
theory-based until the studies by Lotka [2], Volterra
[3] and Gause [4], who were the first to use mathematical
tools for ecological problems. General principles of ecosys-
tem organization were later refined and systematized by
Odum & Odum [5], while the mathematical theory was
further developed by Skellam [6] and Turing [7], who
emphasized the importance of the spatial aspect.

The bright mathematical ideas of those seminal works
sparked a huge fire. The last quarter of the twentieth cen-
tury saw an outbreak of interest in mathematical ecology
orrespondence (n.b.petrovskaya@bham.ac.uk).
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and ecological modelling [8–13]. Especially over the last
decade, more and more complicated models have been
developed with a generic target to take into account
the ecological interactions in much detail and hence to
provide an accurate description of ecosystems dynamics.
Owing to their increased complexity, many of the models
had to be solved numerically, the development that was
inspired by the simultaneous advances in computer
science and technology.

There are several reasons for this extensive growth in
the number of simulation-based studies. In ecology,
mathematical modelling and computer simulations play
a rather unique role compared with other sciences. The
problem is that, although a field experiment is a common
research approach in ecology, replicated experiments
under controlled conditions (which is a cornerstone of
all natural sciences providing information for theory
development and validation) are rarely possible because
of the transient nature of the environment: indeed,
how, for instance, can we reproduce the same weather
pattern again and again? We also mention it here that
large-scale experiments are costly and, in the situation
when consequences are poorly understood, can have
adverse effects on some species and on the biodiver-
sity, and may even pose a threat to human well-being.
Capturing the complexity of real systems through tracta-
ble experiments is therefore logistically not feasible.
This journal is q 2012 The Royal Society
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Mathematical modelling and computer simulations
create a convenient ‘virtual environment’ and hence
can provide a valuable supplement, or sometimes even
an alternative, to the field experiment.

Application of computational methods for studying an
ecological system’s properties—which is usually referred
to as computational ecology—has therefore become
common across the whole range of ecological appli-
cations, e.g. in fisheries [14–16], forestry [17–19],
agriculture [20], climate change [16,18,21] and in evol-
utionary ecology [22,23]. There have been examples of
success and failure, and there are huge challenges
ahead (in particular, rooted in ecosystems complexity)
as well as possibly some hidden pitfalls. But has compu-
tational ecology really emerged yet as a new discipline?
With thousands of simulation-based studies published,
this question may sound outdated or even irrelevant.
However, there is much more in computational ecology
than an ecological problem at one end and the research-
ers sitting in front of their computers at the other end,
the way it is often seen. A simple yet important
observation half-forgotten these days is that there is a
mathematical model in between. Moreover, before
simulations can be performed, the model needs to be
turned into a computer code, and that can only be
done by using numerical methods. In its turn, application
of numerical methods is not at all straightforward,
especially for complicated mathematical models. The
choice of an adequate and effective numerical method
(along with the tools for its verification and validation)
therefore lies at the very heart of computational ecology.
Surprisingly, this aspect of computational ecology has
received very little attention (but see [24,25]). A compu-
tational method is often taken for granted and the
discussion of important issues such as the method appli-
cability, accuracy and efficiency is lacking. Meanwhile, an
inadequate choice of a numerical method may have a det-
rimental effect on the study by making simulations costly
and even producing wrong results.

The modelling approaches can be very different in
terms of the mathematics used and depending on the
goals of the study, and there are several ways to classify
them. For instance, there is an apparent difference
between statistical models [26] and ‘mechanistic’
models [27,28], although simulation-based studies may
sometimes include both. Taken from another angle,
two qualitatively different modelling streams are rule-
based approaches (such as individual-based models
and cellular automata) [29] and equation-based ones.
In this paper, we will mostly focus on issues arising in
mechanistic equation-based models, although we
believe that our conclusions remain valid for other mod-
elling approaches as well.

Another way to sort out the models used in ecology
is to consider the level of complexity involved.
Depending on the purposes of the ecological study,
there have been two different streams in model build-
ing [30]. In case the purpose is to predict the system’s
state (with a certain reasonable accuracy), the model
is expected to include as many details as possible.
This approach is often called predictive modelling.
The mathematical models arising in this way can be
very complicated. Alternatively, the purpose of the
Interface Focus (2012)
study can be to understand the current features of
the ecosystem, e.g. to identify the factors responsible
for the a population decline or a population outbreak,
but not necessarily to predict their development
quantitatively. In this case, the corresponding models
can be pretty simple. We will call this approach a
‘conceptual modelling’.

These two streams of theoretical-ecological research
can be clearly seen in the literature, even though it is
not always straightforward to distinguish between
them as sometimes simple models may show a certain
predictive power and, on the contrary, complicated
ones are used for making a qualitative insight into
some subtle issues. Moreover, the whole attitude to
what is simple and what is complicated has significantly
evolved over time, and these days the conceptual
models may be analytically intractable and require
numerical solution.

The focus of this paper is therefore on the numerical
aspects of computational ecology considered in the
spirit of computational mathematics. Note that it is
not our goal here to give a comprehensive review of all
existing approaches and applications. Computational
ecology has become so diverse that such a review would
not be possible in one paper, nor even in one book.
Instead, below we revisit a few carefully selected cases
that, we believe, are representative of the state of the
art in this field. We summarize interesting and promising
findings and endeavour to identify the factors that
may hinder future advances. Based on these cases, we
conclude that computational ecology often uses the
methods and approaches borrowed from its more
mature counterparts (such as computational engineering
or computational physics), but those methods may be not
always be effective for ecological applications.
2. PREDICTIVE MODELLING

We begin with an overview of those recent studies that
can be classified into predictive modelling, i.e. the
studies that make an attempt to take into account a suf-
ficient number of details or factors controlling the
ecosystem state. The main challenge for predictive mod-
elling is, therefore, to properly address the complexity of
ecosystem structure and dynamics. Two sources of eco-
system complexity are the complexity of the web of the
interspecific interactions and the spatial structure. We
first revisit the non-spatial approaches.

2.1. Networks and food-web modelling

The biological motive behind network modelling
is to provide a very detailed description of trophic
interactions in a real ecological community [31,32].
That is often done by quantifying each species with its
own specific dynamical variable, e.g. the population
size. This approach usually results in a very complicated
trophic web or network [33,34], e.g. see the sketch in
figure 1, where different nodes correspond to different
species and the edges connecting the nodes show tro-
phic interactions. Sometimes a reasonable compromise
can be reached by combining a few similar species
together—the approach known as ‘compartment

http://rsfs.royalsocietypublishing.org/


Figure 1. Sketch of a hypothetical food web. The nodes cor-
respond to the species explicitly included into the model and
the edges correspond to the trophic interactions. Each node
corresponds to an equation in the model (2.1).
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modelling’, where a few species occupy the same com-
partment and are described by the same variable.
However, this is not at all straightforward as some
important information is then lost on the way (e.g.
how important the interspecific competition can be
inside a given compartment). Similarly, simplification
of the food web into just a few trophic levels was
shown to significantly distort the community properties
because of omitting many subtle yet important details of
interspecific interactions [35].

Neglecting population discreteness, the population
densities may be considered as smooth functions of
time, and hence an appropriate food web model [34] is
given by a system of ODEs:1

duiðtÞ
dt

¼ aifiðu1ðtÞ; . . . ; uN ðtÞ; t;aÞ; uið0Þ ¼ ui0;

i ¼ 1; . . . ;N ð2:1Þ

where ui(t) is the population density of the ith spe-
cies at time t, N is the total number of species (or
compartments), a ¼ (a1, . . . ,aM) are biological and
environmental parameters, where ai is the ith species
growth rate, and functions fi take into account details
of the density-dependence in intra- and interspecific
interactions. For a complex trophic web, the total
number N of equations in the system can be as large
as several dozen or even several hundreds. A solution
of system (2.1) is expected, for appropriately chosen
parameter values and the initial conditions, to predict
the ecosystem state over a certain period of time.
Model (2.1) has recently been a focus of several simu-
lation studies [36] that resulted in developing a
computer software potentially applicable to a wide
class of ecological problems.

There are, however, a few problems with system
(2.1) that make further development in this direction
a considerable challenge. Firstly, because intra- and
interspecific interactions are normally nonlinear (e.g.
recall the logistic growth and the Holling-type
1Alternatively, for the species with non-overlapping generations, it
could be a system of discrete equations.

Interface Focus (2012)
responses), system (2.1) can have a very complicated
bifurcation structure, which means that the solution
properties can be sensitive to parameter values. That
may be a reflection of the ecosystems complexity; how-
ever, the actual problem is that, in a real ecosystem, the
parameter values are usually known with a low accu-
racy. Model (2.1) can therefore predict a range of
different system behaviours inside the same biologically
realistic range of the parameter values, and then the
question is which one to choose.

Estimation of parameter values is therefore an
important issue and it has received a lot of attention
recently [37,38]. State-of-the-art development of pre-
dictive models incorporates the estimation of the
relative probabilities of models and parameters in light
of empirical evidence. This aspect is a key tool available
to modern computational ecology. The computation of
model and parameter probabilities, usually done with
Bayesian inference methods [39,40], allows for the assess-
ment of how well the model explains the empirical data
and how uncertainty about various aspects propagates
through to influence predictive accuracy.

Secondly, since the detailed model (2.1) may include
species from different taxa, sometimes ranging from
bacteria to mammals, the growth rates can be very
different, i.e. al/am� 1 for some l and m. This results
in a computational difficulty known in numerical math-
ematics as ‘stiffness’ [41], when the time-step Dt of the
numerical method has to be chosen according to the
largest a, e.g. Dt� am

21 in order to ensure the method’s
stability and accuracy, but the time interval T relevant
to the system’s dynamics is determined by the smallest
a, T� al

21. As a result, in running the simulations, the
number of required time steps estimated as T/Dt can be
huge, so that it can be far beyond available computer
power. Stiffness is a well-known computational problem
and there are some well-developed approaches as to how
to deal with it [42,43]. However, a fundamental problem
rooted in the very nature of an ecosystem’s structure is
that the more details of the network are taken into
account (by including more different taxa) the stiffer
the ODE system is going to be, and therefore the
larger is the effort required for its numerical solution.

Thirdly, existing approaches to solve system (2.1)
are lacking universality. A successful application of
software based on model (2.1) to a given ecosystem
does not at all guarantee its success in the case of
another ecosystem. Different ecosystems have different
species assemblages; the software and the mathematical
model therefore need to be tuned to every particular
case and validated accordingly. A serious problem of
this way is that the basic properties of the system
(2.1), in particular its bifurcation structure, can
change significantly with a change in the properties of
the functions fi, even when the change is relatively
minor [44,45]. Population community is a strongly non-
linear system and adding or omitting some apparently
minor details may change the system properties dra-
matically [35]. Things are exacerbated by the fact that
the low accuracy of the data and the effect of noise,
especially at small population densities, often do not
make it possible to choose the parametrization unam-
biguously [46].

http://rsfs.royalsocietypublishing.org/
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The aspiration to develop a comprehensive math-
ematical model of the trophic web is therefore hardly
consistent with the desire to make it universal and
transferable. Indeed, there is a growing understanding
[47] that there should be a proper balance between
the level of complexity built in to the model,2

the expected predictive power of the model, and the
model’s usefulness for understanding community
dynamics. The argument hence appears to be similar
to the one behind the conceptual models.

To conclude this section, we want to mention that,
in spite of its mathematical complexity, the approach
based on network building and analysis can be used for
conceptual modelling as well, e.g. when the purpose of
the study is to understand the relative importance of
different species and/or different flows through the net-
work and to identify possible bottlenecks and control
scenarios [48,49]. Also, we mention it here that the net-
work-based approach is by no means restricted to
non-spatial systems and can be readily extended into
spatially structured communities [50].
2.2. Space, geometry and multiple scales

The impact of space tends to make the population
dynamics significantly more complicated compared
with its non-spatial counterpart and to bring new and
bigger challenges to simulations. In this paper, we
mostly focus on the type of models resulting from the
assumption of continuity (hence neglecting the popu-
lation discreteness), which usually applies to spatial
scales larger than the size of a typical individual and/
or to sufficiently large population density. Comple-
menting the assumption of continuity in space with
continuity in time, a generic mathematical model is
given by the following system:

@uiðr; tÞ
@t

¼ Kðu;D;wÞ þ aifiðu; r; t;aÞ; i ¼ 1; . . . ;N :

ð2:2Þ

Here u ¼ (u1, . . . ,uN), where ui(r,t) is the density of
the ith component at position r and time t, N is the
number of the ecosystem components included into
the model, D ¼ fDijg is the matrix of the (cross-)diffu-
sion coefficients and the vector a is the set of
parameters. The vector field w(r,t) takes into account
advection, e.g. with the wind for airborne species or
with the water current for aquatic species. In many
cases, for instance, in modelling flying insects or
aquatic species, the problem is three-dimensional so
that r [ V , R3, where V is the spatial domain
where population dynamics is considered. Here t . 0
and the system (2.2) must be complemented with the
initial conditions for each dynamical variable, i.e.
ui(r,0) ¼ ui0(r) (i ¼ 1, . . . ,N), where ui0 are given
functions of space.

The form of the spatial operator K can be different
depending on the type of the individual movement,
i.e. Brownian or non-Brownian, which can be a
2At the very least making sure that the corresponding simulations
would not require a computational power far beyond that of the
modern computers.
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biological trait of the given species developed in the
course of evolution [51] but can also be a property of
the environment, e.g. as in the case of turbulent mixing
[52]. In the simplest yet biologically sensible case, (2.2)
turns into a reaction–diffusion–advection system:

Kðu;D;wÞ ! Kðui;Di;wÞ ¼ Dir2uiðr; tÞ þ rðwuiÞ;
ð2:3Þ

where Di is the diffusivity of the ith species.
Let us note that the mathematical framework based

on equations (2.2)–(2.3) corresponds to a ‘mean-field’
description of the spatio-temporal population dynamics
where the fluctuations owing to population discreteness
and the effects of individual traits (e.g. behaviour)
are neglected. Alternatively, the population dynamics
can be modelled by using individual-based models,
i.e. by considering all individuals and their traits
explicitly [10,13,29]. Under certain conditions, the two
approaches are known to be equivalent [11,53]. A
more detailed consideration of the individual-based
approach is beyond the scope of this paper.

System (2.2)–(2.3) generally requires a more sophi-
sticated numerical algorithm compared with the
corresponding non-spatial system (2.1). For this
reason, even ‘realistic’ models rarely contain more
than several components [54]. Also, the solution proper-
ties appear to be much more complex [55–57]. For
numerical simulations, one of the main challenges is
the existence of multiple spatial scales where the ratio
of the largest to the smallest can be several orders of
magnitude. Indeed, numerical solution of system
(2.2)–(2.3) requires a discretization of the equations
for instance by approximating the derivatives by finite
differences [58]. For that purpose, a numerical grid
must be generated with the spatial grid step h being suf-
ficiently small in order to resolve spatial heterogeneities.
Existence of multiple scales means that the ratio L/h
(where L is the diameter of V, i.e. its largest linear
size) can be very large. Correspondingly, it may result
in a numerical grid with so many grid nodes that the
simulations would either take a lot of computer time
or may even appear to be beyond the available compu-
ter power. In order to take a closer look at the problem,
as well as to outline possible approaches to numerical
modelling of multi-scale ecological systems, below we
discuss two examples where multiple spatial scales
must be taken into account.
2.2.1. The dynamics of the Pacific salmon
Salmon are known to have a complicated life cycle
(figure 2a)where different stages differ not only in the typi-
cal body mass3 and body size but also in the type of
environment. While mature salmon live in the ocean,
fish eggs are spawned in streams and little rivers that
can be situated a few hundred kilometres from the near-
est shore. The first stage in the life cycle of salmon
(from several months to 1 or 2 years, depending on a
particular genus) is spent in the natal stream. With
body size changing over time from a few millimetres
3Which spans over a few orders of magnitude, from less than 1 g of a
newly hatched larva to approximately 104 g of a fully grown adult.
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Figure 2. (a) Salmon life cycle (by courtesy of Chelsea Reynolds). (b) The block-splitting approach in the salmon modelling
problem.
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to several centimetres, the larvae live in the laminar
environment4 but eventually grow to a size when they
become affected by small-scale turbulence (e.g. by
increasing their encounter rate with food items [61]),
by the river flow and, correspondingly, by the geometry
of the river banks and bed [62].

When the young fish become bigger, they migrate
down the river and their next stage is spent in the
river estuary. It is during this stage that salmon
undergo physiological changes allowing them to live in
salt water. Also, individual behaviour changes, which
results, in particular, in the formation of fish schools.
Owing to a larger body size and weight, the response
to environment forcing is changing as well. It is less
affected by small-scale turbulence but still significantly
affected by the river flow which, in the estuary, can
have a complicated structure.
4Recall that the smallest turbulence scale is given by the Kolmogorov
length of approximately 1 cm [59,60].
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The next stage is spent in the ocean where salmon
become fully mature. Over this period of maturation,
salmon, who now live in large fish schools and migrate
over hundreds or even thousands of kilometres, are
affected by large-scale ocean hydrodynamics, geo-
graphical variations in the climate, and also by
fishing. After spending a few years in the ocean,
salmon return to their spawning sites in small rivers,
thus closing the life cycle.

The spatial dynamics of salmon is therefore essen-
tially multi-scale, with the characteristic scale of the
environment ranging from a few centimetres for larva
to hundreds of kilometres for adult fish. A straightfor-
ward attempt to simulate the population dynamics of
salmon over its life cycle would result in generation of
huge numerical grids that would be far beyond the
power of modern computers, and hence would not
be doable. A closer look at the problem suggests a
more sensible approach by splitting the entire
life cycle model into several blocks; figure 2b. Each life

http://rsfs.royalsocietypublishing.org/
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stage can then be simulated separately, to take into
account its specifics by choosing the modelling
approach. For instance, the larva/stream stage can be
modelled by simulating the movement of passive tracers
in an advective–turbulent velocity field where the latter
may be obtained by solving the Navier–Stokes
equations [61]. The juvenile/estuary stage can be simu-
lated by using the box model [63], where the whole
spatial domain is considered as the agglomeration of
‘boxes’; that may conveniently account for the details
of the habitat structure. The dynamics of salmon fish
schools in the ocean can be simulated as the movement
of active tracer in a heterogeneous environment subject
to turbulent diffusion [55,64].

Note that here we describe the salmon life cycle
very schematically. It is well-known that size-dependent
life-history traits can have a variety of implications for
the population structure and dynamics [65]. A more
detailed description should at least take into account
the changes in the metabolism rate which can be done,
for instance, by using the Dynamic Energy Budget
model [66]. The metabolism rate tends to decrease with
the age of individual and hence simulation of different
life-stages may require a significantly different time step.
This can be another reason to apply the block-splitting
approach.

Splitting the whole modelling problem is therefore a
reasonable way forward, because the modelling tech-
nique used at each stage (e.g. as mentioned above) is
understood relatively well and relevant computer
codes can be designed. However, the block-splitting
approach also brings its own issues such as the problem
of data transfer between different stages. Indeed, the
results obtained at one stage should create the initial
conditions for the next stage, but the description of
the system at different stages may be done using
dynamical variables of different origin. Thus, accurate
and reliable modelling of the salmon life cycle remains
one of the great computational challenges faced by
scientists today.
2.2.2. Monitoring of pest insects
A multi-scale ecological problem of a completely differ-
ent origin is given by ecological monitoring, in
particular, monitoring of pest insects. Its main goal,
as required by the needs of agriculture [67,68], is to pro-
vide an estimate of the pest population size or density
based on the trap counts. The simplest setting consists
of a single trap installed in a field. It is checked regularly
after a certain interval (e.g. daily or weekly), the pest
species are identified and the number of pest insects
caught is counted. If the trap count contains any of
the target species, it proves that these species are pre-
sent in the vicinity of the trap. However, relating the
trap count to the population density is a considerable
and largely open problem, and its essence is readily
seen from the following example. Given a trap of
radius r caught n insects after having been exposed
for time T, how can we restore the population density
from this information? If this information is not suffi-
cient, what is missing? Although some attempts to
solve this problem have been made [20,53,69], a
Interface Focus (2012)
consistent theory and robust computational algorithms
are lacking.

One difficulty with numerical simulations is that the
problem is essentially multi-scale, with the smallest
scale being given by the trap size r � 1021 m and the
largest scale being given by the size of the field R �
102 2 103 m; their ratio can therefore be as large as
104. Another small scale can be given by the initial con-
ditions, e.g. in the case of a point-source release.
Consider either the diffusion equation or the Fokker–
Planck equation as a reasonable model to describe the
dynamics of the population density owing to the indi-
vidual movement (and, subsequently, to simulate the
trap counts by calculating the density flow through
the trap boundary [53]). A straightforward discretiza-
tion of the system results in a huge numerical grid
with the number of nodes of the order of 1012, which
is by a few orders of magnitude beyond the currently
available computer power.

Note that, generally speaking, we cannot reduce
the grid by arbitrarily reducing the computational
domain to the vicinity around the trap. By catching
insects, the trap introduces a perturbation to the distri-
bution of the population density and the radius of
this perturbation grows with time. An attempt to
decrease the perturbation radius by decreasing the
time T of trap exposure does not help either as smaller
T results in smaller trap counts, which can make them
statistically unreliable.

An effective computational approach to this problem
can again be based on splitting it into different ‘blocks’,
i.e. one block describing the insect movement in the
vicinity of the trap and the second block describing
the population density in the far field. This approach
is supported by the biological observation that different
factors can be of different importance at small and large
distances from the trap. While in the vicinity of trap,
the pattern of individual movement and the effects of
small-scale heterogeneity are important (for instance,
as given by the effect of wind for flying insects [20]),
in the far field, the population density is more affected
by the conditions at the field boundaries that should
take into account the effects of pest migration through
the boundary. Hence, a multi-block grid generation
technique [70] can be applied to the problem to
facilitate its numerical solution.
3. CONCEPTUAL MODELLING

Conceptual modelling is another powerful stream of
research in theoretical and mathematical ecology. The
focus is on the qualitative aspects of ecosystem
dynamics rather than on quantitative ones; correspond-
ingly, the goal is to predict the tendency or the type of
response rather than a specific number. A classical
study of this kind is given by the seminal paper by
Rosenzweig [71], where he discovered the instability in
non-spatial predator–prey systems arising as a response
to an increase in the prey carrying capacity—the
famous paradox of enrichment.

Occasionally, conceptual models can also explain some
quantitative features (an example will be considered
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5This sensitivity being quantified by the dominant Lyapunov
exponent lD which, in system (3.1)–(3.2), is of the order of 0.03.
6Even though we do not know the solution itself, its existence in
system (3.1)–(3.2) is guaranteed by the theory of PDEs [78,79].
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below) but that should be regarded as a ‘piggyback oppor-
tunity’ and could hardly be made an objective of the
study.

Interestingly, owing to the developments in relevant
areas of applied mathematics [27,28,56], in the univer-
sity mathematics curriculum, and, especially, in
computer power, that have been seen over the last
two or three decades, the division between the predic-
tive and conceptual models has evolved. The spatially
explicit models of population dynamics (e.g. formulated
in terms of PDEs) were originally regarded as compli-
cated and hence were used as predictive models [8,9],
but more recently they have been considered as concep-
tual ones [12,72].

Increased complexity of the conceptual models
means that application of analytical tools is rare (but
see [73]), and the results are obtained through computer
simulations. Since conceptual models tend to be simpler
than predictive ones, application of numerical methods
and the subsequent computer code development may
require somewhat less effort than in the case of predic-
tive modelling. However, a closer look at simulation
studies reveals challenges of a different kind.

3.1. Patchiness, chaos and grid refinement

We reveal the challenges of conceptual modelling by con-
sidering an instructive example, namely the problem
of plankton patchiness. The horizontal distribution of
phytoplankton in the ocean is very rarely homogeneous
even when the marine environment is relatively
uniform. Instead, patches of high plankton density alter-
nate in space with patches of low density (figure 3a). The
spatial pattern usually consists of patches of very differ-
ent size, which may range from a few centimetres to
hundreds of kilometres [74]. The attempts to relate this
phenomenon to the specifics of the marine environment
have not been entirely successful. It was shown that
while small patches (less than 100 m) are indeed con-
trolled by turbulence [75] and patches on the scale of
dozens and hundreds of kilometres are controlled by
environmental heterogeneity owing to the geographical
variations, patches in the intermediate range between
0.1 and 30 km behave differently. This resulted in the
concept of physical and biological scales [76] (figure 3b).

A conceptual model of plankton pattern formation
should therefore take into account some basic features
of the marine environment and also some basic biologi-
cal interactions. We assume that turbulent mixing can
be described as turbulent diffusion but neglecting
its generic dependence on scale. For biological inter-
actions, we only consider the main phytoplankton
consumer, i.e. zooplankton. The corresponding system
of equations then looks as follows:

@uðr; tÞ
@t

¼ DTr2uðr; tÞ þ GðuÞ � Pðu; vÞ ð3:1Þ

and

@vðr; tÞ
@t

¼ DTr2vðr; tÞ þ kPðu; vÞ �MðvÞ; ð3:2Þ

where u(r,t) and v(r,t) are, respectively, the phyto- and
zooplankton density at horizontal position r ¼ (x,y)
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and time t, DT is the coefficient of turbulent diffusion,
G(u) describes phytoplankton growth, P(u,v)
describes grazing and M(v) describes zooplankton
mortality that may take into account the effect of the
top predators.

System (3.1)–(3.2) is apparently very simple in the
sense that it completely leaves out many properties of
a marine ecosystem. Surprisingly, its solution appears
to have properties similar to what is seen in field
data, exhibiting a clear patchy structure [55]. Typical
results are shown in figure 4. Note that it is not only
a visual similarity with the pattern shown in
figure 3a; a quantitative analysis shows that the typi-
cal patch size obtained in model (3.1)–(3.2) agrees
well with the upper boundary of the biological
range [77].

A closer look at the patterns obtained in the con-
ceptual plankton model (3.1)–(3.2) reveals that
the corresponding system’s dynamics is chaotic [55].
A generic property of chaotic dynamics is that the
state of the system is very sensitive to the initial con-
ditions.5 From the point of applications, an immediate
consequence is that, using the conceptual model
(3.1)–(3.2), we can explain the existence of the plank-
ton patches in the ocean, and possibly even predict
their characteristic scale, but we cannot predict their
position. This simple notion has huge consequences
for the modelling philosophy behind the computations.
In fact, it changes the whole paradigm of the simu-
lation-based approach. Indeed, when a system of
PDEs is solved numerically, the central point is the con-
vergence of a numerical solution to the analytical
solution,6 so that the exact solution is approximated
with a prescribed accuracy. Below we will show that it
is not necessary in the case of conceptual modelling.

Let us define the numerical error ek at time tk as

ek ¼ max
i;j
juðxi; yj ; tkÞ � ~uðxi; yj ; tkÞj; ð3:3Þ

where u and ũ are the exact solution and the approxi-
mate (numerical) solution, respectively, f(xi,yj)g is the
numerical grid where the approximate solution is com-
puted. Convergence means that the numerical error ek

decreases for any fixed k when the spatial grid steps
hx, hy and the time step Dt decrease. In the limiting
case, when the spatial and temporal grid steps tend to
zero, the error tends to zero as well; thus, the numerical
solution approaches the exact solution at any position
in space.

It immediately follows from the above that, when the
grid steps or time step are not small enough, the
numerical solution can be considerably different from
the exact solution. An example given in figure 4 shows
the numerical solutions obtained for hx ¼ hy ¼ 1 when
two different choices of the time step Dt were con-
sidered. In the first case, the time step Dt ¼ 1

3
(figure 4a) is much bigger than the time step Dt ¼ 1

384
taken to compute the solution in the second case
(shown in figure 4b). The initial conditions and all
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parameters are the same in both cases. Both snapshots
are obtained at the same moment t (with the required
number of time steps being 128 times larger in the
second case). Obviously, the two patterns do not
coincide. In a comprehensive study, Garvie [24] demon-
strated that Dt ¼ 1

384 is sufficiently small to ensure
very good accuracy of the simulations, so that the snap-
shot shown in figure 4b would not undergo any
significant changes for smaller values of Dt. On the con-
trary, the pattern shown in figure 4a is going to change
if the time step takes a smaller value.

Remarkably, however, while the actual ‘closeness’
between the numerical and exact solutions (defined as
ek , e, where e is the prescribed tolerance) can only
be reached for sufficiently small spatial and time-grid
steps, the type of the system’s dynamics along with
some of its typical properties may be reproduced cor-
rectly already when the steps are still relatively large.
Recall that the purpose of the study based on system
(3.1)–(3.2) is to understand the mechanism behind
the plankton pattern, but not to predict their exact
position and shape. Now, the patterns shown
in figure 4a,b are qualitatively similar. Moreover, a
closer inspection shows not only qualitative but also
quantitative similarity. Namely, the typical patch size,
the inter-patch distance and the magnitude of the
oscillations in the plankton density are approximately
the same, even though the numerical solution has not
converged yet. We refer to this situation as an
‘output-based convergence’ [80,81]. Consider a certain
characteristic quantity L or an ‘output’ of the system
(in the model (3.1)–(3.2), the principal output is
given by the typical patch size). Convergence with
respect to the output L means that

j ~L� Lj , eL; ð3:4Þ

where eL is the tolerance of output estimation that can
be different from the solution tolerance e.

The benefits of using the output-based convergence
instead of the conventional definition of the solution
convergence are obvious. Once we can use coarser
spatial and temporal grids in two-dimensional and
three-dimensional simulations, we can study the eco-
logical scenarios that would otherwise be far beyond
the available computer power.
3.2. Evaluating pest abundance from sparse
ecological data

In §3.1, we showed that grid refinement—the standard
procedure to decrease the grid steps by introducing
more grid nodes—may be not required when we are
interested in some particular properties of the system
but not necessarily in its complete description. Inte-
restingly, there is another class of problems in
computational ecology where the grid refinement
would be beneficial but is impossible because of ecologi-
cal reasons. One such problem is the ecological problem
of collecting information about pest abundance, usually
over large areas or regions or even nationwide. Local
information about the pest density is obtained by
sampling or trapping (cf. §2.2.2), and this information
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is then used in order to estimate the pest abundance
in a given field.

Let u1, . . . , uN be the values of the population den-
sity of a given species obtained at the location of the
traps r1, . . . , rN, respectively, where N is the number
of traps installed over the agricultural field of area A.
A commonly used statistical approach to estimate the
population size I is based on the arithmetic average [82]:

I � ~I ¼ Aû; where û ¼ 1
N

XN

n¼1

un � �u: ð3:5Þ

This approach works well when N is sufficiently large
because the theory predicts that û converges to the
true mean density �u when N tends to infinity. However,
if N is not large, the application of equation (3.5)
becomes questionable, especially when the density dis-
tribution is not spatially homogeneous but exhibits
some form of aggregation.

An alternative approach to population size esti-
mation is based on the ideas of numerical integration
[83]. Indeed, it is readily seen that estimation of the
population size from discrete data on population
density coincides with a conventional problem of
numerical integration. Moreover, it has been shown
[84] that the accuracy of population size estimation by
means of numerical integration can be higher than the
statistical approach (3.5).

It is well-known that the accuracy of numerical inte-
gration depends on the number N of grid nodes, and
grid refinement can therefore essentially improve the
accuracy of integral evaluation [85]. However, a crucial
observation is that, in pest monitoring programmes,
the number N of traps cannot be made large. An exces-
sively large number of traps in a given area may have
a disruptive effect on the behaviour of the monitored
animals, thus resulting in biased counts. Also, trapping
is costly and labour-consuming and it introduces
disturbance to agricultural procedures. Pest monitoring
specialists would not be allowed to make this disturb-
ance large as it can damage the agricultural product
(e.g. crops) significantly, hence making the protective
measures rather senseless.

The problem of numerical integration then has to be
solved on a very coarse grid, and that makes most of the
standard ideas irrelevant [84]. Indeed, the usual
approach to assess the accuracy of different integration
rules is based on their convergence rate when the
number of grid nodes per unit area can be increased
arbitrarily. This is clearly not the case of pest monitor-
ing where the conventional error estimates cannot be
applied and one has to come up with a new approach
to conclude about the efficiency of a chosen method of
numerical integration [86].
4. DISCUSSION AND CONCLUDING
REMARKS

In this paper, we briefly revisited the state of the art in
simulation-based, computational approaches to ecologi-
cal problems. Following a long tradition [30], modelling
in ecology can be loosely divided into two streams such
as predictive modelling and conceptual modelling.
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Predictive modelling uses complicated models that
are usually analytically intractable and hence the mod-
elling is essentially based on computer simulations
[17,23,47,63]. Conceptual modelling tends to use sim-
pler models but their exact solutions are still not
always possible; therefore, they often have to be
solved by simulations as well [9,10,12]. In past decades,
both of these streams have been enhanced greatly by
recent developments in numerical mathematics and
computer science and technology. Especially in predic-
tive modelling, the increase in available computer
power has been hugely stimulating. For instance, it
has become possible to consider food webs in much
detail [31–35] (and there are examples of a correspond-
ing software development [36]) and/or to address
population dynamics with multiple spatial and tem-
poral scales occurring in various environments
[13,16,21,25,50,62]. Although the full complexity of eco-
systems dynamics is still beyond the available computer
power, a block-splitting approach has been identified as
an appropriate modelling strategy to cope with multi-
component multi-scale systems as it is used increasingly
often, for instance in fisheries [14] and in dynamic
global vegetation models [87].

In spite of tremendous progress that has been made
over the last two decades and numerous papers pub-
lished, there are some important yet rarely addressed
issues remaining. The term ‘computational ecology’
has been coined already [47], but has it appeared
yet as a clearly shaped, consistent field of knowledge
with its own principles and methodology. One pro-
blem that we identify is that most simulation-based
studies in ecology use ideas and approaches originally
developed for application in other sciences, while the
specifics of ecological dynamics has rarely been
appreciated in full. Meanwhile, ecological dynamics
is in many aspects very different from the dynamics
of other natural systems, such as, for instance, in phy-
sics or chemistry. One essential difference is the
adaptive, fitness-maximizing behaviour of the indi-
viduals [22,23]. Another and probably even more
important difference is that the impact of stochastic
factors and the corresponding level of a system’s
uncertainty are much higher in ecology than in
other natural sciences. In §3.1, we considered an
example where the modelled system was chaotic. How-
ever, chaos is not the only source of uncertainty in
ecological dynamics. Other and possibly more
common sources are poor accuracy of ecological data
and their transient nature. Noise that is inevitably
present in ecosystems can significantly change the
properties of an ecological model, both in the well-
mixed ‘non-spatial’ case [88,89] and in the spatially
explicit case [90,91], and this fundamental uncertainty
affects the accuracy of ecological data.

We want to emphasize here that what is usually
referred to as low data accuracy is not a result of
under-developed equipment or poorly trained tech-
nicians. This is an inherent property of ecological
dynamics rooted in the immense complexity of ecologi-
cal interactions. Even in a system that is not chaotic,
the system’s uncertainty is high and the message then
remains essentially the same: for simulations used in
Interface Focus (2012)
ecological modelling, we do not always need advanced
numerical methods improving the convergence rate,
because we do not always know where exactly this
convergence should take us to.

In its turn, the uncertainty in ecological data has
immediate implications for the usual routine of code
development and simulations. A standard procedure
of code development in well-established, ‘mature’ com-
putational sciences (e.g. in computational engineering)
usually consists of the following stages [92,93]:

— Preparation: specification of objectives, geometry,
initial and boundary conditions, and available
benchmark information; selection of the numerical
method.

— Verification: a process for assessing simulation
numerical uncertainty. Robustness of the simulation
results should be proved by comparing them with
the known analytical properties of the model, e.g.
with exact solutions.

— Validation: a process for assessing simulation
modelling uncertainty by using benchmark exper-
imental data.

The above protocol, shown as a flowchart in figure 5,
is widely accepted by the engineering community where
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every piece of computer code should undergo meticu-
lous testing before being released to the users. For
instance, the American Institute of Aeronautics and
Astronautics (AIAA) Journal has strict editorial
policy on numerical accuracy [94]. This policy includes
justification of minimum formal accuracy for numerical
results submitted to the journal as well as the statement
of code verification activities and a rigorous check of the
convergence for any computer code used or designed by
the authors.

Apparently, state-of-the-art ecological software
is still a long way from those requirements, and the pro-
tocol of figure 5 does not always apply to code
development for ecological applications. Indeed, as
analytical solutions are relatively rare, a comprehensive
verification and convergence study is hardly possible.
As for code validation, a lack of experimental data
and their typical poor quality can sometimes make it
very difficult to distinguish real phenomena (i.e.
inherent solution features) from artificial ones [25]. On
the other hand, it is clear that the issues of verification
and validation cannot be dismissed as ecological
science progresses and more sophisticated computer
codes are required in ecological modelling and simu-
lation. Hence the question arises if the solid testing of
a simulation model can be achieved in a reasonable
time span and within reasonable allocation of human
and computer resources.

Based on the above, the main problem of modern
computational ecology is, in our opinion, the problem
of methodology. Contrary to other computational
sciences, computational ecology still does not have
clearly defined standards and hence is not sufficiently
user-oriented. Indeed, for instance, in engineering appli-
cations, the difference between research codes and the
so-called industrial (or commercial) codes can always
be clearly seen. While the former are used for the
study of new computational methods, the latter are
heavily exploited for ‘predictive’ purposes in the
design and technology processes. This is not the same
in computational ecology, where only a small number
of computational programmes (most of them are stat-
istical programs) are being used by practical ecologists
and environment policy decision-makers. Despite suc-
cessful development of a large number of research
computational programmes, only a few of them have
the potential to be transformed into a commercial
code that can be steadily and efficiently used by a
large number of users.

Note that another specific feature of computational
ecology is ambiguity in the choice of the mathematical
model. While in physical and engineering sciences the
model to be used is usually well established and well
known (consider the equations of fluid dynamics just
as an example), in mathematical ecology the choice of
model is often controversial. It means that validation
of ecological software will often involve not only modi-
fication of the numerical method, but also a heavy
revision of the mathematical model itself; see arrow 4
in figure 5.

We believe that the key issue in the development of
the methodological toolkit for computational ecology
should be a careful revision of the numerical techniques
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and methods used in mature computational sciences
rather than blind copying of them. For example, we
have discussed in this paper that the verification of a
computer code can be done better in terms of the
output-based error estimation rather than the solution
error estimation. Output-based computations (i.e.
computations that focus on the accurate numerical
evaluation of a given solution functional) have been
used in other computational sciences [80,81] but they
do not play a leading role there, and nowadays most
error estimates are being designed with a numerical
solution rather than the solution functional in mind.
The situation can become different in computational
ecology where the output-based error estimates may
appear to be in the mainstream of research because of
the nature of the problems solved there. Similarly,
other popular computational techniques such as the
use of higher order discretization methods, adaptive
grid generation, h-p adaptation, etc. should be revisited
in the light of the complexity of ecological problems and
restrictions that such complexity may impose on the
choice of a numerical method. This may result in a
new protocol, still clear and reliable but more suitable
for ecological applications.
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