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a b s t r a c t

A few commonly used biodiversity measures such as the biodiversity index, the Kullback

information measure and exergy are considered in order to check their capability to trace

(and, potentially, to predict) negative changes in the community structure. We apply these

measures to a model community of three competitive species and show that, in spite of the

fact that all the species exhibit dynamically similar behavior, their contribution to the

corresponding changes in the biodiversity measures is remarkably asymmetrical. While for

two species the changes in their population sizes are strongly correlated/associatedwith the

changes in the biodiversity measures, the information about the third species is virtually

lost. In order to loosen the deterministic feedbacks between the species, we then include

environmental noise and show that the results stay essentially the same.
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1. Introduction

Loss of biodiversity in various ecosystems all over the world

is currently considered as a major challenge for contempor-

ary ecology (Tilman and Lehman, 2001; Thomas et al., 2004;

Faith, 2005). There are several aspects of this problem. One of

them is given by necessity to recognize the main threats for

communities functioning and reasons for biodiversity loss;

examples of such threats are given by biological invasions

(Drake et al., 1989) and habitat fragmentation (Tilman et al.,

1994). Other aspects are identification of effective environ-

mental protection strategies and development of adequate

approaches to environment rehabilitation. These and similar

issues are apparently based on the assumption that sufficient

and reliable information is available regarding the state of

the community and its biodiversity. In its turn, it immedi-

ately brings forward the problems of effective monitoring
* Corresponding author. Tel.: +7 95 124 6392; fax: +7 95 124 5983.
E-mail address: spetrovs@sio.rssi.ru (S. Petrovskii).
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and data assimilation in terms of appropriate biodiversity

measures.

While considerable advances have been made in under-

standing the main mechanisms of biodiversity loss, the

progress in biodiversity quantification has been much more

meagre. There have been only a few different approaches to

this issue. The first one is based on a direct counting of the

species that go extinct as a result of ecosystem disturbances.

The proportion that the extinct species makes of the total

number of species in a given community is then used as a

measure of biodiversity loss. Although proven to be useful in

theoretical studies (cf. Tilman, 1994; Tilman et al., 1994; Loehle

and Li, 1996; Solé et al., 2004), this approach leaves outside of

its scope important information about species abundance.

Being based on the ‘‘matter-of-fact’’ information whether a

particular species is present or not, it does not allow for

situations when a species is actually on the brink of extinction
d.
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due to its small population size. Therefore, it does not make

possible to reveal the tendency in thecommunity evolutionand

in the correspondingbiodiversity changes.Meanwhile, it seems

obvious that adequate biodiversity measures must be able not

only todiagnosenegativechangesbut todo it atanearlystage in

order to give enough time for decision-making: once a species

has gone extinct, it is too late to talk about its protection!

Alternatively, biodiversity measures are based on the idea

that there must exist an optimal order in the biomass

distribution between the species in a given community

(Magurran, 1988). Although criteria of this optimality are not

finally clear, it is often assumed (on the basis of ecosystems’

thermodynamics and adopting some physical principles, cf.

Jørgensen and Fath, 2004) that the optimal distribution (i.e.,

maximum biodiversity) is the homogeneous one. Considering

for the sake of simplicity the case when an average body

weight is approximately the same for individuals of different

species, we immediately obtain that, at the optimal ecosys-

tem’s state, the abundances of all species must be equal. Any

deviation from this marginal case would lead to a biodiversity

loss. Correspondingly, the other marginal case is given by the

situation when only one species persists and all others has

gone extinct. A biodiversity index that possesses thenecessary

properties was first introduced by Margalef (1968):

S ¼ �A
XN
k¼1

pklnð pkÞ (1)

where N is the number of species in the community and A is a

coefficient which can be chosen differently, and

pk ¼ nk

XN
j¼1

n j

0
@

1
A

�1

: (2)

Here nk gives the population size of the kth species; thus, pk is

the probability of catching an individual of kth species in a

random sampling. S reaches its maximum value, Smax = -

A ln N, in case of the homogeneous biomass distribution,

p1 = . . . = pN = 1/N, and S falls to Smin = 0 when only one species

remains. Importantly, regarding the latter case, S can already

fall to a very low value when other species are not yet extinct

but their abundance is low.

Index S has been widely used both in theoretical and

empirical studies, e.g., see Vinogradov and Shushkina (1987)

and Solé et al. (2004). However, its actual predictive ability

remains rather obscure. A question that is largely open is

whether the biodiversity index is ‘‘statistically homogeneous’’

in the sense that all species make equivalent contribution to

its value and to the magnitude/direction of its changes in the

course of community dynamics. In particular, it is not clear to

what extent an increase/decrease in S may be correlated with

changes in particular species, especially when the main

feedbacks in the community are nonlinear and small varia-

tions in parameter values or population sizes may eventually

result in dramatic changes in community structure.

These issues are addressed in the present paper by means

of mathematical modeling and computer simulations. Speci-

fically, we consider a model of a three competitive species

community and show that, in spite of the fact that all the

species exhibit similar dynamical behavior, only two of them

have a significant correlation/association with S, while the
impact of the third one is negligible. Also, we show that the

impact of environmental stochasticity (modelled by means of

inclusion of noise into the species growth rate) does not

change this apparent asymmetry. In our search of an

appropriate modification of the biodiversity index, we then

consider two other relevant indices such as exergy and the

Kullbackmeasure of information (cf. Jørgensen and Fath, 2004)

and show that the results stay essentially the same, although

for certain parameter values exergy appears to be a somewhat

better biodiversity measure.
2. Main equations and a paradigm

Our approach is as follows.We consider amodel community of

N interacting species described, at each moment of time t, by

their population sizes, n1(t), . . ., nN(t). Correspondingly, at each

moment thestateof thecommunityasawholecanbedescribed

by the biodiversity index S, cf. Eqs. (1) and (2). We assume that

the population sizes can change with time as a result of inter-

and intra-species interactions and/or parameter variation, and

so does S. The question thatwe are primarily concernedwith is

whether the contribution of all species to the changes in the

biodiversity index is of the same magnitude (provided that all

species exhibit qualitatively similar dynamical behavior) or, on

the contrary, there is any distinct asymmetry.

In order to describe it quantitatively, we introduce the

correlation coefficients between each of the species and the

biodiversity index, R(nk, S), k = 1, . . .,N, where R(X, Y) is given by

the following equation:

%ðX;YÞ ¼ covðX;YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
covðX;YÞcovðY;YÞ

p : (3)

Here cov(X, Y) is the covariance, which is calculated as

covðX;YÞ ¼ Mð½X�MðXÞ�½Y �MðYÞ�Þ (4)

where M(X) denotes the mean value of variable X.

For the purposes of this study, it is not important to

distinguish between correlation and anticorrelation; the point

of interest is to what degree the changes in given biodiversity

measure ‘‘feel’’ the changes in species abundance. Thus, we

quantify the association between different dynamical variables

by the absolute value of the corresponding correlation

coefficient. For convenience, which we call it the association

coefficient:

qðX;YÞ ¼ j%ðX;YÞj: (5)

We expect that an adequate biodiversitymeasure should have

approximately the samedegree of associationwith each of the

species.

A particular model determining the behavior of the

population sizes can be different allowing for the great variety

of possible ecological situations and existing modeling

approaches. In this paper, we consider the case when the

variables n1(t), . . ., nN(t) describe a community ofN competitive

species and arise as a solution of the following system:

dni

dt
¼ ei 1�

XN
j¼1

ai jn j

0
@

1
Ani; i ¼ 1; . . . ;N (6)
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(cf. Hofbauer and Sigmund, 1988; Kot, 2001) where ei is the

intrinsic per capita growth rate of the ith species and aij is the

competition coefficient between species i and j.

Note that in the model (1–6) the number N of species can be

different: although the biodiversity index S was originally

introduced in order to describe many-species communities, to

the best of our knowledge there is no any formal restrictions on

N. Thus, formodelingpurposeswecan consider the caseswhen

N is not necessarily large. Moreover, robustness of S as

biodiversity measure in few-species model communities can

perhaps be regarded as a necessary condition for its robustness

in more complicated situations. Also, while for a large N the

system (6) is unlikely to be treated analytically, whichmakes its

properties obscure and its dynamics poorly understood, for a

small N dependence of the system’s properties (such as

existence and stability of equilibrium states, existence of limit

cycles, etc.) on parameter values is readily revealed.

As an illustrative example of our approach, we consider a

community of two competitive species:

dn1

dt
¼ e1ð1� a11n1 � a12n2Þn1; (7)

dn2

dt
¼ e2ð1� a21n1 � a22n2Þn2: (8)

In order to make the model somewhat more ecologically rea-

listic, we assume that it incorporates environmental stochas-

ticity. Specifically, we assume that e1 and e2 are not constant

parameters but depends on time in a random manner, i.e.,

e1ðtÞ ¼ e1½1þ j1ðtÞ�; e2ðtÞ ¼ e2½1þ j2ðtÞ� (9)

where e1 and e2 are the mean values and j1, j2 are stochastic

variables describing a white Gaussian noise. In numerical

calculations below, at each time step the values of j1 and j2

are generated as normally distributed random numbers with

zero mean and the standard deviation s.

Without noise, i.e., for e1ðtÞ� e1 ¼ const; e2ðtÞ� e2 ¼ const,

the system (7)–(8) is known to have a few equilibrium states in

the biologically meaningful domain n1 � 0, n2 � 0. Namely,

they are the ‘‘no species’’ state E0 = (0, 0), the ‘‘first species

only’’ state E1 = (e1/a11, 0), the ‘‘second species only’’ state

E2 = (0, e2/a22) and, depending on parameter values, also the

coexistence state E ¼ ðn1;n2Þwhere n1 and n2 are expressed via

the parameters; for more details see Kot (2001). The system,

having started from an initial condition, gradually approaches

a stable equilibrium state. Apparently, during the process of

system’s relaxation, the species composition changes. That

results in the corresponding change in the biodiversity index.

Details of the system’s dynamics depend not only on

parameter values but also on the initial conditions. Here we

consider the case when both E1 and E2 are stable while the

coexistence state E exists and is unstable; it readily seen that it

takes place when e1/a11 > e2/a21 and e2/a22 > e1/a12. In this case,

it depends on the initial condition which equilibrium state

the system approaches. For a hypothetical parameter set

e1 = e2 = a11 = a22 = 1, a12 = 1.1, a21 = 1.2 and the initial condi-

tions n10 = 0.1, n20 = 0.19, the population sizes versus time in

the no-noise case are shown in Fig. 1a. After a certain transient

stage, the system gradually approaches the state E1. Biodi-

versity index versus time is shown in Fig. 1c. Here and below,
we let A = 1/ln N so that S is bounded between 0 and 1. Thus, S

remains on the order of unity at the early stage of the system’s

dynamics (reaching its theoretical maximum S = 1 when the

population sizes are equal) and tends to zero in the large-time

limit as a result of the second species’ extinction.

Next, we calculate the association coefficients q according

to (3)–(5). It appears that both of them are close to unity;

specifically, we obtain that q(n1, S) = q(n2, S) = 0.93. This result

is hardly surprising taking into account that the system (7)–(8)

is purely deterministic and contains only two components.

Interestingly, although introduction of noise can change

the system’s dynamics significantly, it does not destroy the

high degree of association between S and each of n1 and n2.

Fig. 1b shows the population sizes versus time for the same

parameter set as above and 20% noise (s = 0.2). The impact of

noise disturbs the attraction basins so that starting from the

same initial conditions the system now relaxates to the other

equilibrium state E2. The behavior of the biodiversity index,

however, remains qualitatively similar to theno-noise case, cf.

Fig. 1c and d. Also, the association coefficients changes only

slightly compared to the previous case; the calculated values

are q(n1, S) = 0.97 and q(n2, S) = 0.92.

It should be mentioned that, contrary to the deterministic

case, in the presence of stochasticity the system’s dynamics is

not uniquely defined. For every new simulation run, the actual

plots of n1(t) and n2(t) will be somewhat different from the ones

shown in Fig. 1b. (In particular, it may happen that the system

actually relaxates to the state E1, not to E2.) Correspondingly,

dependence of the biodiversity index on time can be slightly

different as well. Importantly, however, the value of the

correlation coefficients remains essentially the same up to

only small variations.
3. Three-species system

The system of two competitive species considered in the

previous section is of course far too simple to enable us to

make any ecologically sound conclusion regarding the

biodiversity index robustness. As a next step, in this section

we consider amodel consisting of three species, i.e., system (6)

for N = 3. In spite of the fact that only one equation is added,

the behavior of the model now becomes much more

complicated. Depending on parameters, the system can have

as much as eight equilibrium states and even a limit cycle (cf.

Petrovskii et al., 2001), although it has been proved that it

cannot exhibit chaotic dynamics.

In order to avoid unnecessary complexity, herewe consider

the case of special relation between the system’s parameters:

dn1

dt
¼ e1ð1� n1 � an2 � bn3Þn1; (10)

dn2

dt
¼ e2ð1� bn1 � n2 � gn3Þn2; (11)

dn3

dt
¼ e3ð1� gn1 � bn2 � n3Þn3 (12)

where we have assumed for convenience that the species

population sizes are scaled by the corresponding carrying

capacities so that a11 = a22 = a33 = 1.
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Fig. 1 – Dynamics of the two competitive species system in (a and c) the absence of noise and (b and d) for 20% environmental

noise. In (a) and (b), solid curves and dashed-and-dotted curves show species 1 and 2, respectively. Parameters are:

e1 = e2 = 1, a11 = a22 = 1, a12 = 1.1, a21 = 1.2 and Dt = 0.1.
Aswell as above, our goal is to reveal whether the degree of

association of all species with the value of the biodiversity

index S is the same. In order to avoid the impact of transients

caused by the initial conditions, we will focus on the large-

time asymptotics when the system’s dynamics takes place

along a stable manifold.

We beginwith the case when all coefficients in (10)–(12) are

constant parameters, i.e., they are not affected by noise. The

case a = g corresponds to a so-called cyclic competition which

has been studied in much detail (May and Leonard, 1975;

Hofbauer and Sigmund, 1988). It was shown that, under

additional constraints

a ¼ g and aþ b>2; a>1> b; (13)

the system (10)–(12) possesses five stationary states. Namely,

they are the ‘‘no species’’ state (0, 0, 0) and three ‘‘one species

only’’ states (1, 0, 0), (0, 1, 0) and (0, 0, 1). The no-species state is

always an unstable node and the one-species-only states are

saddle-points. There is also one coexistence equilibrium state

ðn1;n2;n3Þ, the stationary value of the species concentrations

being the solution to the following system:

n1 þ an2 þ bn3 ¼ 1; bn1 þ n2 þ gn3 ¼ 1;

gn1 þ bn2 þ n3 ¼ 1:
(14)

It is readily seen that, under constraints (13), the coexistence

steady state is always a saddle-point. The only attractor in the
phase space is a heteroclinic cycle consisting of the three one-

species-only states and the orbits connecting these states

(May and Leonard, 1975). Apparently, it means that the system

(10–12) is not permanent.

The properties of the system (10)–(12) change significantly

when a 6¼ g. In case det (aij) > 0 (where (aij) is the matrix of the

system, cf. (6)), a criterion of the system permanence is

ðg � 1Þ2ða� 1Þ< ð1� bÞ3; (15)

which evidently could not be satisfied under constraints (13).

Since under condition det (aij) > 0 the solutions of the

system are uniformly bounded, a stable limit cycle can appear

when the co-existence state ðn1;n2;n3Þ is unstable. One

particular set of parameters corresponding to existence of a

stable limit cycle was found to be as follows: a = 1.08, b = 0.8,

g = 1.24, e1 = e2 = 1.0, e3 = 5.0. The population sizes versus time

for these parameter values and the corresponding changes in

the biodiversity index are shown in Fig. 2a and b, respectively.

It should be mentioned that the system is rather sensitive to a

variation of parameter values and the parameter range where

the limit cycle exists is rather narrow. For convenience, below

we will refer to the above parameter set as the ‘‘reference

point’’ (meaning a point in the parameter space).

The type of the large-time system’s asymptotical behavior

which seems to be the most appropriate for the purposes of

our study is oscillations along the stable limit cycle. In
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Fig. 2 – (a) Oscillatory dynamics of the three competitive species system, curves 1, 2 and 3 for species 1, 2 and 3, respectively;

(b) corresponding changes in the biodiversity index S. Parameters are: e1 = e2 = 1, e3 = 5, a = 1.08, b = 0.8, g = 1.24 and

Dt = 0.05.
consistence with our approach, our next step is to calculate

the correlation coefficients between the population sizes and

the biodiversity index at the ‘‘reference point, ’’ cf. Fig. 2. They

are found to be q(n1, S) = 0.17, q(n2, S) = 0.83 and q(n3, S) = 0.88.

Contrary to the two-species case, now we obtain that only the

dynamics of species 2 and 3 are strongly associated with the

changes in biodiversity index. Thus, while changes in S can be

used to follow (and, potentially, to predict) the changes in the

population sizes of species 2 and 3, the biodiversity index

provides only very little information about species 1.

Indeed, a closer look at Fig. 2 immediately reveals that the

position of the hollows in the plot of S(t) nearly coincides, up to

a small shift, with that of n3(t) and with the position of the

humps in the plot of n2(t). Apparently, this iswhat is implied by

a strong association between S and n2, n3 (with correlation

between S and n3 and anticorrelation between S and n2). On the

contrary, there is no any visual association between the plots

of S(t) and n1(t).

The next step is to check how the association coefficients

change with parameter values. For that purpose, we choose g

as a controlling parameter and keep the value of all others
fixed. Variations of g are considered in the range where the

system’s dynamics remains oscillatory. A convenient range is

found to be between 1.239 and 1.27, see Fig. 3. For g � 1.238 the

limit cycle does not exist (the coexistence state is stable) and

for g > 1.27 the system eventually becomes degenerated

because the cycle’s amplitude increases significantly and it

approaches very closely to the phase space boundary and to

the ‘‘one species only’’ states.

Dependence of the association coefficients on g is shown in

Fig. 4awhere squares stand for species 1, diamonds for species

2 and triangles for species 3. Covariances are calculated for a

triple oscillation period. It is readily seen that q(n2, S) and q(n3,

S) tend to decrease with an increase in g, although their value

always remains a few times higher than q(n1, S).

We then check how these results can bemodifiedunder the

impact of noise. For this purpose, in the system (10)–(12) the

constant coefficients ei are now changed to

eiðtÞ ¼ ei½1þ jiðtÞ�; i ¼ 1; 2; 3; (16)

where j1,2,3 correspond to a white Gaussian noise, cf. the lines

below Eqs. (9). Fig. 4b shows the association coefficients versus
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Fig. 3 – Limit cycle in the phase space of the three competitive species system for: (a) g = 1.24 and (b) g = 1.27, other

parameters the same as in Fig. 2.
gcalculated for 20% noise. Interestingly, their values appear to

be only very slightly affected by stochasticity and their values

stays practically the sameas in theno-noise case, species 2 and

3 showing much stronger association with S than species 1.
4. Alternative biodiversity measures

The results of the previous section lead to a conclusion that

the biodiversity index S, cf. (1), may not always be capable of

providing reliable information regarding the tendency in

changes of the species abundance. That makes a reason for

a search of alternative biodiversity measures. At least two

such values can be immediately found in the relevant

literature (e.g., see Jørgensen and Fath, 2004). One of them

is called the Kullback information measure (Kullback, 1959):

K ¼
XN
k¼1

pkln
pk
pk0

� �
(17)

where the probabilities pk of different states of the system

are defined as above, see (2), and pk0 are the probabilities in

the state of ‘‘thermodynamical equilibrium.’’ Contrary to

physical systems, for ecosystems the state of thermodynami-
cal equilibrium is vaguely defined; thus, tentatively, we will

identify it with the steady coexistence state. Correspondingly,

pk0 ¼ nk=ðn1 þ n2 þ n3Þ.
Fig. 5 shows the values of the association coefficients

between the population sizes and K (squares for q(n1, K),

diamonds for q(n2, K), and triangles for q(n3, K)) in the no-noise

case and for 20% environmental noise, see Fig. 5a and b,

respectively. As well as for the biodiversity index, the noise

does not bring much changes to the degree of association. On

the whole, the information measure appears to be even less

appropriate than S: although for g being around 1.24 all three

association coefficients are on the same order, their value

appears to be quite small. That means that K is not capable to

catch the tendency in population sizes’ changes for any of the

species constituting the community. For g being 1.25 or larger,

the situation is similar to what was observed for the

biodiversity index, i.e., much of the information about the

dynamics of species 1 is lost.

Another alternative value often used in theoretical studies

is exergy:

E ¼ �Ã
XN
k¼1

nkln
nk

nk0

� �
: (18)
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Fig. 4 – Association coefficients between the biodiversity index S and the population sizes in the three competitive

species system (squares for q(n1, S), diamonds for q(n2, S) and triangles for q(n3, S)) for: (a) no noise and (b) 20%

environmental noise.
Note that, unlike to S and K, exergy is expressed via the original

state variables, not via probabilities. Here, again, nk0 is the

concentration of the kth system’s component in thermodyna-

mical equilibriumwhichwewill treat as the steady coexistence

state; thus, nk0 ¼ nk, k = 1, 2, 3. In real systems, the coefficient Ã

should be expressed through some thermodynamical values;

since here we are more concerned with the changes in E

and their association with the corresponding changes in

species’ abundance rather thanwith its exact value,we assume

Ã ¼ 1.

Fig. 6a and b show the association coefficients q(n1, E)

(squares), q(n2, E) (diamonds) and q(n3, E) (triangles) for no

noise and 20% noise, respectively. As above, noise does not

change the degree of association. Interestingly, although

coefficients’ dependence on g appears to be somewhat more

complicated than it was observed for S and K (with all three

coefficients falling in turn to very small values), in a certain

parameter range (e.g., for g � 1.24) the degree of association

between exergy and each of the species appears to be on the

same order. That may indicate that, intrinsically, exergy is a

more relevant biodiversity measure than the standard

biodiversity index S and the information measure K.
5. Concluding remarks

In this paper, we have revisited a few commonly used

biodiversity measures such as biodiversity index S, exergy E

and information measure K in order to check whether they

adequately reflect the changes that take place in a given

community in the course of its dynamics. Our main attention

was focused on a three competitive species system. We have

shown that, in spite of the fact that dynamical behavior is

similar for all species (i.e., periodical oscillations along a stable

limit cycle), their contribution to the value of the biodiversity

measures is in most cases remarkably asymmetrical. Intro-

duction of environmental stochasticity into the model,

although potentially capable to change the system’s dynamics

significantly (cf. Fig. 1a and b), does not bring any changes to

the degree of association between the biodiversity measures

and the system’s components.

It should be mentioned that, in the system (10–12), there is

no any distinct hierarchical structure, which would make this

asymmetry expectable and easily understandable. While for

given parameter values (e1 = e2 = 1.0, e3 = 5.0) the third species

can perhaps be regarded as a more successful competitor, the
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Fig. 5 – Association coefficients between the information measure K and the population sizes in the three competitive

species system (squares for q(n1, K), diamonds for q(n2, K) and triangles for q(n3, K)) for: (a) no noise and (b) 20%

environmental noise.
first and second species are pretty equal.Moreover, since a < g,

the competition press is actually lower on the first species

than on the second species. Thus, from the point of hierarchy,

it is the second species that is likely to become a junior

member; yet its contribution to the properties of the system as

a whole (quantified by S) is remarkably higher.

In our study, we have used a relatively simple model.

Naturally, it leaves open the question about the properties of

biodiversity measures in more complicated systems contain-

ing a larger number of species. We want to emphasize,

however, that, from a theoretical stand-point, there is no any

formal restriction on the use of S (or E, or K) in terms of the

number of species, especially, when stochasticity/noise is

taken into account. Clearly, a biodiversity measure, which is

robust in a many-species community can be expected to

remain robust in a few species community as well.

There have been two distinctly different philosophies in

ecological studies during the last few decades. One of them is

based on the idea of analysis, i.e., when an ecosystem is, in

some sense, decomposed into its parts and the focus of

research is on some specific species and/or on the interactions

between particular species, e.g., see Hofbauer and Sigmund
(1988), and Nisbet and Gurney (1982). The alternative

approach, however, is based on synthesis and can be called

‘‘holistic’’ because it focuses on the ecosystem as a whole

(Jørgensen and Mejer, 1979; Li, 1986, 2000; Li and Müller, 1995)

rather than on its separate parts.

There have beenmany explicit and implicit attempts to find

a reasonable compromise between these two apparently

converse approaches. One of them is based on biodiversity

indices; such an approach is used in order to describe the

community as a whole but also involve information about the

dynamics/abundance of particular species. It should be men-

tionedhere that,originally, thebiodiversity indexSwasadapted

fromphysics: up to a constant coefficient, Eq. (1) coincideswith

the Boltzmann–Shennon entropy which is widely used in

statistical physics and thermodynamics (Ebeling, 1993). The

other two measures considered in this paper, i.e., E and K,

although provide a certain extension of the original quantity,

still have essentially the same functional structure. The

question thus arises about the limits of similarity between a

physical system and an ecological community. During recent

years, there has been a growing tendency to treat ecosystems

from thermodynamical/statistical physics point of view aswell
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Fig. 6 – Association coefficients between exergy E and the population sizes in the three competitive species system (squares

for q(n1, E), diamonds for q(n2, E) and triangles for q(n3, E)) for: (a) no noise and (b) 20% environmental noise.
as tobringcorresponding tools for their studyandanalysis (cf. Li

and Charnov, 2001; Li, 2002; Kolasa and Li, 2003; Jørgensen and

Fath, 2004;Maurer, 2005). Although it is quite obvious that some

basic principles such asmass and energy conservationmust be

true in an ecosystemaswell as in any other system, application

of more specific principles is much less evident. Our results

indicate that this approachmayhavehiddenpitfalls andshould

be applied with care.

In this paper, we were more concerned with revealing the

problem rather than with giving it a full and exhaustive

consideration. The next stages of the study should extend our

results onsystemswith largernumberof speciesandonsystem

with a larger degree of stochasticity (e.g., described by time-

discrete equations), and probably also allow for spatial

dimensions. These taskswill becomea focusof the futurework.
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