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Hamilton decompositions of graphs

Hamilton decomposition of G
= edge-disjoint Hamilton cycles covering all edges of G

Theorem (Walecki, 1892)

Complete graph Kn has a Hamilton decomposition ⇔ n odd

Construction: find Hamilton path decomposition for Kn−1

then add extra vertex and close paths into Hamilton cycles
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Hamilton decompositions of digraphs

Theorem (Walecki, 1892)

Complete graph Kn has a Hamilton decomposition ⇔ n odd

Theorem (Tillson, 1980)

Complete digraph Kn has a Hamilton decomposition ⇔ n 6= 4, 6

digraph: allow 1 edge in each direction between 2 vertices
oriented graph: allow at most 1 edge between 2 vertices
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Hamilton decompositions of tournaments

tournament: orientation of a complete graph

Conjecture (Kelly, 1968)

Every regular tournament has a Hamilton decomposition.

Decomposition of regular tournament
into 2 Hamilton cycles

Partial results on Kelly’s conjecture

Thomassen (1979,1982), Jackson (1981), Alspach et al. (1990),
Häggkvist(1993), Häggkvist & Thomason (1997), Bang-Jensen &
Yeo (2004), Frieze & Krivelevich (2005), Keevash et al. (2009) ...
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Hamilton decompositions of tournaments

Approximate solution to Kelly’s conjecture:

Theorem (Kühn, Osthus & Treglown, 2010)

Every regular tournament contains a set of edge-disjoint Hamilton
cycles covering almost all the edges.

Exact solution:

Theorem (Kühn & Osthus 2012+)

Every large regular tournament has a Hamilton decomposition.

Exact solution uses approximate one as a tool
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Finding Approximate Decompositions

Theorem (Kühn, Osthus & Treglown, 2010)

Every regular tournament G contains a set of edge-disjoint
Hamilton cycles covering almost all the edges.

Strategy:

Decompose almost all of G into suitable 1-factors

Transform 1-factors into Hamilton cycles using remaining
edges

(1-factor: union of directed cycles spanning V (G ))
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Finding Approximate Decompositions

Claim: G regular & oriented ⇒ G has 1-factor
Proof: consider (regular) auxiliary bipartite graph H

G
z

y
x

V(G) V(G)

x
y

z

perfect matching in H ⇔ 1-factor in G
Use this successively to get almost decomposition into 1-factors.
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Finding Approximate Decompositions

Claim: G regular & oriented ⇒ G has 1-factor
Proof: consider (regular) auxiliary bipartite graph H

G
z

y
x

V(G) V(G)

x
y

z

perfect matching in H ⇔ 1-factor in G
Use this successively to get almost decomposition into 1-factors.

Aim

Use remaining edges to ‘merge’ each 1-factor into Hamilton cycle
by ‘rotation-extension’
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Finding Approximate Decompositions

Claim: G regular & oriented ⇒ G has 1-factor
Proof: consider (regular) auxiliary bipartite graph H

G
z

y
x

V(G) V(G)

x
y

z

perfect matching in H ⇔ 1-factor in G
Use this successively to get almost decomposition into 1-factors.

Aim

Use remaining edges to ‘merge’ each 1-factor into Hamilton cycle
by ‘rotation-extension’

Hopeless as might need many such red edges for this.
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Finding Approximate Decompositions

Theorem (Frieze & Krivelevich, 2005)

Choosing 1-factors randomly gives 1-factors with few cycles

(applied to find approx. decompositions of quasi-random graphs)

Aim still hopeless:
leftover edges might not be the ones needed for merging

⇒ Need to find almost 1-factor decomposition with more structure
⇒ Apply regularity lemma and work with an almost 1-factor
decomposition of the ‘weighted reduced digraph’

This strategy finds an approx. decomposition but not a ‘complete’
decomposition – as the merging needs a reservoir of leftover
unused edges
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Finding Hamilton decompositions

Will now sketch strategy of main result

Theorem (Kühn & Osthus 2012+)

Every large regular tournament has a Hamilton decomposition.

Crucial notion: H is robustly decomposable if:
for any G which is regular and sparse compared to H
H ∪ G has a Hamilton decomposition

Far from clear whether such H exists!!

Will use this in combination with approx. result
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Finding Hamilton decompositions

Aim: decompose regular tournament G into Hamilton cycles
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Finding Hamilton decompositions

Aim: decompose regular tournament G into Hamilton cycles

Rough Strategy:

Find sparse H inside G which is ‘robustly’ Hamilton
decomposable and let G1 consist of remaining edges
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Finding Hamilton decompositions

Aim: decompose regular tournament G into Hamilton cycles

Rough Strategy:

Find sparse H inside G which is ‘robustly’ Hamilton
decomposable and let G1 consist of remaining edges

Find ‘almost’ decomposition of G1 using result of Kühn,
Osthus & Treglown’10 to obtain very sparse leftover G2

Find Hamilton decomposition of G2 ∪H using robustness of H
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Finding Hamilton decompositions

Instead of one robustly decomposable graph H, will use two graphs
in two successive steps:

CA (chord absorber)

CyA (cycle absorber)

Actual Strategy:

Remove sparse CA, CyA from G to obtain leftover G1

Find ‘almost’ decomposition of G1 using result of KOT to
obtain very sparse leftover G2

Find edge disjoint Hamilton cycles in CA ∪ G2 covering G2

Leftover G3 is sparse and is a blown-up Hamilton cycle

clusters
(partition vertex set of G)

Find a Hamilton decomposition of G3 ∪ CyA
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Chord absorbing

Definition of chord absorber CA:
CA blow up of a (directed) square of a Hamilton cycle

quasirandom

regular

and regular

Can find this within a regular tournament
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Chord absorbing

Strategy for chord-absorbing step:

Partition leftover (from approx. decomposition step) G2 into
1-factors F1, . . . , Fr

Split each Fi into small matchings Mi1, . . . , Mis

Extend each Mij into a Hamilton cycle using edges of chord
absorber CA

So leftover G3 of chord-absorbing is a subgraph of CA

quasirandom

regular

and regular

Main challenge: G3 needs to be the blow-up of a cycle
i.e. Hamilton cycles need to use up all red edges
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Chord absorbing

Example: Leftover matching Mij is a single edge e

e

Cannot extend e to a Hamilton cycle using cyclic edges
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Chord absorbing

Example: Mij is a single edge e
Extend by adding suitable red edges

e

union of red and green edges is ‘locally balanced’:
for each edge entering a cluster there is one leaving predecessor
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Chord absorbing

Example: Mij is a single edge e

e

Let W :=e+red+black path
Local balance ⇒
Edges of W enter and leave every cluster exactly once.

⇒ can extend W to Hamilton cycle using cyclic edges:
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Chord absorbing

Leftover is now subgraph of chord absorber CA
Following lemma implies desired stronger property:

Lemma

After ‘absorbing’ entire (regular) green leftover G1 into Hamilton
cycles, have used all red edges at each cluster

Chord absorber
quasirandom

regular

and regular ⇒ Leftover and regular

quasirandom

Will just verify weaker result (which is used in lemma proof)

Claim

After ‘absorbing’ any green 1-factor Fi into Hamilton cycles, have
used same number of red edges at each cluster
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Chord absorbing

Claim proof:
Consider red edges used after absorbing a green triangle of Fi

2

1

1

1

1
1

1

1

1

2

1

1
1

2

1

1

‘used’ red outdegrees at clusters preceding green outedges =2
‘used’ red outdegrees at other clusters =1

But # edges of 1-factor Fi leaving each cluster is same
⇒ red outdegrees of clusters used for absorbing entire Fi are
equal!
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Cycle switching

Aim: Hamilton decomposition of G3 ∪ CyA, where
Cycle absorber CyA is pre-chosen regular digraph
Leftover G3 from chord-absorbing is regular blown-up cycle

Rough idea: Decompose G3 ∪ CyA into 1-factors F
Switch pairs of edges between different 1-factors
⇒ successively reduce the total number of cycles

++

F F’

x

x

y

y

x y

y x+ +

For simplicity, we consider undirected graphs in what follows.
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Cycle switching

Building blocks of cycle absorber CyA:

Winding factors and switching cycles:
Find 1-factor WF (winding factor) & SC (switching cycle) so that:
for any leftover factor F which winds around a blown-up cycle C
WF ∪ SC ∪ F has a decomposition into 3 Hamilton cycles

The Hamilton decomposition:
Let r be degree of leftover G3 from chord absorbing step.
The cycle absorber CyA will consist of (edge-disjoint)

winding factors WF1, . . . , WFr

switching cycles SC1, . . . , SCr

Then decompose G3 into leftover 1-factors F1, . . . , Fr .
Finally Fi ∪ SCi ∪WFi has a Hamilton decomposition for each i .
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The winding factor WF and the switching cycle SC

switches

c

d b

a

d

cb

a

Winding factor

Winding factor

Switching cycle
(Top)

(Bottom)

Note: switching cycle SC remains a cycle after switching e.g. the
edges at abcd
⇒ WF ∪ SC has a Hamilton decomposition
(carry out the three switches in the top half)
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The winding factor WF and the switching cycle SC

A Hamilton decomposition of the winding factor WF and the
switching cycle SC

a

c

d

a

bd

c

switches

b

(Top)
Switching cycle

Winding factor

Winding factor

(Bottom)

This also works if we replace the bottom half of the winding factor
with the bottom half of the leftover factor!
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The winding factor WF and the switching cycle SC

Recall: WF ∪ SC has Hamilton decomposition using switches
Now also consider a leftover factor F

d

bd

c

switches

a

a

b c

(Bottom)

Switching cycle
(Top)

Winding factor

Winding factor

Top

Bottom

Leftover factor

Key idea: Switching approach also works if replace bottom half of
the winding factor WF with bottom half of the leftover factor F !
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The winding factor WF and the switching cycle SC

Recombining the leftover factor F and the winding factor WF

c

d

a

b

Winding factor

(Bottom)

Switching cycle
(Top)

Winding factor

Top

Leftover factor

Bottom

Leftover factor

Now just use those switches we need to turn the recombined
factors into Hamilton cycles

Note: Recombination step used that F is a blown-up cycle
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The winding factor WF and the switching cycle SC

A Hamilton decomposition of the union of:
leftover factor F , winding factor WF and switching cycle SC

Winding factor

Switching cycle
(Top)

Winding factor
(Bottom)

Leftover factor

Top

Bottom

Leftover factor

Recall: altogether this gives Hamilton decomposition of G3 ∪ CyA,
and thus Hamilton decomposition of tournament G
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Concluding remarks on the proof

Many additional difficulties arise, e.g.

switching more difficult for directed graphs

there are exceptional vertices outside the clusters in all of the
steps

But method of ‘robust decompositions’ to turn an approximate
decomposition into a complete decomposition seems to be very
general
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Robust expanders

Recall structural generalization of tournament decompositions

Theorem (Kühn & Osthus, 2012+)

Every large regular robust outexpander of linear degree has a
Hamilton decomposition

proof uses approximate version as a tool
(i.e. edge-disjoint Hamilton cycles covering almost all edges)

Theorem (Osthus & Staden, 2012+)

Every large regular robust outexpander of linear degree has an
approximate Hamilton decomposition

both proofs are algorithmic

in proof of approximate version cannot use trick (mentioned in
tournament sketch) of using random 1-factorization
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TSP tour domination

Asymmetric travelling salesman problem (ATSP)

Hamilton cycle of least weight in an edge-weighted complete
digraph (opposite edges are allowed to have different weight).

6 ∃ approximation algorithm for the ATSP whose
approximation ratio is bounded unless P = NP.

Note total number of possible solutions is (n − 1)!

For any problem instance I let w(I ) be the weight of the solution
produced by algorithm A.

Domination ratio of an algorithm A

A has domination ratio p(n) iff ∀n and ∀ instances I on n vertices,
there are at least p(n)(n− 1)! solutions to instance I whose weight
is also at least w(I ).

i.e. fraction of solutions which are ‘worse’ is at least p(n)
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TSP tour domination

∃ TSP algorithms achieve a domination ratio of Ω(1/n) for ATSP

Question (Glover & Punnen 1997, Alon, Gutin & Krivelevich 2004)

Is there a polynomial time algorithm which achieves a constant
domination ratio for the ATSP?

Gutin and Yeo (2001):
algorithmic proof of existence of Hamilton decompositions of
sufficiently dense digraphs
⇒ ∃ polynomial time algorithm with domination ratio 1/2− ε

Theorem (Kühn & Osthus, 2012+)

For any ε > 0, there is a polynomial time algorithm for the ATSP
whose domination ratio is 1/2− ε.
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TSP tour domination

Algorithm (for finding TSP tour with large domination ratio):

Find regular subgraph H (of weighted complete digraph) with
degree n/2 + εn and of minimum weight

H is robust outexpander ⇒ H has a Hamilton decomposition

Let C be Hamilton cycle of minimum weight in this
decomposition

C has ‘dominates’ (1/2− ε) fraction of all tours
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Open problems I

Bipartite analogue of Kelly’s conjecture

Conjecture (Jackson)

Every regular bipartite tournament has a Hamilton decomposition.

No analogue for almost regular bipartite tournaments:

m+1

m−1

m

m

Cannot even find a single Hamilton cycle in above example
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Open problems II

Conjecture (Thomassen, 1982)

∀k ∃f (k) so that every strongly f (k)-connected tournament has k
edge-disjoint Hamilton cycles

Generalization of Kelly’s conjecture:

Conjecture (Bang-Jensen & Yeo, 2004)

Every k-edge connected tournament has a decomposition into k
spanning strongly connected subgraphs

Kelly ⇔ k = (n − 1)/2

Bang-Jensen & Yeo: k = 2
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