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Abstract. As one of the most fundamental and well-known NP-complete prob-
lems, the Hamilton cycle problem has been the subject of intensive research. Re-
cent developments in the area have highlighted the crucial role played by the
notions of expansion and quasi-randomness. These concepts and other recent
techniques have led to the solution of several long-standing problems in the area.
New aspects have also emerged, such as resilience, robustness and the study of
Hamilton cycles in hypergraphs. We survey these developments and highlight
open problems, with an emphasis on extremal and probabilistic approaches.

1. Introduction

A Hamilton cycle in a graph G is a cycle that contains all the vertices of G. The
decision problem of whether a graph contains a Hamilton cycle is among Karp’s
original list of NP-complete problems [77]. Together with the satisfiability problem
SAT and graph colouring, it is probably one of the most well-studied NP-complete
problems. The techniques and insights developed for these fundamental problems
have also found applications to many more related and seemingly more complex
questions.

The main approach to the Hamilton cycle problem has been to prove natural
sufficient conditions which are best possible in some sense. This is exemplified by
Dirac’s classical theorem [43]: every graph G on n ≥ 3 vertices whose minimum
degree is at least n/2 contains a Hamilton cycle. More generally, one can ask the
following ‘extremal’ question: what value of some easily computable parameter (such
as the minimum degree) ensures the existence of a Hamilton cycle? The field has
an enormous literature, so we concentrate on recent developments: several long-
standing conjectures have recently been solved and new techniques have emerged.
In particular, recent trends include the increasing role of probabilistic techniques
and viewpoints as well as approaches based on quasi-randomness. Correspondingly,
in this survey we will focus on the following topics:

(1) Regular graphs and expansion;
(2) Optimal packings of Hamilton cycles and Hamilton decompositions;
(3) Random graphs;
(4) Uniform hypergraphs;
(5) Counting Hamilton cycles;
(6) Edge-coloured Hamilton cycles.
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Notable omissions include the following topics: Hamilton cycles with additional prop-
erties (e.g. k-ordered Hamilton cycles); pancyclicity; generalized degree conditions
(e.g. Ore- and Fan-type conditions); structural constraints (e.g. claw-free and pla-
nar graphs) as well as digraphs. Many results in these areas are covered e.g. in the
surveys by Gould [60, 61] and Bondy [27]. Digraphs are discussed in [100], though
some very recent results on digraphs are also included here.

2. Regular graphs and expansion

2.1. Dense regular graphs. The union of two cliques as well as the complete
almost balanced bipartite graph show that the minimum degree bound in Dirac’s
theorem is best possible. The former graph is disconnected and the latter is not
regular. This led Bollobás [19] as well as Häggkvist (see [70]) to (independently)
make the following conjecture: Every t-connected d-regular graph G on n vertices
with d ≥ n/(t+ 1) is Hamiltonian. The case t = 2 was settled in the affirmative by
Jackson [70].

Theorem 2.1 ([70]). Every 2-connected d-regular graph on n vertices with d ≥ n/3
is Hamiltonian.

However, Jung [76] and independently Jackson, Li and Zhu [72] gave a counterex-
ample to the conjecture for t ≥ 4. Until recently, the only remaining case t = 3 was
wide open. Kühn, Lo, Osthus and Staden [96, 97] proved this case for all large n.

Theorem 2.2 ([96, 97]). There exists an integer n0 such that every 3-connected
d-regular graph on n ≥ n0 vertices with d ≥ n/4 is Hamiltonian.

The key to the proof is a structural partition result for dense regular graphs which
was proved recently by the same authors [96]: the latter result gives a partition of
an arbitrary dense regular graph into a small number of ‘robust components’, with
very few edges between these components. Each robust component is either a ‘robust
expander’ or a ‘bipartite robust expander’. Here a graph G is a robust expander if for
every set S ⊆ V (G) of ‘reasonable size’, its neighbourhoodN(S) is significantly larger
than S, even after some vertices and edges of G are deleted (the precise definition is
given in Section 3.4). [96] also contains further applications of this partition result.
Similar ideas might also be useful to prove the following conjectures:

Conjecture 2.3 ([71, 100]).

(a) For each d > 2, every d-regular oriented graph on n vertices with d ≥ (n−1)/4
is Hamiltonian.

(b) For each d > 2, every strongly 2-connected d-regular digraph on n vertices
with d ≥ n/3 is Hamiltonian.

(c) For each d > 2, every strongly 2-connected d-regular oriented graph on n
vertices with d ≥ n/6 is Hamiltonian.

(Here digraph G is d-regular if all the in- and out-degrees equal d. An oriented
graph is a digraph with no 2-cycles.) (a) was conjectured by Jackson [71], (b) and
(c) were raised in [100] as directed analogues of Theorem 2.1. [100] also contains a
more detailed discussion of these conjectures.
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Figure 1. Extremal examples for Theorem 2.2.

The following example (due to Jung as well as Jackson, Li and Zhu) shows that
the bound on d in Theorem 2.2 is best possible (and disproves the more general
conjecture for t ≥ 4). For m divisible by four, construct a graph G as follows. Let
C1, C2 be two disjoint copies of Km+1 and let A,B be two disjoint independent sets
of sizes m,m− 1 respectively. Add every edge between A and B. Add a set of m/2
independent edges from each of C1 and C2 to A so that together these edges form
a matching of size m. Delete m/4 independent edges in each of C1, C2 so that G is
m-regular. Then G has 4m + 1 vertices and is m/2-connected. However G is not
Hamiltonian since G−A has |A|+ 1 components (see Figure 1(i)).

It is also easy to construct 2-connected regular non-Hamiltonian graphs whose
degree is close to n/3 (see Figure 1(ii)). Start with three disjoint copies of K3m. In
the ith clique choose disjoint sets Ai and Bi with |Ai| = |Bi| and |A1| = |A3| = m
and |A2| = m − 1. Remove a perfect matching between Ai and Bi for each i. Add
two new vertices a and b, where a is connected to all vertices in the sets Ai and b is
connected to all vertices in all the sets Bi. Then G is a (3m−1)-regular 2-connected
graph on n = 9m + 2 vertices. However, G is not Hamiltonian. This shows that
Theorem 2.2 is best possible (and that the degree assumption in Theorem 2.1 cannot
be reduced either).

Christofides, Hladký and Máthé [33] used an approach related to that in the proof
of Theorem 2.2 to prove the famous ‘Lovász conjecture’ in the case of dense graphs.

Conjecture 2.4. Every connected vertex-transitive graph has a Hamilton path.

In contrast to common belief, Lovász [111] in 1969 actually asked for the con-
struction of a connected vertex-transitive graph containing no Hamilton path. Tra-
ditionally however, the Lovász conjecture is always stated in the positive. A related
folklore conjecture is the following:

Conjecture 2.5. Every connected Cayley graph on at least three vertices contains
a Hamilton cycle.
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Here a Cayley graph is defined as follows: Let H be a finite group and let S ⊆ H be
a subset with S = S−1 such that S does not contain the identity. The corresponding
Cayley graph G(H;S) has vertex set equal to H. Two vertices g, h ∈ H are joined
by a edge if and only if there exists s ∈ S such that g = sh. (So every Cayley graph
is vertex-transitive.)

Marušic [113] proved Conjecture 2.5 in the case when H is abelian. Alspach [5]
conjectured that in this case one even obtains a decomposition of the set of edges of
G(H;S) into edge-disjoint Hamilton cycles and at most one perfect matching. For
a survey of results on these conjectures, see for example [107].

The following result of Christofides, Hladký and Máthé [33] confirms the ‘dense’
case of both Conjecture 2.4 and 2.5.

Theorem 2.6 ([33]). For every ε > 0 there exists an integer n0 such that every
connected vertex-transitive graph on n ≥ n0 vertices of degree at least εn contains a
Hamilton cycle.

To prove this result, Christofides, Hladký and Máthé define the notion of ‘iron-
connectedness’ which is related to that of robust expansion and consider a partition
of the given vertex-transitive graph into ‘iron-connected’ components. It would be
interesting to find out whether such a partition-based approach can also be extended
to sparser graphs.

2.2. Sparse graphs: Toughness and expansion. The extremal examples for
Theorem 2.2 indicate that an obstacle to the existence of a Hamilton cycle is the
fact that the graph is ‘easy to separate’ into several pieces. The examples also show
that connectivity is not the appropriate notion to use in this context. So a fruitful
direction of research has been to study notions which are stronger than connectivity.

One of the most famous conjectures in this direction is the toughness conjecture
of Chvátal [36]. It states that if a graph is ‘hard to separate’ into many pieces, then
it contains a Hamilton cycle.

Conjecture 2.7 ([36]). There is a constant t so that every t-tough graph has a
Hamilton cycle.

Here a graph is t-tough if, for every nonempty set S ⊆ V (G), the graph G − S
has at most |S|/t components. Trivially, every graph with a Hamilton cycle is 1-
tough. Little progress has been made on this conjecture – we only know that if the
conjecture holds, then we must have t ≥ 9/4 [12].

So instead of considering toughness, it has been more rewarding to consider the
related (and in some sense stronger) notions of expansion and quasi-randomness.
By expansion, we usually mean the following: every small set S of vertices has a
neighbourhood N(S) which is large compared to |S| (more formally, N(S) denotes
the set of all those vertices which are adjacent to at least one vertex in S). It is well
known that expansion is closely linked to eigenvalues of the adjacency matrix: a large
eigenvalue gap is equivalent to good expansion properties (in which case we often
call such a graph quasi-random). In particular, there is a conjecture of Krivelevich
and Sudakov [91] on Hamilton cycles in regular graphs which involves the ‘eigenvalue
gap’. The conjecture itself would follow from the toughness conjecture.
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Conjecture 2.8 ([91]). There is a constant C such that whenever G is a d-regular
graph and the second largest (in absolute value) eigenvalue of the adjacency matrix
of G is a most d/C, then G has a Hamilton cycle.

The best result towards this was proved by Krivelevich and Sudakov [91].

Theorem 2.9 ([91]). There exists an integer n0 such that the following holds for
all n ≥ n0. Suppose that G is a d-regular graph on n vertices and that the second
largest (in absolute value) eigenvalue λ of the adjacency matrix of G satisfies

λ ≤ (log log n)2

1000 log n(log log log n)
d.

Then G has a Hamilton cycle.

It is known that λ = Ω(d1/2) for d ≤ n/2. So the above result applies for example

to quasi-random graphs with λ = Θ(d1/2) whose density is polylogarithmic in n,
i.e. for quasi-random graphs which are quite sparse.

Theorem 2.9 has an application to Hamiltonicity of random Cayley graphs (see
Section 4.5). The proof of Theorem 2.9 makes crucial use of the fact that the
eigenvalue condition implies the following: small sets of vertices expand and there
are edges between any two large sets of vertices. Hefetz, Krivelevich and Szabó [66]
proved the following general result which goes beyond the class of regular graphs
and makes explicit use of these conditions.

Theorem 2.10 ([66]). There exists an integer n0 such that the following holds for

all integers n, d with n ≥ n0 and 12 ≤ d ≤ e(logn)
1/2

. Let m := n(log logn) log d
d logn log log logn .

Suppose that G is a graph on n vertices which satisfies the following two conditions:

• |N(S)| ≥ d|S| for every S ⊆ V (G) with |S| ≤ m;
• There is an edge in G between any two disjoint subsets A,B ∈ V (G) with
|A|, |B| ≥ m/4130.

Then G has a Hamilton cycle.

The original motivation for this result was a problem on maker-breaker games,
but the result also has several other applications, see [66].

3. Optimal packings of Hamilton cycles and decompositions

3.1. Optimal packings of Hamilton cycles in dense graphs. Nash-Williams [120]
proved a striking extension of Dirac’s theorem: every graph on n ≥ 3 vertices with
minimum degree at least n/2 contains not just one but at least 5n/224 edge-disjoint
Hamilton cycles. He conjectured [118, 119, 120] that there should even be n/4 of
these. This was disproved by Babai (see [118]), who gave a construction showing that
one cannot hope for more than (roughly) n/8 edge-disjoint Hamilton cycles (see the
end of this subsection for details). Nash-Williams subsequently raised the question
of finding the best possible bound, which is answered in Corollary 3.2 below.

Recently Csaba, Kühn, Lapinskas, Lo, Osthus and Treglown [95, 37, 38, 92] were
able to answer a more general form of this question: what is the maximum number of
edge-disjoint Hamilton cycles one can guarantee in a graph G of minimum degree δ?
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A natural upper bound is obtained by considering the largest degree regeven(G)
of an even-regular spanning subgraph of G. Let

regeven(n, δ) := min{regeven(G) : |V (G)| = n, δ(G) = δ}.

Clearly, in general we cannot guarantee more than regeven(n, δ)/2 edge-disjoint Hamil-
ton cycles in a graph of order n and minimum degree δ. The next result of Csaba,
Kühn, Lapinskas, Lo, Osthus and Treglown [95, 37, 38, 92] shows that this bound is
best possible (if δ < n/2, then regeven(n, δ) = 0).

Theorem 3.1 ([95, 37, 38, 92]). There exists an integer n0 such that every graph G
on n ≥ n0 vertices contains at least regeven(n, δ)/2 edge-disjoint Hamilton cycles.

The main result in [92] proves Theorem 3.1 unless G is close to one of the two
extremal graphs for Dirac’s theorem. This allows us in [95, 37, 38] to restrict our at-
tention to the latter situation (i.e. when G is close to the complete balanced bipartite
graph or close to the union of two disjoint copies of a clique).

An approximate version of Theorem 3.1 for δ ≥ n/2 + εn was obtained earlier
by Christofides, Kühn and Osthus [34]. Hartke and Seacrest [65] gave a simpler
argument with improved error bounds.

The parameter regeven(n, δ) can be evaluated via Tutte’s theorem. It turns out
that for n/2 ≤ δ < n, we have

regeven(n, δ) ∼
δ +

√
n(2δ − n)

2
,

(see [34, 64]). In particular, if δ ≥ n/2 then regeven(n, δ) ≥ (n−2)/4. So Theorem 3.1
implies the following explicit bound, which is best possible and answers the above
question of Nash-Williams [118, 119, 120].

Corollary 3.2. There exists an integer n0 such that every graph G on n ≥ n0
vertices with minimum degree δ(G) ≥ n/2 contains at least (n − 2)/8 edge-disjoint
Hamilton cycles.

The following construction (which is based on a construction of Babai, see [118])
shows that the bound in Corollary 3.2 is best possible for n = 8k + 2, where k ∈ N.
Consider the graph G consisting of one empty vertex class A of size 4k, one vertex
class B of size 4k + 2 containing a perfect matching and no other edges, and all
possible edges between A and B. Thus G has order n = 8k+ 2 and minimum degree
4k + 1 = n/2. Any Hamilton cycle in G must contain at least two edges of the
perfect matching in B, so G contains at most b|B|/4c = k = (n− 2)/8 edge-disjoint
Hamilton cycles.

A weaker version of Theorem 3.1 for digraphs was proved by Kühn and Osthus
in [103]. Ferber, Krivelevich and Sudakov [51] asked whether one can also obtain
such a result for oriented graphs.

Recall that Theorem 3.1 is best possible for the class of graphs on n vertices with
minimum degree δ. The following conjecture of Kühn, Lapinskas and Osthus [92]
would strengthen this in the sense that it would be best possible for every single
graph G.
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Conjecture 3.3 ([92]). Suppose that G is a graph on n vertices with minimum
degree δ(G) ≥ n/2. Then G contains regeven(G)/2 edge-disjoint Hamilton cycles.

For δ ≥ (2 −
√

2 + ε)n, this conjecture was proved by Kühn and Osthus [103].
Recently, Ferber, Krivelevich and Sudakov [51] were able to obtain an approximate
version of Conjecture 3.3, i.e. a set of (1 − ε)regeven(G)/2 edge-disjoint Hamilton
cycles under the assumption that δ(G) ≥ (1 + ε)n/2.

Also, it seems that the following ‘dual’ version of the problem has not been inves-
tigated yet.

Question 3.4. Given a graph G on n vertices with δ(G) > n/2, how many Hamilton
cycles are needed in order to cover all the edges of G?

A trivial lower bound would be given by d∆(G)/2e. However, this cannot always
be achieved. Indeed, consider for example the graph G obtained from a complete
graph on an odd number n of vertices by deleting an edge xy. Let C be a collection
of Hamilton cycles covering all edges of G. Since both x and y have odd degree, at
least one edge at each of x and y has to lie in at least two Hamilton cycles from C.
Thus |C| > (n− 1)/2 = ∆(G)/2.

Moreover, it is easy to see that the condition that δ > n/2 in Question 3.4 is
needed to ensure that every edge lies in a Hamilton cycle (consider the balanced
complete bipartite graph with a single edge in one of the classes). More is known
about the probabilistic version of Question 3.4 (see Section 4).

Question 3.4 can be viewed as a restricted version of the following conjecture of
Bondy [26], where arbitrary cycle lengths are permitted:

Conjecture 3.5 ([26]). The edges of every 2-edge-connected graph on n vertices can
be covered by at most 2(n− 1)/3 cycles.

3.2. The Hamilton decomposition and 1-factorization conjectures. Theo-
rem 3.1 shows that for dense graphs the bottleneck for finding many edge-disjoint
Hamilton cycles is the densest even-regular spanning subgraph. This makes it nat-
ural to consider the class of dense regular graphs. In fact, Nash-Williams [118, 119]
suggested that these should even have a Hamilton decomposition.

Here a Hamilton decomposition of a graph G consists of a set of edge-disjoint
Hamilton cycles covering all edges of G. A natural extension of this to regular graphs
G of odd degree is to ask for a decomposition into Hamilton cycles and one perfect
matching (i.e. one perfect matching M in G together with a Hamilton decomposition
of G−M). The most basic result in this direction is Walecki’s theorem (see [112]),
which dates back to the 19th century:

Theorem 3.6 (see [112]). If n is odd, then the complete graph Kn on n vertices has
a Hamilton decomposition. If n is even, then Kn has a decomposition into Hamilton
cycles together with a perfect matching.

The following result of Csaba, Kühn, Lo, Osthus and Treglown [95, 37, 38, 94] gen-
eralizes Walecki’s theorem to arbitrary regular graphs which are sufficiently dense:
it determines the degree threshold for a regular graph to have a Hamilton decom-
position. In particular, it solves the above ‘Hamilton decomposition conjecture’ of
Nash-Williams [118, 119] for all large graphs.
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Theorem 3.7 ([95, 37, 38, 94]). There exists an integer n0 such that the following
holds. Let n, d ∈ N be such that n ≥ n0 and d ≥ bn/2c. Then every d-regular graph
G on n vertices has a decomposition into Hamilton cycles and at most one perfect
matching.

The bound on the degree in Theorem 3.7 is best possible. Indeed, it is easy
to see that a smaller degree bound would not even ensure connectivity. Previous
results include the following: Nash-Williams [117] showed that the degree bound
in Theorem 3.7 guarantees a single Hamilton cycle. Jackson [69] showed that one
can guarantee close to d/2− n/6 edge-disjoint Hamilton cycles. Christofides, Kühn
and Osthus [34] obtained an approximate decomposition under the assumption that
d ≥ n/2+εn. Under the same assumption, Kühn and Osthus [103] obtained an exact
decomposition (as a consequence of Theorem 3.17 below). Note that Conjecture 3.3
would ‘almost’ imply Theorem 3.7.

Theorem 3.7 is related to the so-called ‘1-factorization conjecture’. Recall that
Vizing’s theorem states that for any graph G of maximum degree ∆(G), the edge-
chromatic number χ′(G) of G is either ∆(G) or ∆(G) + 1. For regular graphs G,
χ′(G) = ∆(G) is equivalent to the existence of a 1-factorization, i.e. of a set of edge-
disjoint perfect matchings covering all edges of G. The long-standing 1-factorization
conjecture guarantees a 1-factorization in every regular graph of sufficiently high
degree. It was first stated explicitly by Chetwynd and Hilton [31, 32] (who also
proved partial results). However, they state that according to Dirac, it was already
discussed in the 1950s. The following result of Csaba, Kühn, Lo, Osthus and Tre-
glown [95, 37, 38, 94] confirms this conjecture for sufficiently large graphs.

Theorem 3.8 ([95, 37, 38, 94]). There exists an n0 such that the following holds.
Let n, d ∈ N be such that n ≥ n0 is even and d ≥ 2dn/4e − 1. Then every d-regular
graph G on n vertices has a 1-factorization. Equivalently, χ′(G) = d.

The bound on the minimum degree in Theorem 3.8 is best possible. Indeed, a
smaller bound on d would not even ensure a single perfect matching. To see this,
suppose for example that n = 2 mod 4 and consider the graph which is the disjoint
union of two cliques of order n/2 (which is odd).

Note that Theorem 3.7 does not quite imply Theorem 3.8, as the degree threshold
in the former result is slightly higher. The 1-factorization conjecture is a special
case of the ‘overfull subgraph’ conjecture. This would give an even wider class
of graphs whose edge-chromatic number equals the maximum degree (see e.g. the
monograph [132]).

The best previous result towards the 1-factorization conjecture is due to Perkovic
and Reed [123], who proved an approximate version, i.e. they assumed that d ≥ n/2+
εn. This was generalized by Vaughan [135] to multigraphs of bounded multiplicity.

The following ‘perfect 1-factorization conjecture’ was posed by Kotzig [86] more
than fifty years ago at the first international conference devoted to Graph Theory. It
combines 1-factorizations and Hamilton decompositions. First note that it is easy to
see that the complete graph K2n has a 1-factorization. The ‘perfect 1-factorization
conjecture’ would provide a far-reaching generalization of this fact.
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Conjecture 3.9 ([86]). K2n has a perfect 1-factorization, i.e. a 1-factorization in
which any two 1-factors induce a Hamilton cycle.

The conjecture is known to hold if n or 2n− 1 is a prime, and for several special
values of n, but beyond that very little is known. To approach the conjecture it
would be interesting to find 1-factorizations so that the number of pairs of 1-factors
which induce Hamilton cycles is as large as possible (see e.g. [137]).

Walecki’s theorem can also be generalized in another direction: Alspach conjec-
tured that one can decompose the complete graph Kn into cycles of arbitrary length.
This was recently confirmed by Bryant, Horsley and Pettersson [29].

Theorem 3.10. Kn has a decomposition into t cycles of specified lengths m1, . . . ,mt

if and only if n is odd, 3 ≤ mi ≤ n for i ≤ t, and m1 + · · ·+mt =
(
n
2

)
.

Perhaps it might be possible to prove a probabilistic analogue of this or extend
the result to non-complete graphs.

As the final open problem in the area, we turn to a beautiful conjecture of Bermond
(see [6]) that the existence of a Hamilton decomposition in a graph is inherited by
its line graph (note that an Euler circuit in a graph corresponds to a Hamilton cycle
in the line graph).

Conjecture 3.11 (see [6]). If G has a Hamilton decomposition, then the line graph
L(G) of G has a Hamilton decomposition as well.

Muthusamy and Paulraja [116] proved this conjecture in the case when the number
of Hamilton cycles in a Hamilton decomposition of G is even (i.e. when G is d-regular
where 4|d). They also came quite close to proving it in the remaining case: they
showed that if the number of Hamilton cycles in a Hamilton decomposition of G is
odd, then L(G) can be decomposed into Hamilton cycles and one 2-factor.

3.3. Kelly’s conjecture. Kelly’s conjecture (see e.g. [114]) dates back to 1968 and
states that every regular tournament has a Hamilton decomposition. So one could
view this as an oriented version of Walecki’s theorem. Kühn and Osthus [102] recently
proved the following result, which shows that Kelly’s conjecture is even true if one
replaces the class of regular tournaments by that of sufficiently dense regular oriented
graphs. (Recall that an oriented graph G is a directed graph without 2-cycles. G is
d-regular if all the in- and outdegrees equal d.)

Theorem 3.12 ([102]). For every ε > 0 there exists an integer n0 such that every
d-regular oriented graph G on n ≥ n0 vertices with d ≥ 3n/8 + εn has a Hamilton
decomposition.

In fact, Kühn and Osthus deduce this result from an even more general result,
which involves an expansion condition rather than a degree condition (see Theo-
rem 3.17). It is not clear whether the bound ‘3n/8’ is best possible. However, this
bound is a natural barrier since the minimum in- and outdegree threshold which
guarantees a single Hamilton cycle in an (not necessarily regular) oriented graph is
(3n − 4)/8. As mentioned above, Theorem 3.12 implies Kelly’s conjecture for all
large tournaments.
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Corollary 3.13. There exists an integer n0 such that every regular tournament on
n ≥ n0 vertices has a Hamilton decomposition.

Kühn and Osthus [103] also used Theorem 3.12 to prove a conjecture of Erdős on
optimal packings of Hamilton cycles in random tournaments, which can be viewed
as a probabilistic version of Kelly’s conjecture:

Theorem 3.14 ([103]). Let T be a tournament on n vertices which is chosen uni-
formly at random. Then a.a.s. T contains min{δ+(T ), δ−(T )} edge-disjoint Hamilton
cycles.

(Here we write a.a.s. for ‘asymptotically almost surely’, see Section 4 for the
definition.) The bound is clearly best possible. A similar phenomenon has been
shown to occur in the random graph Gn,p (see Theorem 4.1).

Jackson [71] posed the following bipartite version of Kelly’s conjecture. Here a
bipartite tournament is an orientation of a complete bipartite graph.

Conjecture 3.15 ([71]). Every regular bipartite tournament has a Hamilton decom-
position.

It is not even known whether there exists an approximate decomposition, i.e. a set
of Hamilton cycles covering almost all the edges of a regular bipartite tournament.
More generally, we define a regular k-partite tournament to be an orientation of a
complete k-partite graph with equally sized vertex classes in which the indegree of
every vertex equals its outdegree. Kühn and Osthus [103] proved that for k ≥ 4,
every regular k-partite tournament has a Hamilton decomposition. The following
conjecture (which might be easier than Conjecture 3.15) would cover the remaining
case when k = 3.

Conjecture 3.16 ([103]). Every regular 3-partite tournament has a Hamilton de-
composition.

Another conjecture related to Kelly’s conjecture was posed by Thomassen. The
idea is to force many edge-disjoint Hamilton cycles by high connectivity rather than
regularity: Thomassen [134] conjectured that for every k there is an integer f(k) so
that every strongly f(k)-connected tournament contains k edge-disjoint Hamilton
cycles. Kühn, Lapinskas, Osthus and Patel [93] proved this by showing that f(k) =
O(k2(log k)2) and conjectured that f(k) = O(k2).

3.4. Robust expansion. As we already indicated in Section 2, there is an inti-
mate connection between expansion and Hamiltonicity. In what follows, we describe
a relatively new ‘dense’ notion of expansion, which has been extremely fruitful in
studying not just Hamilton cycles but also Hamilton decompositions and more gen-
eral subgraph embeddings.

Roughly speaking, this notion of ‘robust expansion’ is defined as follows: for any
set S of vertices, its robust neighbourhood is the set of all those vertices which have
many neighbours in S. A graph is a robust expander if for every set S which is not
too small and not too large, its robust neighbourhood is at least a little larger than S
itself.
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More precisely, let 0 < ν ≤ τ < 1. Given any graph G on n vertices and S ⊆ V (G),
the ν-robust neighbourhood RNν,G(S) of S is the set of all those vertices x of G which
have at least νn neighbours in S. G is called a robust (ν, τ)-expander if

|RNν,G(S)| ≥ |S|+ νn for all S ⊆ V (G) with τn ≤ |S| ≤ (1− τ)n.

This notion was introduced (for digraphs) by Kühn, Osthus and Treglown [105], who
showed that every robustly expanding digraph of linear minimum in- and outdegree
contains a Hamilton cycle. Examples of robust expanders include graphs on n ver-
tices with minimum degree at least n/2 + εn as well as quasi-random graphs. Kühn
and Osthus [102, 103] showed that every sufficiently large regular robust expander
of linear degree has a Hamilton decomposition.

Theorem 3.17 ([102, 103]). For every α > 0 there exists τ > 0 such that for all
ν > 0 there exists an integer n0 = n0(α, ν, τ) for which the following holds. Suppose
that

(i) G is a d-regular graph on n ≥ n0 vertices, where d ≥ αn;
(ii) G is a robust (ν, τ)-expander.

Then G has a Hamilton decomposition.

In [102] they actually proved a version of this for digraphs, which has several
applications. (The undirected version is derived in [103].) For example, this digraph
version implies the following result.

Theorem 3.18 ([102]). For every ε > 0 there exists an integer n0 such that ev-
ery d-regular digraph G on n ≥ n0 vertices with d ≥ (1/2 + ε)n has a Hamilton
decomposition.

Theorem 3.18 is a far-reaching generalization of a result of Tillson, who proved
a directed version of Walecki’s theorem. Moreover, Theorem 3.18 (which is algo-
rithmic) has an application to finding good tours for the (asymmetric) Traveling
Salesman Problem (see [102]).

The main original motivation for these results was to prove Kelly’s conjecture
for large tournaments: indeed the directed version of Theorem 3.17 easily implies
Theorem 3.12.

Theorem 3.17 has numerous further applications apart from Theorems 3.18 and 3.12
(both immediate ones and ones for which it is used as a tool). For example, it is easy
to see that for dense graphs, robust expansion is a relaxation of the notion of quasi-
randomness. So in particular, Theorem 3.17 implies (for large n) a recent result of
Alspach, Bryant and Dyer [7] that every Paley graph has a Hamilton decomposition.
Theorem 3.17 is also used in the proof of the Hamilton decomposition conjecture
and the 1-factorization conjecture (Theorems 3.7 and 3.8).

The proof of Theorem 3.17 uses an ‘approximate’ version of the result, which was
proved by Osthus and Staden [121] and states that the conditions of the theorem
imply the existence of an ‘approximate decomposition’, i.e. the existence of a set
of edge-disjoint Hamilton cycles covering almost all edges of G. (This generalizes
an earlier result of Kühn, Osthus and Treglown [106] on approximate Hamilton
decompositions of regular tournaments.)
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Assuming this approximate version, the basic idea behind the proof of Theo-
rem 3.17 can be described as follows. Let G be a robustly expanding graph as in
Theorem 3.17. Suppose that inside G we can find a sparse regular spanning sub-
graph Hrob which is ‘robustly decomposable’ in the sense that it still has a Hamilton
decomposition if we add a few edges to it. More precisely, Hrob is robustly decompos-
able if Hrob∪H0 has a Hamilton decomposition whenever H0 is a very sparse regular
graph which is edge-disjoint from Hrob and has the same vertex set. Then assuming
the existence of such an Hrob, we can prove Theorem 3.17 as follows. Initially, we
remove the edges of Hrob from G to obtain G′. Since the expansion property of G is
robust, G′ is still a robust expander with slightly weaker parameters. So we can find
an approximate decomposition of G′ using the result in [121] mentioned above. Let
H0 be the leftover, i.e. the set of all those edges of G′ which are not contained in the
approximate decomposition. Now apply the fact that Hrob is robustly decomposable
to obtain a Hamilton decomposition of Hrob ∪H0 and thus of G.

To construct Hrob, we proceed in several steps: we actually construct several suit-
able graphs Hrob

1 , . . . ,Hrob
` which together play the role of Hrob. More precisely,

we remove the edges in all these Hrob
i at the start and find an approximate de-

composition of the remainder of G. Let H0 be the leftover from this approximate
decomposition step. Then we show that Hrob

1 ∪ H0 contains a set of edge-disjoint
Hamilton cycles so that the resulting leftover H1 (i.e. the graph consisting of all those
edges of Hrob

1 ∪H0 not covered by these Hamilton cycles) has more structure than
H0 (i.e. H1 has some useful properties). This in turn means that we can improve on
the previous step and now find a set of edge-disjoint Hamilton cycles in Hrob

2 ∪H1

so that the resulting leftover H2 has even more structure than H1. After `− 1 steps,
H`−1 will be a sufficiently ‘nice’ graph so that Hrob

` ∪H`−1 actually has a Hamilton
decomposition.

This general approach was first introduced in [82]. We believe that it will also be
useful for a wide range of problems, and is not restricted to Hamilton cycles.

4. Random graphs

Probabilistic versions of the above Hamiltonicity questions have also been studied
intensively. As usual, Gn,p will denote a binomial random graph on n vertices where
every edge is present with probability p (independently from all other edges), and
we say that a property of a random graph on n vertices holds a.a.s. (asymptotically
almost surely) if the probability that it holds tends to 1 as n tends to infinity.

Improving on bounds by several authors, Bollobás [20]; Komlós and Szemerd́i [84]
as well as Korshunov [85] determined the precise value of p which ensures a Hamilton
cycle: if pn ≥ log n+ log log n+ ω(n), where ω(n)→∞ as n→∞, then a.a.s. Gn,p
contains a Hamilton cycle. On the other hand, if pn ≤ log n+ log log n− ω(n), then
a.a.s. Gn,p contains an isolated vertex.

One can even obtain a ‘hitting time’ version of this result in the evolutionary
process Gn,t. For this, let Gn,0 be the empty graph on n vertices. Consider a
random ordering of the edges of Kn. Let Gn,t be obtained from Gn,t−1 by adding
the tth edge in the ordering. Ajtai, Kómlos and Szemerédi [1] as well as Bollobás [21]
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showed that a.a.s. the time t at which Gn,t attains minimum degree two is the same
as the time at which it first contains a Hamilton cycle.

There are many generalizations and related results. Recently, much attention has
focused on the following areas, which we will discuss below:

• Optimal packings of edge-disjoint Hamilton cycles,
• Resilience and robustness.

However, many intriguing questions remain open.

4.1. Optimal packings of Hamilton cycles. Bollobás and Frieze [25] extended
the above hitting time result to packing edge-disjoint Hamilton cycles in random
graphs of bounded minimum degree. In particular, this implies the following: sup-
pose that pn ≤ log n + O(log log n). Then a.a.s. Gn,p has bδ(Gn,p)/2c edge-disjoint
Hamilton cycles. Frieze and Krivelevich [55] made the striking conjecture that this
extends to all p. This has recently been confirmed in a sequence of papers by several
teams of authors:

Theorem 4.1. For any p = p(n), a.a.s. Gn,p has bδ(Gn,p)/2c edge-disjoint Hamilton
cycles.

We now summarize the results leading to a proof of Theorem 4.1. Here ‘exact’
refers to a bound of bδ(Gn,p)/2c, ‘approx.’ refers to a bound of (1−ε)δ(Gn,p)/2, and
ε is a positive constant.

authors range of p
Ajtai, Komlós, Szemerédi [1]; Bollobás [21] δ(Gn,p) = 2 exact
Bollobás & Frieze [25] δ(Gn,p) bounded exact
Frieze & Krivelevich [54] p constant approx.

Frieze & Krivelevich [55] p = (1+o(1)) logn
n exact

Knox, Kühn & Osthus [81] p� logn
n approx.

Ben-Shimon, Krivelevich & Sudakov [15] (1+o(1)) logn
n ≤ p ≤ 1.02 logn

n exact

Knox, Kühn & Osthus [82] (logn)50

n ≤ p ≤ 1− n−1/5 exact

Krivelevich & Samotij [90] logn
n ≤ p ≤ n−1+ε exact

Kühn & Osthus [103] p ≥ 2/3 exact

In particular, the results in [25, 82, 90, 103] (of which [82, 90] cover the main range)
together imply Theorem 4.1.

Glebov, Krivelevich and Szabó [59] were the first to consider the ‘dual’ version of
this problem: how many Hamilton cycles are needed to cover all the edges of Gn,p?
Hefetz, Kühn, Lapinskas and Osthus [67] solved this problem for all p that are not
too small or too large (based on the main lemma of [82]).

Theorem 4.2 ([67]). Suppose that (logn)117

n ≤ p ≤ 1− n−1/8. Then a.a.s. the edges
of Gn,p can be covered by d∆(Gn,p)/2e Hamilton cycles.

It would be interesting to know whether a ‘hitting time’ version of Theorem 4.2
holds. For this, given a property P, let t(P) denote the hitting time of P, i.e. the
smallest t so that Gn,t has P.
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Question 4.3 ([67]). Let C denote the property that an optimal covering of a graph
G with Hamilton cycles has size d∆(G)/2e. Let H denote the property that a graph
G has a Hamilton cycle. Is it true that a.a.s. t(C) = t(H)?

Note that C is not monotone. In fact, it is not even the case that for all t > t(C),
Gn,t a.a.s. has C. Taking n ≥ 5 odd and t =

(
n
2

)
− 1, Gn,t is the complete graph with

one edge removed – which, as noted at the end of Section 3.1, cannot be covered by
(n−1)/2 Hamilton cycles. It would be interesting to determine (approximately) the
ranges of t such that a.a.s. Gn,t has C.

Another natural model of random graphs is of course that of random regular
graphs. In this case it seems plausible that we can actually ask for a Hamilton de-
composition (and thus obtain an analogue of Theorem 3.7 for sparse random graphs).
Indeed, for random regular graphs of bounded degree this was proved by Kim and
Wormald [80] and for (quasi-)random regular graphs of linear degree this was proved
by Kühn and Osthus [103] (as a consequence of Theorem 3.17). However, the inter-
mediate range remains open:

Conjecture 4.4. Suppose that d = d(n)→∞ and d = o(n). Then a.a.s. a random
d-regular graph on n vertices has a decomposition into Hamilton cycles and at most
one perfect matching.

So far, not even an approximate version of this is known. One might be able to
deduce this from the results in [82].

An analogue of the hitting time result of Bollobás and Frieze [25] for random
geometric graphs was proved by Müller, Perez-Gimenez and Wormald [115]. Here
the model is that n vertices are placed at random on the unit square and edges
are sequentially added in increasing order of edge-length. For fixed k ≥ 1, they
prove that a.a.s. the first edge in the process that creates minimum degree at least k
also causes the graph to have bk/2c edge-disjoint Hamilton cycles. The hitting time
result for the case k = 1 was proved slightly earlier by Balogh, Bollobás, Krivelevich,
Müller and Walters [10].

The giant component of a random graph is also intriguing to study with respect to
Hamiltonicity. More precisely, let τk denote the minimum time t such that the k-core
of Gn,t (its unique maximal subgraph with minimum degree at least k) is nonempty.
Remarkably, the k-core will a.a.s. have linear size right from the start, i.e. at time
τk. Bollobás, Cooper, Fenner and Frieze [23] gave bounds on the threshold for the
appearance of a Hamilton cycle in the k-core. They did this by investigating the
threshold for Hamiltonicity in random graphs with a given number m = cn of edges
and minimum degree k. The following conjecture that the k-core will immediately
contain many edge-disjoint Hamilton cycles is implicit in their work.

Conjecture 4.5 ([23]). Fix k ≥ 3. Then a.a.s. at time t ≥ τk, the k-core of Gn,t
contains b(k − 1)/2c edge-disjoint Hamilton cycles.

The bound b(k − 1)/2c would be best possible: one can prove that the k-core
a.a.s. contains a k-spider (a vertex x of degree k + 1 whose neighbours all have
degree k). This prevents the existence of more edge-disjoint Hamilton cycles: indeed,
suppose that k is even. Then a set of k/2 edge-disjoint Hamilton cycles will use up
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all edges at each of the neighbours of x and thus all edges at x, which is clearly
impossible.

Krivelevich, Lubetzky and Sudakov [89] gave support for Conjecture 4.5 by show-
ing that a.a.s. for k ≥ 15, at time τk, the k-core of Gt does contain at least one
Hamilton cycle and that for large enough (but fixed) k a.a.s. the k-core contains
b(k − 3)/2c edge-disjoint Hamilton cycles for all t ≥ τk. Note that one challenge
involved in proving the above conjecture is that the property of containing a Hamil-
ton cycle is not monotone in t, as the k-core is continually growing until it contains
every vertex.

4.2. Resilience. Often one would like to know not just whether some graph G has a
property P, but ‘how strongly’ it has this property. In other words, does G still have
property P if we delete (or add) some edges? Implicitly, variants of this question
have been studied for many properties and many classes of graphs. Sudakov and
Vu [133] recently initiated the systematic study of this question. In particular, they
introduced the notion of resilience of a graph with respect to a property P (below,
we assume that P is monotone increasing, i.e. that P cannot be destroyed by adding
edges):

• a graph has local resilience t with respect to P if it still has P whenever one
deletes a set of edges such that at each vertex less than t edges are deleted;
• a graph has global resilience t with respect to P if it still has P whenever

one deletes less than t edges.

Which of these variants is the more natural one to study usually depends on the
property P: for ‘global’ properties such as Hamiltonicity and connectivity the local
resilience leads to more interesting results, whereas for ‘local’ properties such as
triangle containment, it makes more sense to study the global resilience. Resilience
has been studied intensively for various random graph models (mainly Gn,p), as it
yields natural probabilistic versions of ‘classical’ theorems. Lee and Sudakov [108]
proved a resilience version of Dirac’s theorem (which improved previous bounds by
several authors):

Theorem 4.6 ([108]). For any ε > 0 there is a constant C so that the following
holds. If p ≥ C log n/n then a.a.s. every subgraph of Gn,p with minimum degree at
least (1 + ε)np/2 contains a Hamilton cycle.

It is natural to consider more general structures than Hamilton cycles. However,
as observed by Huang, Lee and Sudakov [68], there is a limit to what one can ask for
in this context: for every ε > 0 there exists p with 0 < p < 1 such that a.a.s. Gn,p
contains a subgraph H with minimum degree at least (1− ε)np and Ω(1/p2) vertices
that are not contained in a triangle of H.

As an even more informative notion than local resilience, Lee and Sudakov [108]
recently suggested a generalization of local resilience which allows a different number
of edges to be deleted at different vertices. In other words, in this ‘degree sequence
resilience’ the degree sequence of the deleted graph has to be dominated by the given
constraints. In particular, they asked for a resilience version of Chvátal’s theorem
on Hamilton cycles:
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Problem 4.7 ([108]). Characterize all those sequences (k1, . . . , kn) for which G =
Gn,p a.a.s. has the following property: Let H ⊆ G be such that the degree sequence
(d1, . . . , dn) of H satisfies di ≤ ki for all i ≤ n. Then G−H has a Hamilton cycle.

Partial results on this problem were obtained by Ben-Shimon, Krivelevich and
Sudakov [15].

Another way of measuring the resilience of a graph with respect to some property
is the study of ‘maker-breaker games’ in graphs: given a graph G, a maker-breaker
game is played as follows: players ‘maker’ and ‘breaker’ take turns to choose an edge
of G (with breaker taking the first move). The aim of maker is to build (in this
case) a Hamilton cycle, and the aim of breaker is to prevent this. The basic question
is then for which graphs G maker has a winning strategy (regardless of breaker’s
strategy). Ben-Shimon, Ferber, Hefetz and Krivelevich [14] proved the following
hitting time result: maker has a winning strategy on Gn,t a.a.s. as soon as Gn,t has
minimum degree four (this is clearly best possible). One can view this as an ‘on-line’
version of global resilience. Many related questions about Hamiltonicity and other
properties have been investigated in the context of combinatorial games, see e.g. the
monograph [13].

4.3. Robust Hamiltonicity. An approach which can be viewed as ‘dual’ to re-
silience was taken by Krivelevich, Lee and Sudakov [88]. They proved the following
extension of Dirac’s theorem, which one can view as a ‘robust’ version of the theorem.

Theorem 4.8 ([88]). There exists a constant C such that for p ≥ C log n/n and
a graph G on n vertices of minimum degree at least n/2, the random subgraph Gp
obtained from G by including each edge with probability p is a.a.s. Hamiltonian.

This theorem gives the correct order of magnitude of the threshold function since if
p is a little smaller than log n/n, then the graph Gp a.a.s. has isolated vertices. Also,
since there are graphs with minimum degree n/2− 1 which are not even connected,
the minimum degree condition cannot be improved. Note that the result can be
viewed as an extension of Dirac’s theorem since the case p = 1 is equivalent to
Dirac’s theorem.

One can ask similar questions for other (families of) graphs which are known to be
Hamiltonian. In particular, a natural question that seems to have been unfairly ne-
glected is that of the Hamiltonicity threshold in random hypercubes. More precisely,
given n and p, the random subgraph Qn,p of the n-dimensional cube Qn is defined
as follows: each edge of Qn is included independently in Qn,p with probability p.
Bollobás [22] proved that if p > 1/2 is a constant, then a.a.s. Qn,p is connected and
has a perfect matching (and actually proved a hitting time version of this result). It
seems plausible that a.a.s. Qn,p even contains a Hamilton cycle. There is no chance
for this if p ≤ 1/2 as there is a significant probability that Qn,p has an isolated vertex
in that case.

Conjecture 4.9. Suppose that p > 1/2 is a constant. Then a.a.s. Qn,p has a
Hamilton cycle.

As far as we are aware, the question is still open even if p is any constant close
to one. Since Qn is Hamiltonian, the above conjecture can be viewed as a ‘robust’
version of this simple fact.
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4.4. The Pósa-Seymour conjecture. Surprisingly, a probabilistic analogue of the
Pósa-Seymour conjecture is still open. This beautiful generalization of Dirac’s theo-
rem states that every graph G on n vertices with minimum degree at least kn/(k+1)
contains the kth power of a Hamilton cycle (which is obtained from a Hamilton cycle
C by adding edges between any vertices at distance at most k on C). The conjecture
was proved for large graphs by Komlós, Sárközy and Szemerédi [83]. For squares
of Hamilton cycles (i.e. for k = 2) the best current bound in this direction is due
to Châu, DeBiasio and Kierstead [30], who proved that in this case the conjecture
holds for all graphs on at least 2 · 108 vertices.

A straightforward first moment argument indicates that the threshold for the
square of a Hamilton cycle in Gn,p should be close to p = n−1/2. Note that unlike the
deterministic version of the problem, this threshold would be significantly larger than
the threshold for a triangle-factor. The latter was determined to be n−2/3(log n)1/3

in a breakthrough by Johansson, Kahn and Vu [75].

Conjecture 4.10 ([101]). If p � n−1/2, then a.a.s. Gn,p contains the square of a
Hamilton cycle.

When k ≥ 3, the threshold is n−1/k. This follows from a far more general theorem
on thresholds for spanning structures in Gn,p which was obtained by Riordan [124].
His proof is based on the second moment method. In [101] Kühn and Osthus proved

an ‘approximate’ version of the above conjecture: for any ε > 0, if p ≥ n−1/2+ε, then
Gn,p a.a.s. contains the square of a Hamilton cycle. Their proof is ‘combinatorial’ in
the sense that it uses a version of the absorbing method for random graphs rather
than the second moment method. A version of this for quasi-random graphs was
proved by Allen, Böttcher, Hàn, Kohayakawa and Person [3]. Their result also
extends to kth powers of Hamilton cycles.

In the spirit of Theorem 4.8, one could also ask about a ‘robust’ version of Con-
jecture 4.10.

4.5. Random Cayley graphs. Random graphs also offer an interesting avenue to
Conjecture 2.5 on the Hamiltonicity of Cayley graphs: one can consider a random
set S of generators and ask how large S has to be to ensure that a.a.s. the resulting
graph is Hamiltonian. More precisely, given a group H, a random Cayley graph
G(S,H, k) is defined in the same way as a Cayley graph, except that S is now a set
of k elements of H chosen uniformly at random. Similarly as for Gn,p, one can now
ask for the threshold for various properties. While there are some similarities, there
appear to be some significant differences. These stem from the fact that (unlike
Gn,p) random Cayley graphs exhibit a high degree of symmetry.

Christofides and Markström [35] showed that for k ≥ (1+ε) log2 n, a.a.s.G(S,H, k)
is connected (where n is the order of H). This is best possible in the sense that the
Cayley graph of H = Zm2 with respect to any set S of size less than m = log2 n is
disconnected. Pak and Radoičić [122] posed the following related conjecture.

Conjecture 4.11 ([122]). There exists a constant C > 1 such that if H is a group
of order n and k ≥ C log2 n, then a.a.s. the random Cayley graph G(S,H, k) is
Hamiltonian.
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Krivelevich and Sudakov [91] used Theorem 2.9 to show that a.a.s. k = (log n)5

suffices to ensure Hamiltonicity. Currently the best result towards Conjecture 4.11
is by Christofides and Markström [35], who showed that k = (log n)3 suffices.

5. Hamilton cycles in uniform hypergraphs

Cycles in hypergraphs have been studied since the 1970s. The first notion of a
hypergraph cycle was introduced by Berge [16]. Recently, the much more structured
notion of ‘`-cycles’ has become very popular and has led to very interesting results.

5.1. Dirac-type theorems. To obtain analogues of Dirac’s theorem for hyper-
graphs, we first need to generalize the notions of a cycle and of minimum degree.
There are several natural notions available.

A k-uniform hypergraph G consists of a set V (G) of vertices and a set E(G) of
edges so that each edge of consists of k vertices. Given an integer ` with 1 ≤ ` < k,
we say that a k-uniform hypergraph C is an `-cycle if there exists a cyclic ordering of
the vertices of C such that every edge of C consists of k consecutive vertices and such
that every pair of consecutive edges (in the natural ordering of the edges) intersects
in precisely ` vertices. So every `-cycle C has |V (C)|/(k − `) edges. In particular,
k− ` divides the number of vertices in C. If ` = k− 1, then C is called a tight cycle,
and if ` = 1, then C is called a loose cycle. C is a Hamilton `-cycle of a k-uniform
hypergraph G if V (C) = V (G) and E(C) ⊆ E(G).

More generally, a Berge cycle is an alternating sequence v1, e1, v2, . . . , vn, en of
distinct vertices vi and distinct edges ei so that each ei contains vi and vi+1. (Here
vn+1 := v1, and the edges ei are also allowed to contain vertices outside {v1, . . . , vn}.)
Thus every `-cycle is also a Berge cycle. A Berge cycle v1, e1, v2, . . . , vn, en is a
Hamilton Berge cycle of a hypergraph G if V (G) = {v1, . . . , vn} and ei ∈ E(G) for
each i ≤ n. So a Hamilton Berge cycle of G has |V (G)| edges. Moreover, every tight
Hamilton cycle of G is also a Hamilton Berge cycle of G (but this is not true for
Hamilton `-cycles with ` ≤ k − 2 as they have |V (G)|/(k − `) edges).

We now introduce several notions of minimum degree for a k-uniform hyper-
graph G. Given a set S of vertices of G, the degree dG(S) of S is the number
of all those edges of G which contain S as a subset. The minimum t-degree δt(G) of
G is then the minimum value of dG(S) taken over all sets S of t vertices of G. When
t = 1 we refer to this as the minimum vertex degree of G, and when t = k − 1 we
refer to this as the minimum codegree.

A Dirac-type theorem for Berge cycles was proved by Bermond, Germa, Heyde-
mann and Sotteau [18]. A Dirac-type theorem for tight Hamilton cycles was proved
by Rödl, Ruciński and Szemerédi [127, 128]. (This improved an earlier bound by
Katona and Kierstead [78].) Together with the fact that if (k − `)|n then any tight
cycle contains an `-cycle on the same vertex set (consisting of every (k− `)th edge),
this yields the following result.

Theorem 5.1 ([127, 128]). For all k ≥ 3, 1 ≤ ` ≤ k − 1 and any ε > 0 there exists
an integer n0 so that if n ≥ n0 and (k− `)|n then any k-uniform hypergraph G on n
vertices with δk−1(G) ≥

(
1
2 + ε

)
n contains a Hamilton `-cycle.
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If (k− `)|k and k|n then the above result is asymptotically best possible. Indeed,
to see this, note that if the above divisibility conditions hold, then every `-cycle
C contains a perfect matching (consisting of every k/(k − `)th edge of C). On
the other hand, it is easy to see that the following parity based construction shows
that a minimum codegree of n/2 − k does not ensure a perfect matching: Given
a set V of n vertices, let A ⊆ V be a set of vertices such that |A| is odd and
n/2− 1 ≤ |A| ≤ n/2 + 1. Let G be the k-uniform hypergraph whose edges consists
of all those k-element subsets S of V for which |S ∩A| is even.

For k = 3, Rödl, Ruciński and Szemerédi [129] were able to prove an exact version
of Theorem 5.1 (the threshold in this case is bn/2c). The following result of Kühn,
Mycroft and Osthus [98] deals with all those cases in which Theorem 5.1 is not
asymptotically best possible.

Theorem 5.2 ([98]). For all k ≥ 3, 1 ≤ ` ≤ k−1 with (k−`) - k and any ε > 0 there
exists an integer n0 so that if n ≥ n0 and (k − `)|n then any k-uniform hypergraph
G on n vertices with

δk−1(G) ≥

(
1

d k
k−`e(k − `)

+ ε

)
n

contains a Hamilton `-cycle.

Theorem 5.2 is asymptotically best possible. To see this, let t := n/(k − `) and
s := dk/(k − `)e. Fix a set A of dt/se − 1 vertices and consider the k-uniform
hypergraph G on n vertices whose hyperedges all have nonempty intersection with
A. Then δk−1(G) = |A|. However, an `-cycle on n vertices has t edges and every
vertex on such a cycle lies in at most s edges. So G does not contain an Hamilton
`-cycle since A would be a vertex cover for such a cycle and |A|s < t.

So the problem of which codegree forces a Hamilton `-cycle is asymptotically
solved, though exact versions covering all cases remain a challenging open problem.
For k = 3 and ` = 1, Czygrinow and Molla [42] were able to prove such an exact
version. The following table describes the history of the results leading to the current
state of the art.

authors k range of `
Rödl, Ruciński & Szemerédi [127] k = 3 ` = 2 approx.
Kühn & Osthus [99] k = 3 ` = 1 approx.
Rödl, Ruciński & Szemerédi [128] k ≥ 3 ` = k − 1 approx.
Keevash, Kühn, Mycroft & Osthus [79] k ≥ 3 ` = 1 approx.
Hàn & Schacht [62] k ≥ 3 1 ≤ ` < k/2 approx.
Kühn, Mycroft & Osthus [98] k ≥ 3 1 ≤ ` < k − 1, (k − `) - k approx.
Rödl, Ruciński & Szemerédi [129] k = 3 ` = 2 exact
Czygrinow and Molla [42] k = 3 ` = 1 exact

Proving corresponding results for vertex degrees seems to be considerably harder.
The following natural conjecture, which was implicitly posed by Rödl and Ruciński [125],
is wide open.
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Conjecture 5.3 ([125]). For all integers k ≥ 3 and all ε > 0 there is an integer n0
so that the following holds: if G is a k-uniform hypergraph on n ≥ n0 vertices with

δ1(G) ≥

(
1−

(
1− 1

k

)k−1
+ ε

)(
n

k − 1

)
,

then G contains a tight Hamilton cycle.

This would be asymptotically best possible. Indeed, if k|n then any tight Hamilton
cycle contains a perfect matching, and a minimum vertex degree which is slightly
smaller than in Conjecture 5.3 would not even guarantee a perfect matching. To see
the latter, fix a set A of n/k − 1 vertices and consider the k-uniform hypergraph
G on n vertices whose hyperedges all have nonempty intersection with A. Then
δ1(G) ∼ (1− (1− 1/k)k−1)

(
n
k−1
)
, but G does not contain a perfect matching.

For general k, Conjecture 5.3 seems currently out of reach – it is even a ma-
jor open question to determine whether the above degree bound ensures a perfect
matching of G. However, it would also be interesting to obtain non-trivial bounds
(see e.g. [125]). For k = 3 the best current bound towards Conjecture 5.3 was proved
by Rödl and Ruciński [126]. They showed that in this case the conjecture holds if
1− (1− 1/3)2 = 5/9 is replaced by (5−

√
5)/3.

For k = 3, Han and Zhao [63] were able to determine the minimum vertex degree
which guarantees a loose Hamilton cycle exactly.

Theorem 5.4 ([63]). There exists an integer n0 so that the following holds. Suppose

that G is a 3-uniform hypergraph on n ≥ n0 vertices with δ1(G) ≥
(
n
2

)
−
(
3n/4
2

)
+ c,

where n is even, c = 2 if 4|n and c = 1 otherwise. Then G contains a loose Hamilton
cycle.

The bound on the minimum vertex degree is tight: for n of the form 4t + 2, fix
a set A of t vertices and consider the k-uniform hypergraph G on n vertices whose
hyperedges all have nonempty intersection with A. Buß, Han and Schacht [28] had
earlier proved an asymptotic version of this result.

5.2. Hamilton cycles in random hypergraphs. Similarly as in the graph case,

it is natural to study Hamiltonicity questions in a probabilistic setting. Let H
(k)
n,p

denote the random k-uniform hypergraph on n vertices where every edge is present
with probability p, independently of all other edges. The following result of Dudek,
Frieze, Loh and Speiss [47] determines the threshold for the existence of a loose

Hamilton cycle in H
(k)
n,p. (In both Theorems 5.5 and 5.6 we only consider those n

which satisfy the trivial divisibility condition for the existence of an `-cycle, i.e. that
n is a multiple of k − `.)

Theorem 5.5 ([47]). Suppose that k ≥ 3. If p � (log n)/nk−1, then a.a.s. H
(k)
n,p

contains a loose Hamilton cycle.

The logarithmic factor appears due to the ‘local’ obstruction that a.a.s. H
(k)
n,p

contains isolated vertices below this threshold.
The proof of Theorem 5.5 is ‘combinatorial’ (in particular, it does not use the

second moment method) and builds on earlier results by Frieze [53] as well as Dudek
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and Frieze [45], which required additional divisibility assumptions. The argument
in [47] also uses the celebrated result of Johansson, Kahn and Vu [75] on the threshold
for perfect matchings in hypergraphs.

Loose Hamilton cycles in random regular hypergraphs have been considered by
Dudek, Frieze, Ruciński and Šileikis [49]. The next result due to Dudek and Frieze [46]
concerns precisely those values of k and ` not covered by Theorem 5.5. Thus together
Theorems 5.5 and 5.6 determine the threshold for the existence of a Hamilton `-cycle
in random k-uniform hypergraphs for any given value of k and `.

Theorem 5.6 ([49]).

(i) For all integers k > ` ≥ 2 and fixed ε > 0, if p = (1 − ε)ek−`/nk−`, then

a.a.s. H
(k)
n,p does not contain a Hamilton `-cycle.

(ii) If k > ` ≥ 2 and p� 1/nk−`, then a.a.s. H
(k)
n,p contains a Hamilton `-cycle.

(iii) For all fixed ε > 0, if k ≥ 4 and p = (1 + ε)e/n, then a.a.s. H
(k)
n,p contains a

tight Hamilton cycle.

The proof of Theorem 5.6 is based on the second moment method (which seems
to fail for Theorem 5.5). An algorithmic proof of (iii) with a weaker threshold of
p ≥ n−1+ε was given by Allen, Böttcher, Kohayakawa and Person [4]. Note that, for
k ≥ 4, (i) and (iii) establish a sharp threshold for tight Hamilton cycles, i.e. when
` = k− 1. It would be interesting to obtain a sharp threshold for other cases besides
those in (iii) and a hitting time result for loose Hamilton cycles.

5.3. Hamilton decompositions. Hypergraph generalisations of Walecki’s theorem
(Theorem 3.6) have also been investigated. This question was first studied for the

notion of a Berge cycle. Let K
(k)
n denote the complete k-uniform hypergraph on n

vertices. Since every Hamilton Berge cycle of K
(k)
n has n edges, a necessary condition

for the existence of a decomposition of K
(k)
n into Hamilton Berge cycles is that n

divides
(
n
k

)
. Bermond, Germa, Heydemann and Sotteau [18] conjectured that this

condition is also sufficient. For k = 3, this conjecture follows by combining the
results of Bermond [17] and Verrall [136]. Kühn and Osthus [104] showed that as
long as n is not too small, the conjecture holds for k ≥ 4 as well. So altogether this
yields the following result.

Theorem 5.7 ([17, 136, 104]). Suppose that 3 ≤ k < n, that n divides
(
n
k

)
and, in

the case when k ≥ 4, that n ≥ 30. Then K
(k)
n has a decomposition into Hamilton

Berge cycles.

The following conjecture of Kühn and Osthus [104] would be an analogue of The-
orem 5.7 for Hamilton `-cycles.

Conjecture 5.8 ([104]). For all integers 1 ≤ ` < k there exists an integer n0 such
that the following holds for all n ≥ n0. Suppose that k−` divides n and that n/(k−`)
divides

(
n
k

)
. Then K

(k)
n has a decomposition into Hamilton `-cycles.

To see that the divisibility conditions are necessary, recall that every `-cycle on n
vertices contains exactly n/(k − `) edges.
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The ‘tight’ case ` = k−1 of Conjecture 5.8 was already formulated and investigated
by Bailey and Stevens [8]. Actually, if n and k are coprime, the case ` = k −
1 already corresponds to a conjecture made independently by Baranyai [11] and
Katona concerning ‘wreath decompositions’. A k-partite version of the ‘tight’ case
of Conjecture 5.8 was recently proved by Schroeder [131].

Conjecture 5.8 is known to hold ‘approximately’ (with some additional divisibility
conditions on n), i.e. one can find a set of edge-disjoint Hamilton `-cycles which

together cover almost all the edges of K
(k)
n . This is a very special case of results

in [9, 56, 57] which together guarantee approximate decompositions of quasi-random
uniform hypergraphs into Hamilton `-cycles for 1 ≤ ` < k (again, the proofs need n
to satisfy additional divisibility constraints).

For example, Frieze, Krivelevich and Loh [57] proved an approximate decomposi-
tion result for tight Hamilton cycles in quasi-random 3-uniform hypergraphs, which
implies the following result about random hypergraphs.

Theorem 5.9 ([57]). Suppose that ε, p, n satisfy ε45np16 ≥ (log n)21. Then whenever

4|n, a.a.s. there is a collection of edge-disjoint tight Hamilton cycles of H
(3)
n,p which

cover all but at most an ε1/15-fraction of the edges of H
(3)
n,p.

The proof proceeds via a reduction to an approximate decomposition result of
quasi-random digraphs into Hamilton cycles. This reduction is also the cause for the
divisibility requirement. It would be nice to be able to eliminate this requirement.
It would also be interesting to know whether the threshold for the existence of an
approximate decomposition into Hamilton `-cycles coincides with the threshold for
a single Hamilton cycle.

6. Counting Hamilton cycles

In Section 3.1 the aim was to strengthen Dirac’s theorem (and other results)
by finding many edge-disjoint Hamilton cycles. Similarly, it is natural to omit the
condition of edge-disjointness and ask for the total number of Hamilton cycles in a
graph. For Dirac graphs (i.e. for graphs on n vertices with minimum degree at least
n/2), this problem was essentially solved by Cuckler and Kahn [40, 41]. They gave
a remarkably elegant formula which asymptotically determines the logarithm of the
number of Hamilton cycles.

To state their result, we need the following definitions. For a graph G and edge
weighting x : E(G) → R+, set h(x) :=

∑
e∈E(G) xe log2(1/xe), where xe denotes the

weight of the edge e. This is related to the entropy function, except that
∑

e∈E(G) xe
is not required to equal 1. We call an edge weighting x a perfect fractional matching
if
∑

e3v xe = 1 for each vertex v of G. Finally, let h(G) (the ‘entropy’ of G) be the
maximum of h(x) over all fractional matchings x.

Theorem 6.1 ([40, 41]). Suppose that G is a graph on n vertices with δ(G) ≥ n/2.
Then the number of Hamilton cycles in G is

(6.1) 22h(G)−n log2 e−o(n).
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In particular, the number of Hamilton cycles in G is at least

(6.2) (1− o(1))n
δ(G)n

nn
n! ≥ n!

(2 + o(1))n
.

(6.2) answers a question of Sárközy, Selkow and Szemerédi [130]. The proof of
the lower bound in (6.1) proceeds by considering a random walk which embeds the
Hamilton cycles. (6.2) is a consequence of (6.1), but the derivation is nontrivial. (It
is easy to derive if G is d-regular, as then setting xe := 1/d for each edge e of G
maximises h(x).) As a general bound on the number of Hamilton cycles in Dirac
graphs, (6.2) is best possible (up to lower order terms) – consider for example the
complete balanced bipartite graph. In fact, it is an easy consequence of Bregman’s
theorem on permanents that the first bound in (6.2) is best possible for any regular
graph.
h(G) can be computed in polynomial time, so one can efficiently obtain a rough

estimate for the number of Hamilton cycles in a given Dirac graph. The question of
obtaining more precise estimates via randomized algorithms was considered earlier by
Dyer, Frieze and Jerrum [50]. For graphs whose minimum degree is at least n/2+εn,
they obtained a fully polynomial time randomized approximation scheme (FPRAS)
for counting the number of Hamilton cycles. (Roughly speaking, an FPRAS is a
randomized polynomial time algorithm which gives an answer to a counting problem
to within a factor of 1 + o(1) with probability 1 − o(1).) They asked whether this
result can be extended to all Dirac graphs.

Question 6.2 ([50]). Let G denote the class of all Dirac graphs, i.e. of all graphs G
with minimum degree at least |V (G)|/2. Is there an FPRAS for counting the number
of Hamilton cycles for all graphs in G?

Ferber, Krivelevich and Sudakov [51] proved an analogue of (6.2) for oriented
graphs whose degree is slightly above the Hamiltonicity threshold.

Counting Hamilton cycles also yields interesting results in the random graph set-
ting. Note that the expected number of Hamilton cycles in Gn,p is pn(n − 1)!/2.
Glebov and Krivelevich [58] showed that for any p above the Hamiltonicity thresh-
old, a.a.s. the number of Hamilton cycles in Gn,p is not too far from this.

Theorem 6.3 ([58]). Let p ≥ logn+log logn+ω(n)
n , where ω(n) tends to infinity with

n. Then a.a.s. the number of Hamilton cycles in Gn,p is (1− o(1))npnn!.

For p = Ω(n−1/2), this was already proved by Janson [73], who in fact deter-
mined the asymptotic distribution of the number of Hamilton cycles in this range.
Surprisingly, his results imply that a.a.s. the number X of Hamilton cycles in Gn,p
is concentrated below the expected value, i.e. a.a.s. X/E(X) → 0 for p → 0 (on
the other hand, in the Gn,m model, X is concentrated at E(X) in the range when

n3/2 ≤ m ≤ 0.99
(
n
2

)
). Glebov and Krivelevich [58] also obtained a hitting time

version of Theorem 6.3.

Theorem 6.4 ([58]). In the random graph process Gn,t, at the very moment the
minimum degree becomes two, a.a.s. the number of Hamilton cycles becomes (1 −
o(1))n(log n/e)n.
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Note that at the hitting time t for minimum degree two a.a.s. the edge density p of
Gn,t is close to log n/n, and so the expression in Theorem 6.4 could also be written
as (1− o(1))npnn!, which coincides with Theorem 6.3.

A related result of Janson [74] determines the asymptotic distribution of the num-
ber of Hamilton cycles in random d-regular graphs for constant d ≥ 3. Frieze [52]
proved a similar formula to that in Theorem 6.3 for dense quasi-random graphs,
which was extended to sparse quasi-random graphs by Krivelevich [87].

It turns out that the number of Hamilton cycles in a graph is often closely con-
nected to the number of perfect matchings (indeed the former is always at most the
square of the latter). So most of the above papers also contain related results about
counting perfect matchings.

Finally, an intriguing question of Thomassen (see Problem 7.12 in [27]) asks
whether there exists a regular tournament whose number of Hamilton cycles is at
least as large as the expected number of Hamilton cycles in a random tournament
(note that the latter is likely to be close to regular but not completely regular).

Question 6.5 (see [27]). Is there a regular tournament on n vertices which has at
least (n− 1)!/2n directed Hamilton cycles?

Given that Cuckler [39] showed that every regular tournament has (1−o(1))n(n−
1)!/2n directed Hamilton cycles, one would expect that Conjecture 6.5 should be easy,
but this does not seem to be the case.

7. Edge-coloured graphs and hypergraphs

Another line of research with a long history has been to consider Hamilton cycles in
edge-coloured graphs. A natural aim in this area is to give conditions which ensure
either a properly coloured Hamilton cycle or conditions which ensure a rainbow
Hamilton cycle. Here an edge-coloured graph is a graph G with a colouring of the
edges of G. We say that H ⊆ G is properly coloured if no two adjacent edges of
H have the same colour. Moreover, H is said to be rainbow if all edges of H have
distinct colours.

We first consider properly coloured Hamilton cycles. Perhaps the most natural
question here is to consider edge colourings of the complete graph where we bound
the maximum degree of each monochromatic subgraph. More precisely, a colouring
c is r-degree bounded if the graph induced by any single colour has maximum degree
at most r. Clearly, for every 1-degree bounded colouring of Kn there is a properly
coloured Hamilton cycle, and the question is how large one can make r so that we
can always guarantee a properly coloured Hamilton cycle. Bollobás and Erdős [24]
posed the following conjecture, which was motivated by a (weaker) conjecture of
Daykin.

Conjecture 7.1 ([24]). If r < bn/2c, then any r-degree bounded edge colouring of
Kn admits a properly coloured Hamilton cycle.

To see that the conjecture would be best possible, suppose that n = 4k + 1. Let
G be a 2k-regular graph on n vertices. Now obtain a colouring of Kn by colouring
all edges of G red and all edges of its complement blue. Note that this colouring
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is r-bounded for r = 2k = bn/2c. However, since n is odd, there is no properly
coloured Hamilton cycle.

Recently, Lo [110] was able to prove that Conjecture 7.1 is true asymptotically.
This improved a sequence of bounds from various authors, see [110] for details.

Theorem 7.2 ([110]). For any ε > 0 there exists an integer n0 such that if n ≥ n0
and r ≤ (1/2−ε)n, then any r-degree bounded edge colouring of Kn admits a properly
coloured Hamilton cycle.

The proof involves an adaption of the absorbing method to edge-coloured graphs.
One can also ask for properly coloured Hamilton cycles in edge-coloured non-complete
graphs, see e.g. [109], which contains an approximate Dirac-type result in this direc-
tion.

We now consider rainbow Hamilton cycles. Here it makes sense to consider a global
bound on the size of a monochromatic edge set: we say that an edge colouring of Kn

is r-bounded if each colour is used at most r times. The question is how large we can
make r so that every r-bounded colouring of Kn admits a rainbow Hamilton cycle.
Clearly, we cannot take r ≥ n/2: in this case one can colour Kn with n− 1 colours
(and n/2 edges in each colour). This gives rise to the following folklore question.

Question 7.3. Suppose that r < n/2. Is it true that every r-bounded edge colouring
of Kn admits a rainbow Hamilton cycle?

The best result in this direction is due to Albert, Frieze and Reed [2], who showed
that we can take r = n/64.

Hypergraph analogues of the above two problems have also led to interesting re-
sults. The definitions involved in Theorem 7.2 and Question 7.3 generalize naturally
to hypergraphs. Dudek, Frieze and Ruciński [48] proved the following result on
rainbow Hamilton `-cycles.

Theorem 7.4 ([48]). For all integers 1 ≤ ` < k there is a constant c < 1 and an
integer n0 such that if n ≥ n0 and (k − `)|n then any cnk−`-bounded edge colouring

of K
(k)
n admits a rainbow Hamilton `-cycle.

For loose cycles, this result is best possible up to the value of c: indeed, recall
that every loose cycle has t = n/(k− 1) edges and set r =

(
n
k

)
/(t− 1). Then one can

colour the complete k-uniform hypergraph on n vertices with t− 1 colours and with
r edges in each colour class.

The following result of Dudek, Frieze and Ruciński [48] is a version of Theorem 7.2
for hypergraphs.

Theorem 7.5 ([48]). For all integers 1 ≤ ` < k there is a constant c < 1 and an
integer n0 such that if n ≥ n0 and (k − `)|n then any cnk−`-degree bounded edge

coloring of K
(k)
n admits a properly coloured Hamilton `-cycle.

Here an edge colouring is r-degree bounded if for any vertex x, the number of
hyperedges of the same colour containing x is at most r, i.e. each colour class has
maximum vertex degree r. Note that for loose cycles, the result is trivially best
possible up to the value of c, as the maximum vertex degree of a hypergraph is
at most nk−1. It seems likely that Theorems 7.4 and 7.5 are also best possible for
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1 < ` < k (up to the value of c). It would be interesting to find a construction which
shows this.

Dudek and Ferrara [44] showed that one can strengthen Theorem 7.5 by assuming
a bound of cnk−` on the maximum `-degrees of the colour classes. This is clearly best
possible (up to the value of c) as a trivial bound on the maximum `-degree is nk−`.
They also strengthened Theorem 7.4 by including an appropriate `-degree condition.
All of the above results on edge-coloured hypergraphs (as well as the result in [2])
rely on some version of the Local Lemma.
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[34] D. Christofides, D. Kühn and D. Osthus, Edge-disjoint Hamilton cycles in graphs, J. Combin.
Theory B 102 (2012), 1035–1060.

[35] D. Christofides and K. Markström, Random Latin square graphs, Random Structures & Al-
gorithms 41 (2012), 47–65.
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[59] R. Glebov, M. Krivelevich and T. Szabó, On covering expander graphs by Hamilton cycles,
Random Structures & Algorithms (to appear).

[60] R. Gould, Advances on the Hamiltonian problem: a survey, Graphs and Combinatorics 19
(2003), 7–52.

[61] R. Gould, Recent advances on the Hamiltonian problem: Survey III, Graphs and Combina-
torics 30 (2014), 1–46.
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[66] D. Hefetz, M. Krivelevich and T. Szabó, Hamilton cycles in highly connected and expanding
graphs, Combinatorica 29 (2009), 547–568.
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[104] D. Kühn and D. Osthus, Decompositions of complete uniform hypergraphs into Hamilton
Berge cycles, preprint.
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North-Holland, Amsterdam (1970), 813–819.

[119] C.St.J.A. Nash-Williams, Hamiltonian arcs and circuits, in Recent Trends in Graph Theory
(Proc. Conf., New York, 1970), Springer, Berlin (1971), 197–210.

[120] C.St.J.A. Nash-Williams, Edge-disjoint Hamiltonian circuits in graphs with vertices of large
valency, in Studies in Pure Mathematics (Presented to Richard Rado), Academic Press, London
(1971), 157–183.

[121] D. Osthus and K. Staden, Approximate Hamilton decompositions of regular robustly expand-
ing digraphs, SIAM J. Discrete Math. 27 (2013), 1372–1409.
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