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ABSTRACT. We provide a degree condition on a regular n-vertex graph G which ensures the
existence of a near optimal packing of any family H of bounded degree n-vertex k-chromatic
separable graphs into G. In general, this degree condition is best possible.

Here a graph is separable if it has a sublinear separator whose removal results in a set of
components of sublinear size. Equivalently, the separability condition can be replaced by that of
having small bandwidth. Thus our result can be viewed as a version of the bandwidth theorem
of Bottcher, Taraz and Schacht in the setting of approximate decompositions.

More precisely, let dx be the infimum over all § > 1/2 ensuring an approximate Kj-decompo-
sition of any sufficiently large regular n-vertex graph G of degree at least dn. Now suppose
that G is an n-vertex graph which is close to r-regular for some r > (5 + o(1))n and suppose
that Hy,..., H; is a sequence of bounded degree n-vertex k-chromatic separable graphs with
> e(Hs) < (1—o0(1))e(G). We show that there is an edge-disjoint packing of Hy, ..., H; into G.

If the H; are bipartite, then » > (1/2 + o(1))n is sufficient. In particular, this yields an
approximate version of the tree packing conjecture in the setting of regular host graphs G of
high degree. Similarly, our result implies approximate versions of the Oberwolfach problem, the
Alspach problem and the existence of resolvable designs in the setting of regular host graphs of
high degree.

1. INTRODUCTION

Starting with Dirac’s theorem on Hamilton cycles, a successful research direction in extremal
combinatorics has been to find appropriate minimum degree conditions on a graph G which
guarantee the existence of a copy of a (possibly spanning) graph H as a subgraph. On the
other hand, several important questions and results in design theory ask for the existence of
a decomposition of K, into edge-disjoint copies of a (possibly spanning) graph H, or more
generally into a suitable family of graphs Hy, ..., H;.

Here, we combine the two directions: rather than finding just a single spanning graph H
in a dense graph G, we seek (approximate) decompositions of a dense regular graph G into
edge-disjoint copies of spanning sparse graphs H. A specific instance of this is the recent proof
of the Hamilton decomposition conjecture and the 1-factorization conjecture for large n [13]:
the former states that for » > |[n/2], every r-regular n-vertex graph G has a decomposition
into Hamilton cycles and at most one perfect matching, the latter provides the corresponding
threshold for decompositions into perfect matchings. In this paper, we restrict ourselves to
approximate decompositions, but achieve asymptotically best possible results for a much wider
class of graphs than matchings and Hamilton cycles.

1.1. Previous results: degree conditions for spanning subgraphs. Minimum degree con-
ditions for spanning subgraphs have been obtained mainly for (Hamilton) cycles, trees, factors
and bounded degree graphs. We now briefly discuss several of these. Recall that Dirac’s theorem
states that any n-vertex graph G with minimum degree at least n/2 contains a Hamilton cycle.
More generally, Abbasi’s proof [1] of the El-Zahar conjecture determines the minimum degree
threshold for the existence of a copy of H in G where H is a spanning union of vertex-disjoint
cycles (the threshold turns out to be [(n + oddy)/2], where oddy denotes the number of odd
cycles in H).
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Komlés, Sarkozy and Szemerédi [32] proved a conjecture of Bollobéds by showing that a mini-
mum degree degree of n/2 + o(n) guarantees every bounded degree n-vertex tree as a subgraph
(this was later strengthened in [34, 14, 26]).

An F-factor in a graph G is a set of vertex-disjoint copies of F' covering all vertices of G. The
Hajnal-Szemerédi theorem [24] implies that the minimum degree threshold for the existence of
a Kp-factor is (1 — 1/k)n. This was generalised to kth powers of Hamilton cycles by Komlds,
Sérkozy and Szemerédi [33]. The threshold for arbitrary F-factors was determined by Kiithn and
Osthus [37], and is given by (1—c¢(F'))n+O(1), where ¢(F') satisfies 1/x(F) < ¢(F) < 1/(x(F)-1)
and can be determined explicitly (e.g. ¢(C5) = 2/5, in accordance with Abbasi’s result).

A far-reaching generalisation of the Hajnal-Szemerédi theorem [24] would be provided by the
Bollobés-Catlin-Eldridge (BEC) conjecture. This would imply that every n-vertex graph G of
minimum degree at least (1 —1/(A +1))n contains every n-vertex graph H of maximum degree
at most A as a subgraph. Partial results include the proof for A = 3 and large n by Csaba,
Shokoufandeh and Szemerédi [15] and bounds for large A by Kaul, Kostochka and Yu [28].

Bollobéas and Komlés conjectured that one can improve on the BEC-conjecture for graphs H
with a linear structure: any n-vertex graph G with minimum degree at least (1 — 1/k + o(1))n
contains a copy of every n-vertex k-chromatic graph H with bounded maximum degree and small
bandwidth. Here an n-vertex graph H has bandwidth b if there exists an ordering vy, ..., v, of
V(H) such that all edges v;v; € E(H) satisfy |i — j| < b. Throughout the paper, by H being
k-chromatic we mean x(H) < k. This conjecture was resolved by the bandwidth theorem of
Béttcher, Schacht and Taraz [9]. Note that while this result is essentially best possible when
considering the class of k-chromatic graphs as a whole (consider e.g. Kj-factors), the results
in [1, 37] mentioned above show that there are many graphs H for which the actual threshold
is significantly smaller (e.g. the Cs-factors mentioned above).

The notion of bandwidth is related to the concept of separability: An n-vertex graph H is
said to be n-separable if there exists a set S of at most nn vertices such that every component of
H \ S has size at most nn. In general, the notion of having small bandwidth is more restrictive
than that of being separable. However, for graphs with bounded maximum degree, it turns out
that these notions are actually equivalent (see [8]).

1.2. Previous results: (approximate) decompositions into large graphs. We say that
a collection H = {Hj, ..., Hs} of graphs packs into G if there exist pairwise edge-disjoint copies
of Hy,...,Hs in G. In cases where H consists of copies of a single graph H we refer to this
packing as an H-packing in G. If H packs into G and e(H) = e(G) (where e(H) = > o4 e(H)),
then we say that G has a decomposition into H. Once again, if H consists of copies of a single
graph H, we refer to this as an H-decomposition of G. Informally, we refer to a packing which
covers almost all edges of the host graph G as an approximate decomposition.

As in the previous section, most attention so far has focussed on (Hamilton) cycles, trees,
factors, and graphs of bounded degree. Indeed, a classical construction of Walecki going back
to the 19th century guarantees a decomposition of K, into Hamilton cycles whenever n is odd.
As mentioned earlier, this was extended to Hamilton decompositions of regular graphs G of
high degree by Csaba, Kiihn, Lo, Osthus and Treglown [13] (based on the existence of Hamil-
ton decompositions in robustly expanding graphs proved in [36]). A different generalisation of
Walecki’s construction is given by the Alspach problem, which asks for a decomposition of K,
into cycles of given length. This was recently resolved by Bryant, Horsley and Petterson [10].
Yet another generalisation would be provided by the Oberwolfach conjecture: given an n-vertex
graph H consisting of vertex-disjoint cycles, this asks for a decomposition of K,, into copies of
H. This was recently verified for infinitely many n by Bryant and Scharaschkin [11].

A further famous open problem in the area is the tree packing conjecture of Gyarfas and Lehel,
which says that for any collection 7 = {11, ..., T} of trees with |V (1})| = 4, the complete graph
K, has a decomposition into 7. This was recently proved by Joos, Kim, Kiithn and Osthus [27]
for the case where n is large and each T; has bounded degree. The crucial tool for this was the
blow-up lemma for approximate decompositions of e-regular graphs G by Kim, Kiihn, Osthus
and Tyomkyn [35]. The special case G = K,, of this lemma implies that if H is a family
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of bounded degree n-vertex graphs with e(#) < (1 — o(1))(5), then K, has an approximate
decomposition into H. This generalises earlier results of Bottcher, Hladky, Piguet and Taraz [7]
on tree packings, as well as results of Messuti, Rodl and Schacht [38] and Ferber, Lee and
Mousset [18] on packing separable graphs. Very recently, Allen, Bottcher, Hladky and Piguet [2]
were able to show that one can in fact find an approximate decomposition of K, into H provided
that the graphs in H have bounded degeneracy and maximum degree o(n/logn). This implies
an approximate version of the tree packing conjecture when the trees have maximum degree
o(n/logn). The latter improves a bound of Ferber and Samotij [19] which follows from their
work on packing (spanning) trees in random graphs.

An important type of decomposition of K, is given by resolvable designs: a resolvable F-
design consists of a decomposition into F-factors. Ray-Chaudhuri and Wilson [41] proved the
existence of resolvable Kj-designs in K, (subject to the necessary divisibility conditions being
satisfied). This was generalised to arbitrary F-designs by Dukes and Ling [17].

1.3. Main result: packing separable graphs of bounded degree. Our main result pro-
vides a degree condition which ensures that G has an approximate decomposition into H for
any collection H of k-chromatic n-separable graphs of bounded degree. In general our degree
condition is best possible. By the remark at the end of Section 1.1 earlier, one can replace
the condition of being n-separable by that of having bandwidth at most nn in Theorem 1.2.
Thus our result implies a version of the bandwidth theorem of [9] in the setting of approximate
decompositions.

To state our result, we first introduce the approximate Kj-decomposition threshold 5,Eeg for
regular graphs.

Definition 1.1 (Approximate Kj-decomposition threshold for regular graphs). For each k €
N\{1}, let 6, be the infimum over all § > 0 satisfying the following: for any e > 0, there exists
ng € N such that for all n > ny and r > dn every n-vertex r-reqular graph G has a Ki-packing
consisting of at least (1 —e)e(G)/e(Ky) copies of K.

Theorem 1.2. For all Ak € N\{1}, 0 < v < 1 and max{1/2,6,7} < 6 < 1, there exist
&,n >0 and ng € N such that for all n > ng the following holds. Suppose that H is a collection
of n-vertex k-chromatic n-separable graphs and G is an n-vertex graph such that
(1) (6 =&n <0(G) < A(G) < (0 +&)n,
(i) A(H) <A for all H € H,
(111) e(H) < (1 —v)e(G).
Then H packs into G.

Note that our result holds for any minor-closed family H of k-chromatic bounded degree
graphs by the separator theorem of Alon, Seymour and Thomas [3]. Moreover, note that since
‘H may consist e.g. of Hamilton cycles, the condition that G is close to regular is clearly necessary.
Also, the condition max{1/2,0, %} < & is necessary. To see this, if §,"® < 1/2 (which holds if
k = 2), then we consider K, /2—1,n/2+1 Which does not even contain a single perfect matching,
let alone an approximate decomposition into perfect matchings. If 6,°® > 1/2 (which holds if
k > 3), then for any § < §,°%, the definition of d, ® ensures that there exist arbitrarily large
regular graphs G of degree at least dn without an approximate decomposition into copies of Kp.
As a disjoint union of a single copy of K}, with n — k isolated vertices satisfies (ii), this shows
that the condition of max{1/2,4,®} < ¢ is sharp when considering the class of all k-chromatic
separable graphs (though as in the case of embedding a single copy of some H into G, it may
be possible to improve the degree bound for certain families H).

To obtain explicit estimates for (5,rceg, we also introduce the approximate Kj-decomposition
threshold 52+ for graphs of large minimum degree.

Definition 1.3 (Approximate Kj-decomposition threshold). For each k € N\{1}, let 52+ be
the infimum over all § > 0 satisfying the following: for any € > 0, there exists ny € N such

that any n-vertex graph G with n > ng and §(G) > dn has a Ky-packing consisting of at least
(1 —¢)e(G)/e(Ky) copies of K.
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It is easy to see that 65° = do* = 0 and &,°° < §)". The value of Jp" has been subject
to much attention recently: one reason is that by results of [5, 20], for £ > 3 the approximate
decomposition threshold 5,2+ is equal to the analogous threshold 5,36‘3 which ensures a ‘full’ Kj-
decomposition of any n-vertex graph G with 6(G) > (38 + 0(1))n which satisfies the necessary
divisibility conditions. A beautiful conjecture (due Nash-Williams in the triangle case and
Gustavsson in the general case) would imply that §8¢ =1 —1/(k + 1) for k¥ > 3. On the other
hand for k£ > 3, it is easy to modify a well-known construction (see Proposition 3.7) to show that
6,8 > 1—1/(k+1). Thus the conjecture would imply that §,°® = 60" = 5l =1 —1/(k+1) for
k > 3. A result of Dross [16] implies that 5" < 9/10, and a very recent result of Montgomery [39]
implies that 0" < 1 — 1/(100k) (see Lemma 3.11). With these bounds, the following corollary
is immediate.

Corollary 1.4. For all Ak € N\{1} and 0 < v, < 1, there exist £ > 0 and ng € N such that
for n > ng the following holds for every n-vertex graph G with

(6 — n < 8(G) < A(G) < (6 + E)n.

(i) Let T be a collection of trees such that for all T € T we have |T| < n and A(T) < A.
Further suppose 6 > 1/2 and e(T) < (1 —v)e(G). Then T packs into G.

(ii) Let F be an n-vertex graph consisting of a union of vertex-disjoint cycles and let F be
a collection of copies of F'. Further suppose 6 > 9/10 and e(F) < (1 —v)e(G). Then F
packs into G.

(i1i) Let C be a collection of cycles, each on at most n vertices. Further suppose 6 > 9/10 and
e(C) < (1 —v)e(G). Then C packs into G.

(iv) Let n be divisible by k and let KC be a collection of n-vertex Ky-factors. Further suppose
d>1-1/(100k) and e(K) < (1 —v)e(G). Then K packs into G.

Note that (i) can be viewed as an approximate version of the tree packing conjecture in the
setting of dense (almost) regular graphs. In a similar sense, (ii) relates to the Oberwolfach
conjecture, (iii) relates to the Alspach problem and (iv) relates to the existence of resolvable
designs in graphs.

If we drop the assumption of being G close to regular, then one can still ask for the size of the
largest packing of bounded degree separable graphs. For exampe, it was shown in [13] that every
sufficiently large graph G with 6(G) > n/2 contains at least (n — 2)/8 edge-disjoint Hamilton
cycles. The following result gives an approximate answer to the above question in the case when
‘H consists of bipartite graphs.

Theorem 1.5. For all A € N, 1/2 < § <1 and v > 0, there exist n > 0 and ny € N such
that for all n > ng the following holds. Suppose that H is a collection of n-vertex n-separable
bipartite graphs and G is an n-vertex graph such that
(i) 6(G) > In,
(i) A(H) < A for all H € H,
(iii) e(H) < EEVZI=tIn®,

Then H packs into G.

The result in general cannot be improved: Indeed, for § > 1/2 the number of edges of the
densest regular spanning subgraph of G is close to (6 + /25 — 1)n?/4 (see [12]). So the bound
in (iii) is asymptotically optimal e.g. if n is even and H consists of Hamilton cycles. We discuss
the very minor modifications to the proof of Theorem 1.2 which give Theorem 1.5 at the end of
Section 6.

We raise the following open questions:

e We conjecture that the error term ve(G) in condition (iii) of Theorem 1.2 can be im-
proved. Note that it cannot be completely removed unless one assumes some divisibility
conditions on G. However, even additional divisibility conditions will not always ensure
a ‘full’ decomposition under the current degree conditions: indeed, for Cy, the minimum
degree threshold which guarantees a Cy-decomposition of a graph G is close to 2n/3,
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and the extremal example is close to regular (see [5] for details, more generally, the
decomposition threshold of an arbitrary bipartite graph is determined in [20]).

e It would be interesting to know whether the condition on separability can be omitted.
Note however, that if we do not assume separability, then the degree condition may need
to be strengthened.

e It would be interesting to know whether one can relax the maximum degree condition
in assumption (ii) of Theorem 1.2, e.g. for the class of trees.

e Given the recent progress on the existence of decompositions and designs in the hyper-
graph setting and the corresponding minimum degree thresholds [29, 21, 22], it would
be interesting to generalise (some of) the above results to hypergraphs.

Our main tool will be the recent blow-up lemma for approximate decompositions by Kim,
Kiihn, Osthus and Tyomkyn [35]: roughly speaking, given a set H of n-vertex bounded degree
graphs and an n-vertex graph G with e(H) < (1 —o0(1))e(G) consisting of super-regular pairs, it
guarantees a packing of H in G (such super-regular pairs arise from applications of Szemerédi’s
regularity lemma). Theorem 3.15 gives the precise statement of the special case that we shall
apply (note that the original blow-up lemma of Komlds, Sarkozy and Szemerédi [30] corresponds
to the case where H consists of a single graph).

2. OUTLINE OF THE ARGUMENT

Consider a given collection H of k-chromatic n-separable graphs with bounded degree and a
given almost-regular graph G as in Theorem 1.2. We wish to pack H into G. The approach will be
to decompose G into a bounded number of highly structured subgraphs G; and partition H into
a bounded number of collections H;. We then aim to pack each H; into G;. As described below,
for each H € H;, most of the edges will be embedded via the blow-up lemma for approximate
decompositions proved in [35].

As a preliminary step, we first apply Szemerédi’s regularity lemma (Lemma 3.5) to G to
obtain a reduced multigraph R which is almost regular. Here each edge e of R corresponds to a
bipartite e-regular subgraph of G and the density of these subgraphs does not depend on e. We
can then apply a result of Pippenger and Spencer on the chromatic index of regular hypergraphs
and the definition of 526‘% to find an approximate decomposition of the reduced multigraph R
into almost Kp-factors. More precisely, we find a set of edge-disjoint copies of almost Kj-factors
covering almost all edges of R, where an almost Kp-factor is a set of vertex-disjoint copies
of K} covering almost all vertices of R. This approximate decomposition translates into the
existence of an approximate decomposition of G into ‘(almost-)Kj-factor blow-ups’. Here a
Kj-factor blow-up consists of a bounded number of clusters Vi, ..., Vi, where each pair (V;,V})
with [(¢ —1)/k] = |(j — 1)/k] is e-regular of density d, and crucially d does not depend on 1, j.
We wish to use the blow-up lemma for approximate decompositions (Theorem 3.15) to pack
graphs into each Kj-factor blow-up. Ideally, we would like to split H into a bounded number
of subcollections H;, and pack each H;s into a separate Kj-factor blow-up Gy, where the
Gt,s C G are all edge-disjoint.

There are several obstacles to this approach. The first obstacle is that (i) the Kj-factor blow-
ups Gy s are not spanning. In particular, they do not contain the vertices in the exceptional set
Vo produced by the regularity lemma. On the other hand, if we aim to embed an n-vertex graph
H € H into G, we must embed some vertices of H into V. However, Theorem 3.15 does not
produce an embedding into vertices outside the Kj-factor blow-up. The second obstacle is that
(ii) the Kp-factor blow-ups are not connected, whereas H may certainly be (highly) connected.
This is one significant difference to [9], where the existence of a structure similar to a blown-up
power of a Hamilton path in R could be utilised for the embedding. A third issue is that (iii) any
resolution of (i) and (ii) needs to result in a ‘balanced’ packing of the H € H, i.e. the condition
e(H) < (1 — v)e(G) means that for most € V(G) almost all their incident edges need to be
covered.

To overcome the first issue, we use the fact that H is n-separable to choose a small separating
set S for H. (Again, this is a departure from [9], which considers and uses the property of small
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bandwidth rather than that of separability.) We then consider the small components of H — S,
and reserve some set A of special vertices to cover Vj later on (see Lemma 4.1). To be able to
embed H into the Kj-factor blow-up, we need to add further edges to each Kj-factor blow-up
so that the resulting ‘augmented Kj-factor blow-ups’ have strong connectivity properties. For
this, we partition V(G)\Vj into T disjoint ‘reservoirs’ Resy, ..., Resp. We also decompose most
of G into graphs G s so that each Gy ¢ has vertex set V(G)\(Res; UVp) and is a Kj-factor blow-
up. We then find sparse bipartite graphs F; ; C G connecting Res; with G s, sparse bipartite
graphs F} C G connecting Res; with Vj as well as sparse bipartite graphs G; C G which provide
connectivity within Res; as well as between Res; and Gy 5. The fact that G; s and G ¢ share the
same reservoir for s # s’ permits us to choose the reservoir Res; to be significantly larger than
Vo. Our aim is to pack each H; s into the ‘augmented’ Kj-factor blow-up Gy s U Fy s U F/ U Gy.
To ensure that the resulting packings can be combined into a packing of all of the graphs in
H, we will use the fact that the graphs Gy := |J,(Gts U Fis) U F) U Gy referred to in the first
paragraph are edge-disjoint for different ¢.

We now discuss how to find this packing of H; ;. Consider some H € H; ;. We first use the fact
that H is separable to find a partition of H which reflects the structure of (the augmentation
of) Gy (see Section 4). Then we construct an appropriate embedding ¢, of parts of each graph
H € H;, into Res; UV which covers all vertices in Res; U Vp (this makes crucial use of the fact
that Res; is much larger than Vj). Later we aim to use the blow-up lemma for approximate
decompositions (Theorem 3.15) to find an embedding ¢ of the remaining vertices of H into
V(G)\(Res; UVy). When we apply Theorem 3.15, we use its additional features: in particular,
the ability to prescribe appropriate ‘target sets’ for some of the vertices of H, to guarantee the
consistency between the two embeddings ¢, and ¢.

An important advantage of the reservoir partition which helps us to overcome obstacle (iii) is
the following: the blow-up lemma for approximate decompositions can achieve a near optimal
packing, i.e. it uses up almost all available edges. This is far from being the case for the part of
the embeddings that use F; 5, F{ and G} to embed vertices into Res; UV}, where the edge usage
might be comparatively ‘imbalanced’” and ‘inefficient’. (In fact, we will try to avoid using these
edges as much as possible in order to preserve the connectivity properties of these graphs. We
will use probabilistic allocations to avoid over-using any parts of Fy 5, I/ and Gy.) However, since
every vertex in V(Gp)\Vy is a reservoir vertex for only a small proportion of the embeddings,
the resulting effect of these imbalances on the overall leftover degree of the vertices in V/(Go)\ Vo
is negligible. For 1}, we will be able to assign only low degree vertices of each H to ensure that
there will always be edges of F) available to embed their incident edges (so the overall leftover
degree of the vertices in Vy may be large).

Another issue is that the regularity lemma only gives us e-regular Kj-factor blow-ups while
we need super-regular K-factor blow-ups in order to use Theorem 3.15. To overcome this issue,
we will make appropriate adjustments to each e-regular Kp-factor blow-up. This means that
the exceptional set Vy will actually be different for each pair ¢, s of indices. We can however use
probabilistic arguments to ensure that this does not significantly affect the overall ‘balance’ of
the packing.

The paper is organised as follows. We collect some basic tools in Section 3, and we prove
a lemma which finds a suitable partition of each graph H € #H in Section 4 (Lemma 4.1).
We prove our main lemma (Lemma 5.1) in Section 5. This lemma guarantees that we can
find a suitable packing of an appropriate collection H; s of k-chromatic n-separable graphs with
bounded degree into a graph consisting of a super-regular Kj-factor blow-up Gy s and suitable
connection graphs F; ¢, F{ and Gy. In Section 6, we will partition G and H as described above.
Then we will repeatedly apply Lemma 5.1 to construct a packing of H into G.

3. PRELIMINARIES

3.1. Notation. We write [t] := {1,...,t}. We often treat large numbers as integers whenever
this does not affect the argument. The constants in the hierarchies used to state our results are
chosen from right to left. That is, if we claim that a result holds for 0 < 1/n < a € b < 1,
we mean there exist non-decreasing functions f : (0,1] — (0,1] and ¢ : (0,1] — (0, 1] such that
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the result holds for all 0 < a,b < 1 and all n € N with a < f(b) and 1/n < g(a). We will not
calculate these functions explicitly.

We use the word graphs to refer to simple undirected finite graphs, and refer to multi-graphs
as graphs with potentially parallel edges, but without loops. Multi-hypergraphs refer to (not
necessarily uniform) hypergraphs with potentially parallel edges. A k-graph is a k-uniform
hypergraph. A multi-k-graph is a k-uniform hypergraph with potentially parallel edges. For a
multi-hypergraph H and a non-empty set @ C V(H), we define multy(Q) to be the number of
parallel edges of H consisting of exactly the vertices in ). We say that a multi-hypergraph has
edge-multiplicity at most ¢ if multy (Q) < ¢ for all non-empty @ C V(H). A matching in a multi-
hypergraph H is a collection of pairwise disjoint edges of H. The rank of a multi-hypergraph
H is the size of a largest edge.

We write H ~ G if two graphs H and G are isomorphic. For a collection H of graphs,
we let v(H) := > ey |V(H)|. We say a partition Vi,...,V}, of a set V is an equipartition if
[|Vil = |Vj|| <1 forall i,j € [k]. For a multi-hypergraph H and A, B C V(H), we let Ey (A, B)
denote the set of edges in H intersecting both A and B. We define ey (A, B) := |Eu(A, B)|.
For v € V(H) and A C V(H), we let dg a(v) := |[{e € E(H) : v € e,e\{v} C A}|. Let
du(v) = dg v (v). For u,v € V(H), we define cy(u,v) := [{e € E(H) : {u,v} C e}|. Let
A(H) =max{dg(v) :v € V(H)} and 6(H) := min{dg(v) : v € V(H)}.

For a graph G and sets X, A C V(G), we define

Nga(X) :={we A:uw € E(G) for all w € X} and Ng(X) := Ngyq)(X).

Thus N¢(X) is the common neighbourhood of X in G. For technical reasons, we let Ng 4(0) :=
A. For aset X C V(G), we define N&(X) C V(G) to be the set of all vertices of distance at most
d from a vertex in X. Note that Ng(X) and N (X) are different in general. Again for technical
reasons, we let N&(X) = () for d < 0. We say a set I C V(G) in a graph G is k-independent if
for any two distinct vertices u,v € I, the distance between v and v in G is at least k (thus a
2-independent set I is an independent set). If A, B C V(G) are disjoint, we write G[A, B] for
the bipartite subgraph of G with vertex classes A, B and edge set Eg(A, B).

For two functions ¢ : A — B and ¢' : A’ — B’ with AN A" = (), we let ¢ U ¢’ be the function
from AU A’ to B U B’ such that for each x € AU A,

(bUH)(x) = { g RTew

For graphs H and R with V(R) C [r] and an ordered partition (Xi,...,X,) of V(H), we say
that H admits the vertex partition (R, X1,...,X,), if H[X;] is empty for all i € [r], and for any
i,j € [r] with i # j we have that ey (X;, X;) > 0 implies ij € E(R). We say that H is internally
q-regular with respect to (R, X1,...,X,) if H admits (R, X1,...,X,) and H[X;, X;] is g-regular
for each ij € E(R).

We will often use the following Chernoff bound (see e.g. Theorem A.1.16 in [4]).

Lemma 3.1. [4] Suppose X1,..., X, are independent random variables such that 0 < X; < b
for alli € [n]. Let X := X| +---+ X,,. Then for allt >0, P[|X — E[X]| > t] < 2¢t*/(20°n),

3.2. Tools involving e-regularity. In this subsection, we introduce the definitions of (e, d)-
regularity and (e, d)-super-regularity. We then state a suitable form of the regularity lemma for
our purpose. We will also state an embedding lemma (Lemma 3.6) which we will use later to
prove our main lemma (Lemma 5.1).

We say that a bipartite graph G with vertex partition (A, B) is (g, d)-regular if for all sets

A" C A, B' C B with |A'| > ¢|A|, |B'| > ¢|B|, we have \%{gﬂl) —d| < e. Moreover, we say that
G is e-regular if it is (e, d)-regular for some d. If G is (g, d)-regular and dg(a) = (d + ¢€)|B| for
a € A and dg(b) = (d £ ¢)|A| for b € B, then we say G is (e, d)-super-reqular. We say that G is
(e,d1)-(super)-regular if it is (e, d’)-(super)-regular for some d’ > d.

For a graph R on vertex set [r], and disjoint vertex subsets Vi,...,V, of V(G), we say
that G is (g,d™)- (super)-reqular with respect to the vertex partition (R, Vi,...,V,) if G[V;, V] is
(e,d")-(super)-regular for all ij € E(R). Being (&, d)-(super)-reqular with respect to the vertex
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partition (R, V1,...,V,) is defined analogously. The following observations follow directly from
the definitions.

Proposition 3.2. Let 0 < e <6 <d < 1. Suppose G is an (g,d)-regular bipartite graph with
vertex partition (A, B) and let A’ C A, B C B with |A’|/|A|, |B'|/|B| > . Then G[A', B'] is
(e/d,d)-regular.

Proposition 3.3. Let 0 < ¢ < 6 < d < 1. Suppose G is an (g,d)-regular bipartite graph with
vertex partition (A, B). If G' is a subgraph of G with V(G') = V(G) and e(G") > (1 — 9)e(G),
then G is (¢ + 6Y/3, d)-regular.

Proposition 3.4. Let 0 < e < d < 1. Suppose G is an (g, d)-regular bipartite graph with vertex
partition (A, B). Let

A :={a€ A:dg(a) # (d+¢e)|B|} and B' :={b € B : dg(b) # (d +¢)|B|}.
Then |A’| < 2¢|A| and |B'| < 2¢|B].

Lemma 3.5 (Szemerédi’s regularity lemma). Suppose M, M',n € N with 0 < 1/n < 1/M <
e, 1/M' <1 and d > 0. Then for any n-vertex graph G, there exist a partition of V(G) into
Vo, Vi,..., Vi and a spanning subgraph G' C G satisfying the following.

(i) M' <r <M,
(ii) Vol < en,
(i) Vil = [Vy] for alliyj € I,
() der(v) > da(v) — (d+¢e)n for allv € V(G),
(v) e(G'[Vi]) =0 for alli € [r],
(vi) for all i,j with 1 <i < j <, the graph G'[V;,V}] is either empty or (e,d; j)-reqular for
some d; ; € [d,1].

The next lemma allows us to embed a small graph H into a graph G which is (g, d")-regular
with respect to a suitable vertex partition (R, Vj,...,V;). In our proof of Lemma 5.1 later on,
properties (B1)3 and (B2)3¢ will help us to prescribe appropriate ‘target sets’ for some of the
vertices when we apply the blow-up lemma for approximate decompositions (Theorem 3.15).
There, H will be part of a larger graph that is embedded in several stages. (B1)s g ensures that
the embedding of H is compatible with constraints arising from earlier stages and (B2)3¢ will
ensure the existence of sufficiently large target sets when embedding vertices x in later stages
(each edge of H corresponds to the neighbourhood of such a vertex x).

Lemma 3.6. Suppose n,A € N with 0 < 1/n < ¢ < a,f,d,1/A < 1. Suppose that G, H
are graphs and H is a multi-hypergraph on V(H) with edge-multiplicity at most A. Suppose
Vi,...,V, are pairwise disjoint subsets of V(G) with fn < |V;| < n for alli € [r], and X4, ..., X,
is a partition of V(H) with | X;| < en for alli € [r]. Let f: E(H) — [r] be a function, and for
alli € [r] and z € X;, let A, CV;. Let R be a graph on [r]. Suppose that the following hold.

1)36 G is (e,d")-reqular with respect to (R, V1,...,V,),
2)36 H admits the vertex partition (R, X1,...,X,),
336 A(H) <A, A(H) < A and the rank of H is at most A,
)36 for alli,j € [r], if f(e) =i and eN X; # 0, then ij € E(R),
Ab)s¢ for alli € [r] and x € X;, we have |Az| > a|V|.

Then there exists an embedding ¢ of H into G such that
(Bl)s6 for each x € V(H), we have ¢(x) € Ay,
(B2)36 for each e € H, we have [Ng(p(e)) N Vil = (d/Z)A]Vf(e)\.

Note that (A4)s6 implies for all e € E(H) that e N X () = (. As V(H) is much smaller than
V(QG), the desired embedding can be obtained via a straightforward greedy argument, and so
we omit the details.
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3.3. Decomposition tools. The following proposition provides a lower bound for 6, %. The
proof is only a slight extension of the extremal construction given by Proposition 1.5 in [5], and
thus we omit it here.

Proposition 3.7. For all k € N\{1,2} we have 6, >1—1/(k+1).
It will be convenient to use that for £ > 2 this lower bound implies
max{1/2,6,%} >1—1/k. (3.1)

In the remainder of this subsection, we prove Lemma 3.13 which will give us a suitable
approximate Kp-factor decomposition of the reduced multi-graph R in the proof of Theorem 1.2
in Section 6. We will use the following consequence of Tutte’s r-factor theorem.

Theorem 3.8. [12] Suppose n € N and 0 < 1/n < v < 1. If G is an n-vertex graph with
§5(G) > (1/2 +v)n and A(G) < 6(G) +~v*n, then G contains a spanning r-reqular subgraph for
every even r with r < 6(G) — yn.

Given two graphs F' and G, let (g) denote the set of all copies of F' in GG. A function v from

(g) to [0, 1] is a fractional F-packing of G if ZF,G(G)_GGF, Y(F") < 1foreach e € E(G) (if we have
):
equality for each e € E(G) then this is referred to as a fractional F-decomposition). Let v5(G)
be the maximum value of ZF,6<G) (F") over all fractional F-packings ¢ of G. Thus v} (G) <
F

e(G)/e(F) and vi(G) = e(G)/e(F) if and only if G has a fractional F-decomposition. The
following very recent result of Montgomery gives a degree condition which ensures a fractional
Kj-decomposition in a graph.
Theorem 3.9. [39] Suppose k,n € N and 0 < 1/n < 1/k < 1. Then any n-vertex graph G with
6(G) = (1 —1/(100k))n satisfies vy, (G) = e(G)/e(Ky).

The next result due to Haxell and R&dl implies that a fractional Kj-decomposition gives rise
to the existence of an approximate Kj-decomposition.

Theorem 3.10. [25] Suppose n € N with 0 < 1/n < € < 1. Then any n-vertex graph G has an
F-packing consisting of at least vi(G) — en? copies of F.

Lemma 3.11. For k € N\{1,2}, we have 6, < §)" < 1—1/(100k). Moreover, 65 = 55+ =0
and 639 < 69T < 9/10.

Proof. 1t is easy to see that Theorem 3.9 and Theorem 3.10 together imply that 52+ <1-
1/(100k). Moreover, Theorem 3.10 together with a result of Dross [5] implies that 637 < 9/10.
As any graph can be decomposed into copies of Ks, we have 6[2” =0. O

The following powerful result of Pippenger and Spencer [40] (based on the R6dl nibble) shows
that every almost regular multi-k-graph with small maximum codegree has small chromatic
index.

Theorem 3.12. [40] Supposen,k € Nand0 < 1/n < p < e,1/k < 1. Suppose H is an n-vertex
multi-k-graph satisfying 6(H) > (1 — p)A(H), and cg(u,v) < pA(H) for allu # v € V(H).
Then we can partition E(H) into (1 +e)A(H) matchings.

We can now combine these tools to approximately decompose an almost regular multi-graph
of sufficient degree into ‘almost’ K-factors. As explained in Section 2, we will apply this to the
reduced multi-graph obtained from Szemerédi’s regularity lemma.

Lemma 3.13. Suppose n,k,q,T € N with 0 < 1/n < ¢,0,1/T,1/k,1/q,v < 1/2 and 0 <
I/n << v<o/2<1andd = max{1/2,6;} + 0 and q divides T. Let G be an n-vertex
multi-graph with edge-multiplicity at most q, such that for all v € V(G) we have

da(v) = (6 £ &)gn.
Then there exists a subset V' C V(G) with |V'| < en and k dividing |V (G)\V'|, and there exist
pairwise edge-disjoint subgraphs Fi1,...,Fix, Fa1,..., Fr, with k = (§— V:ta)% satisfying
the following.
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(B1)3.13 For each (t',i) € [T] x [k], we have that V(Fy ;) C V(G)\V' and Fy ; is a vertez-disjoint
union of at least (1 —e)n/k copies of Ky,

(B2)3.13 for each v € V(G)\ V', we have [{(t',i) € [T] x [k] :v € V(Fy;)}| > Tk —en,

(B3)3.a3 for all t' € [T] and u,v € V(G), we have |{i € [] : u € Np, (v)}| < 1.

Proof. It suffices to prove the lemma for the case when T' = q. The general case then follows by
relabelling. We choose a new constant p such that

1/n<<u<<5,§,a,1//<:,1/q.

For an edge colouring ¢ : E(G) — [q] and ¢ € [g], we let G° C G be the subgraph with edge
set {e € E(G) : ¢(e) = ¢}. We wish to show that there exists an edge-colouring ¢ : E(G) — [q]
satisfying the following for all v € V(G) and ¢ € [g¢]:
((131)3_13 dGc(v) = ((5 + 25)7’&,
(®2)313 G° is a simple graph.
Recall that eg(u,v) denotes the number of edges of G between u and v. For each {u,v} €

(V(ZG)), we choose a set Ay, .} uniformly at random from (eG[(ﬂv)). For each e € E(G), we let

#(e) € [q] be such that ¢ is bijective between Eg(u,v) and Ay, 1. This ensures that ($2)3.13
holds. Tt is easy to see that (®1)s.13 also holds with high probability by using Lemma 3.1.

Since § > 1/2 4+ 0 and £ < v,0, Theorem 3.8 implies that, for each ¢ € [g], there exists a
(0 — v)n-regular spanning subgraph G of G¢. (By adjusting v slightly we may assume that
(6 — v)n is an even integer.) Since § — v > §,;° + 0/2 and 1/n < p, the graph G¢ has a
Kj-packing Q¢ := {Qf,...,Qf} of size

(6 — v — pn?

k(k—1)
For each ¢ € [g], let H® be the k-graph with V(H¢) = V(GS) and E(H®) := {V(Q5) : i € [t]}.
By construction of H¢, we have

t:= (3.2)

A(GS) < (6 —v)n
~ k-1~ k-1~
As Q°is a Ki-packing in G, any pair {u,v} € ( (2(;)) belongs to at most one edge in H¢. Thus
for {u,v} € (V(G)),

A(HS) < (3.3)

cye(u,v) < 1. (3.4)
Let

V”:[J{veVmQNHEM:UeV@ﬁﬂ<E%7®—V—MBW}
c€lq]

and let V' be a set consisting of the union of V” as well as at most k — 1 vertices arbitrarily
chosen from V(G)\V” such that k divides |V (G)\V’|. Note that for each ¢ € [g], we have

e(GS) —e(Q°) < %(5 —v)n? — (g)t (3;) un?,

On the other hand, since G¢ is a (6 — v)n-regular graph, we have

VI<k+1+ > ;ﬂ}% D (dge(v) = (k — 1)dye(v))

c€lq] veV(G)
e(Gg) — e(Q9)) 3qun® 1/2
_k+1+z 1/3n §u1/3n§“/n' (3.5)
c€lq]

Let H¢ be the k-graph with V(HS) == V(G \ V' and E(H°) := {e € E(H®) : en V' = (}. Note
that for any v € V(H°) = V(H) \ V/,
5),33) (6 — v £ 2pl/%)n

Ao () = drge (0) £ 3 epe(w,0) Z dyge(w) £ V1) @ P

ueV’

(3.6)
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Note that we obtain the final equality from the definition of V' and the assumption that v ¢ V.
Thus for each ¢ € [g], we have §(H°¢) > (1 — u'/*)A(H¢). Together with (3.4) and the fact that
1/n < u < e,1/k,1/q, this ensures that we can apply Theorem 3.12 to see that for each ¢ € [q],
E(#°) can be partitioned into x’ := w matchings MY, ..., M¢,. Let

M= {Mf i€ [x]} and MS = {Mf i€ [x],|Mf| < (1—¢e)n/k}.
As |Mf| < n/k for any i € [£/] and ¢ € [g], we have

§— v —3,1/3\n2 (3.5),(3.6) -
Oy =8 P)n” B2 By = Y e <

ME(L =) (= [MEn

k(k—1 k k
( ) 1€[K]
This gives
o (E3q+3uM3kn? 2e%n
< < . .
Mul < enk(k —1) ~qlk-1) (3:7)
We let
_ 2
e min{ M\ ME[} = & — max{|Me|} = =W E2ER/G (3.8)
celq] c€lq] k-1

Thus, by permuting indices, we can assume that for each ¢ € [¢], we have Mf, ..., Mt C M\ M¢E.
For each (c,i) € [q] x [k], let

Fqi = U Q;

7V (Q5)eMf

The fact that M\ M is a collection of pairwise edge-disjoint matchings of HC C HC together
with (3.4) implies that, for each ¢ € [g], the collection {F,; : i € [k]} consists of pairwise edge-
disjoint subgraphs of G C G, each of which is a union of at least (1—¢)n/k vertex-disjoint copies
of K. This with (®2)313 shows that (B3)313 holds. As G1,...,G? are pairwise edge-disjoint
subgraphs, {F.; : (c,7) € [g] x [k]} forms a collection of pairwise edge-disjoint subgraphs of G.
Thus (B1)3.13 holds.

Moreover, for each ¢ € [¢] and each vertex v € V(G) \ V', we have

{ielsl:ve V()N = {Me{Mf,....,MZ}:veV(M)}

> (M e M v e VM) - (v — &)

(3.6)
dgc(v) — &'+ Kk > K—en/q.

Thus (B2)3.13 holds. O

\Y]

3.4. Graph packing tools. The following two results from [35] will allow us to pack many
bounded degree graphs into appropriate super-regular blow-ups. The results in [35] are actually
significantly more general, mainly because they allow for more general reduced graphs R.

Lemma 3.14. [35, Lemma 7.1] Suppose n, A, q,s,k,r € Nwith0 < 1/n < e < 1/s < 1/A,1/k
and e € 1/q < 1 and k divides r. Suppose that 0 < £ < 1 is such that §2/3 < £q. Let R be a
graph on [r] consisting of r/k vertex-disjoint copies of Ky. Let Vi,...,V, be a partition of some
vertex set V' such that |V;| = n for all i € [r]. Suppose for each j € [s], L; is a graph admitting
the vertex partition (R, X{, ..., X}) such that A(L;) < A and for each it € E(R), we have
S

> _elLi[x], X)) = (136 £ &)an.

j=1
and |Xf\ < n. Also suppose that for all j € [s] and i € [r], we have sets Wz] - Xl-j such that
]sz] < en. Then there exists a graph H on V which is internally q-reqular with respect to
(R,V1,...,V;) and a function ¢ which packs {Li,...,Ls} into H such that ¢(Xl-j) CV;, and
such that for all distinct j,j' € [s] and i € [r], we have ng(Wz]) N qﬁ(Wij/) =0.
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Theorem 3.15 (Blow-up lemma for approximate decompositions [35, Theorem 6.1]). Suppose
n, q, s, k,r € Nwith 0 < 1/n < ¢ < «,d,dp,1/q,1/k < 1 and 1/n < 1/r and k divides
r. Suppose that R is a graph on [r] consisting of r/k vertex-disjoint copies of Kj. Suppose
s < %(1 — a/2)n and the following hold.

(Al)s.15 G is (e,d)-super-regular with respect to the vertex partition (R, Vi,...,V,).
(A2)315 H = {Hy,...,Hs} is a collection of graphs, where each Hj is internally q-regular with
respect to the vertex partition (R, X1,...,Xk), and |X;| = |Vi| =n for all i € [r].
(A3)3.15 For all j € [s] and i € [r], there is a set W} C X; with |W]| < en and for each w € W/,
there is a set A}, C V; with |Al,| > don.
(Ad)3.15 A is a graph with V(A) C [s] x U;_; Xi and A(A) < (1 — a)don such that for all
(4,z) € V(A) and j' € [s], we have |{z' : (j,2") € Na((4,7))}| < ¢*. Moreover, for all
j €ls| and i € [r], we have [{(j,z) € V(A) : x € X;}| < ¢e|Xi|.
Then there is a function ¢ packing H into G such that, writing ¢; for the restriction of ¢ to Hj,
the following hold for all j € [s] and i € [r].

(Bl)sas ¢;(Xy) = Vi,

(B2)3.15 ¢j(w) € A, for all w € W/,
(B3)3'15 fO’F all (J7$)(],7y) € E(A), we have that gi)](ac) 75 qu/ (y)

3.5. Miscellaneous. In the proof of Theorem 1.2, we often partition various graphs into parts
with certain properties. The next two lemmas will allow us to obtain such partitions. We omit
the proofs as they follow from a straightforward random splitting argument.

Lemma 3.16. Suppose n,T,r € N with 0 < 1/n < 1/T,1/r < 1. Let G be an n-vertex
graph. Let V.- C V(G) and let Vi ...,V, be a partition of V.. Then there exists an equipartition
Resy,...,Rest of V' such that the following hold.

(i) For allt € [T], i € [r] and v € V(G), we have dg, res,nv;(v) = &da,v; (v) £ n?/3,

(i) for allt € [T}, i € [r], we have |Res; N'V;| = %|V| + n?/3,

Lemma 3.17. Suppose n,s € N with 0 < 1/n < ¢ < 1/s < 1 and m; € [n] for each i € [2].
Let G be an n-vertex graph. Suppose that U is a collection of my subsets of V(G) and U’
is a collection of ma pairs of disjoint subsets of V(G) such that each (Uy,Us) € U’ satisfies
UL, |Us| > n®/%. Let 0 < p1,...,ps < 1 with > pi = 1. Then there exists a decomposition
G1,...,Gs of G satisfying the following.

(i) For alli € [s], U €U and v € V(G), we have dg, y(v) = pida,u(v) £n?/3,

(ii) for all i € [s] and (Uy,Uz) € U" such that G[U1,Us] is (¢, dw, v,))-regular for some

d(v, v, we have that G;[Uy, Us] is (2¢, pid(y, u,))-regular.

The following lemma allows us to find well-distributed subsets of a collection of large sets. The
required sets can be found via a straightforward greedy approach (while avoiding the vertices
which would violate (B3)3.1g in each step). So we omit the details.

Lemma 3.18. Suppose n,s,r € N and0<1/n,1/s < e < d<1. Let A be a set of size n, and
for each (i, j) € [s] x [r] let A; j € A be of size at least dn, and let m; ; € NU{0} be such that for
all i € [s] we have Z;Zl m;; < en. Then there exist sets By 1,. .., By, satisfying the following.
(Bl)s.18 For alli € [s] and j € [r], we have B; ; C A; ; with |B; j| = m; ,
(B2)3.18 for alli € [s] and j' # j" € [r], we have B; y N B; j» =0,
(B3)3.15 for all v € A, we have |{(i,7) € [s] x [r] : v € B ;}| <&'/%s.

The following lemma guarantees a set of k-cliques in a graph G which cover every vertex a
prescribed number of times.

Lemma 3.19. Let n,m,k,t € N and 0 < 1/n < 1/t < 0,1/k < 1 with k | n. Let G be an
n-vertex graph with §(G) > (1—t+0)n. Suppose that for eachv € V(G), we have d,, € [m]U{0}.
Then there exists a multi-k-graph H on vertex set V(G) satisfying the following.

(B1l)3.19 For each e € E(H), we have Gle] ~ K,
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(B2)3.19 for each v € V(G), we have dg(v) —d, = (t +1)m £+ 1.

Proof. Let

"= dy — dy}.
mi= | max {du—d}

Then m’ € [m]. For a multi-hypergraph H on vertex set V(G) and v € V(G), let py(v) :=
dp(v)—d,. We will prove that for each ¢ € [m’—1]U{0}, there exists a hypergraph Hy satisfying
the following.

(H1)4 4 For each e € E(H), we have G[e] ~ Ky,

(H2)5 19 A(He) < €(t+1),

(H3)§_19 maXy »eV(Q) {pHg (v) — PH, (u)} < m' — L.
Note that Hy = () satisfies (H1)$ ;9—(H3)$ ;9. Assume that for some £ € [m/ — 2] U {0}, we have
already constructed Hy satisfying (H1)§ - (H3)% ;9. We will now construct Hy, .

If max,cy(@){pm, (v)} — min,cy @) {pa, (v)} < 1, then as £ < m’ — 2, we can let Hyyy := Hy,

then (H1)5TH-(H3)5%) hold. Thus assume that

s (1)) — min oy, (1)} > 2. (39)
Let
A= {veV(O):pm () > min (pm(u)}} and A= (v € V(C) () = max {pm(u)}}.

First assume that |A| > k. Let A’ C A be a set of at most k — 1 vertices such that k divides
|Al + |A’| and ppg,(v) > max,eca\ar pr, (u) for all v € A’. Note that we have either A" C Apax
or Amax C A’. Then we can take a collection A := {A1,..., Air1} of (possibly empty) subsets
of A such that the following hold for each i € [t 4 1].

e |A;| is divisible by &,

o |[A;j| <|Al/t+k,

e every vertex in A’ belongs to exactly two sets in A and every vertex in A\ A’ belongs

to exactly one set in A.

Now, for each i € [t + 1], we have
I(G—-A)>0G)—|Ail > —-1/k+om—n/t—k>1—-1/k+0c—-2/t)n> (1 —1/k)n.

Since V(G)\ A; contains at most n vertices, and |V (G)\ 4;| is divisible by k, the Hajnal-Szemerédi
theorem implies that there exists a collection C; of copies of K} in G covering all the vertices
in V(G)\A; exactly once. For each i € [t + 1], let E; := {V(K) : K € K;}. Then |J!X] E; covers
every vertex in V(G)\ A exactly t 4 1 times, while it covers vertices in A\ A’ exactly ¢ times and
vertices in A exactly ¢t — 1 times. Let Hyyq be the multi-k-graph on vertex set V(G) with

t+1

E(Hg+1) = Hy U U E;.

i=1
Then the above construction with (H1) |, implies (Hl)gﬁé Also (H2)% ;4 implies that A(Hyy 1) =
A(Hp)+ (t+1) < (t+1)(£+1), thus (H2)555 holds. If A’ C Apax, then every vertex in Apay \ A’
is covered exactly ¢ times by (J/Z] E;. Thus, by (3.9), we have

IET%/aX {pHe+1( )} = ug%/afé){pffe(u)} +t and uénvl(%){pm“ (u)} = énvln {pHe( )} +t+ 1.

If Apax € A, then every vertex in Apay is covered exactly ¢ — 1 times while every vertex in A
is covered elther t — 1 times or ¢ times by (!} E;. Thus, by (3.9), we have

s {pH,, ()} ZUgIVa%){pHZ(U)}H— 1 and uénvl(%){pH“l( u)} > ng}(%){pm( u)} +t.

In both cases, we have

(H3)5 10

1
ugrel?;(( {pHé+1( ) — pHe+1 } < uglel{a/}({G {pa,(u) —pr,(v)} =1 < m' — 0 —1.
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Thus (H3)5} holds.

Next assume that |A| < k. Then we take two sets B and C in V(G) such that BNC = A
and |B| = |C| = k. Then similarly as before, we can take two collections F; and Es of sets of
size k such that E; covers every vertex in V(G) \ B exactly once, and Fs covers every vertex in
V(G)\ C exactly once while G[e] ~ K}, for all e € E1 U Ey. Let Hyy1 be the multi-k-graph with
E(Hgy1) == HyU Fy U Fy. Then, it is easy to see that both (H1)5%8 and (H2)5% hold. Also
E1 U Es covers all vertices in V(G) \ A exactly once or twice, while it does not cover the vertices
in A. Then as before, by using the fact that max,cy () {pn,(v)} — min ey (o) {pm, (v)} > 2, we
can show that (HS)gﬁg holds.

Hence, this shows that there exists a hypergraph H,, _; which satisfies (Hl)gﬁglf(HB)gﬁgl.
Let m" := max,cy(q){pn,, ,(v)}. Then (H2)75! implies that m” < (¢t + 1)m. Also, by
(H3)T5! every vertex v € V(G) satisfies pH,, ,(v) € {m"—1,m"}. Recall that 0(G) > (1-1/k)n
and k divides n. Thus the Hajnal-Szemerédi theorem guarantees a collection F of sets of size k
which covers every vertex of G exactly once, while Gle] ~ K}, for all e € E. Thus, by adding all
e € E to H,y_1 exactly (t+ 1)m —m” times, we obtain a multi-k-graph satisfying (B1)s3.19 and

The following lemma is due to Komlds, Sarkozy and Szemerédi [31]. Assertion (B3)s 9 is not
explicitly stated in [31], but follows immediately from the proof given there. Given embeddings
of graphs H; and H; into blown-up k-cliques @Q; C G and Q; C G, the ‘clique walks’ guaranteed
by Lemma 3.20 will allow us to find suitable connections between (the images of) H; and H; in

G.

Lemma 3.20. Let r,k € N\ {1}. Suppose that R is an r-vertex graph with 6(R) > (1—¢)r+1.
Suppose that Q1,Q2 are two not necessarily disjoint subsets of V(R) of size k such that Q1 =
{z1,..., 2} and Q2 = {y1, ..., yx} with R[Q1] =~ Ky and R[Q2] ~ K}. Then there exists a walk
W = (z1,...,2) in R satisfying the following.

(Bl)3.20 3k <t < 3k3 and k | t,

(B2)3.20 for alli,j € [t] with |i — j| <k —1, we have z;z; € E(R),

(B3)3.20 for each i € [k], we have z; = x; and zi_k+; = V.

Lemma 3.21. Let Ak, t € N\ {1}. Let H be a graph with A(H) < A and let X C V(H) be a
set with | X| > AFt. Then there exists a k-independent set Y C X of H with |Y| = t.

Proof. We sequentially choose vertices vy, va,...,v; such that for each i € [t] we have v; €
X\ Nt ({vr, ... ,vi—1}). This is possible since for each i € [t], we have

X\ N {or, i })| > AR — (= D)(AF A2 A1) > 0.
Then the resulting set {vi,...,v;} is as required. O

Lemma 3.22. Let r,k,q,s € N\ {1} with 0 < 1/r <« 1/k,1/q < 1. Let R be an r-vertex
graph with 6(R) > (1 — $)r. Let F be a multi-(k — 1)-graph on V(R) with A(F) < q and
E(F)={F,...,Fs} such that R[F;] ~ Ky_1 for alli € [s]. Then there exists a multi-k-graph
F* on V(R) with E(F*) ={Fy,...,F!} and such that
(Bl)sa2 A(FY) < (k+1)q,
(B2)3.92 for alli € [s], we have F; C F} and R[F}] ~ K.

Proof. Since F is a multi-(k — 1)-graph, we have s < A(F)r/(k —1) < gr. We consider an
auxiliary bipartite graph Aux with vertex partition (E(F), V(R) x [kq]) such that F; is adjacent
to (v,j) € V(R) x [kq] if v € Ng(F;). For any set X of k—1 vertices in R, we have dr(X) > r/k.
Thus, any vertex F; of the graph Aux has degree at least kqdr(F;) > kq - (r/k) > s = |E(F)|.
Thus, the graph Aux contains a matching M covering every F; € E(F). For each (F;, (v,j)) €
M, let F} := F; U{v}. Then (B2)322 holds. On the other hand, for any vertex v € V(R), we
have dr-(v) = dz(v) +{j € [ka) : dus((0,5)) = 1} < dr(v) +hg < (k+1)q. Thus (B1)s 22 holds
too. g
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4. CONSTRUCTING AN APPROPRIATE PARTITION OF A SEPARABLE GRAPH

In Section 6 we will decompose the host graph G into graphs Gy, F; and F} with t € [T] for
some bounded T'. We will also construct an exceptional set Vj and reservoir sets Res;. We now
need to partition each graph H € H so that this partition reflects the above decomposition of G.
This will enable us to apply the blow-up lemma for approximate decompositions (Theorem 3.15)
in Section 5. The next lemma ensures that we can prepare each graph H € H in an appropriate
manner. It gives a partition of V(H) into X,Y, Z, A. Later we will aim to embed the vertices
in A into V{, and vertices in Y U Z will be embedded into Res; using Lemma 3.6. Most of the
vertices in X will be embedded into a super-regular blown-up Kp-factor in Gy via Theorem 3.15,
while the remaining vertices of X will be embedded into Res;. The set Z will contain a suitable
separator Hy of H. The neighbourhoods of the exceptional vertices a, will be allocated to Y.
Moreover, (A2),; and (A3)41 ensure that we allocate them to sets corresponding to (evenly
distributed) cliques of R—the latter enables us to satisfy the second part of (B3)41.

Lemma 4.1. Suppose n,m,r,k,h,A € N with 0 < 1/n <« n < ¢ € 1/h < 1/k,0,1/A < 1
and 0 <n < 1/r <1 such that k | r. Let H be an n-vertex k-chromatic n-separable graph with
e(H) =m and A(H) < A. Let R and Q be graphs with V(R) = V(Q) = [r] such that Q is
a union of r/k vertex-disjoint copies of K. For n' € [en], let Cy,...,Cy be subsets of [r] of
size k—1, and C7,...,C?, be subsets of [r] of size k. Let F and F* be multi-hypergraphs on [r]
with E(F) = {C1,...,Cy} and E(F*) = {Cf,...,C¥}. Suppose that ny,...,n, are integers.
Suppose the following hold.

(Al)a1 6(R) > (1 — ¢ +o)r,

(A2)41 for each L € [ ', we have Cy C C; and R[C}] ~ Ky,

(A3)41 A(F*) < e3n)r,

(Ad)4, for each i € [r], we have n; = (1+e'/?)n/r, and n' + Dicp] i = -

Then there exists a randomised algorithm which always returns an ordered partition (X1, ..., X,
Yi,...,. Y, Z1,...,Z,, A) of V(H) such that A ={ai,...,ay} is a 3-independent set of H and
the following hold, where X := Uie[r] XY = Uze i Yis and Z = Uie[r] Z;.

(Bl)41 For each £ € [n'], we have dg(a;) < W
(B2)4.1 for each £ € [n'], we have Ny (ar) € U,cq, Vi \N1 (2),
B3)41 H|X] admits the vertex partition (Q,X1,...,X,), and H\ E(H|X]) admits the vertex
(
partition (R, X, UY1 U Zy,..., X, UY, UZ,),

.. /
(B4)41 for each ij € E(Q), we have eH(X“X ) = %,
B5)41 for each i € [r], we have | X;| + |Y;| +|Z;| =n; £ Yap and |Y;| < 2eY3n T,

n

(B6)s1 NL(X)\ X C Z and |Z| < 403 pn.
Moreover, the algorithm has the following additional property, where the expectation is with
respect to all possible outputs.

(B7)41 For all £ € [n'] and i € Cy, we have E[Ng(as) NY;] < %

(B1)4.1 and (B7)4.; ensure that each embedding of some H in G does not use too many edges
incident to the exceptional set V.

Proof. Write v/ := r/k and Q = Ug;l Qs, where each Qg is a copy of K}, and let (]?k) =
{Q4, .., Q;} be the collection of all copies of Kj in R. By permuting indices if necessary, we
may assume that V(Q}) = {1,...,k}. Note that ¢ < r¥. As Q is a Kj-factor on [r], for each
i € [r], there exists a unique j € [r'] such that i € Q;. For all s € [r'], s’ € [¢] and k' € [k],
we define ¢4(k'), ¢/, (k') € [r] to be the k’-th smallest number in V(Q,) and V(QY,) respectively.
Thus
V(@0 = {as(L)s - as(K)} and V(QL) = {as (D), oo (R)}.

For all s € [q] and k' € [k], let

Q= Q\{gs(K)} and dyp = [{L € [n]: C7 =V(Q)) and Cp = V(Qp)}.  (41)
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Note that for each i € [r] we have

ds k! = d]:* (Z) and ds k' = n/. (4.2)
2. ) dy > ds

s€lq]ieV (Qf) k' €[k] (s,k")€lq] x[K]

Our strategy is as follows. We will use the separability of H to partition H into Hy,..., H;
such that each Hy is small, and there are no edges between Hy and Hys whenever 0 ¢ {t/,t"}.
We will distribute the vertices of each graph Hy into ;e (g,) Xi or Usev(qr)(Yi U Z;) for an
appropriate s. In particular, V(Hy) will be allocated to UieV(Q’l) Z; = Uie[k} Zi. As Q' and
Qs are copies of K in R and @, respectively, and as Hy is k-chromatic, this would allow us to
achieve (B3)4 if we ignore the edges incident to Hy. In Steps 5 and 6 we will use ‘clique walks’
obtained from Lemma 3.20 to connect up the Hy with Hy in a way which respects the colour
classes of H. We can then allocate N;O’Ik?’ (V(Hyp)) in a way that will satisfy (B3)4.1.

Step 1. Separating H. As H is k-chromatic, there exists a partition (Wi,...,Wy) of V(H)
into independent sets. Since H is n-separable, there exists a partition Vp,...,V; of V(H) such
that the following hold, where Hy := H[V;/] for each t' € [t] U {0}.

(H1)gy n7t/2 <t <2p7%,
(H2)41 nn/2 < |Vy| < 2nn for t' € [t] U {0},
(H3)a1 for ¢' # ¢" € [t], we have that Ey(Vy, Vi) =0, and m — 2Ann < 37,y e(Hy) < m.

Indeed, by the definition of n-separability, there exists a set S of size at most nn such that H \ S
only consists of components of size at most nn. By adding some components of H \ S to S, we
can assume that nn/2 < |S| < 2nn. By letting Vj := S and each of Vi,...,V; be appropriate
unions of components of H \ S, we can ensure that both (H1)s; and (H2),; hold. By the
construction, the first part of (H3)41 holds too. Since there are at most A(H)|S| < 2Ann edges
which are incident to some vertex in S = Vj, the second part of (H3)41 holds as well.

For each ¢’ € [t] U {0} and k' € [k], we let

W]Z = Vy N Wi

Step 2. Choosing the exceptional set A. Let

1+1/h)m

Lo {ze V(H): da(z) < 2 ).

L contains the ‘low degree’ vertices within which we will choose A in order to satisfy (B1)4;.
Note that 2m = - cy (g du(z) = W(n —|L|), thus

n

|L| > n/(2h). (4.3)
For each t’ € [t], let k(t’) € [k] be an index such that

, 1
|LN Wi | > %|LHV(H,5,)|. (4.4)

Such a number k(t') exists as W} ,..., W} forms a partition of Vi = V (Hy).
Now, we choose a partition H,Hq 1,..., 1], Hoy, ..o, Hy o of {Hi,..., Hi} satisfying the
following for each (s, k') € [q] x [K].
(H4)s1 v(Hop) =& 1040 + 2kn*Pn £ n*°n and
Zt’:Ht/eH’s » \V(Hy) N L| > e Y dg g0 +n'/n.

We will choose A within the vertex sets of the graphs in #j ,...,H, ;. Moreover, we will
allocate all the other vertices of the graphs in each H. ., to Y U Z.

Claim 1. There exists a partition ”H,”H’Ll,..., ll,k’ ’2’1,...,7'-[;7,C of {Hy,...,H} satisfying
(H4)41.
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Proof. For each t’ € [t], we choose iy independently at random from [g] x [k]U{(0,0)} such that
for each (s, k") € [g] x [k] we have

e~1/10g ., c—1/10,,7

Pliy = (s,K)] = ———= + 2kn*° and Pliy = (0,0)] =1 — — - 2qk>n?/0.

An easy calculation based on (4.2) shows that this defines a probability distribution. For each
(s, k") € [q] x [k], we let
H:={Hy:t' €[t],ip = (0,0)} and H. ;. :={Hy:t' € [t],iy = (s5,k)}.
Then it is easy to combine a Chernoff bound (Lemma 3.1) with (H1)s41, (H2)41, (4.3) and

the fact that |V(H)| = n to check that the resulting partition satisfies (H4)4; with positive
probability. This proves the claim. [l

By permuting indices on [t], we may assume that for some t, € [t], we have
H={Hy,...,H;,} and U L = {Hi 1, ... Hi}
(s,k")€lq] % [K]
For each (s, k") € [q] x [Kk], let

/ 3
Low=|J (E0W) \NF ). (4.5)
tHy €H

Then by (4.4) and (H2)4; we have

1 (H4)a4.
Lol = >0 SILOV(H)| = 48% 2 2" eV k4202 > A, .

t':H, EH;,M
For each (s, k) € [q] x [k], we apply Lemma 3.21 to L, to obtain a subset of L with size
exactly dg s which is 3-independent in H. Write this 3-independent set as
{ag: L€ [n],C; =V (Q)) and Cp = V(Q{ 1)} (4.6)
This is possible by (4.1) and (4.2) and defines vertices ay,...,a,. Let A :={ai,...,ay}. By
(4.5) and (H3)4.1, A is still a 3-independent set in H. As ay € L, we know that
dr(ag) <2(14+1/h)m/n. (4.7)
Moreover, for ¢ € [n'] and ¢’ € [t], we have the following.
If ap € Vy, then t' € [t]\ [t«] and as € W,’:(t,) \N};’f”%%). (4.8)
In particular, we have Ny (ag) N Nzngrl(Vo) = (). Thus if ay € Vj, then

Npla) € | WhA\NFHW). (4.9)
K E[\{k ()

Step 3. Allocating the neighbourhood of A. We will allocate Ng(A) to Y. We will achieve
this by suitably allocating V(H., ,,) for each (s, k") € [g] x [k]. This will allocate Ny (A) via (4.9).
Note that all choices until now are deterministic. Next we run the following random procedure.
For each t" € [t] \ [t.], let (s,K") € [q] x [k] be such that Hy € H. ., and choose a
permutation my on [k] independently and uniformly at random among all permutations (4.10)
such that my (k') = k(t').
(Note that this is the only place that our choice is random.) Thus one value of my is fixed,
while all other £ — 1 values are chosen at random. We choose 7y in this way because we wish
to distribute N (as) to U, Vi, so that later (B2)s; is satisfied. Setting my (k') = k(t') will
ensure that no vertex in Ny(ay) will be distributed to Y; with i € C; \ Cy. Moreover, as my
is chosen uniformly at random, Ny (ag) will be distributed to (J;c, ¥; in a uniform way, which
will guarantee that (B7)4.; holds.
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Indeed, for ¢ € [n'], (s, k") € [¢] x [k] and ¢’ € [t] \ [t«] such that a; € Lg NV, and for any
K" € [k] \ {k'}, the number 7y (k") is chosen uniformly at random among [k] \ {k(t')}, thus we
have
dp(ayp) (4<7) 2(1+1/h)m
E—1 — (k—1)n

E(|Nm(ar) N WE gl < (4.11)

For each i € [r], let

Y; = U U U W;;,(k') \ A and Y = U Y;. (4.12)
i€]r]

(s,k7):i=dl (k") K €[R] Hy €W,

Step 4. Allocating the remaining vertices to X and Y. Later the vertices in Y; will be
assigned to Y; (except those which are too close to Vj in H, which will be assigned to Z). The
sizes of the sets X; will be almost identical. (Note that because of (B3)4.1, it is not possible to
prescribe different sizes for X; and X if ¢ and j lie in the same copy of K}, in @.) Thus, in
order to ensure (B5)4.1, we need to decide how many more vertices other than f/z we will assign
to the set Y;. As part of this we now decide which of the Hy € H are allocated to X and which
are allocated to Y (again, vertices close to Vj will be assigned to Z). Note that we have

(H4)4.1

;)| < oo DT = < > Y (67 % + 3kn* o)
(s,k"):i=q( (k) K" €[k] Hy €X', |, s1€V(QL) K" €k]
(4.2) (A3)a.
< e V04 (3) + 3K2qn?/Pn §4 1 eV2n)r. (4.13)
For each i € [r], let 72 := (1 — 2eY/?)n/r, and
_ (A4, 1/3 (Ad),, _ (4.13)
i o= ni—i— [V < " thenm > eVnfr— |V > 0. (4.14)

S Gtr

By applying Lemma 3.19 with R, h, 0,'/3n/((h+ 1)r) and 7; playing the roles of G,t, o, m and
d,, respectively, we obtain a multi-k-graph F# on [r] such that for each Q € E(F*), we have
R[Q] ~ Ky, and

for each i € [r], we have dr# (i) = n; + 81/% +1. (4.15)
This implies

Nom - T )~ 1Vl 2 Y s~ 7 1)~ Vo
i€lr] i€lr]
S Y| — Vol £ 7. (4.16)
Note that we have
v(H) = |V(H)\ (Y UAUV))| = N 7. (4.17)

Our target is to assign roughly dr« (i) extra vertices to Y; in addition to Y;, and assign roughly
i — 220 vertices to X, and a negligible amount of vertices to Z;. Then |X;| + |Y;| + |Z;| will
be close to n; as required in (B5)4 ;.

To achieve this, we partition H = {Hy,..., Hy, } into Hi, ..., H,, H#, - ,7‘-[?1éﬁ satisfying the
following for all 7 € [r'] and s € [q].

kel/3n k(m + &%/ Tn)

(H5)41 v(Hi) = kn — +7*°n and e(H;) = ————2,

"
(H6)41 v(HY) = k- multz4 (V(QL)) £ n*/n.

(Recall that mult % (V(Q%)) denotes the multiplicity of the edge V(@) in F#.) Indeed, such a
partition exists by the following claim.

Claim 2. There exists a partition Hi, ..., Hy, ’Hf&, e ,H# of {Hy,...,Hy,} satisfying (H5)41—
(H6)4.1.
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Proof. For each t’ € [t.], we choose iy independently at random from {(0,1),...,(0,7/),(1,1),...,(1,9)}
such that for each i € [r] and s € [¢]:

k'“_m_m . 1 !
Pliy = (0,i)] = — r——— and Pliy = (1,5)] = ~ mutf;(v@s))‘

Since 3 e g kb mult 74 (V(Q5)) = k|E(F#)| = >_ie[) dF# (i), an easy calculation based on (4.16)
shows that thls defines a probability distribution. For all i € [/] and s € [q], we let
Hi o= {Hy :t' € [tu],ip = (0,9)} and HF := {Hy :t' € [t.],ip = (1,5)}.

Then it is easy to combine a Chernoff bound (Lemma 3.1) with (H1)41, (H2)4; and (4.17) to
check that the resulting partition satisfies (H5)41 and (H6)4; with positive probability. This
proves the claim. [l

By permuting indices on [t,], we may assume that for some t* € [t,] we have

U Hz = {Hl,... ,Ht*} and U Hj& = {Ht*+1,...,Ht*}.
i€lr'] s€lq]

In order to obtain (B3)41—(B5)4.1, we need to distribute vertices of the graphs in H; into
{X; :j € V(Q)} and vertices of the graphs in H¥ into {Y; : j € V(Q.)} so that the resulting
vertex sets and edge sets are evenly balanced. For this, we define a permutation 7y on [k] for
each t' € [t,] which will determine how we will distribute these vertices. We will choose these
permutations 71, ..., T, such that the following hold for all i € [r’], s € [q] and k' # K" € [K].

, 51/3 , 2m +el/4p
(H7)41 Z WE gl == —" = 5?%n and Z |Ea(WE i, W;t,(k,,))|:W7
H, eH; H, eH;
<H8>4.1 DS |W£;<kf>| = mult r4 (V(Q) i772/5n-
1‘/:Ht/€7'lf<f7E

To see that such permutations exist we consider for each ¢’ € [t.] a permutation 7y : [k] — [k]
chosen independently and uniformly at random. Then, by a Chernoff bound (Lemma 3.1) com-
bined with (H1)4; and (H2)41, it is easy to check that my,..., 7, satisfy (H7)41 and (H8)41
with positive probability.

*

Step 5. Clique walks. Recall that the separator set S C V(H) was assigned to V. The
vertices in Vy will be allocated to the sets Zi,...,Z; which initially correspond to the clique
Q] C R (recall that V(Q}) = {1,...,k}). We now identify an underlying structure in R that
will be used in Step 6 to ensure that while allocating V(H)\(Vo U A) to X, Y and Z, we do
not violate the vertex partition admitted by R (c.f. (B3)4.1). (This is a particular issue when
considering edges between separator vertices and the rest of the partition.)

To illustrate this, let s € S be a separator vertex allocated to Zi/. Let x be some vertex
in some Hy with xs € E(H). Suppose Hy is assigned to some clique @; C @ and that this
would assign x to some set X, where ¢/ € V(Q;). Furthermore, suppose i'k’ is not an edge in
R. We cannot simply reassign x to another set X; to obey the vertex partition admitted by R
without also considering the neighbourhood of x in Hy. To resolve this, we apply Lemma 3.20
to obtain a suitable ‘clique walk’ P between @} and Q;, i.e. the initial sement of P is V(Q}), its
final segment is V(Q;) and each segment of k consecutive vertices in P corresponds to a k-clique
in R. We initially assign = to a set Zy» for some k” € [k] \ {k’'}. We then assign the vertices
which are close to x to some Zj, where the choice of k" € [r] is determined by P. (In order to
connect Y to Vj, we also choose similar clique walks starting with @} and ending with @’ for
each s € [¢].)

To define the clique walks formally, for each ¢’ € [t], let

Q; if Hy € H; for some i € 1],
Py:={ Q. if Hy € HY for some s € [q], and
Qs if Hy € M, for some (s, k') € [q] x [K],

{pv(1),....pv(k)} == Py,
where py(1) < --- < pp (k).

(4.18)
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By using (Al)41, we can apply Lemma 3.20 for each ¢’ € [t] with V(Q}) and V(Py) playing the
roles of Q1 and @2 in order to obtain a walk j(¢',1),...,5(t,byk) in R such that

for all distinct i,i" € [bpk] with |i —i'| < k — 1, we have j(t',i)j(t',i') € E(R), and for
each k' € [k] we have j(t', k') = wp (k') and j(t', (by — D)k + k') = pp (k).

Moreover, for each ¢’ € [t], we have

(4.19)

3 < by < 3k (4.20)

As described above we will later distribute some vertices of VNN G =Dk (14) to |, el(by—1)k] Zi(¥ k)
so that we can ensure (B3)4; and (B6)4.; hold.

Step 6. Iterative construction of the partition. Now, we will distribute the vertices of each
Hyinto X4, ..., X, Y1,..., Y., Z1,..., Z, in such a way that (B1)4.1,—(B7)41 hold. (In particular,
as discussed earlier, we will have Y; C Y;.) To achieve this, for each ¢’ = 0,1, ..., ¢, we iteratively
define sets X¥', ..., X!, Y{,...,Y¥ Z' ..., Z! First, for each k' € [k], let Z}), := WY, and for
all i € [r] and i’ € [r] \ [K], let

XY =0, Y?:=0 and Z) := 0.

(2 3

We will write

y
=, x'=Jx/ Y=Y ad 2z':=|[]Z

=0 iclr] iclr] i€lr]

Assume that for some t' € [t], we have already defined a partition X f/_l, ce X,f/_l, Ylt,_l, S A
Zf/_l, ., ZY 1 of V'L satisfying the following.

!
(Zl)f{_;l For all ¢ € [r'] and i € V(Qy), let k' be so that i = g;(k"). Then we have

ol (b //71)]6 t'—1 ¢
U Wﬂ' " k‘/) \ NHt (‘/b) g X’L g U Wﬂt//(kﬁ’)’
telt! —1:Hu €My telt! —1:Hy €M,y

(Z2)fﬁ1 for each i € [r], we have

! b, —1)k I "
U U Wﬁ” 7 k’) \ ng'lt ) (‘/0) g }/;t ! g U U V[/;t//(k’)7
€lk] t"elt’—1\[t*]: kelk] t"elt’—1]\[t*]:
t”(k )—Z t”(k )—l
(Z3)Z_Il for all ij ¢ E(Q), we have eH(Xt/_1 Xt/_l) =0,
(Z4)t 71 for all ij ¢ E(R), we have eg (X!~} Zt_l) =en(Y/ 217 = en(Y/ YT =
eH(Zf/_lﬁ Z;/_l) =0,

(Z5) 1" NE(X'")\ X7 C 77 € NE (W),
(26)" 7! for each K € [k], we have W), C Z}, .

Using that Q) is a copy of K, in R and V(Q}) = {1,...,k}, it is easy to see that (Z1)$,-(Z6)9,

hold with the above definition of X?, Y, Z?. We now distribute the vertices of Hy by setting

Xt .= Xf/ U (W:/ k) \N e 2)k+kl(‘/b)> if t' € [t*] and i = py (k') for some k' € [k],
X otherwise,
vyt .— th 1y (W:, k') \N(bt, kH (VO)) if t' € [t] \ [t*] and i = py (k) for some k' € [k],
vy otherwise,

/ - ! b—1)k+k' b—2) ket k!
2=z0 U (W0 (Vi 0 N ) )

(b,k")€E[by —1] x [k]:
i=j(t' (b—1)k-+k')
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Note that this uniquely distributes all vertices of V. Indeed, first note that either Yit/ = Yitl*1
for all i € [r] or X! = X'~ for all i € [r] depending on whether Hy € #, for some ¢ € [']
(in which case ¢’ € [t*]) or Hy € HY for some s € [q] or Hy € H., ., for some (s,k) € [q] x [K]
(in the latter two cases we have ¢’ € [t] \ [t*]). Now, consider WS, N (N& (Vo) \ N& 1 (Vp)) for
kK" € [k] and a € N. Note k" = 7y (k') for some k' € [k]. Then either a > (by — 2)k + k' or

e[V —DE+ K]\ [V —2)k + K] for some unique b’ € [by — 1]. Thus indeed every vertex of
%3 belongs to exactly one of Xit/ or Y;t/ or Zf/.

It is easy to see that the above definition with (4.20), (Zl)fﬁl and (Z2)’€4/E1 implies (Z1)} | and
(Z2)4 . Moreo/ver, I(Z3)fﬁl and (H3), imply (Z3)}, while (Z6), 7" implies (Z6)Y . S/imilarly,
we have ey (V! ,th ) =0 if ij ¢ F(R). We now verify the remaining assertions of (Z4)} ;. First
suppose that

Eu(X! . ZY)\ Ba(X!™1 207 #0 or Bu(¥!'.Z0)\ Ea(v! ™ 2L~ #0.

Then by (H3)41, we have i = py (k') for some k' € [k] and i/ = j(t/,(b — 1)k + k") for some
k" € [k] and b € [by — 1], and H contains an edge between

W2 \ NG (1) and WE o 0 NGO (1),
This means that (by —2)k + k' < (b— 1)k + k”. Thus b = by — 1 and k¥’ < k”. Moreover, since
W;—It’(k/) is an independent set of H, we have k' # k”. Since (4.19) implies that i = py (k') =
J#', (by — )k + k') and i' = j(¢', (by — 2)k + k") with 0 < (by — D)k + k' — ((by —2)k + k") < k,
again this with (4.19) implies that i’ € F(R). Now suppose that

xy € Ey(Z, Z5)\ Ex(28 71, 25 71) with 2,y ¢ Vo.

Then by (H3)4.1, we have ¢ = j(t/, (b—1)k+Fk") and i’ = j(¢/, (' —1)k+ k") for some b, b" € [by—1]
and k' # k" € [k]. However, the definition of Z! implies that such an edge only exists when
[(b—1Dk+E)— () —1)k+E")| < k—1. In this case, (4.19) implies that i¢’ € E(R). Finally,
suppose that

vy € By (28, Z5)\ Ex(Z! =1, 2471 with z € Von 2.
Then the definition of Z! implies that i € [k], z € T/Vi0 and i/ = j(t', k') for some k' € [k].
(4.19) implies that j(¢', k') = my (k). As Ww (k) Y I/VTr () 1 an independent set of H, we have
i # mp(K'). However, as R[[k]] = R[V(Q})] ~ K}, we know that ii’ € E(R). Thus (Z4)4 , holds.
By the definition of X! and Z! with (4.20), it is obvious that (Z5)4 ; holds too.

Thus, by repeating this, we obtain a partition Xt ... X! Y{ ... .Vt Zt .. Zt
satisfying (Z1)} ,—(Z6)} ;. For each i € [r], let
X=X, X:=X" Yi=Y'\A Y:=Y'"\A, Z,:=2 and Z :=Z".

Note that A C Y by (4.8) and (Z2) ;. Thus X,Y, Z, A forms a partition of V (H).

of V(H)

Step 7. Checking the properties of the partition. We now verify that this partition
satisfies (B1)4.1-(B7)4.1. Note that (4.7) implies (B1)41. Consider any ¢ € [n/], and let t’ € [t]\[t«]
and (s,k') € [q] x [k] be such that a; € Hy € H[ ;. Then

(4.9) / 4.10 /
N (ay) - U Wk \ NEI’“SH(VO) (4.10) U Wt ) \N3k3+1(V0)
k" elk\{k')} k" e[k\{k'}
(22)217 (25)2.1 (4.1),(4‘18)
- U Yoo \Nu(2) = U w\Ni(Z U Y \ Ny (2).
k' e[k\{%"} i€V(Q, ) ieCy

This proves (B2)41. Moreover, whenever ¢,t" and (s, k’) are as in the proof of (B2)4.1, for each
j' € Cy, we have j' = py (k") for some k” € [k] \ {k'}. Thus by (4.9) and (Z2)} ;, we have
(421) 2(1+1/h)m

E[|Ng (ae) N Yj|] < E[|[Ng(ag) "W Lanll < &~ Dn
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This proves (B7)4 1.

Properties (Z3)! ;, (Z4)}, and (Z5)% ; imply (B3)41. For each ij € FE(Q), let s € [r'] and
k', k" € [k] be such that i = ¢5(k") and j = ¢s(k”). Thus

(H3)a.1,(21)t , 3 (H2)a1,(HT)1, 2m £ Y/5n
en(Xs, X;) =T N Eg(W, (k,) Wy )| £ AN} N V)| Sl o
Ve[t :Hy eHs

Thus (B4)41 holds. Moreover, given i € [r], let s € [r/] and k’ € [k] be such that i = ¢s(k').
Then

(Z1)5. 3
X =T WE e £ INE (W)

tEft*]:H, eHs

(D1 enfr +n'3n

Similarly, for i € [r], since by (4.8) the vertices of A only belong to V(Hy) for t' € [t] \ [t4],

(22)} / :
i =" > We, ey \ Al £ INE (Vo)
(1K Yipyr () =it €l [

weeoy STl + Z D \Wt’,(k/\A\in

(s,k"):qL(K")=i t’H/EH (s,k"):ql(K")=i k" €[k] t': t/E’H

WL ™ il (V(QL)) + Vil & 2q7%/n = s (3) + Vil + 2q0%/°n
(s,k"):q5 (K")=1

(4.14),(4.15)

ni —n+en/r+n0Pn.

Together with (Z5) ; and (H2)4.1, this now implies that for each i € [r]
| Xi| + Y|+ | Zi] =n; = 771/477,

Also, the definition of 7 with (A4)4; implies that |V;| < 2¢Y/3n/r. Thus (B5)4 holds. Finally,
(H2)4.1 and (Z5)4.1 imply (B6)4.1. O

5. PACKING GRAPHS INTO A SUPER-RECULAR BLOW-UP

In this section, we prove our main lemma. Roughly speaking, this lemma says the following.
Suppose we have disjoint vertex sets V', Res; and Vy and suppose that we have a super-regular
Kj-factor blow-up G[V] on vertex set V, and suitable graphs G[Res:|, G[V, Res], F[V, Res;]
and F'[Res;, Vp| are also provided. Then we can pack an appropriate collection H of graphs into
GUFUF'. Here V) is the exceptional set obtained from an application of Szemerédi’s regularity
lemma and Res; is a suitable ‘reservoir’ set where V{ is much smaller than Res;, which in turn
is much smaller than V. The k-cliques provided by the multi-k-graph C; below will allow us
to find a suitable embedding of the neighbours of the vertices mapped to V5. When we apply
Lemma 5.1 in Section 6, the reservoir set Res; will play the role of the set U U Uy below. Uy will
correspond to a set of exceptional vertices in Res;. (A9)s5.1 will allow us to embed the neighbours
of the vertices mapped to Uy.

Note that the packing ¢ is designed to cover most of the edges of the blown-up Kj-factor
G[V], but only covers a small proportion of the edges of G incident to U. (A7)s5; provides the
edges incident to the vertices mapped to Vj, and (A8)5.; allows us to embed the neighbourhoods
of these vertices.

Lemma 5.1. Suppose n,n’,k,A;r,T € N with 0 < 1/n,1/n' <« n < ¢ € 1/T € a K
d < 1/k,o,v,1/A <1 andn < 1/r < o and k | r. Suppose that R and Q are graphs with
V(R) = V(Q) = [r] such that Q is a union of r/k vertex-disjoint copies of Kj. Suppose that
Vo, -, Vi, Uo, ..., Uy is a partition of a set of n vertices such that |Vo| < en, |Ug| < en and for
all i € [r]

(1-1/T +2)n (1+2e)n

Tr
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Let V := Uie[r} Vi and U = UiE[T] U;. Suppose that G, F, F' are edge-disjoint graphs such that
V(G) = VUUUU,, F is a bipartite graph with vertex partz’tz’on (V,U), and F' is a bipartite graph
with vertex partition (Vo,U) such that F' = Ucrr) Uey,, Foys where all the Fy, are pairwise
edge-disjoint stars with centre v.

Suppose that H is a collection of k-chromatic n-separable graphs on n vertices, and for each
t € [T] we have a multi- (k: 1)-graph Cy on [r] and a multi-k-graph C; on [r] with E(C;) = {Cy4 :
v e Vo} and E(Cy) = {C} ;v € Vo}. Assume the following hold.

(Al)s.1 For each H € H, we have A(H) < A and e(H) > n/4,

(A2)51 n™/* <e(H) < (1 —v)(k—1)an?/(2r),

(A3)51 G[V] is (T2, )-super-regular with respect to the vertex partition (Q, Vi, ..., V;),
(Ad)51 for eachij € E(R), the graphs G[V;, U;] and G[U;,U;] are both ('/°°, (d®)+)-regular,
(A )51 (5 ) (1—1/k+U)T',

(A6)s.1 for allij € E(Q) and u € U, we have dpy,;(u) > d*n’,

(AT)51 for allv e Vy andt € [T] and i € Cy¢, we have dpy, u;(v) > (1= d)a|Uy,

(A8)s5.1 for allv € Vo and t € [T], we have Cyy C Cy 4, R[C* ¢~ K, and A(C}) < 53/#,
(A9)51 for each u € Uy, we have

[{i € [r] : da,v, (u) > d®n’ for all j € Ng(i)}| > /4
Then there exists a packing ¢ of H into GU F' U F’ such that
(Bl)s.1 A(p(H)) < 4kAan/r,
(B2)5.1 for each u € U, we have dypna(u) < 20e'/8nr,
(B3)5.1 for each i € [r], we have ey3)n(Vi, U U Up) < e/2n2 /12,

Roughly, the proof of Lemma 5.1 will proceed as follows. In Step 1 we define a partition
of Uy and an auxiliary digraph D. In Step 2 we define a partition of each H € H. For each
graph H € H we apply Lemma 4.1 to partition V(H) into XH Y ZH AH  We will embed
AM into Vj and the remainder of H into V U U U Uy. In Step 3, we apply Lemma 3.6 to find
an appropriate function ¢’ packing {H[YH U Z" U A"] : H € H} into G[U] U F’. Guided by
the auxiliary digraph D, in Step 4 we modify the partition by removing a suitable W from
X (so that we can later embed X \W into V). We will also find a function ¢” packing
{H[WH] : H € H} into G[U] in an appropriate way, which ensures that later we can also
pack {H[XH\ WH WH] . H € H} into F[V,U]UG[V,U]. In Step 5 we will partition H into
subcollections Hi 1, ..., Hrw and use Lemma 3.14 to pack {H[X \ W#]: H € H;,,} into an
internally g-regular graph H;,, (for some suitable ¢). Finally, in Step 6 we apply the blow-up
lemma for approximate decompositions (Theorem 3.15) to pack {Hy,y : t € [T],w’ € [w]} into
G[V] such that the packing obtained is consistent with ¢’ U ¢”.

Proof. Let r' := r/k and Q1,...,Q, be the copies of K; in Q. Let ng := |Vy| and V) =:
{v1,...,Uny}. By (Al)51, for each H € H, we have

e(H) < An. (5.1)

Moreover,

k=1 < 2(1—v)(k— Dan/r. (5.2)

Step 1. Partition of Uy and the construction of an auxiliary digraph D. In Step 2, we
will find a partition of each H € H which closely reflects the structure of G. However we need
the partitions to match up exactly. The following auxiliary graph will enable us to carry out
this adjustment in Step 4. Let D be the directed graph with V(D) = [r] and

E(D) = {ij :i # j € [r], No(i) € Nr(j)}. (5.3)
For each ij € E(R), we let
Ui(§) = {u € U; : dgv; (u) > (d* — £/)n'}.
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Then (A4)s; with Proposition 3.4 implies that |U;(j)] > (1 — 2¢¥/59)|U;|. For each ij € E(D),
we define
N Ui, (5.4)
i'€Ng (4)
then we have
UP @) > (1 - 2(k — 1)eY/)|Uy| > n/(2Tr). (5.5)

In Step 4 we will map some vertices x € V(H) whose ‘natural’ image would have been in V; to
U ]D () instead, in order to ‘balance out’ the vertex class sizes.

Claim 3. There exists a set I* = {i},...,i}} C [r] of k distinct numbers such that for any
k' € [k] and j € [r], there exists a directed path P(i},,j) from i}, to j in D.
Proof. First, we claim that all ¢ # j € [r] satisfy that N, (i) N N5(j) # 0. Indeed, as
INR({i,7})| > 20(R) —r > (1 — 2/k + 20)r, we have that
{s € ")+ [Npyiqu({idh)| = k= 1} > o7 > 3,
Thus there exists s € [r'] such that i, j ¢ V(Qs) while [Ng v (,)({i,7})] > k& — 1. We choose
i’ € V(Qs) such that Qs \ {4’} € Nr({4,}), then (5.3) implies that i,7 € N}, (j’).
Now, we consider a number i € [r] which maximizes |A(7)|, where
A(i) ={j € [r] : there exists a directed path from ¢ to j in D}.
If there exists j € [r] such that j ¢ A(7), then by the above claim, there exists j' € [r] such
that 4, € N7, (j'). Then A(i) U{j} C A(j'), which is a contradiction to the maximality of A(i).
Thus, we have A(i) = [r]. Let i} := 1.

Since dr(i7) > 6(R) > (1—1/k+o)r by (A5)s.1, we have |{s € [r'] : Npy(q,)(i1) = k}| > or.
Thus, there exists s € [r’] such that V(Qs) C Ng(i}), and this with (5.3) implies that V(Qs) C
N, (i7). Welet i3, ..., i} be k—1 arbitrary numbers in V(Q,). Then for all &’ € [k] and j € [r],
there exists a directed path from i}, to ] and a directed path from 4] to j in D. Thus there
exists a directed path from 7}, to j in D. This proves the claim. O

We will now determine the approximate class sizes n; that our partition of H will have. For
this, we first partition Up into U7, . .., U, in such a way that the vertices in U] are ‘well connected’
to the blow-up of the k-clique in @) to which ¢ belongs.

For alli € [r],u € U] and j € Ng(i), we have dg,v,(u) > d*n’ and |U]| < 2e3/4n /7. (5.6)

Indeed, it is easy to greedily construct such a partition by using the fact that |Uy| < en and
(A9)s5.1.

For i € I*, we will slightly increase the partition class sizes (cf. (5.9) and (X5)5.1) as this will
allow us to subsequently move any excess vertices from classes corresponding to I* to another
arbitrary class via the paths provided by Claim 3. For each i € [r], we let

ni = n'+ Uil +|Uj| = Vil + |Uil + U], (5.7)
then we have
= (1—1/T +2e)n/r + (1 £ 2)n/(Tr) + 2% *n/r = (1 £ 23 /2)n/r and Z n; =n — ng.

i€[r]

(5.8)
For each i € [r] we let
_ ni + (r' = D)n'on  ifi e I*,
n; = 1/5 P %
n; — if i € [r]\ I*.
This with (5.8) implies that for each i € [r],

1+ 2/3
Ty = ( c and an Zm:n—no. (5.10)

1€[r] i€[r]
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Step 2. Preparation of the graphs in H. First, we Will partition H into T collections
Hi,...,Hp. Later we will pack each H; into GU F U UvGV vt (Recall that the F ;, form a
decomposmon of F'.) As GU F U F’ has vertex partition Vg, ..., V,,Uy,..., U, U{,..., U, for
each H € H, we also need a suitable partition of V(H) which is Compatible with the partition
of the host graph G U F U F’. To achieve this, we will apply Lemma 4.1 to each graph H € H,
with the hypergraphs C; and C; to find the desired partition of V(H).

By (5.1) we can partition H into Hy,...,Hr such that for each t € [T7,

(H) = e(H)T+An 2 (1 =23tk — 1)n?/(2Tr), and
3 L de(#) n < 200k — 1)n)(Tr). (5.11)

For each t € [T], we wish to apply the randomised algorithm given by Lemma 4.1 with the
following objects and parameters independently for all H € H;.

object/parameter‘H‘R‘Q‘Ct‘ct""nO‘C’W,t‘Cv“‘(S/d]‘ ‘ ‘k‘
playing therole of | H | R|Q | F|F*|n' | Co | C; | h |n|e|k]

A

[ [n

Indeed, (A5)5.1, (A8)s51 imply that (Al)s1, (A2)s4; and (A3)41 hold with the above objects
and parameters, respectively. Moreover, (5.10) implies that (A4)41 holds too. Thus we obtain
a partition X ... XH vH ... vH ZH  ZH AH of V(H) such that A7 = {al v all

is a 3-independent set of H and the following hold, where X := UiE i Xi "y H Uie[r] v,
and ZH = UiE[T] ZZI{

(X1)5.1 For each £ € [ng], we have dp(all) < M
(X2)5.1 for cach £ € [ng, we have Ni(af!) C Uzecvz Y\ N (29,

(X3)5.1 H[X] admits the vertex partition (Q, X#,..., XH), and H \ E(H[X¥]) admits the
vertex partition (R, X uYf uZzH ... XHuU YTH uzH),

.. /5
(X4)5.1 for each ij € E(Q), we have eH(XiH,XJH) = 726(56)}57" =

(X5)5.1 for each i € [r], we have |YH| < 2eY3n/r and | XH| 4+ || + |ZH| = 7; + n/*n; in
particular, this with (5.9) implies that for each i € [r], we have

[ni,ni + 171/671] if i € I,

— | XH| 4+ |VH| 4+ |24
| i ‘ + ’ i ‘ + ‘ i | € [nz _ 771/6”’ nz] otherwise,

(X6)s.1 NL(XTY\ XH C ZH and | 27| < 40y,

(X7)5.1 for all £ € [no] and i € Cy, 4, we have E[Ny(all) N V;H] < %.

By applying this randomised algorithm independently for each H € Hi U---UH7, we obtain

that for all t € [T, £ € [ng] and i € Cy, ¢, we have E[Y ey, [Nu(af') N Y]] < % Note

that for each H € H;, we have |Ng(all) N Y| < A. As our applications of the randomised
algorithm are independent for all H € H;, a Chernoﬂ' bound (Lemma 3.1) together with (A2)s5
implies that for all t € [T], £ € [ng] and i € C,, 4, we have

2(1 + d)e(? !t) dQG(? ft)Q/((k o 1)2n2) (5.11),(A2)5.1 13

H H n

]P’[ > INu(af')NY; ’2—(143—1)71 < 2exp(— 22| ) < e :
HeH,

By taking a union bound over all ¢ € [T],£ € [ng] and i € C,, +, we can show that the following
property (X8)s51 holds with probability at least 1 — I<:Tnoe_"1/3 > 0.

(X8)s.1 For all t € [T], £ € [ng] and i € i1, we have 3 yeqy, [Nur(aff) N Y| < 20F0E0).

Thus we conclude that for all H € ‘H there exist partitions X{7, ... X7 YH ... vH ZH ZH
AH of V(H) such that A? = {aff ... all}is a 3- mdependent set of H and such that (X1)5 1—-
(X6)5_1 and (X8)5.1 hold.

7n0
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Note that ),

we have

]n = |V(H)| —|A"| = n —ng. This with (5.8) implies that for each H € H,

S @ —ni)= > (mi—nfh). (5.12)

eI ielr]\I*

7‘

The following claim determines the number of vertices that we will redistribute via D.

Claim 4. For each H € H, there exists a function f : E(D) — [n*/™n] U {0} such that for

each i € [r], we have
S - YD G

JEND (D) JENL(4)

Proof. By (X5)5.1, for each i € I*, we have i —n; > 0 and for each i € [r] \ I*, we have
n; —nf > 0. Thus by (5.12), there exists a bijection g* from

U{z H_ni] to U {i} x [n; — nl].

iel* ie[r]\I*
For all i € I* and m € Al —n;], let g™ (i, m) =: (¢ (i,m), g’ (i, m)) and let P, ,, be a directed
path from i to gf7(i,m) in D, which exists by Claim 3. As g/ is a bijection, for each i € [r], we
have

(@) = { o, Hier, (5.13)

n; —n; otherwise.
For each ij € E(D), we let
(7)== {(@,m) + ' € I, m € [A] —ny] and j € E(Pym)}|-
Then for each ij € E(D), we have

(X5)s.
Hij) <‘ U{z Al — ny) §51k:771/6n§771/7n

i el*

Note that for any ¢ € I* and m € [ﬁfl — n;], the path P, starts from a vertex in I* and ends
at [r] \ I*. Thus for each i € [r] we have

DN I D A1)

JENL(4) JENL (@)
= |{(@',m) :m e [pf —nyl,i =1 € '} — |{G,m): i € I*,m € [l —ny],gf (i',m) = i}|
- n) —0=n —n; if i € I*,
= a1/ (513) <y )
0—(gy") (1) ="n" —n; otherwise.
This proves the claim. O

For each H € H, we fix a function f¥ satisfying Claim 4. For each ij ¢ E(D), it will be
convenient to set fH(ij) := 0.

We aim to embed vertices in X UY;H UZ into V;UU; UU!. As |V;UU; UU!| = n;, by (5.7),
it would be ideal if | XH UV, U ZH| = n; and | X | = n/. However, (X5)51 only guarantees that
this is approximately true. In order to deal with this, we will use D and f¥ to assign a small
number of ‘excess’ vertices u € X into U; when ij € E(D). The definition of D will ensure
that the image of u still has many neighbours in Vj; for all ¢ € Ng(i).

Step 3. Packing the graphs H[Y 7 UZ#UAH] into G[U]UF'. Now, we aim to find a suitable
function ¢’ which packs {H[Y#UZ" U AH] . H € H} into G[U]UF'. In order to find ¢/, we will
use Lemma 3.6. Moreover, we choose ¢’ in such a way that we can later extend ¢’ into a packing
of the entire graphs H € H. One important property we need to ensure is the following: for any
vertex x € X]H which is not embedded by ¢, and any vertices y1, ...,y € Ng(z)n (YU ZH)
which are already embedded by ¢, we need N (¢'({y1,...,¥i})) NV} to be large, so that « can
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be later embedded into Ng(¢'({y1,--.,¥i})) NV;. For this, we will introduce a hypergraph Ny
which encodes information about the set Nz (z) N (Y7 U ZH) for each vertex 2 € X In order
to describe the structure of G and H more succinctly, we also introduce a graph R’ on [2r] such
that

ER)Y={ij:(i—7r)(j—r)€ E(R)ori(j—r)e E(R)}.
For all i € [r] and H € H, let Vi, :=U; and X =Y U Z/. Note that (X3)51 and (Ad)s,
imply that for each H € H,

H[YH" U ZH] admits the vertex partition (R',0,...,0, XH ..., X3, and

G is (e'/%0, (d®)t)-regular with respect to the partition (R', V4, ..., Va,). (5.14)
For all H € H and z € X let
ere = Npg(e)\ X7 L Ny (2) 0 22,
Let N be a multi-hypergraph on vertex set Z with
E(Ng) :={eg.:x € Ny(Z%)n X1}, (5.15)
and let fy : E(Ng) — [r] be a function such that for all z € X, we have that x € Xﬁ;(eH,w)'

Then A(Ny) < A and Ny has edge-multiplicity at most A. Note that, as Ny is a multi-
hypergraph, there could be two distinct vertices = # 2’/ € X such that e H,z and ep 4/ consists
of exactly the same vertices while fy(enq) # fr(emq)-

Our next aim is to construct a function ¢’ which packs {H[Y? U ZH U AH] : H € H} into
G[U]U F’ in such a way that the following hold for all H € H.

"1)5.1 For each e € E(Ng), we have [Ng(¢'(€)) N Vi) = 2V,

’2)5.1 for each v € V(G), we have |{H € H :v € ¢'(HYT U ZH))}| <e'/8n/r,

’3)5.1 for all i € [r] and H € H, we have ¢/ (Yl U ZH) C U;, and

'), ¢ (AT) = V4.

Claim 5. There exists a function ¢' packing {H[YT UZH U AT] . H € H} into GIU]UF' which
satisfies (®'1)51~(P'4)51.

P
P
P

~ N~

Proof. Let ¢f, : ) — () be an empty packing. Let Hy,..., H, be an enumeration of . For each
s € [K], let
HE = {Hy [V U ZHs U AHY] 2 6 € [s]).

Our aim is to successively extend ¢, into ¢},..., ¢, in such a way that each ¢ satisfies the
following.

(®'1)g, ¢, packs H® into G[U] U F”,

(®'2), for all s’ € [s] and e € E(Np,, ), we have [Ng(¢;(e)) N Vst/ @) > d5A|VfHS/ @

(®'3)%, for each v € V(Q), we have |{s' € [s] : v € ¢,(Hy[YHs U ZHs])} < V/8n/r,

(®'4)g | for all i € [2r] \ [r] and s’ € [s], we have ¢;(st') cV,

(®'5)g | for all s € [s] and ¢ € [ng], we have gb’s(afs/) = vy,

(®'6): | for all 8" € [s], t € [T] with Hy € H;, we have ¢,(Hy[YHs U ZHs U AHS]) C GIUJ U

UUEVO Fé7t'

Note that ¢, vacuously satisfies (®'1)?,—(®'6)2,. Assume we have already constructed ¢,
satisfying (®1)3 ;—(®’6)z; for some s € [k —1]U {0}. We will show that we can construct ¢/ ;.
Let

G(s) = G\ ¢5(H*).
For all ¢ € [ng] and af‘“’l € AHs+1 ) we first let

B(ad ) = vy (5.16)

For each i € [2r] \ [r], let
1/8

n—1}.
.

9

Vi s {0 € Vi {5 € (8]0 € gl (Ho Y U ZH)))
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Note that

(‘b/i)gl ZSIE[S} |Y;iI;l U Zﬁsﬂ (X5)5.1,(X6)5.1

el/8n _1 - r
T

Let ¢ € [T] be such that Hyy; € H;. For all i € [2r]\ [r] and z € X"+, we let

IN
w
™

—
~
w
L
~.
o
X
A

|V;_bad ‘

(5.17)

B NFL i (00) \ (Ngy 342) (ve) U vhady if gz € NHsH(afS“) N XiHS+1 for some ¢ € [ny],
v Vi \VbaLd otherwise.

We will later embed x into B,. Note that if « € NHS+1(afs+1), then = ¢ NHSJrl(aﬁ,Is“) for any

¢ € [no] \ {¢} as Afs+1 is a 3-independent set in H,y1. Also, if 2 € NHsﬂ(afS“) N XZ-HS“, then
by (X2)5.1 we have i —r € Cy, ;. Thus in this case

| By | > dp; vi(ve) = dgo)nry, v (ve) = V2]

(A7)5.1,(5.17)
> (1 - d)Oé|szr| — dfz’/S(HS)ﬁF{) z»V (UZ) _ 51/57’1//7'

(X2)5.1,(‘b/4)g‘1:
(2'5)51,(2'6)5 4

> (=dalUi, = Y INm (e, )N = oy
s'e[s],HyeHy
(X8)5.1 2(1+ d)e(Hy)
> (1 - d)a|U;| - (k——l)nt el/on/r
(5.11) 14d)(1—2
> (1 —d)a|Ui—r| - 1+ d)( T v/3)an _ eVonr > ?|Ui_| = a?| V.
If ¢ Ng,,, (a)**") for any £ € [ng], then |B,| > |Vi| — [VP*| > (1 — £'/19)|Vj]. So, for all

€ [2r]\ [r] and x € X, "*"", we have
B, CV;, and |B,| > ?|Vj|. (5.18)

For each i € [r], let P; := (), and for each i € [2r] \ [r], let P; := XZ»Hs“. We wish to apply
Lemma 3.6 with H[Ys+1 U ZHs+1] playing the role of H and with the following objects and
parameters.

object /parameter | G( )| R | Vi | P/ An|e?|d® | Nu, | fu.,, |1/2T) | Bs
playmgtheroleof‘ ‘R‘Vi‘Xi‘ € ‘A‘n‘a‘d‘ H ‘ f ‘ 153 ‘Az
Let us first check that we can indeed apply Lemma 3.6. Note that for each ij € E(R') with

i€ 2]\ r],

o (Vi Vi) 2 ea(Vi, Vi) =AY [{s' € [s] v € gi(Hy[Y ' U ZT])}|
veV;

(®'3)3, (Ad)s.
> eV V) = Ayl 2T (1= e ea(Vi, V).
Thus (5.14) with Proposition 3.3 implies that (A1) ¢ of Lemma 3.6 holds. Again (5.14) implies
that (A2)36 holds. Conditions (A3)36 and (A4)s¢ are obvious from (Al)s1, (X3)51 and the
definition of Ny, ,. Moreover, (5.18) implies that (A5)36 also holds. Thus by Lemma 3.6, we
obtain an embedding ¢’ : Hyy1[Y Hs+1 U ZHs+1] — G(s)[U] satisfying the following.
(P1)5h! For each x € YHs+1 U ZHs+1, we have ¢/ (x) € By,
(P2)§‘E1 for each e € E(Np,,,), we have |[Ng(¢/(e)) N VfH e)\ > (d3/2)A\VfH5+1(e)\.

Let ¢, := ¢s U Uy By (5.16) with the definitions of G( ) and B,, this implies (®1)%! and
(@'6):1!. Asd < 1, (P2)5h! implies (®'2)5%!, and the definitions of B, and V;?*d with (P1)5!!
and (®'3)%, imply (<I> 3)stL. Property (P1)5h! and (5.18) imply that (®'4 )g'ﬁl holds. (®'5)5%?
is obvious from (5.16). By repeating this for each s € [k — 1], we can obtain our desired packing
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¢ = ¢|.. Since (®'1)F,—(®'5)F, imply that ¢’ is a packing of H" into G[U] U F’ satisfying
(®'1)5.1—(P'4)5.1, this proves the claim. O

Step 4. Packing a 3-independent set W C X into U U Uy. In the previous step, we
constructed a function ¢ packing {H[YH U ZH U AH] . H € H} into G[U] U F'. However,
for each graph H € H, the set ¢/(H) only covers a small part of U. Eventually we need to
cover every vertex of G with a vertex of H. Hence, for each H € H we will choose a subset
WH C XH of size exactly |U U Up| — |[YH U Z#|, and we will construct a function ¢” which
packs {H[WH] : H € H} into G[U U Up]. As later we will extend ¢’ U ¢” into a packing of H
into GUFUF’, we again have to make sure that for any z € XiH \ WH with neighbours in W#,
there is a sufficiently large set of candidates to which x can be embedded. In other words, the
set V; N N(¢"(Ny(z) N WH)) needs to be reasonably large. To achieve this, we choose W to
be a 3-independent set, so [Ny (z) N WH| < 1, and we will map each vertex y € Ny (x) N W#
into a vertex v which has a large neighbourhood in V;.

Accordingly, for all H € H and i € [r], we choose a subset WZH C XiH satisfying the following:
(W51 Usep W is a 3-independent set of H,

(W2)5.1 for each i € [r], we have

r X3sa (5:1,(5.6),(%5)s1 (L £)n

Wi =X = n ng —n' = [YH| | 28] £9/0n 7702 Tr

(W3)s.1 U Wi N N (Z21) = 0.
Indeed, the following claim ensures that there exist such sets WiH .
Claim 6. For all H € H and i € [r], there exists WH C XH such that (W1)51-(W3)5.1 hold.

Proof. We fix H € H. Assume that for some i € [r], we have already defined Wfq Yoy Wﬁ 1
satisfying the following.

(W1)e ! Usepi—1j W1 is a 3-independent set of H,
. 1/4
(W'2)i7! for each i € [i — 1], we have [W/| = | X| —n/ = w,
(W3)5 ! Upeimy WiT N Ng(27) = 0.
Consider W/ := Xﬁ\(Ui/e[iq] NZ(WIHUNE(ZH)). Note that (X6)5 1 implies that [NZ(ZH)] <
8A3R +2pn - Also, (X3)s.1 with (X6)5.1 implies that
U Niwihnx{f cnpzyo | NEwD.
ieli—1] i €Ng (§)N[i—1]
Thus
Wit = X - INEET - Y INEWE)
i'€Ng (1)N[i—1]
2k AZn, (X5)s.1,(5.10)
SRR A - ),
,

Thus, by Lemma 3.21, VVZ-’H contains a 3-independent set WiH of size \XZH | —n/. Then, by the
choice of WH | (W'1)L ,—(W’3)%, hold. By repeating this for all 4 € [r] in increasing order, we
obtain W/ satisfying (W'1)L ;—(W'3)t |, and thus satisfying (W1)51-(W3)51. This proves the
claim. 0

For all H € H and i € [r], let WH = Usep WH and W; := (U yey Wi, where we consider
the sets V(H) to be disjoint for different H € H. Note that for all H € H and ¢ € [r|, Claim 4
implies that 0 < EjeNg(i) fH(i7) < rp/"n. For all H € H and i € [r], we choose a partition
WiH’F, WiH’U/, WP of WZ-H such that

W = |uf] and (WP = 3" fH () <t/ (5.19)
JENE (D)

(W'2)it )
> X - a2 -
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Such partitions exist by (5.6), (W2)51 and the fact that n < e < 1/T. For each S € {F,D,U'},
we let WHS .= Uiep WiH’S.

We now construct a function ¢” which maps all the vertices of W into UyU(U\ ¢'(YHUZH))
for each H € H. (In Step 6 we will then apply Theorem 3.15 to embed all the vertices of
XHN\ WH into V.) We will define ¢ separately for WHF WHD and WHU' We first cover
the ‘exceptional’ set Uy with WU’ (5.19) implies that for all H € H and i € [r], there exists
a bijection (b/(’ﬂl from WZ-H’UI to U;. We let ¢ := Upey U gb’(’ﬁl Then (5.6) implies the
following.

i€[r]

For all i € [r] and H € H, the function ¢, is bijective between WiH’U/ and U].

Moreover, for all x € WiH’U/ and j € Nq(i), we have da v, (¢}, (x)) > d*n/.
We intend to embed the neighbours of W into |, ieNG (6) V;. Thus it is natural to embed W}
into U; and make use of (A6)5 1. This is in fact what we will do for Wi = However, the vertices
of WZ-H’D will first be mapped to a suitable set of vertices in U]D(i) C Uj for j € Nj(i). The
definition of D and f¥ will ensure that the remaining uncovered part of each U; matches up
exactly with the size of each WJ-H’F

By (5.5), for all ij € E(D) and H € H, we have

(5.20)

(X5)5.1,(X6)5.1
UP @)\ ¢'(YTuz™)| = n/@2Tr) - |V Uz > |Uj1/3.

For i € [r] and H € H, we let
_, Claim 4
Yo G < T < g .
JEND (9)
Thus, for each i € [r], we can apply Lemma 3.18 with the following objects and parameters.

object/parameter ‘ K ‘ r ‘ HeH ‘ Ui ‘ j€|r] ‘ UP(H)\ ¢'(YH U ZH) ‘ nt/10 ‘ FH (i) ‘ b ‘ 1/3

(3

playing the role of‘ s ‘ r ‘ i€ s] ‘ A ‘je [] ‘ Aij ‘ € ‘ m;. ‘ > el Mg ‘ d

(Recall that f(ji) = 0 if ji ¢ E(D).) Then we obtain sets Uﬁ- C U; satisfying the following
for each i € [r], where UH = Ujepy Ulf‘;.

(Ul)5.1 For each j € [r] and H € H, we have |U/t| = F7(ji) and Ul CUPG)\ (YU 2z,
(U2)5.1 for j # j' € [r] and H € H, we have Uf; N U/%, =0,

(5.2)
(U3)s.1 for each v € U;, we have [{H € H :v € UF}| < n'/2|H| < 7'/*n.
Now for all H € H and i € [r], we partition WZ-H’D into Wﬁ’D,...,WH’D in such a way

7,7

that ]WZ}‘;D| = fH(ij). Clearly, this is possible by (5.19). Thus (Ul)s, implies that for all
(i,7) € [r] x [r] and H € H, we have ]VVZ}‘](D| = fH(iy) = ]Uﬁ . Thus there exists a bijection

/1,71373 : WED — UH Let ¢ = Ui jyeprxi Unen (Z)’l’){{i’j. Then, for ij € E(D),H € H and

WZ]’ , we have that
op(y) € Ujs CUP )\ ¢/ (YT U Z"),
Thus, (5.4) with (Ul)s; and (U2)5; implies the following.

For each H € H, the function ¢7, is bzyectwe between Uze[r VVZ.H’D = WHDP and
Uier UH. Moreover, for all x € Wi D and j e Ng(i), we have dg,v,, (¢} (z)) = (5.21)
d3n’ /2.

Now, for all H € H and i € [r]

WHE| =Wl | ) G0V

7 (2

(X =n) =1Uil = D f7G)

JENL(3)
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X5)s5. ~ had
Bt GH ST () — | - 1 ZH | - — (U
JENL ()
Claim 4 -
= S G = I = 1 2H | - — (U
JENL(3)
5.7),(U1)s. ®'3)s.
COLY o iy =20 = S ot T2 oo (¢ (v vz uu ).

JENS (i)

Thus, there exists a bijection (b'}’;}l[ from W to U \ (¢/(VE U ZH) U UH). Let O =

7

Unen Uiep (;5}’# Then (A6)5.; implies the following,.

For all H € H and i € [r], the function ¢y, is bijective between WiH’F and U; \ (¢'(V;H U
ZIYUUHM). Moreover, for all z € W™ and j € Ng(i), we have dpy, (¢h(x)) > d*n'.
We define

(5.22)

" = ¢l UPH U and ¢y = ¢ U ", (5.23)
Then (5.20), (5.21) and (5.22) imply that ¢ is bijective between W and (UUUy)\¢'(YHUZH),
when restricted to WH for each H € H. Thus, we know that

¢ is bijective between WH UYH U ZH UAH and UUUyUV for each H € H. (5.24)
Moreover, (5.20), (5.21) and (5.22) imply that the following hold for all ¢ € [r] and H € H.
(®.1)51 If 2 € WF, then ¢.(z) € U and, for each j € Ng(i), we have dgy, (4. (x)) > d*n/,
(®.2)5.1 if € W/, then ¢.(x) € U and, for each j € No(i), we have dg v, (¢«(z)) > d®n’/2,
(®.3)51 if x € WiH’Ul, then ¢.(z) € Uy and, for each j € Ng(i), we have dg v, (¢«(2)) > d*n’.
Furthermore, (®'2)5; with (U3)s5 implies that
(®,4)5,1 for u € U, we have [{H € H :u € ¢ (YH U ZH UWHDPY}| < 2eV/8nr,

Step 5. Packing the graphs H[X \ W] into internally regular graphs. Note that
(X6)5.1 and (W3)5.1 together imply that Ng(WH)n (Y7 uZH uAH) = () for each H € H. This
implies that ¢, is a function packing {H[Y7UZHUWHUAH] : H € H} into G[UUUy]UF'. We
wish to pack the remaining part H[X " \ W] of each H € H into G[V] by using Theorem 3.15.
In order to be able to apply Theorem 3.15, we first need to pack suitable subcollections of H
into internally g-regular graphs. More precisely, for each t € [T], we will partition H; into
Hia,. .., Hew and apply Lemma 3.14 to the unembedded part of each graph in H; ,s to pack
all these parts into a graph H;,,s on |V| vertices which is internally g-regular. We can then use
Theorem 3.15 to pack all the Hy ,, into G[V] in Step 6.

For this purpose, we choose an integer ¢ and a constant & such that 1/7T < 1/¢ < £ < « and
let

i),
i),

(A2)s. _ /
w = e(#) 2t (A=v/2)an’ (5.25)
(1=38)T(k —1)qn/2 qT
By using (5.1) and (5.11), for each t € [T], we can further partition #H; into Hy 1, ..., Hew such
that for each (¢,w’) € [T] x [w], we have

e(Hew) = (1 =38)(k = 1)gn/2 £ 2An = (1 — 3§ £ £/2)(k — 1)gn/2. (5.26)
By (Al)s51, we have

Hwr| < 2(k = 1)g < (g6)*/. (5.27)
For all H € H and i € [r], let X1 := X\ W/ and X := Uiep XM Thus, by (W2)s5, we
have \)Z'ZH] =n/ for all H € H and i € [r]. Moreover, for all ¢t € [T], w' € [w] and ij € E(Q), we
have
> eHXLX) = Y (X X[ =AW+ (W)
HEHt,w’ HE’Ht’w/



32 PADRAIG CONDON, JAEHOON KIM, DANIELA KUHN AND DERYK OSTHUS

(X4)5A1,:(W2)5A1 Z <2€((}i) :I:l(;l/f)n N 31%”
— T T

) O20) (1 — 3¢ + €)qn/(5.28)

Hth,w’

When packing H[X*] and H'[X*'] (say) into the same graph H;,s, we need to make sure
that the ‘attachment sets’ of H[XH] and H'[X'] are not mapped to the same vertex sets in
H; ,y. The attachment set for H [X H ] contains those vertices of X which have a neighbour
in WHUYH uZH” U A" (more precisely, a neighbour in W# U ZH) and is defined in (5.29).
Keeping these attachment sets disjoint in Hy ,, ensures that we can make the embedding of each

X consistent with the existing partial embedding of H without attempting to use an edge of
F or G twice. For all i € [r] and H € H, we let

iIENQ() ZENQ()
(5.29)

Note that (W1)51, (W3)5.1 and the fact that WHE WHD yHU" form a partition of W
implies that

NPEA NS = (5.30)

Moreover, if z € NiH’F then z has a unique neighbour in W7, Similarly, if = € NZ-H’G7 then

either  has a unique neighbour in WP y wH# U or z has at least one neighbour in Z (but
not both). Note that for i € [r] and H € H,

INEEOUNSECL < ST AWt w4 a2 |+ w P
#E€Ng (i)
(X6)5.1,
(W2)5%7(5.19) QAI:n n 4A3k3+177n n A7“2171/7n < T-2/3y. (5.31)
For each i € [r], we consider a set X; with | X;| = n’ such that X1,..., X, are pairwise vertex-
disjoint. For each (t,w’) € [T] x [w], let Hyr =: {H, tw” e tuf,w )} Then, by (5.27), (5.28),

(5.31) and (X3)5.1, we can apply Lemma 3.14 with the followmg objects and parameters for each
(t,w') € [T] x [w].

object/parameter | H; [)?Ht/ w'] ‘ )~(1Htjwl X, q ‘ § ‘ T-2/3 ‘ h(t,w') ‘ Nthj’w”F UNz'Htj’w“G ‘ Q
playingtheroleof‘ L; ‘ X7 ‘Vi‘n‘Q‘f‘ € ‘ 8 ‘ W ‘R

Then for each (t,w') € [T] x [w], we obtain a function ®;,s packing {HIX"] : H €
Hiy b into some graph Hy,s which is internally g-regular with respect to the vertex parti-

tion (Q, X1,...,X,). Moreover, for all i € [r] and H € Hy . we have ;0 (XH) = X; and for
distinct H, H' € H;,y and i € [r], we have

Oy o (NF UNIOY A @y (NF U NG = g, (5.32)

Note that for all (t,w’) € [T] x [w], the graphs Hy,s have same vertex set [J;c|, X;. For all
i €[r] and (¢t,w') € [T] x [w], we let

L= ) @V and M= | @0 (N, (5.33)
HEH, HEH,
Then by (5.30) and (5.32) we have
L oM € X and LMY 0 MM =9, (5.34)
y (5.27) and (5.31), for all (¢,w’) € [T] x [w] and i € [r]

LE UMY < PPT R < T (5.35)
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Step 6. Packing the internally regular graphs H;,s into G[V]. In the previous step, we
constructed a collection H := {Hy1,...,Hr,} of internally g-regular graphs on |V| vertices.

We now wish to apply Theorem 3.15 to pack H into G[V]. However, our packing needs to be
consistent with the packing ¢.. Note that for each H € H the set WH UYH U ZH U AH consists
of exactly those vertices of H which are already embedded by ¢.. Thus by (X3)s5.1, (X6)5 1,

(5.29) and (5.33), it follows that whenever z € X; is a vertex of Hy . such that the set @, (z)
of pre- unages of x contains a neighbour of some vertex which is already embedded by gi)*, then
T € LE vy Mf " Thus in order to ensure that our packing of H is consistent with ¢+, for each
i € [r], each (t,w’) € [T] x [w] and each y € LZ’w/ UM " we will choose a suitable target set
Agjw/ of vertices of G[V] and will map y into this set.

For all (t,w') € [T] x [w], i € [r] and any vertex y € L?’w/ UM W’ (5 32) implies that there

; : t,w’ tw’ Ht ' p ' G
exists a unlque graph Hy" € H;,s and a unique vertex x; € N, "’ UN, "

Y= Dy (acy ) Let

such that

/

() N (W Uz ) = N (@) 0 (W oy BT Uz g AT,

tow'
Jy N y H;'w

Ht w’
The final equality follows from (X6)51. For all (t,w’) € [T] x [w], i € [r] and any vertex
y € LY UMP™, we define the target set

/ tw
: Ne(ou(JF" )NV, ifah™ e N/ T,

At,w -
) . / tow!
Ne(oo(JFU ) Vs if ah® e N C

Note that Aty’wl is well-defined as (5.30) implies that exactly one of the above cases holds.
Moreover, the following claim implies that these target sets are sufficiently large.

Claim 7. For all (t,w") € [T] x [w], i € [r] and any vertex y € Lz’w, U Mf’wl, we have
4G | = P2 Vil.

Proof. We fix (t,w ) [T] x [w], i € [r] and a vertex y € Lﬁ’wl U M/ " For simplicity, we write
H:=Hy" z:=25"" and J := J;"". Then (5.30) implies that exactly one of the following two

cases holds.
Case 1. z ¢ Nl-H’F. In this case, (W1)5.1 and (W3)5.1 imply that

(X3:)5.1

J = Ny(z) nWHF Ny@)n |J w7 and |J|=1.

i"€Ng (i)
Then by (®.1)51, we know ]Ag’w/l > d3|Vyl.

Case 2. z € NZH’G. In this case, by (5.29) and (W3)s5.1, we have exactly one of the following

cases.
Case 2.1 z € N} (ZH). In this case, Ny(z) N W = () by (W3)51. Thus we have J =

Nu(z)nZH. Then (5.15) and (®'1)s.1 imply that |A5"'| = [Na(¢ (€)M Vi (enay| = d*2[Vil.
Case 2.2 x € NLH(WHP UWHU") In this case, again (W1)51, (W3)s,; and (X3)5,1 imply that

J = Ng(z)n (WP uwh) = Ng@)n ) w"Pow) and |J]=1.
i'€Ng (i)

Thus (®,2)51 or (P.3)s51 imply that lAZ’w/| > d*|V;|/2. This proves the claim. O
Let S := [T] x [w]. Let A be the graph with

V(M) ={(y):5eSye |J LiuM}
FeSie|r]
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and
B() = {Ey)Ey) 5 AT€ S i€ 1], (ny) € (L x L) U (M x M) and 6.(75) N 6.(Jf) # 0}

Note that A is the graph indicating possible overlaps of images of distinct edges when we extend
¢+« Indeed, if (5,y) and (t,y’) are adjacent in A, there are z € NHg(a:Z) and 2’ € NHE/ (xg,) such

that ¢.(2) = ¢«(2'). If we embed y and 3’ onto the same vertex, then the two edges :L“f,z and zt, 2/
would be embedded onto the same edge of G U F. Thus we need to ensure that ¢(y) # é(y').
Note that for all (5,y) € V(A) and ¢ € S, we have
H{EY) € Na(GyD} < WY« Hy € Hp 0u(Jy) N ol J5) # 0}
< 3 =) e Hpve pu(T)Y
vEP« (J3)

Y. D HzeV(H):ve du(Nu(2))}]

vEP.(J5) HEH

< Y Y HreNu@)v=6.a).a € V(H))

vEP«(J) HEHy

IN

(5.24) 5.27)
< > Y ac MH# < A%X(£9)%? < (5.36)

veps (J5) HEH

(Here the third inequality holds by the definition of J%, and the definition of ¥, the fifth
inequality holds since (5.24) implies that there is at most one 2/ € V/(H) with ¢.(2') = v, and
the sixth inequality holds since |J5| < \NHg(acgﬂ <A)

Consider any (5,y) € V(A). Then similarly as above we have

(5.2)
< > Y HeeNu@)iv=o.()a' € VI < AYH| < o',
vE.(J3) HEH
This shows that
A(A) < o0/ < dBn' /2. (5.37)

We can now apply the blow-up lemma for approximate decompositions (Theorem 3.15) with the
following objects and parameters.

object/parameter | G[V] Vi Xi |How | S=[T)xw]|q|T2]0Q
playing the role of | G Vi X; H; [s] q € R
object/parameter | 7 Lf’w, U Mf’w, Az’w/ a d°A v A |
playing the role of | r w) Al d do al|l A n

Indeed, (A3)s.1 implies that (Al)s 15 holds, and (A2)3 15 holds by the definition of Hy . Claim 7
and (5.35) imply that (A3)s315 holds, and (5.35), (5.36) and (5.37) imply that (A4)s.15 holds.
Moreover, (5.25) implies that the upper bound on s in the assumption of Theorem 3.15 holds.
Thus by Theorem 3.15 we obtain a function ¢* that packs {Hz: §€ S} into G[V] and satisfies
the following, where ¢% denotes the restriction of ¢* to Hj.
(®*1)5.1 for each 5'€ S and y € ;¢ LU M§, we have ¢%(y) € Ag,
(9*2)5.1 for any (3,y)(5,y) € E(A), we have that ¢3(y) # ¢5(y').

We let
=" ([J ®s) U g

Recall from Step 3 and (5.23) that ¢. = ¢/ U¢", and that ¢’ packs {H[YHFUZH UAH] . H € H}
into G[U] U F'. Since each ®z is a packing of {H[XH \ WH] : H € H;} into Hy and ¢*
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is a packing of {Hy : § € S} into G[V], we know that ¢ packs {H[XH \ W] : H € H}
into G[V]. Moreover, (®*1)51, ($*2)5, with the definitions of Af; and A imply that ¢ packs
{HIXH\ WH WHF] . H ¢ H} into F, and ¢ packs {H[X" \ WH WHU'] . H € #} into
G[V,Up], and ¢ packs {H[XH7 \ WH WDy zH] . H € H} into G[V,U]. Thus, we have the
following.

o( | En(r" Uz U AM) C BU)UE(F), o | En(XT\WH) C Bg(v),

HeH HeH

o(|J En(xXT\WH W) C Bp(v,U),  ¢(| ) Ea(XT\ W W) € Eq(V,Un),
HeH HeH

¢(|J BEa(xX\WH wHPuz")) C Eq(V,U). (5.38)
HeH

Also, it is obvious that the restriction of ¢ to V(H) is injective for each H € H. As G[U] U
F',G[V],F,G[V,Up] and G[V,U] are pairwise edge-disjoint, we conclude that ¢ packs H into
G U F U F'. Moreover, by (5.2) we have A(¢(H)) < A[H| < 4kAan/r, thus (B1)51 holds. By
(5.38) and (®'4)51, for u € U, we have

(®x4)5.1 9AL/8
dona(u) < AHH € Hiue o (vH UzH uwhPy < 2220

”
Thus (B2)5.1 holds.
Finally, for i € [r], by (X3)5.1, (X6)5.1, (5.38) we have
copraVoUUT) < S A(IZ9+ Y w e Y W)
HeH jENQ(i) jENQ(i)
(5(’-2)7)(7((6)5)1,
5.6),(5.19)  2kA .
< an <4A3kdnn +2(k — 1) n/r + (k — 1)7’7]1/771)
£1/22
S Ta

which shows that (B3)s5 holds.

6. PROOF OF THEOREM 1.2

The proof of Theorem 1.2 proceeds in three steps. In the first step we will apply the results of
Section 3 to construct suitable edge-disjoint subgraphs Gy s, Gy, F; s and F} of G, where Gy, is a
Kj-factor blow-up spanning almost all vertices while G, F; s and F} are comparatively sparse.
In the (straightforward) second step, we simply partition # into collections H; s such that the
e(Hy,s) are approximately equal to each other. Finally, in the third step we will pack each H; g
into G¢ s UG} U Fy s U F{ via Lemma 5.1.

Proof of Theorem 1.2. Let o := 6 —max{1/2,6,'%} > 0. By (3.1), we have § > 1 —1/k + o for
any k > 2. Without loss of generality, we may assume that v < ¢/2. For given v,0 > 0 and A,
k € N\{1}, we choose constants ng,&,n, M, M’, ,T,q,d such that ¢ | T and

0<1/ng<kn<1I/M <1/ M <e<1/T<K /< é<d<rv,0,1/A1/k<1/2.  (6.1)

Suppose n > ng and let G be an n-vertex graph satisfying condition (i) of Theorem 1.2. Fur-
thermore, suppose H is a collection of k-chromatic n-separable graphs satisfying conditions (ii)
and (iii) of Theorem 1.2.

Step 1. Decomposing G into host graphs. In this step, we apply Szemerédi’s regularity
lemma to G and then apply Lemma 3.16 to obtain a partition of V(G)\Vp into T' reservoir
sets Rest, where Vj is the exceptional set obtained from Szemerédi’s regularity lemma. We
use Lemma 3.13 to obtain an approximate decomposition of the reduced multi-graph R] ..
of G into almost Kj-factors and partition these factors into 7' collections. Each such almost
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Kj-factor @ gives us an e-regular -blow-up G in G, and we modify it into a super-regular
@-blow-up. We also put aside several sparse ‘connection graphs’ F; s and F}, which will be used
to link vertices in the reservoir and exceptional set with vertices in the rest of the graph. These
connection graphs will play the roles of F' and F’ in Lemma 5.1. We also put aside a further
sparse connection graph Gy which provides additional connections within V(G) \ Vp.
We apply Szemerédi’s regularity lemma (Lemma 3.5) with (¢2, d) playing the role of (g, d) to
obtain a partition Vj,...,V/ of V(G) and a spanning subgraph G’ C G such that
(R1) M' </ < M,
2) Vi| < =n,
R3) V]| = V]| = (1 £ &*)n/r’ for all 4, j € [r'],
4) for all v € V(G) we have dg/(v) > dg(v) — 2dn,
) e(G'[V/]) =0 for all ¢ € [r'],
) for any 4, j with 1 <i < j </, the graph G'[V}, V]] is either empty or (2, d; j)-regular
for some d; ; € [d, 1].
Let R’ be the graph with
V(R =[] and E(R) = {ij : eq:(V}, V-') > 0}.

Note that for i,j € [r'], ij € E(R') if and only if G'[V/, V] is (€2, d; j)-regular with d; ; > d.

IR
Now, we let R, ... be a multi-graph with V(R!_..) =[] and with exactly

¢, = [(1 —6d)d; q] (6.2)

edges between i and j for each ij € E(R'). Note that R/
For each i € [r'], we have

(R
(
(R
(R5
(R6

multi

has edge-multiplicity at most q.

multi

(VL V) L, (R3).r5) 2ovevy (1= 6d)qder vapv, (v)

T T e
JENR (4) LR i
(R2),(R4) ¢) (6 £11d)gn (R3)
IR /|2 Z (de(v) £ 10dn) £ 2" = v + 27 = (5 d¥ ) (6.3)
veV/ i

We apply Lemma 3.13 with R ... 7/, €2, k,o,d%*, v/5,T and ¢ playing the roles of G,n.e, k,0,&, v, T
and ¢, respectively. Then, by permuting indices in [r'] if necessary, we obtain Ruyuiti € R i
and a collection Q := {Q11,...,Q1 /7, @21, -, Q7 7} of edge-disjoint subgraphs of Ry

such that the following hold.
(QL) Rmuiti = R. y:l[r]] with (1 — ) <r<r and k|,

(QQ) (6 V/5,i1€2)q74 = (671/]{{3%5)(” and T | R,
(Q3) for each (t,s) € [T] x [k/T], Q¢ is a vertex-disjoint union of at least (1 —¢)r/k copies
of Kk,

(Q4) for each i € [r], we have |{(t,s) € [T] x [k/T]:i € V(Qis)} > Kk —er.

(Q5) for all t € [T] and 4,5 € [r], we have |[{s € [x/T]:j € Ng, (i)} < 1.
For each t € [T7], let Q; := {Q¢1,...,Qy 7} We define R := R'[[r]] to be the induced subgraph
of R' on [r]. Note that each Q;s € Q can be viewed as a subgraph of R. Moreover, for fixed
t € [T, (Q5) implies that the graphs Q; 1, ..., Q¢ /7 are pairwise edge-disjoint when viewed as

subgraphs of R. Also, we have
s , (6.3),(QL) 1/2
O(R) = q  0(Rys) — (" =) = (0 —d/%)r. (6.4)
We need to modify the sets V' later to ensure that we obtain appropriate super-regular Q; s-
blow-ups. For this, we need to move some ‘bad’ vertices in V/ into Vjj. For each i € [r| and each

j € Ng(i), we define
Ui(j) i={veV/: dG/’V]{(v) # (dij i€2)|Vj’|} and U] :={veV/:|{j:veUy5)} >er}. (6.5)
By Proposition 3.4 and (R6), for any i € [r] and j € Ng(i) we have

Ui (j)| < 5e%n/r and U/l < (er)™" Y |Ui(j)| < Benr. (6.6)
JENR(1)
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For each i € [r], we let V; :=V/\ U] and Vp:=VjUl;_, U/ U U:/:r+1 V.
By (R2) and (R3), for each i € [r]|, we have
(1 —6e)n/r <|Vi| <n/r and |Vo| < 6en. (6.7)

We apply Lemma 3.16 with G', V(G)\Vy, {Vi}/_; and T playing the roles of G, V,{V;}/_; and
t to obtain a partition {Resi, ..., Resr} of V(G)\V, satisfying the following, where we define
V! = V; N Res;.

(Resl) For all t € [T] and v € V(G), we have dgr y+(v) = dar v, (v) n?/3,

(Res2) for all ¢ € [T] and i € [r], we have |V}| = (3 £ &%)|Vj| 67 %7
(Res3) for all t € [T], we have |Res;| € {L%L L%J +1}.

Next, we partition the edges in G’ \ Vj into Lq, ..., Ly which will be the building blocks for
the graphs G, F and F’ in Lemma 5.1. Let p; := 1 —6d and p; := d for 2 < j < 7. Apply
Lemma 3.17 with G’ \ Vp, {V! :i € [r],t € [T]}, {(Vi, V;) : ij € E(R)} and 7 playing the roles
of G, U, U" and s. Then we obtain a decomposition L1, ..., L7 of G'\Vj satisfying the following
forallt € [T], 1€ [r], £ € [7] and v € V(G) \ Vo:

(L1) dp, v (v) = pedr v (v) £ 0?3,

(L2) for each ij € E(R), we have that Lg[V;, V;] is (4¢2,d; jpe)-regular.

Let G” := L;. For each t € [T], let G}, F; and F}* be the graphs on vertex set V(G) \ Vj with

t—1 T
E(G;) = | J E(La[Resy, Resy]) U | ] E(Ls[Res;, Resy]) U Lo[Resy), (6.8)
t'=1 t'=t+1

t—1 T
E(F,):= | J E(La[Rest, Resy)) U | ] E(Ls[Res, Resy)),

=1 t'=t+1
t—1 T
E(F}) = U E(Lg|Rest, Resy]) U U E(L7[Resy, Resy]).
=1 t'=t+1
For each t € [T], we let Fy1,..., I} /7 be subgraphs of I such that for all s € [x/T]
Fo= U EV,V\ Resy). (6.9)

i€V (Qr,s) j€NG, , (i)

Note that (Q5) implies that for s # s’ € [k/T], the graphs F; s and F; ¢ are edge-disjoint. Thus
G",G1,....,Gp Fia,... Fpop, FY, ..., FF form edge-disjoint subgraphs of G’ \ V5. The edges
in G} will be used to satisfy condition (A4)s; when applying Lemma 5.1. The graphs F; ; will
play the role of F' in Lemma 5.1. The graphs F}* will be used in the construction of the graph
F/, which will play the role of F’" in Lemma 5.1.

We will now further partition the edges in G” = L;. Note that for each ij € F(R), by (6.2)
we have ¢; j = |d; jp1¢]. To further partition G”, we apply Lemma 3.17 for each ij € E(R) with
the following objects and parameters.

object /parameter | G"[Vi, V;] | {V!, V]t € [T]} [ {(Vi,Vi)} | @iy +1 | 1/(dijprq) | 1 — qij/(dijp1q)

playing the role of ‘ G ‘ u ‘ u ‘ s ‘ piii<s ‘ Ds

Then by (L2), for each ij € E(R), we obtain edge-disjoint subgraphs E}J, . ,EZ"JTJ'Jrl of
G"[V;, V;] satistying the following for all ¢ € [T] and ¢ € [g; ]:

(E1) for each v € V;, we have dEf’ijt (v) = de//’VJ}t(’U) + n?/3,

(E2) Eﬁj is (8¢2,1/q)-regular.
Recall that we have chosen a collection Q = {Q1 /7, .., Q7 7} of edge-disjoint subgraphs of
Ry satisfying (Q1)—(Q5). Let ¢ : E(Rmuiti) — N be a function such that

/(/}(ERmulti (iv j)) = [QiJ] :
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For all ij € E(R'), there are exactly ¢; ; edges between ¢ and j in Ry, so such a function
exists. Now, for all t € [T, s € [k/T], we let
Gs= |J BN (6.10)

/L?j
ijEE(Qt,s)

Since Q is a collection of edge-disjoint subgraphs of Ry and E} . ,Ef’;j 1 are edge-disjoint

i
subgraphs of G”, the graphs G11,...,Gr ./ form edge-disjoint s]ubgraphs of G”.

We would like to use Gy ¢\ Res; and Res; to play the roles of G[Uie[r] V] and U in Lemma 5.1,
respectively. However, Ef,j \ Res; is not necessarily super-regular and the sizes of V; \ Res; are
not necessarily the same for all i € [r]. To ensure this, we will now choose an appropriate subset
VS of V; which can play the role of V; in Lemma 5.1.

]

For all t € [T],i € [r] and s € [k/T], let
(T —1n  10en

Vi(t,s) := Vi \ (Res; U | U | Ui(j)) and m = —rp . (6.11)
jGNQt’s(Z)
Then by (6.6), (6.7) and (Res2), we have
0 < |Vi(t,s)| —m < 15en/r. (6.12)

For all t € [T] and i € [r], we apply Lemma 3.18 with the following objects and parameters.

object/parameter | x/T | 1| s € [s/T] | Vi\ Res; | Vi(t,s) | 20e | |[Vi(t,s)|—m | d
playing therole of | s |7 | i€[s] | A | Aix | e | mi,1 | 1/2

Then we obtain sets W;(t,1),...,W;(t,x/T) such that W;(t,s) C V;(t,s) with |Vi(t,s) \
Wi(t,s)| = m and for any v € V; \ Res;, we have

[{s € [/T]: v e W(t,s)} <10eY/2k/T. (6.13)
For all t € [T, s € [x/T] and i € V(Qy), let V,** := Vj(t,s) \ Wi(t, s). Let
Vit =WulJ) | WG \Resyu [JWit,s)u | (Vi\ Resy).

i€[r] jENg, , (7) i€[r] i€ \V(Qt,s)

Then the sets Vy'*, {V,"* i € V(Qy5)}, Res; form a partition of V(G), and for each i € V/(Qy.s)
(T-1Dn  10en

t,s
0 = = .14
Vil m T —— and (6.14)
(6'6)7
. (6.7),(6.12)
Vo’ < 6en + (k — 1)r(552n/r) + 15en+ (r — |V(Qrs))n /7
(Q3)
< 925en. (6.15)

We now further modify V! into U;”* which can play the role of U; in Lemma 5.1. For all
(t,s) € [T] x [k/T] and i € V(Qy,s), we define

vt=vH\ |J UG) and Upt= | Vu |J U u).
JENQ,, (1) i€[r\V(Qr,s) i€V (Qu,s) jENG, , ()
Note that for each (t,s) € [T] x [r/T], the sets {U°} U{U" i € V(Qrs)} form a partition of
Res;. By (6.6), for all (¢,s) € [T] x [x/T] and i € V(Qts), we have
(Res2) (14 8e)n

(6.6) (Q3)
t,s
T and |U,°| < E [V + 5ke’n < 2en.(6.16)

i€[r\V(Qt,s)

Note that for all (¢, s) € [T]x[r/T] and i € V(Qys), we have U, V** C V;. Thus Proposition 3.2
with (6.14), (6.16), (L2) and the definition of p, implies that for all (¢,s) € [T] x [x/T], ij €

\UD®| = |V + 5ken/r
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E(R[V(Qts)]) and 7’5" € E(Q4s), we have
G U, U, GV, Up*) and Fy4[Viy*, U] are (g, (d2)*)-regular. (6.17)
Moreover, for all (t,s) € [T] x [£/T], ij € E(Qys) and u € U}**, we have

(6.9),(6.14),(Res2) (L1),(Resl)

dFt’mVjt,s (u) > dFt[V;t%\Rest] (u) —n/(Tr) > d-dey, (u) —3n/(Tr)
(6.5),(6.6) 9 (Res2) 9
2 g — Wi an/(Tr) 2 @&V Resil. (6.18)

We obtain the third inequality from the definition of Uf * and the fact that ij € E(Qys)-

Claim 8. For allt € [T],s € [r/T] and ij € E(Qys), the graph ths[Vit’S,V;-t’s] is (eY/2,1/q)-
super-reqular.

Proof. Let £ € [g; j] be such that Gy 4[V;, V] = Eﬁj. Such an ¢ exists by the definition of G 5 and
the assumption that ij € F(Qys). Note that for ¢’ € {4, j} we have Vl',fs C Vi with |Vlfs| =m >
3IVi| by (6.14). Thus Proposition 3.2 with (E2) implies that Gy 4[V;"*, V{"*] = B [V*, V] is
(16¢2,1/q)-regular.

Consider v € V."*. By the definition of V", we have v ¢ U;(5). Thus

(6.6),(6.12) 16en 16en
th’sy‘/jt,s (U) = dE,fyj,V}\Rest (/U) + r = Z dEf,j?‘/jtl (U) :l: r
t'e[T\{t}
(E1) 1 17en 11) 1 18en
= Z de”,V;I (U) + , = Z d'i'qu,’Vjt/ (’U) + ,
telT\{e} te[r\{t}
(Resl) (T'—1) 19en (6.5) (T'—1) N\ Jxrt , 19en
g o )= = S (g £ AV £ U)
©6) (I'—1n  30en 6.14) 1 = 1/9. 15
= + =" (-=x 7
S (v
Similarly, for v € V;**, we have dg, ,ve=(v) = (3 /) |[VIoL Thus Gy o[V, VI s (€1/2,1/q)-
super-regular. This proves the claim. O

For all t € [T], v € Res; and s € [k/T], we know that

S Ll S
Qi) = dapu(@) £ VNV E Y (A g ye(o) £ 02) £ VAV

Le(T)

This implies that
[{i € V(Qts) t dgy s (v) = d*m/2}| > [{i € V(Q,5) : dgr v (v) = d|Vi[}]

> fe® IR oy yig,) Y (- 1kt o2 (6.19)

max;epy] | Vil

We obtain the final inequality since §(G') > (6 — & — 2d)n > (1 — 1/k + 30/4)n by (i) and
(R4). This together with (6.17) and Claim 8 will ensure that G; U G} can play the role of G in
Lemma 5.1, and (6.18) shows that F; ; can play the role of F' in Lemma 5.1.

The remaining part of this step is to construct a graph which can play the role of F’ in
Lemma 5.1. F' needs to contain suitable stars centred at v whenever v € VJ’S. (For each t, the
number of stars we will need for v in order to deal with all s € [x/T] is bounded from above by
(6.23).) For all t € [T], s € [k/T], v € V(G) and u € Resy, let

Lw):={s €[x/T]:v eV "} and  i(v) = |[L(v)N[s]],
Jiu):={s € [k/T) :uc U} and  jf(u) :=|Jy(u) N [s]]. (6.20)
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Note that if v € Vj, then I;(v) = [k/T]. If v € V;\Res; for some i € [r], then s € I;(v) means
v e Wit s)U U]ENQ @ Ui(7) UUyeppv(q..) Vir- Together with the fact that U] € Vo and so

v ¢ U/, this implies

(Q5)
|12 (v)] < {s € [w/T]:v e Wilt,s)} + {7 €lr]:ve Ui} + s € [w/T]: 0 & V(Qus)}
(6.5),(6.13),(Q4) Q)
< 1062k /T + er +er < 20e'/?r. (6.21)

Similarly, for u € V!, we have

, , , (6.5),(Q4)
[Je(w)| < G elrl:ue U +H{s€w/T]:i g V(Qus)} < er+er<2er (6.22)

For each v € V(G) \ Resy, let

_{ (1+d)x ifv eV, (6.23)

[r/2R)] it ¢ Ve,
Ky is the overall number of stars centred at v that we will construct for given ¢t. Note that for all
t € [T] and s € [x/T], no edge of E(G'[Vy, Res]) belongs to any of the graphs Gy s, Gy, Fy, Fy.
Now for each t € [T], we use these edges and edges in F}* to construct stars F/(v,s) centred
at v, and subsets C! ., Ci'L of [r] for all v € V(G) \ Res; and s € [k,], in such a way that the

v,8?

following hold for all ¢ € [T] and v € V(G) \ Res;.
(F'1) For each s € [ky], we have C, , C exle; Clol=Fk-1, |Cot| = k and R[CyY] ~ K,
(F’2) for each i € [r], we have |{s € [ky] : i € C{fﬁ}] < (k+1)gq,

(F'3) for each s € [k,], if i € C} ,, then Ay (v,s),vt (V) 2 Ay

q
Claim 9. For allt € [T], v € V(G)\ Res; and s € [ky|, there exist edge-disjoint stars F{(v,s) C
G'[Vo, Resi| U Fy* centred at v, and subsets C?, ,, Ok of [r] which satisfy (F'1)~(F'3).

When applying Lemma 5.1 in Step 3 to pack H; s, we will only make use of those stars F{ (v, s)
with v € V§**, but it is slightly more convenient to define them for all v € V/(G)\Res;.

Proof. First, consider ¢t € [T] and v € V. Then we have
(Rest) Rl (07
der s (0) = 3 dgrye(v) 'S Z der v (v) £ 2/ LD (54 30) Res,|.  (6.24)
1€[r] ze [7]

q-deyr (V)
For all v € Vp, t € [T] and i € [r], let qf,’i = {%\t/’r

By (1), B} 4(a),) of Egr({v}, V) such that |E};(¢')| = ;|V{| for each ¢’ € [g;,]. Let R, be
an auxiliary graph such that
V(R,) :==A{(i,q") :i € [r],d €lgp;]} and E(R}):={(i,¢)(j,q¢") :ij € E(R),q € lay,],4" € lay,]}-
Note that each (i,q’) corresponds to the star E! ;(¢) centred at v. We aim to find a collection of
vertex-disjoint cliques of size k— 1 in R!, which will give us edge-disjoint stars in Eqg ({v}, Resy).
From the definition, we have

¢ (Res2) (1 £ 10e)dgr Res, (v)q I (6.24) (6 £ 4d)q|Resy| (Res3)
i T n/(Tr) T /)

|. Consider edge-disjoint subsets

V(R =
1€[r]
Then, for (i,q') € V(R!), we have
. (Res2) Tqr
dR%((TW q/)) 2 q Z dG’ Vt |V | 1_ (Z) Z Z dG/ Vt -7

1+ 7e)n
JENR(i JENR(i

- (1?77«6)< 2 'V}-t!*DIVfI*ngvjt(v)))fr

JENR(3) Je€lr]

(6 + 5d)gr. (6.25)
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(6.4),(6.24),
(Res2 ),(Res3) (6.25)

1
(26 —2d'? = gr —r > (1— — o)|V(RD)). (6.26)
Here, the final inequality follows from (3.1). By the Hajnal-Szemerédi theorem, Rf contains at
least

. (6.25) (Q2) (6.23)
[V(R)|/(k—1)—1 > (6—=5d)gr/(k—1)—1 > (14+d)rk =" ky
vertex-disjoint copies of Ky_1. Let CL(1),...,C!(x,) be such vertex-disjoint copies of Kj_1 in

R!. For each s € [ky], we let
F(v,s) := U EL) and Oy = {i: (i,q) € V(Cy(s)) for some ¢’ € [g;;]}.

(1,4 )EV(CE(9))
By construction |C}, | = k—1and R[C} ,] ~ Kj_1. Moreover, the maximum degree of the multi-
(k—1)-graph {Cf ; : s € [k,]} is at most g. Thus we can apply Lemma 3.22 with {CY ; : s € [k,]},
R, q and k playing the roles of F, R, q and k. Then we obtain sets C{'};fj satisfying the following
for all s € [ky] and i € [r]:
Cl, CCyt, R[Cyl ~ Ky, and |{s € [r,] :i € Cpl}| < (k+1)q. (6.27)

It is easy to see that for all s € [k,] the sets C Cy't and the stars F'(U s) satisfy (F'1)—(F'3).
Now, we consider ¢ € [T] and v € V;\ Res; with i € [r]. Let S := Ng(i)\{j : v € U;(j)}, and
for each j € S}, let E ; be a subset of Ep:({v}, V}) with |E} ;| = %|Vf| We can choose such a

star as there exists £ € {6,7} such that

(Ll)
dFt*,ij (v) = dLZ,Vjt (v)

Here, the third equality follows since v ¢ U;(j). By (6.4), (6.5) and the fact that v ¢ U, we
have |S| > (6 — 2d'/?)r. Thus

eS8 es 1
d-dyr(v) £ D) (1 4 100)d - diy[V]] > 5|Vjt|'

(6.4) 1
S(RISL]) = 101 — (r —8(R) > (1 — —)1st]
Again, by the Hajnal-Szemerédi theorem, R[S!] contains (at least) x, = [r/(2k)] vertex-disjoint
copies of Kj_1. Denote their vertex sets by 0571, ..., C} ... We apply Lemma 3.22 with {C/ , :

s € [ky]}, R, 1 and k playing the roles of F, R, q and k respectively, to extend each C? s into a

Cot with R[Cy] ~ K} and such that |{s € [r,] : i € Cyk}| < k+ 1 for each i € [r]. For each
s € [kyl, let F/(v,s) := U]GCt Ef ;. Again, it is easy to see that for all s € [k,] the sets C;

v,8?
Ci't and the stars F/(v, s) satisfy (F’ )—(F’3). This proves the claim. O

Altogether we will apply Lemma 5.1 k times in Step 3. In each application, we want the leaves
of the stars that we use to be evenly distributed (see condition (A8)s1). This will be ensured
by Claim 13. More precisely, for each v € V(G) \ Rest, our aim is to choose a permutation

7wl : [ky] — [Ko] satisfying the following.

(F’4) For all t € [T], i € [r] and s € [x/T)], we have C(t,s,i) < e*/°n/r, where C(t,s,i) :=
{veVy®:ic C’Z:fri(s,) for some ¢ with (if(v) — 1)T +1 < s <if(v)T},
(F’5) for all t € [ |, s € [x/T] and t’' € [T], we have that

Uvevt s Cv (35 (v) =1)T+t') - V(Qt,s)'

Recall from (6.20) that if(v) counts the number of s’ € [s] for which v € VJ’S/. The number
C(t, s,1) is well-defined because i (v) < k,,/T for all v € V(G) \ Res; by (6.21).

Claim 10. For eacht € [T] and each v € V(G)\ Resy, there exists a permutation 7, : [ky] — [Ko]
satisfying (F'4)—(F'5).

Proof. We fix t € [T]. We claim that for each s € [x/T] U {0} the following hold. For each
v € V(G) \ Res;, there exists an injective map =}, , : [i (v)T] — [k,] satisfying the following.
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(F’4)! For all i € [r] and ¢ € [s], we have
{veVit.iecr!

v,1m5 5(s")

for some s’ with (if(v) — )T +1 < s’ <it(v)T}| < ¥/on/r,
t *,t
(F'5); for all £ € [s] and ¢’ € [T, we have that |, ., e c (i ()~ )T+) CV(Qre).
Note that both (F’4)f and (F'5)f hold by letting wa : 0 — 0 be the empty map for all v €
V(G)\ Rest Assume that for some s € [k/T — 1] U {0} we have already constructed injective

maps 7, , for all v € V(G) \ Res; which satisfy (F’4), and (F'5)%. For each v € V(f’sﬂ, we
cons1der the set

Ay = {s" € [r) \ 7[5 (0)T]) : C € V(Qust1)}-
Then we have

(F'2)
| Ay > ko — 1 (V)T = (k +1)q(r — [V(Qts+1)])
(6:21),(Q3) o
> min{d - k,r/(2k) — 20T€"/%r} — (k + 1)ger > r/(4k). (6.28)

We choose a subset I, C A, of size T uniformly at random. Then (F’2) implies that for each
i € V(Qts+1) we have
Plie | Crl] < (k+1)qT/|Ay| < 10gk°T /7.
s'ely,
Thus
t,s+1 . *.t 2 t,s+1 (6.15) 4/5
E{ve Vy©"" tie U CooH] S 10gE=“T|Vy | /r < e PP/ 2r).
s'el,
A Chernoff bound (Lemma 3.1) gives us that for each i € V(Q¢s41)
(/%0 (21)? | 639
t,s+1 <
2lVo |

_ 3
e /T,

]P’[|{v€Vts+1 i€ U C*t}] >54/5n/7"} < exp(—

s'el,

Since 1 —|V(Qps41)|e™™ ™ > 0, the union bound implies that there exists a choice of I, for each
€ Vot’Sle such that for all i € V(Q¢ s+1), we have that

{ve vy tiie | orlyl <etlonr. (6.29)
s'el,
Ifv e V(G)\(RestUVOt,erl) (and thus ZS+1(U) =i} (v)), welet 7, .| :=m, .. Foreachv € Vvot,erl,

we extend 7, , into 7!, by defining 7, . : [zf“(v)T] \ [#(v)T] — I, in an arbitrary injective

way. Then, by the choice of I,,, we have that 7, ., is an injective map from [T ()T to [k
satisfying (F'5)%, ;. Moreover, (6.29) implies that for any i € V(Qy,s41), we have

{v € V t5+1 i€ C:fr (") for some s’ with ({7 (v) = DT 4+ 1 < & < (v)TY
v,s+1
=weVy NS < eln/r.
‘/bt s+1 C* t 4/5
s'el,
This with (F’4)! implies (F'4)%, ;. By repeating this, we obtain injective maps 7, )T satisfying
both (F'4) w7 and (F'5)t .y For each v € V(G) \ Res;, we extend !, /7 Mto a permutation

7t ¢ [Ky] — [Ky] by assigning arbitrary values for the remaining values in the domain. It is easy

to see that (F’'4)¢ w7 implies (F’4) and (F'5)! w7 implies (F’5). We can find such permutations
for all ¢ € [T]. Thus such collection satisfies both (F'4) and (F'5). O

For each ¢ € [T7, let

G :=G; U U Gis and F := U U F/(v,s).
s€[k/T) veV (G)\Rest s€[ky]
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Then Gl,.. . ,GT,Fl,..

/
‘7FT’F1)"

defined in (6.8), G5 in (6.10) and F}(t,s) in Claim 9.)

43

., F. form edge-disjoint subgraphs of G. (Recall that G was

Step 2. Partitioning H. Now we will partition H. If there are two graphs with less than
n/4 edges in H, then we can pack such graphs into one graph which is still 7-separable and has
maximum degree at most A. So, by adding at most n/4 edges to at most one graph if necessary,
we may assume that all graphs in A have at least n/4 edges. Moreover, if e(H) is too small, we
can add some copies of n-vertex paths to H to assume that

We partition H into & collections Hy 1, ..

have

(Q2) gn?2
n7/A L

K

en? < e(H) (ig) (1 -v)e(G) +n/4.

1

x

(1,(Q2) (1 — —1)n?
T An< e(Hes) < —(1—v)e(G) +2An < (1=2v/3)(k = Ln .

2qr

-y Hr . such that for all t € [T] and s € [x/T], we

(6.30)

Indeed, this is possible since e(H) < An for all H € H. Now, we are ready to construct the

desired packing.

Step 3. Construction of packings into the host graphs. AsGy,...,Gp, F1,...,Fp, F{,. ..
are edge-disjoint subgraphs of G, and Hi1,..

/
7FT

s Hr 7 18 a partition of H, it suffices to show

that for each t € [T, we can pack H; := Ugif He,s into Gt UU ey F, sUF{. (Recall from (6.9)
that Fy1,..., Fy . r are edge-disjoint subgraphs of F;.) We fix ¢ € [T] and will apply Lemma 5.1

k/T times to show that such a packing exists.

Assume that for some s with 0 < s < k/T — 1, we have already defined a function ¢s packing
U, Hes into Gy U Fy U F/ and satisfying the following, where ®° :=J3,_; ¢s(H¢ ) and j;(u)

is defined in (6.20) and Gy is defined in (6.8).
(G1)s For each u € Res;, we have dgsng; (u) <

(
(

N

(u)n 1/9

+€

sn

qr T

51/3STL2

G2), for each i € [r], we have egsng: (Vi\V}', Resy) < =37,
(G3)s for &' € [k/T]\ [s], we have E(®°) N (E(Gys) U E(Fi¢)) =0,
G4); for v € V(GQ) \ Resy, 8" € [ky] with s” > i$(v) - T, we have E(®*) N F{(v, 7} (s")) = 0.

I

Note that (G1)p—(G4)o trivially hold with an empty packing ¢o : § — (). For each ¢’ € [T] and
v € V(G)\ Resy, let L(v,t') := 7t ((i5T1(v) — )T +t'). (Note that £(v,t') is well-defined since

(57 (v) = )T + ' < Ky by (6.21).) Let

Vo= U ‘/it,s+1’

1€V (Qt,s+1)

v= U

t,s+1
U, ,

1€V (Qt,541)

G = (Grsn[VIUGI[V URes) )\ E(®°), and F':= | ] ] Fl(v,t(v,t))[{v},U]. (6.32)
vevH ve(T]

(6.31)

Note that (G3), implies that E(F}; ¢41)NE(®*) = 0. Let R be the graph on vertex set V(Q,s11)

with

E(R) := {ij € E(R[V(Qus+1)]) : | Eg; (Vi, Vj) N E(®°)] < £'/1%2/r}.
We wish to apply Lemma 5.1 with the following objects and parameters.

object/parameter G | F.av,ul| Frlovestt | ubstt ybett Uttt R
playing the role of G F F’ Vo Ug Vi U; R
object /parameter | 1/q Hest1 d C::é(v,t’) C’i)e(w,) F(v,0(v,t")[{v},U] k A
playing the role of a H d Cy, Co F), k A
object/parameter | Q¢ st+1 7 25¢ /2 T v/2 m
playing the role of Q n € o T v n'

Thus Res;\ Uo*™ plays the role of U = | J_, U; in Lemma 5.1, and ¢’ € [T stands for ¢ € [T].
By (6.1), (6.14), (6.15), (6.16), (Q3) and (F'5) we have appropriate objects and parameters as
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well as the hierarchy of constants required in Lemma 5.1. Now we show that (Al)51—(A9)s5.1
hold. (Al)s; is obvious from Theorem 1.2 (ii) and our assumption in Step 2. (A2)s; holds by
(6.30). (A3)5, follows from Claim 8 and (G3),. Consider ij € E(R), then GUM, Ut =

7 [ |
Grutst, U;’SH] \ E(®%). Since U*™' C V; and U;’SH C V}, the properties (6.16), (6.17) and

%

the definition of R imply that
ear (UL UP ) = eqona; (Vi, V) 2 (1= e/ P)ey (U7, U7,

Thus, Proposition 3.3 with (6.17) implies that G[U;’SH,U;’SH} is (¢1/%9 (d?)")-regular. The

calculation for G[V;"*™ U ;’SH] is similar. Thus (A4)5; holds with the above objects and pa-
rameters. By (G1)s, for each i € [r] we have
AEAS(0n el/%mny (Q2),(6.22),(Res2) £1/9y,2
esnc; (Vi U Vi) <)) ( jilo)n | ) < : (6.33)
A } qr r r
JElN\{i} veV

~

Thus, for i € V(Qts41) = V(R), we have
easnc; (Vi\VY', Rest) + easnas (Vi Ujepp iy Vi)

dr(i) — dp(i) < +|V(R)\ V(R)|

e1/1002 /2
(G2)5,(Q3),(6.33) g1/3gn2 /92 4 £1/92 (Q2)
: et/2sn® [re +et/n /r—i—gr 2 o,
61/10n2/r2

This with (6.4) and (3.1) implies that (A5)5 holds for R. For all ij € E(Qy1) and u € UM
by (6.18), we have

(Res2),(6.14)
yhett(u) > 2d%|V; \ Res;|/3 > d>m.

Fis+1,V;
Thus (A6)s 1 holds. By (F'1), (F'4) and the fact that if ™ (v) = if(v) + 1 for all v € Vj**, (A8)5
holds (for Cyy, s Ch gy and all v € Vg*). If v € V™, t' € [T] and i € C} 1y S Colgy i
then (F’5) implies that ¢ € V(Qy s4+1). Moreover, by (6.16) we have ]Uf’s+1| > |V — bken/r.

Together with (F'3) this implies that d_, (0 L) gttt (v) > (1 - 5)\Uf’8+1]/q. Thus (A7)51
'\ ) Yy
holds. To check (A9)5 1, note that for each u € US’SH, we have

daines (u) (G§1)s WEAGS (w)n ) (qr) + 9 (Qz)éﬁaz) 110,
Thus,
{i € V(Qust1) 2 dg ot (u) 2 dm/3}| 2 [{i € V(Qrast) : dggy yrw (w) = dPm/2}] — W
(6.19) 21/10,, (6.14)
> (=1/k+o/2r—5rrs 2 (I=1/k+a/3)r

This implies that
H{i € V(Qts+1) : dGA,V;’SH(u) > d®m for all JENQ .1 ()} > o2r.

This shows that (A9)s5; holds. Hence, by Lemma 5.1, we obtain a function v, packing Hy s11
into G U Fig1 U F’ and satisfying the following.

(B1) A(st1(Hes+1)) < 4kAn/(qr),
(B2) for each u € Res; \ Uy*™", we have Ay 3y ne () < 10AeY/8n /7,

(B3) for each i € V(Qy,s), we have €¢s+1(Ht,s+1)mé(Vit’s+lv Res;) < 10eY/2n2 /12,
Moreover, (G3), with (G4)s implies that ¢g1(H¢s41) is edge-disjoint from ®°, thus the map

Ps+1 := G5 Usy1 packs Uilel H: s into Gy U Uj,/le F, ¢ UF]. Now it remains to show that ¢s41
satisfies (G1)sy1—(G4)sy1.
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Consider any vertex u € Res;. If u € US’SH, then we know that jit!(u) = j5(u) + 1. Thus

(G1)s together with (B1) implies (G1)s4+1 for the vertex u. If u € Res; \ US’SH, then we have
35T (u) = j§(u), thus (G1), together with (B2) implies (G1)41.

For each i € [r], (6.31) implies that the vertices in V; \ (V;**T U V) € V{*™! are not incident
to any edges in ®*T' N G}. Thus it is easy to see that (G2), together with (B3) implies (G2)441.
As 9511 packs Hy oy into GUF} 11 UF’, (6.32) together with (G3), implies (G3),,1. Moreover,
we have

st [ ) 1 ifve Vst
i (v) = { ii(v) otherwige
; .
Thus, (6.32) together with (G4)s and the definition of ¢(v,t’) implies (G4)s41.

By repeating this for each s € [x/T] in order, we obtain a function ¢, 7 which packs H; into
G1UF; UF]. By taking the union of such functions over all ¢ € [T], we obtain a desired function
packing H into U G¢UF, UF/ C G. This completes the proof. O

te(T]

The proof of Theorem 1.5, follows almost exactly the same lines as that of Theorem 1.2,
with one very minor difference. Indeed, the only place where we need the condition that G is
almost regular is when we apply Lemma 3.13 in Step 1 to obtain (Q1)—(Q5). Thus to prove
Theorem 1.5, we only need to replace the application of Lemma 3.13 with an application of the
following result. (Note that (B1) below implies both (Q3) and (Q4).)

Lemma 6.1. Suppose n,q,T € N with 0 < 1/n < ¢,1/T,1/q,v < 1/2 and 0 < 1/n < v <
c/2<1andd=1/240 and q dividesT. Let G be an n-vertex multi-graph with edge-multiplicity
at most q, such that for all v € V(G) we have dg(v) > gon.

Then there exists a subset V! C V(G) with |[V'| <1 and |V (G)\V'| being even, and there exist

pairwise edge-disjoint matchings Fiq1,...,Fi g, Fo1,...,Fp, of G with k = O4v20-1-v)qn W +1
satisfying the following.

(B1) For each (t',i) € [T] x [k], we have that V(Fy ;) = V(G)\V',

(B2) for allt' € [T] and u,v € V(G), we have [{i € [s] : u € Np, .(v)}| < 1.

The proof of the above lemma is very similar (but simpler) than that of Lemma 3.13. We
proceed as in the proof of Lemma 3.13 to obtain simple graphs G¢ with §(G¢) > dn — v?n. We
let V! C V(G) be such that [V’| <1 and |[V(G)\V’| is even. The difference is that we now apply
the following result of [12] to each G§ := G°[V(G)\V’] to obtain the desired matchings M¢: for
every « > 0, any sufficiently large n-vertex graph with minimum degree 6 > (1/2+ a)n contains
at least (§ — an + y/n(20 — n))/4 edge-disjoint Hamilton cycles.
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