On the structure of oriented graphs and digraphs with forbidden tournaments or cycles

Deryk Osthus

◆ □ ト 4 ⑦ ト 4 ミト 4 ミト ミ ○ Q Structure of digraphs with forbidden tournaments or cycles What can we say about the structure of triangle-free graphs?

Theorem (Mantel 1907)

Every triangle-free graph on *n* vertices has at most $n^2/4$ edges, i.e. $ex(n, K_3) \le n^2/4$.

Complete bipartite graphs show that the bound is best possible.

Instead of the extremal viewpoint, we consider the 'average case':

- What does a typical triangle-free graph on *n* vertices look like?
- How many triangle-free graphs on *n* vertices are there?

Typical structure of triangle-free graphs

Theorem (Erdős, Kleitman, Rothschild, 1976)

Almost all triangle-free graphs are bipartite. i.e.

 $\lim_{n \to \infty} \frac{\# \text{ triangle-free graphs on } n \text{ vertices}}{\# \text{ bipartite graphs on } n \text{ vertices}} \to 1.$

Corollary

The number of triangle-free graphs on n vertices is

$$2^{(1+o(1))\frac{n^2}{4}} = 2^{(1+o(1))\exp(n,K_3)}.$$

Trivial lower bound:

$$\mathcal{K}_{rac{n}{2},rac{n}{2}}$$
 has $rac{n^2}{4}= ext{ex}(n,\mathcal{K}_3)$ edges and $2^{rac{n^2}{4}}$ subgraphs.

伺 ト イヨト イヨト

Related work:

- Kolaitis, Prömel, Rothschild (K_r-free graphs)
- Prömel, Steger (*H*-free graphs)
- Bollobás, Thomason (Hereditary properties)
- Balogh, Bollobás, Simonovits (fine structure of *H*-free graphs)
- Osthus, Prömel, Taraz (sparse K₃-free graphs)
- Balogh, Morris, Samotij, Warnke (sparse *K*_r-free graphs)
- . . .

oriented graph:

edges directed, between any two vertices there is at most one edge

digraph:

edges directed, between any two vertices there are at most two edges – at most one in each direction

• • = • • = •

Typical structure of triangle-free oriented graphs

Conjecture (Cherlin, 1998)

(a) Almost all T_3 -free oriented graphs are tripartite.

(b) Almost all C_3 -free oriented graphs are acyclic.

Typical structure of triangle-free oriented graphs

Conjecture (Cherlin, 1998)

(a) Almost all T_3 -free oriented graphs are tripartite.

(b) Almost all C_3 -free oriented graphs are acyclic.

(a) is formally correct but morally wrong.

Typical structure of triangle-free oriented graphs

Conjecture (Cherlin, 1998)

(a) Almost all T_3 -free oriented graphs are tripartite.

(b) Almost all C_3 -free oriented graphs are acyclic.

(a) is formally correct but morally wrong.(b) is formally wrong but morally almost correct.

Forbidding transitive triangles

Note that $ex(n, T_3) = \frac{n^2}{3}$. # oriented subgraphs of G is $2^{\frac{n^2}{3}}$.

Forbidding transitive triangles

Note that $ex(n, T_3) = \frac{n^2}{3}$. # oriented subgraphs of G is $2^{\frac{n^2}{3}}$.

But the complete bipartite digraph has $\frac{n^2}{4}$ double edges, so has $3\frac{n^2}{4}$ oriented subgraphs.

Since $3^{\frac{n^2}{4}} \gg 2^{\frac{n^2}{3}}$, this 'morally' disproves Cherlin's conjecture.

A general lower bound

Given a digraph G, let

 $e_1(G) = \#$ single edges,

 $e_2(G) = \#$ double edges. G has $2^{e_1(G)}3^{e_2(G)} = 2^{e_1(G)+a \cdot e_2(G)}$ oriented subgraphs, where $a = \log_2 3$.

• • = • • = •

A general lower bound

Given a digraph G, let

subgraphs, where $a = \log_2 3$.

 $e_1(G) = \#$ single edges,

 $e_2(G) = \#$ double edges. G has $2^{e_1(G)}3^{e_2(G)} = 2^{e_1(G)+a \cdot e_2(G)}$ oriented

 $e_1(G) = 3$ $e_2(G) = 2$

伺 ト イ ヨ ト イ ヨ ト ニ ヨ

So the number of oriented T_3 -free graphs is at least $2^{ex_a(n,T_3)}$, where

 $ex_a(n, T_3) = \max\{e_1(G) + a \cdot e_2(G) : T_3 \text{-free digraphs } G \text{ on } n \text{ vertices}\}.$

 $ex_{\log_2 3}(n, T_3) = \log_2 3 \cdot \frac{n^2}{4}$ extremal graph: balanced complete bipartite digraph $ex_{\log_2 3}(n, T_3) = \log_2 3 \cdot \frac{n^2}{4}$ extremal graph: balanced complete bipartite digraph

Theorem (Kühn, Osthus, Townsend, Zhao, 2014+)

- (i) Almost all T₃-free oriented graphs are bipartite (so # T₃-free oriented graphs on *n* vertices is ≈ 2<sup>ex_{log23}(n,T₃)).
 </sup>
- (ii) Almost all T_3 -free digraphs are bipartite (so $\# T_3$ -free digraphs on *n* vertices is $\approx 2^{\exp(n, T_3)}$).

This generalises to T_k -free oriented graphs and digraphs.

Recall:

Conjecture (Cherlin, 1998)

Almost all C_3 -free oriented graphs are acyclic, i.e. subgraphs of the transitive tournament T_n .

But $ex_{\log_2 3}(n, C_3) = \binom{n}{2} + (\log_2 3 - 1)\frac{n}{2} > \binom{n}{2}$. Extremal number attained by T_n + perfect matching.

Forbidding cyclic triangles - oriented graphs

This motivates:

Theorem (Kühn, Osthus, Townsend, Zhao, 2014+)

Almost all C_3 -free oriented graphs are almost - but not quite - acyclic, i.e.

 $\frac{cn}{\log n} \leq$ typical # backwards edges in an optimal ordering $\ll n^2$.

Number of backwards edges is subquadratic but at least cn / log n

Conjecture (Kühn, Osthus, Townsend, Zhao, 2014+)

For almost all C_3 -free oriented graphs, # backwards edges in an optimal ordering is $\Theta(n)$.

Forbidding cyclic triangles - digraphs

Given G, # subdigraphs of G is $2^{e_1(G)}4^{e_2(G)} = 2^{e_1(G)+2e_2(G)}$. So # of C₃-free digraphs on *n* vertices is at least $2^{e_2(n,C_3)}$.

Theorem (Häggkvist, Thomassen, 1976)
$$\exp_2(n, C_3) = \frac{n^2}{2}.$$

Extremal graphs:

Forbidding cyclic triangles - digraphs

Theorem (Kühn, Osthus, Townsend, Zhao, 2014+)

Almost all C_3 -free digraphs are close to being a subgraph of a transitive-bipartite blow up.

So # of C_3 -free digraphs on *n* vertices is $2^{(1+o(1))ex_2(n,C_3)}$.

 $(DK_{\frac{n}{2},\frac{n}{2}}$ is only an extremal graph for odd cycles.)

Deryk Osthus Structure of digraphs with forbidden tournaments or cycles

- T₃-free oriented graphs: typically bipartite
- T₃-free digraphs: typically bipartite
- C_3 -free oriented graphs: typically close to acyclic
- C₃-free digraphs: typically close to subgraph of transitive-bipartite blow up

周 ト イ ヨ ト イ ヨ ト

Step 1: Use container arguments + stability results for rough structure.

Step 2: Use this rough structure together with e.g. induction to obtain fine structure.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Step 1: Use container arguments + stability results for rough structure.

Theorem - Containers
(Balogh, Morris, Samotij, 2014+; Saxton, Thomason, 2014+)
For all oriented graphs
$$H$$
 and all sufficiently large n , there exists a
collection of digraphs C such that
(a) For every H -free digraph G on $[n]$ there exists $C \in C$ such that
 $G \subseteq C$,
(b) for every $C \in C$, C contains almost no copies of H ,
(c) $|C| = 2^{o(n^2)}$.

Note that (b) together with supersaturation \implies

$$e_a(C) := e_1(C) + a \cdot e_2(C) \leq (1 + o(1)) \operatorname{ex}_a(n, H).$$

< 回 > < 回 > < 回 >

Stability results I

Important ingredient: weighted stability results

Theorem (Kühn, Osthus, Townsend, Zhao, 2014+)

- (i) If G is a T_3 -free digraph with $e_{\log_2 3}(G) \approx \exp_{\log_2 3}(n, T_3)$ then G is close to the complete bipartite digraph.
- (ii) If G is a T_3 -free digraph with $e(G) \approx ex(n, T_3)$ then G is close to the complete bipartite digraph.

Stability results II

Theorem (Kühn, Osthus, Townsend, Zhao, 2014+)

- (i) If G is a C₃-free digraph with $e_{\log_2 3}(G) \approx \exp_{\log_2 3}(n, C_3)$ then G is close to acyclic.
- (ii) If G is a C₃-free digraph with $e(G) \approx ex(n, C_3) = \frac{n^2}{2}$ then G is close to a transitive-bipartite blow up.

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Oriented graphs and digraphs have a much 'richer' and more unexpected behaviour than (undirected) graphs regarding

- extremal graphs
- stability results
- typical structure.

伺 ト イヨト イヨト

Open problems

Pin down the typical structure of C_3 -free digraphs. Recall:

Theorem (Kühn, Osthus, Townsend, Zhao, 2014+)

Almost all C_3 -free digraphs are close to being a subgraph of a transitive-bipartite blow up.

Can one strengthen this to prove that they are typically almost transitive?

- What about forbidding other tournaments (i.e. non-transitive ones)?
- Sparse setting (i.e. *H*-free digraphs on *n* vertices and *m* edges)?
- Forbidding arbitrary digraphs? (container results do not hold for every digraph)

伺 ト イヨト イヨト

Conjecture

Suppose that G is oriented with $\delta^+, \delta^- \ge \lfloor n/4 \rfloor + 1$. Then G contains a 6-cycle.

Conjectured extremal example

Special case of a more general conjecture on arbitrary cycle lengths

More general conjecture

Conjecture (Kelly, Kühn, Osthus)

Let $\ell \ge 4$ and let $k \ge 3$ be minimal such that k does not divide ℓ . Then there exists $n_0 = n_0(\ell)$ such that every oriented graph G on $n \ge n_0$ vertices with $\delta^+(G), \delta^-(G) \ge \lfloor n/k \rfloor + 1$ contains an ℓ -cycle.

Previous partial results:

- Kelly, Kühn & Osthus (2010):
- Kühn, Osthus & Piguet (2013):