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Structure of triangle-free graphs

What can we say about the structure of triangle-free graphs?

Theorem (Mantel 1907)

Every triangle-free graph on n vertices has at most n2/4 edges, i.e.
ex(n,K3) ≤ n2/4.

Complete bipartite graphs show that the bound is best possible.

Instead of the extremal viewpoint, we consider the ‘average case’:

What does a typical triangle-free graph on n vertices look like?

How many triangle-free graphs on n vertices are there?
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Typical structure of triangle-free graphs

Theorem (Erdős, Kleitman, Rothschild, 1976)

Almost all triangle-free graphs are bipartite. i.e.

lim
n→∞

# triangle-free graphs on n vertices

# bipartite graphs on n vertices
→ 1.

Corollary

The number of triangle-free graphs on n vertices is

2(1+o(1)) n
2

4 = 2(1+o(1))ex(n,K3).

Trivial lower bound:

K n
2
, n
2

has n2

4 = ex(n,K3) edges and 2
n2

4 subgraphs.
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Typical structure of H-free graphs

Related work:

Kolaitis, Prömel, Rothschild (Kr -free graphs)

Prömel, Steger (H-free graphs)

Bollobás, Thomason (Hereditary properties)

Balogh, Bollobás, Simonovits (fine structure of H-free graphs)

Osthus, Prömel, Taraz (sparse K3-free graphs)

Balogh, Morris, Samotij, Warnke (sparse Kr -free graphs)

. . .
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Oriented graphs and digraphs

oriented graph:
edges directed, between any two vertices there is at most one edge

digraph:
edges directed, between any two vertices there are at most two
edges – at most one in each direction

Deryk Osthus Structure of digraphs with forbidden tournaments or cycles



Typical structure of triangle-free oriented graphs

Conjecture (Cherlin, 1998)

(a) Almost all T3-free oriented graphs are tripartite.

(b) Almost all C3-free oriented graphs are acyclic.

(a) is formally correct but morally wrong.
(b) is formally wrong but morally almost correct.
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Forbidding transitive triangles

Note that ex(n,T3) = n2

3 .

# oriented subgraphs of G is 2
n2

3 .

But the complete bipartite
digraph has n2

4 double edges, so

has 3
n2

4 oriented subgraphs.

Since 3
n2

4 � 2
n2

3 , this ‘morally’ disproves Cherlin’s conjecture.

Deryk Osthus Structure of digraphs with forbidden tournaments or cycles



Forbidding transitive triangles

Note that ex(n,T3) = n2

3 .

# oriented subgraphs of G is 2
n2

3 .

But the complete bipartite
digraph has n2

4 double edges, so

has 3
n2

4 oriented subgraphs.

Since 3
n2

4 � 2
n2

3 , this ‘morally’ disproves Cherlin’s conjecture.

Deryk Osthus Structure of digraphs with forbidden tournaments or cycles



Forbidding transitive triangles

A general lower bound

Given a digraph G , let

e1(G ) = # single edges,

e2(G ) = # double edges.

G has 2e1(G)3e2(G) = 2e1(G)+a·e2(G) oriented
subgraphs, where a = log2 3.

So the number of oriented T3-free graphs is at least 2exa(n,T3),
where

exa(n,T3) = max{e1(G )+a·e2(G ) : T3-free digraphs G on n vertices}.
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Forbidding transitive triangles

exlog2 3(n,T3) = log2 3 · n24
extremal graph: balanced complete bipartite digraph

Theorem (Kühn, Osthus, Townsend, Zhao, 2014+)

(i) Almost all T3-free oriented graphs are bipartite
(so # T3-free oriented graphs on n vertices is
≈ 2exlog2 3(n,T3)).

(ii) Almost all T3-free digraphs are bipartite
(so # T3-free digraphs on n vertices is ≈ 2ex2(n,T3)).

This generalises to Tk -free oriented graphs and digraphs.
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Forbidding cyclic triangles - oriented graphs

Recall:

Conjecture (Cherlin, 1998)

Almost all C3-free oriented graphs are acyclic,
i.e. subgraphs of the transitive tournament Tn.

But exlog2 3(n,C3) =
(n
2

)
+ (log2 3− 1)n2 >

(n
2

)
.

Extremal number attained by Tn + perfect matching.
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Forbidding cyclic triangles - oriented graphs

This motivates:

Theorem (Kühn, Osthus, Townsend, Zhao, 2014+)

Almost all C3-free oriented graphs are almost - but not quite -
acyclic, i.e.
cn

log n ≤ typical # backwards edges in an optimal ordering� n2.

Conjecture (Kühn, Osthus, Townsend, Zhao, 2014+)

For almost all C3-free oriented graphs, # backwards edges in an
optimal ordering is Θ(n).

Deryk Osthus Structure of digraphs with forbidden tournaments or cycles



Forbidding cyclic triangles - digraphs

Given G , # subdigraphs of G is 2e1(G)4e2(G) = 2e1(G)+2e2(G).
So # of C3-free digraphs on n vertices is at least 2ex2(n,C3).

Theorem (Häggkvist, Thomassen, 1976)

ex2(n,C3) =
n2

2
.

Extremal graphs:
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Forbidding cyclic triangles - digraphs

Theorem (Kühn, Osthus, Townsend, Zhao, 2014+)

Almost all C3-free digraphs are close to being a subgraph of a
transitive-bipartite blow up.

So # of C3-free digraphs on n vertices is 2(1+o(1))ex2(n,C3).

Theorem generalises to longer forbidden cycles.
(DK n

2
, n
2

is only an extremal graph for odd cycles.)
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Summary of results

T3-free oriented graphs: typically bipartite

T3-free digraphs: typically bipartite

C3-free oriented graphs: typically close to acyclic

C3-free digraphs: typically close to subgraph of
transitive-bipartite blow up
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Proofs

Step 1: Use container arguments + stability results for rough
structure.
Step 2: Use this rough structure together with e.g. induction to
obtain fine structure.
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Proofs

Step 1: Use container arguments + stability results for rough
structure.

Theorem - Containers
(Balogh, Morris, Samotij, 2014+; Saxton, Thomason, 2014+)

For all oriented graphs H and all sufficiently large n, there exists a
collection of digraphs C such that

(a) For every H-free digraph G on [n] there exists C ∈ C such that
G ⊆ C ,

(b) for every C ∈ C, C contains almost no copies of H,

(c) |C| = 2o(n
2).

Note that (b) together with supersaturation =⇒

ea(C ) := e1(C ) + a · e2(C ) ≤ (1 + o(1))exa(n,H).
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Stability results I

Important ingredient: weighted stability results

Theorem (Kühn, Osthus, Townsend, Zhao, 2014+)

(i) If G is a T3-free digraph with elog2 3(G ) ≈ exlog2 3(n,T3) then
G is close to the complete bipartite digraph.

(ii) If G is a T3-free digraph with e(G ) ≈ ex(n,T3) then G is
close to the complete bipartite digraph.
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Stability results II

Theorem (Kühn, Osthus, Townsend, Zhao, 2014+)

(i) If G is a C3-free digraph with elog2 3(G ) ≈ exlog2 3(n,C3) then
G is close to acyclic.

(ii) If G is a C3-free digraph with e(G ) ≈ ex(n,C3) = n2

2 then G
is close to a transitive-bipartite blow up.
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Summary

Oriented graphs and digraphs have a much ‘richer’ and more
unexpected behaviour than (undirected) graphs regarding

extremal graphs

stability results

typical structure.
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Open problems

Pin down the typical structure of C3-free digraphs. Recall:

Theorem (Kühn, Osthus, Townsend, Zhao, 2014+)

Almost all C3-free digraphs are close to being a subgraph of a
transitive-bipartite blow up.

Can one strengthen this to prove that they are typically almost
transitive?
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Open problems II

What about forbidding other tournaments
(i.e. non-transitive ones)?

Sparse setting
(i.e. H-free digraphs on n vertices and m edges)?

Forbidding arbitrary digraphs?
(container results do not hold for every digraph)
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Open problems III: short cycles in oriented graphs

Conjecture

Suppose that G is oriented with δ+, δ− ≥ bn/4c+ 1. Then G
contains a 6-cycle.

Conjectured extremal example

mm

m m

Special case of a more general conjecture on arbitrary cycle lengths
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Open problems IV: short cycles in oriented graphs

More general conjecture

Conjecture (Kelly, Kühn, Osthus)

Let ` ≥ 4 and let k ≥ 3 be minimal such that k does not divide `.
Then there exists n0 = n0(`) such that every oriented graph G on
n ≥ n0 vertices with δ+(G ), δ−(G ) ≥ bn/kc+ 1 contains an
`-cycle.

Previous partial results:

Kelly, Kühn & Osthus (2010):

Kühn, Osthus & Piguet (2013):
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