
FRACTIONAL AND INTEGER MATCHINGS IN UNIFORM

HYPERGRAPHS
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Abstract. A conjecture of Erdős from 1965 suggests the minimum number of edges in a k-
uniform hypergraph on n vertices which forces a matching of size t, where t ≤ n/k. Our main
result verifies this conjecture asymptotically, for all t < 0.48n/k. This gives an approximate
answer to a question of Huang, Loh and Sudakov, who proved the conjecture for t ≤ n/3k2. As
a consequence of our result, we extend bounds of Bollobás, Daykin and Erdős by asymptotically
determining the minimum vertex degree which forces a matching of size t < 0.48n/(k − 1) in
a k-uniform hypergraph on n vertices. We also obtain further results on d-degrees which force
large matchings. In addition we improve bounds of Markström and Ruciński on the minimum d-
degree which forces a perfect matching in a k-uniform hypergraph on n vertices. Our approach
is to inductively prove fractional versions of the above results and then translate these into
integer versions.

1. Introduction

1.1. Large matchings in hypergraphs with many edges. A k-uniform hypergraph is a pair
G = (V,E) where V is a finite set of vertices and the edge set E consists of unordered k-tuples
of elements of V . A matching (or integer matching) M in G is a set of disjoint edges of G. The
size of M is the number of edges in M . M is perfect if it has size |V |/k.

A classical theorem of Erdős and Gallai [9] determines the number of edges in a graph which
forces a matching of a given size. In 1965, Erdős [8] made a conjecture which would generalize
this to k-uniform hypergraphs.

Conjecture 1.1. Let n, k ≥ 2 and 1 ≤ s ≤ n/k be integers. The minimum number of edges in
a k-uniform hypergraph on n vertices which forces a matching of size s is

max

{(
ks− 1

k

)
,

(
n

k

)
−
(
n− s+ 1

k

)}
+ 1.

It is easy to see that the conjecture would be best possible: the first expression in the lower

bound is obtained by considering the k-uniform clique K
(k)
ks−1 (complemented by n − ks + 1

isolated vertices); the second expression in the lower bound is obtained as follows. Let H(s)
be a k-uniform hypergraph on n vertices with edge set consisting of all k-element subsets of

V (H(s)) intersecting a given subset of V (H(s)) of size s− 1, that is H(s) = K
(k)
n −K(k)

n−s+1.
The case s = 2 of Conjecture 1.1 corresponds to the Erdős-Ko-Rado Theorem on intersecting

families [10]. The conjecture also has applications to the Manickam-Mikós-Singhi conjecture in
number theory (for details see e.g. [2]). Despite its seeming simplicity Conjecture 1.1 is still wide
open in general. For the cases k ≤ 4, it was verified asymptotically by Alon, Frankl, Huang,
Rödl, Ruciński and Sudakov [1]. For k = 3, it was recently proved by Frankl [11], improving
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results of Frankl, Rödl and Ruciński [12], and of  Luczak and Mieczkowska [21]. Bollobás, Daykin
and Erdős [4] proved Conjecture 1.1 for general k whenever s < n/(2k3), which extended earlier
results of Erdős [8]. Huang, Loh and Sudakov [14] proved it for s < n/(3k2). The main result
in this paper verifies Conjecture 1.1 asymptotically for matchings of any size up to almost half
the size of a perfect matching. This gives an asymptotic answer to a question in [14].

Theorem 1.2. Let n, k ≥ 2 and 0 ≤ a < 0.48/k be such that n, k, an ∈ N. The minimum
number of edges in a k-uniform hypergraph on n vertices which forces a matching of size an is(

1− (1− a)k + o(1)
)(n

k

)
.

1.2. Large matchings in hypergraphs with large degrees. It is also natural to consider
degree conditions that force matchings in uniform hypergraphs. Given a k-uniform hypergraph
G = (V,E) and S ∈

(
V
d

)
, where 0 ≤ d ≤ k − 1, let degG(S) = |{e ∈ E : S ⊆ e}| be the degree of

S in G. Let δd(G) = minS∈(Vd)
{degG(S)} be the minimum d-degree of G. When d = 1, we refer

to δ1(G) as the minimum vertex degree of G. Note that δ0(G) = |E|.
For integers n, k, d, s satisfying 0 ≤ d ≤ k − 1 and 0 ≤ s ≤ n/k, we let ms

d(k, n) denote the
minimum integer m such that every k-uniform hypergraph G on n vertices with δd(G) ≥ m has
a matching of size s. So the results discussed in Section 1.1 correspond to the case d = 0. The
following degree condition for forcing perfect matchings has been conjectured in [13, 18] and
also received much attention recently.

Conjecture 1.3. Let n and 1 ≤ d ≤ k − 1 be such that n, d, k, n/k ∈ N. Then

m
n/k
d (k, n) =

(
max

{
1

2
, 1−

(
k − 1

k

)k−d
}

+ o(1)

)(
n− d
k − d

)
.

The lower bound here is given by the hypergraph H(n/k) defined in Section 1.1 and the
following parity-based construction from [17]. For any integers n, k, let H ′ be a k-uniform
hypergraph on n vertices with vertex partition A ∪ B = V (H ′), such that ||A| − |B|| ≤ 2 and
|A| and n/k have different parity. Let H ′ have edge set consisting of all k-element subsets of
V (H ′) that intersect A in an odd number of vertices. Observe that H ′ has no perfect matching,

and that for every 1 ≤ d ≤ k − 1 we have that δd(H ′) = (1/2 + o(1))
(
n−d
k−d
)
.

For d = k − 1, m
n/k
k−1(k, n) was determined exactly by Rödl, Ruciński and Szemerédi [29].

This was generalized by Treglown and Zhao [32], who determined the extremal families for all
d ≥ k/2. The extremal constructions are similar to the parity based one of H ′ above. This
improves asymptotic bounds in [25, 28, 29]. For d < k/2 less is known. In [1] Conjecture 1.3
was proved for k − 4 ≤ d ≤ k − 1, by reducing it to a probabilistic conjecture of Samuels.
In particular, this implies Conjecture 1.3 for k ≤ 5. Khan [15], and independently Kühn,

Osthus and Treglown [19], determined m
n/k
1 (k, n) exactly for k = 3. Khan [16] also determined

m
n/k
1 (k, n) exactly for k = 4. As a consequence of these results, ms

1(k, n) is determined exactly
whenever s ≤ n/k and k ≤ 4 (for details see the concluding remarks in [19]). More generally,
we propose the following version of Conjecture 1.3 for non-perfect matchings.

Conjecture 1.4. For all ε > 0 and all integers n, d, k, s with 1 ≤ d ≤ k − 1 and 0 ≤ s ≤
(1− ε)n/k we have

ms
d(k, n) =

(
1−

(
1− s

n

)k−d
+ o(1)

)(
n− d
k − d

)
.
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In fact it may be that the bound holds for all s ≤ n − C, for some C depending only on d
and k. The lower bound here is given by H(s). The case d = k − 1 of Conjecture 1.4 follows
easily from the determination of ms

k−1(k, n) for s close to n/k in [29]. Bollobás, Daykin and

Erdős [4] determined ms
1(k, n) for small s, i.e. whenever s < n/2k3. As a consequence of our

main result, for 1 ≤ d ≤ k− 2 we are able to determine ms
d(k, n) asymptotically for non-perfect

matchings of any size less than 0.48n/(k − d). Note that this proves Conjecture 1.4 in the case
0.53k ≤ d ≤ k − 2, say.

Theorem 1.5. Let ε > 0 and let n, k, d be integers with 1 ≤ d ≤ k − 2, and let 0 ≤ a <
min{0.48/(k − d), (1− ε)/k} be such that an ∈ N. Then

man
d (k, n) =

(
1− (1− a)k−d + o(1)

)(n− d
k − d

)
.

We now focus again on the case s = n/k, i.e. perfect matchings. It was shown by Hàn, Person

and Schacht [13] that for k ≥ 3, 1 ≤ d < k/2 we have m
n/k
d (k, n) ≤ ((k − d)/k + o(1))

(
n−d
k−d
)
.

(The case d = 1 of this is already due to Daykin and Häggkvist [6].) These bounds were slightly
improved by Markström and Ruciński [22], using similar techniques, to

m
n/k
d (k, n) ≤

(
k − d
k
− 1

kk−d
+ o(1)

)(
n− d
k − d

)
.

Using similar methods to those developed to prove Theorem 1.5, we are also able to slightly
improve on this bound.

Theorem 1.6. Let n and 1 ≤ d < k/2 be such that n, k, d, n/k ∈ N. Then

m
n/k
d (k, n) ≤

(
k − d
k
− k − d− 1

kk−d
+ o(1)

)(
n− d
k − d

)
.

1.3. Large fractional matchings. Our approach to proving these results uses the concepts
of fractional matchings and fractional vertex covers. A fractional matching in a k-uniform
hypergraph G = (V,E) is a function w : E → [0, 1] of weights of edges, such that for each v ∈ V
we have

∑
e∈E:v∈ew(e) ≤ 1. The size of w is

∑
e∈E w(e). w is perfect if it has size |V |/k. A

fractional vertex cover in G is a function w : V → [0, 1] of weights of vertices, such that for each
e ∈ E we have

∑
v∈ew(v) ≥ 1. The size of w is

∑
v∈V w(v).

A key idea (already used e.g. in [1, 28]) is that we can switch between considering the largest
fractional matching and the smallest fractional vertex cover of a hypergraph. The determination
of these quantities are dual linear programming problems, and hence by the Duality Theorem
they have the same size.

For s ∈ R we let fsd(k, n) denote the minimum integer m such that every k-uniform hypergraph
G on n vertices with δd(G) ≥ m has a fractional matching of size s. It was shown in [28] that

f
n/k
k−1(k, n) = dn/ke. Similarly to [1], we now formulate the fractional version of Conjecture 1.1.

Conjecture 1.7. For all integers n, k, s with k ≥ 2 and 1 ≤ s ≤ n/k we have

fs0 (k, n) = max

{(
ks− 1

k

)
,

(
n

k

)
−
(
n− s+ 1

k

)}
+ 1.

As discussed in [1], this conjecture has applications to a problem on information storage
and retrieval. To prove Theorems 1.2 and 1.5, we first prove Conjecture 1.7 asymptotically for
fractional matchings of any size up to 0.48n/k.
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Theorem 1.8. Let n, k ≥ 2 be integers and let 0 ≤ a ≤ 0.48/k. Then

fan0 (k, n) =
(

1− (1− a)k + o(1)
)(n

k

)
.

We use Theorem 1.8, along with methods similar to those developed in [1], to convert our
edge-density conditions for the existence of fractional matchings into corresponding minimum
degree conditions (see Proposition 4.1). For 1 ≤ d ≤ k− 2 the following theorem asymptotically
determines f sd(k, n) for fractional matchings of any size up to 0.48n/(k − d). Note that this
determines f sd(k, n) asymptotically for all s ∈ (0, n/k) whenever d ≥ 0.52k.

Theorem 1.9. Let n, k ≥ 3, and 1 ≤ d ≤ k − 2 be integers and let 0 ≤ a ≤ min{0.48/(k −
d), 1/k}. Then

fand (k, n) =
(

1− (1− a)k−d + o(1)
)(n− d

k − d

)
.

We then use Theorem 1.8 and a variant of Theorem 1.9, along with the Weak Hypergraph
Regularity Lemma, to prove Theorems 1.2 and 1.5 respectively, by converting our fractional
matchings into integer ones. We prove Theorem 1.6 in a similar fashion, via the following two
theorems.

Theorem 1.10. Let n, k ≥ 2, d ≥ 1 be integers. Then

f
n/(k+d)
0 (k, n) ≤

(
k

k + d
− k − 1

(k + d)k
+ o(1)

)(
n

k

)
.

Theorem 1.11. Let n, k ≥ 3, 1 ≤ d ≤ k − 2 be integers. Then

f
n/k
d (k, n) ≤

(
k − d
k
− k − d− 1

kk−d
+ o(1)

)(
n− d
k − d

)
.

The rest of the paper is organised as follows. In Section 2 we lay out some notation, set out
some useful tools, and prove some preliminary results. Section 3 is the heart of the paper, in
which we prove Theorems 1.8 and 1.10. In Section 4 we derive Theorems 1.9 and 1.11, and in
Section 5 we derive Theorems 1.2, 1.5 and 1.6. In Section 6 we discuss an application of our
main result to the problem of determining the minimum number of disjoint cliques in graphs of
given edge density.

2. Notation, tools and preliminary results

2.1. Notation. As in many of the proofs in this paper we often consider vertex degrees, we
may write δ(G) to denote δ1(G). Similarly, when S = {v} is a set containing only one vertex,
we write dG(v) to denote degG(S), and we refer to dG(v) as the degree of v (in G). We let e(G)
denote the number of edges in a hypergraph G, and let |G| denote the number of its vertices.

For a set V and a positive integer k we let
(
V
k

)
denote the set of all k-element subsets of V .

For m ∈ N we let [m] denote the set {1, . . . ,m}. Whenever we refer to a k-tuple, we assume
that it is unordered. Given a hypergraph G = (V,E) and a set S ⊆ V , we refer to the pair
(V \S, {e ⊆ V : S ∩ e = ∅, e ∪ S ∈ E}) as the neighbourhood hypergraph of S (in G). If S = {v}
has just one element then we may refer to this pair as the neighbourhood hypergraph of v. For
U ⊆ V we denote by G[U ] the hypergraph induced by U on G, that is the hypergraph with
vertex set U and edge set {e ∈ E : e ⊆ U}.
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2.2. Fractional matchings and duality. In proving our main theorems, we will use the
lower bound given by the earlier construction H(s), for all integers n, d, k, s with k ≥ 2 and
0 ≤ d ≤ k − 1 and 0 ≤ s ≤ n/k:

(2.1) ms
d(k, n) ≥ f sd(k, n) ≥

(
1− (1− s/n)k−d + o(1)

)(n− d
k − d

)
.

Now, as mentioned in Section 1, a key tool in this paper is that the determination of the size of
the largest fractional matching of a k-uniform hypergraph is a linear programming problem, and
its dual problem is to determine the size of the smallest fractional vertex cover of the hypergraph.
The following proposition, which follows by the Duality Theorem, will be very useful to us.

Proposition 2.1. Let k ≥ 2 and let G be a k-uniform hypergraph. The size of the largest
fractional matching of G is equal to the size of the smallest fractional vertex cover of G.

In the rest of this section we collect some preliminary results.

Proposition 2.2. Let G = (V,E) be a hypergraph, E′ ⊆ E, S ⊆ V , and let w be a fractional
vertex cover of G. Then

e(G) ≤
∑
e∈E

∑
v∈e\S

w(v) +
∑
e∈E′

∑
v∈e∩S

w(v) + |E\E′|.

Proof. As w is a fractional vertex cover of G,

e(G) = |E′|+ |E\E′| ≤
∑
e∈E′

∑
v∈e

w(v) + |E\E′| ≤
∑
e∈E

∑
v∈e\S

w(v) +
∑
e∈E′

∑
v∈e∩S

w(v) + |E\E′|.

�

The following crude bound will sometimes be useful. The proof is immediate from the defini-
tions.

Proposition 2.3. Suppose that k ≥ 2 and 0 < a, c < 1 are fixed. Then for every ε > 0 there
exists n0 = n0(k, ε) such that if n ≥ n0 and fan0 (k, n) ≤ c

(
n
k

)
then fan+1

0 (k, n) ≤ (c+ ε)
(
n
k

)
.

In the next section we will prove Theorem 1.8 by induction. For this we will need Theorem 2.4,
which will establish the base case of this induction. Theorem 2.4 is an easy consequence of the
Erdős-Gallai Theorem from [9].

Theorem 2.4. For k = 2 and x ≤ 1/3 we have

fxn0 (k, n) =
(

1− (1− x)k + o(1)
)(n

k

)
.

2.3. Numerical estimates. We now define a function that will appear a number of times
throughout this paper. For k ≥ 3, let

gk(x) :=
1− (1− 2x)k−1

(1− x)k−1
.

Proposition 2.5. Let k ∈ N with k ≥ 3. The equation gk(x) = 1 has a unique solution in
(0, 1/(k + 1)).
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Proof. Note that gk(x) is strictly increasing for x ∈ (0, 1/(k + 1)) and that gk(0) = 0. Also
note that

gk(x) =
1− (1− 2x)k−1

(1− x)k−1
(1 + x)k−1

(1 + x)k−1
=

(1 + x)k−1 − (1− x− 2x2)k−1

(1− x2)k−1

>
(1 + x)k−1 − (1− x)k−1

(1− x2)k−1
> (1 + x)k−1 − (1− x)k−1 > 2(k − 1)x,

for x ∈ (0, 1/2), so gk(1/(k + 1)) > 2(k − 1)/(k + 1) ≥ 1 for k ≥ 3. So indeed gk(x) = 1 has a
unique solution in (0, 1/(k + 1)). �

We define a′k to be the unique solution in (0, 1/(k + 1)) to gk(x) = 1.

Proposition 2.6. Let k ≥ 3. Then a′k > 0.48/k.

The proof of Theorem 1.8 actually extends to all a < a′k (rather than just a ≤ 0.48/k). For
small k this gives a substantial improvement (at the expense of lengthy calculations). But for
large k, a similar argument to that in the proof of Proposition 2.6 shows that a′k ≤ 0.49/k, so
even improving the bound to a ≤ 1/2k say would require new ideas.

Proof. Let x ∈ (0, 1/(k + 1)). Note that, as e−u−u
2 ≤ 1− u for all u ∈ (0, 1/2), we have that

gk(x) =
1− (1− 2x)k−1

(1− x)k−1
≤ 1− e−2x(k−1)−4x2(k−1)

e−x(k−1)−x2(k−1) = ex
2(k−1)−x

(
exk − e−x(k−2)−4x2(k−1)

)
= ex

2(k−1)−x
(

2 sinh(xk) + e−xk
(

1− e−4x2(k−1)+2x
))

.

So, as 0 ≤ x ≤ 1/k,

gk(x) ≤ e1/k
(

2 sinh(xk) + 1− e−4/k
)
≤ e1/k

(
2 sinh(xk) +

4

k

)
=: fk(x).

The last inequality holds as e−u ≥ 1− u for all u ∈ R. Now, f2000(0.48/2000) is approximately
0.99979 < 1. Note that both fk(x) and gk(x) are strictly increasing for x ∈ (0, 1/(k + 1)),

and fk(0.48/k) = e1/k(2 sinh(0.48) + 4/k) is strictly decreasing in k, and fk(x) ≥ gk(x) for
x ∈ (0, 1/(k + 1)). It follows that a′k > 0.48/k for all k ≥ 2000. It can be easily verified that
a′k > 0.48/k for all 3 ≤ k < 2000. Indeed, as gk(x) is strictly increasing for x ∈ (0, 1/(k + 1)),
it suffices to verify, e.g. using Maple, that gk(0.48/k) < 1 for all 3 ≤ k < 2000. This completes
the proof. �

The next proposition will be needed in the proof of Theorem 1.10. To prove this proposition
we will need a well-known theorem of Baranyai [3] from 1975.

Theorem 2.7 (Baranyai’s Theorem). If n ∈ `N then the complete `-uniform hypergraph on n
vertices decomposes into edge-disjoint perfect matchings.

Proposition 2.8. Let n, k, ` be integers with k ≥ 2 and 1 ≤ ` ≤ k, and let η ∈ [0, 1). Let V be

a set of size n. Suppose S ⊆ V , with |S| ∈ `N. Then there exists Ẽ ⊆ {e ∈
(
V
k

)
: |e ∩ S| = `}

such that for every v ∈ S,

(2.2) |{e ∈ Ẽ : v ∈ e}| =
⌊
η

(
|S|
`− 1

)(
n− |S|
k − `

)⌋
.
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Proof. The cases where ` = 1 or η = 0 are trivial. So suppose that 2 ≤ ` ≤ k and η ∈ (0, 1).
Apply Theorem 2.7 to find a decomposition of the complete `-uniform hypergraph on S into
edge-disjoint perfect matchings M1, . . . ,M(|S|−1

`−1 ).

We now construct Ẽ by adding k-tuples from {e ∈
(
V
k

)
: |e ∩ S| = `} greedily, under the

following constraints:

(i) for all i ∈ {1, . . . ,
(|S|−1

`−1
)
}, we do not add any k-tuples in {e ∈

(
V
k

)
: e ∩ S ∈ Mi+1} unless

we have already added all k-tuples in {e ∈
(
V
k

)
: e ∩ S ∈Mi};

(ii) for every v ∈ S,

|{e ∈ Ẽ : v ∈ e}| ≤ η
(
|S|
`− 1

)(
n− |S|
k − `

)
.

It is clear that (i) and (ii) ensure that the set Ẽ obtained in this way satisfies (2.2) for every
v ∈ S. �

3. Minimum edge-density conditions for fractional matchings

We will use the following lemma to prove Theorems 1.8 and 1.10 inductively.

Lemma 3.1. Let k ≥ 3 be fixed. Suppose that a ∈ (0, 1/(k+ 1)], c ∈ (0, 1) and that there exists
n0 ∈ N such that for all n ≥ n0 we have

(3.1) f
an/(1−a)
0 (k − 1, n) ≤ c

(
n

k − 1

)
.

Then for all ε > 0 there exists n1 ∈ N such that for all n ≥ n1 any k-uniform hypergraph G on
n vertices with at least an vertices of degree at least

D :=
(
c(1− a)k−1 +

(
1− (1− a)k−1

)
+ ε
)(n− 1

k − 1

)
has a fractional matching of size an.

Proof. Let ε > 0 and choose n1 sufficiently large. Consider a k-uniform hypergraph G = (V,E)
on n vertices, of which at least an have degree at least D. Let Y ⊆ V be the set of dane vertices
of highest degree. Let w be a fractional vertex cover of G of least size. Consider the vertex
v0 ∈ Y with the lowest weight w(v0). Let H be the neighbourhood hypergraph of v0 in G. So

e(H) = dG(v0) ≥ D =
(
c(1− a)k−1 +

(
1− (1− a)k−1

)
+ ε
)(n− 1

k − 1

)
.

Let H ′ := H[V \Y ]. Since the number of edges in H with at least one vertex in Y is at most

(1− (1− a)k−1 + o(1))
(
n−1
k−1
)
, it follows that

e(H ′) ≥ e(H)−
(

1− (1− a)k−1 + o(1)
)(n− 1

k − 1

)
≥
(
c(1− a)k−1 + ε/2

)(n− 1

k − 1

)
≥ (c+ ε/3)

(
|H ′|
k − 1

)
,

where in the last two inequalities we use that n1 was chosen sufficiently large. Note that
|H ′| ≥ n/2, so we may assume that |H ′| ≥ n0. Now, (3.1) and Proposition 2.3 together imply
that H ′ has a fractional matching of size

a|H ′|/(1− a) + 1 = a(n− dane)/(1− a) + 1 ≥ an.
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So let M be a fractional matching of H ′ of size an. Note that for all v ∈ V \Y ,∑
e∈E(H′):v∈e

M(e) ≤ 1.

So we have that ∑
v∈V

w(v) ≥
∑
v∈Y

w(v) +
∑

e∈E(H′)

∑
v∈e

M(e)w(v).

By the minimality of w(v0), this implies that∑
v∈V

w(v) ≥ anw(v0) +
∑

e∈E(H′)

∑
v∈e

M(e)w(v) =
∑

e∈E(H′)

M(e)w(v0) +
∑

e∈E(H′)

∑
v∈e

M(e)w(v)

=
∑

e∈E(H′)

M(e)

(
w(v0) +

∑
v∈e

w(v)

)
≥

∑
e∈E(H′)

M(e) = an.

The last inequality holds because by definition of H ′ we have e ∪ {v0} ∈ E for all e ∈ E(H ′),
and so w(v0) +

∑
v∈ew(v) ≥ 1.

Hence the size of w is at least an, so by Proposition 2.1 the largest fractional matching in G
has size at least an. �

The proof of Theorem 1.8 proceeds as follows. Suppose G has no fractional matching of
size an. Then we use Lemma 3.1 and induction to show that G contains few vertices of high
degree. Moreover, by duality we show that G has a small fractional vertex cover. We combine
these two facts to show that the number of edges of G does not exceed the expression stated in
Theorem 1.8.

Proof of Theorem 1.8. The proof will proceed by induction on k. The base step, k = 2,
follows by Theorem 2.4 (as 0.48/2 < 1/3).

Now consider some k > 2 and suppose that the theorem holds for all smaller values of k. Let
ε > 0 and let n0 ∈ N be sufficiently large compared to 1/ε and k. Fix any a with 0 < a ≤ 0.48/k.
Recall that by Proposition 2.6, a′k > 0.48/k, so then a < a′k. For convenience let us define

ξ(a) :=

(
1−

(
1− a

1− a

)k−1
)

(1− a)k−1 + 1− (1− a)k−1 = 1− (1− 2a)k−1.

Consider any k-uniform hypergraph G = (V,E) on n ≥ n0 vertices, and suppose that the
largest fractional matching of G is of size less than an. Then by Proposition 2.1 there exists a
fractional vertex cover, w say, of G with size less than an. Note that

(3.2)
a

1− a
≤ 0.48

k(1− 0.48/k)
<

0.48

k − 1
.

Let c := 1− (1− a/(1− a))k−1 + ε/2. Then by induction and (3.2),

f
an′/(1−a)
0 (k − 1, n′) ≤ c

(
n′

k − 1

)
,

for all sufficiently large n′. So, as n0 is sufficiently large, Lemma 3.1 implies that there are less
than an vertices of G with degree at least (ξ(a) + ε)

(
n−1
k−1
)
.

Let S be the set of dane − 1 vertices of G with highest degree. Note then that dG(v) <

(ξ(a) + ε)
(
n−1
k−1
)

for all v ∈ V \S. Given X ⊆ V \S, for all s ∈ S let tX(s) denote the number of
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k-tuples of vertices of G consisting of s and k − 1 vertices from V \S such that at least one of
these k − 1 vertices lies in X.

We claim that X ⊆ V \S can be chosen such that tX(s) ≥ ξ(a)
(
n−1
k−1
)

for all s ∈ S. Indeed, if

we take X to be V \S then for each s ∈ S we have that

tX(s) =

(
|X|
k − 1

)
=
(

(1− a)k−1 + o(1)
)(n− 1

k − 1

)
≥ ξ(a)

(
n− 1

k − 1

)
.

To see that the final inequality holds for sufficiently large n0, note that

(3.3)
ξ(a)

(1− a)k−1
= gk(a) < gk(a′k) = 1,

by definition of a and a′k, and the fact that gk(x) is strictly increasing for x ∈ (0, 1/(k + 1)).

Choose X ⊆ V \S of minimal size with the property that tX(s) ≥ ξ(a)
(
n−1
k−1
)

for all s ∈ S.

Note that tX(s) = tX(s′) for all s, s′ ∈ S and tX(s) ≤ (ξ(a) + ε)
(
n−1
k−1
)
. (The latter holds since

we may assume that n0 is sufficiently large.) Also let

E′ := {e ∈ E : e ∩ S = ∅} ∪ {e ∈ E : |e ∩ S| = 1, |e ∩X| ≥ 1}.

So

(3.4) |E\E′| ≤
(
n

k

)
−
(

(1− a)k + o(1)
)(n

k

)
− ξ(a)

(
n− 1

k − 1

)
(dane − 1).

Now, note that by Proposition 2.2,

e(G) ≤
∑
e∈E

∑
v∈e\S

w(v) +
∑
e∈E′

∑
v∈e∩S

w(v) + |E\E′|.

Together with the facts that dG(v) < (ξ(a) + ε)
(
n−1
k−1
)

for all v ∈ V \S and that the number of

edges in E′ incident to s is at most tX(s) ≤ (ξ(a) + ε)
(
n−1
k−1
)

for all s ∈ S, this implies that

e(G) ≤
∑
v∈V

(ξ(a) + ε)

(
n− 1

k − 1

)
w(v) + |E\E′|.

Now, recalling that the size of w is less than an and that a ≤ 0.48/k gives

e(G) < (ξ(a) + ε)

(
n− 1

k − 1

)
an+ |E\E′|

(3.4)

≤ (1− (1− a)k + ε)

(
n

k

)
.

By definition, this shows that fan0 (k, n) ≤ (1 − (1 − a)k + o(1))
(
n
k

)
. This, along with the lower

bound (2.1), completes the inductive step and hence the proof. �

Note that the main constraint which restricts the range of a in our result is given by (3.3).

Proof of Theorem 1.10. The proof will proceed by induction on k. The base step, k = 2,
follows by Theorem 2.4, setting x := 1/(2 + d).

Now consider some k > 2 and suppose that the theorem holds for all smaller values of k. Fix
d ≥ 1. Let ε > 0 and let n0 ∈ N be sufficiently large compared to 1/ε, k and d. For convenience
let us define

ξ :=

(
k − 1

k + d− 1
− k − 2

(k + d− 1)k−1

)(
k + d− 1

k + d

)k−1
+

(
1−

(
k + d− 1

k + d

)k−1
)
< 1.
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Consider any k-uniform hypergraph G = (V,E) on n ≥ n0 vertices, and suppose that the largest
fractional matching of G is of size less than n/(k + d). Then by Proposition 2.1 there exists
a fractional vertex cover, w say, of G with size less than n/(k + d). Let a := 1/(k + d). So
a/(1− a) = 1/(k + d− 1). Let

c :=
k − 1

k + d− 1
− k − 2

(k + d− 1)k−1
+ ε/4.

Then by induction,

f
n′/(k+d−1)
0 (k − 1, n) ≤ c

(
n′

k − 1

)
,

for all sufficiently large n′. Thus, as n0 is sufficiently large, Lemma 3.1 implies that there are
less than n/(k + d) vertices of G with degree at least (ξ + ε/2)

(
n−1
k−1
)
.

Let S be the set of |S| vertices of G with highest degree, where |S| ∈ k!N is minimal such

that |S| ≥ n/(k + d). So dG(v) < (ξ + ε/2)
(
n−1
k−1
)

for all v ∈ V \S. For every i ∈ {0, . . . , k} let

Si := {e ∈
(
V
k

)
: |e ∩ S| = i}. Given X ⊆

(
V
k

)
, for all v ∈ V let tX(v) := |{e ∈ X : v ∈ e}|. Note

that for all v ∈ S the value of tSi(v) is the same and tS0(v) = 0. Let ` ∈ {0, . . . , k} be maximal

such that for any v ∈ S we have
∑`−1

i=0 tSi(v) ≤ ξ
(
n−1
k−1
)
. Let E′′′ :=

(
V
k

)
\Sk. Then for each v ∈ S,

(3.5) tE′′′(v) =

(
1− 1

(k + d)k−1
+ o(1)

)(
n− 1

k − 1

)
> ξ

(
n− 1

k − 1

)
.

The final inequality holds here for sufficiently large n0, as it rearranges to d(k+d−1)k−2 + (k−
2) + o(1) > 1. This shows that ` ≤ k − 1. Let

η :=

(
ξ

(
n− 1

k − 1

)
−

`−1∑
i=1

tSi(v)

)
/

(
|S|
`− 1

)(
n− |S|
k − `

)
.

So η ∈ [0, 1). Apply Proposition 2.8 with parameters n, k, `, η to obtain a set Ẽ ⊆ S` such that
for every v ∈ S,

tẼ(v) =

⌊
η

(
|S|
`− 1

)(
n− |S|
k − `

)⌋
.

Let E′′ :=
⋃`−1

i=0 Si ∪ Ẽ. Then each v ∈ S satisfies

(3.6) tE′′(v) =

⌊
ξ

(
n− 1

k − 1

)⌋
.

We can now give a lower bound on the size of E′′ as follows: for each vertex v ∈ S we count the
number of k-tuples in E′′ that contain v, and then adjust for the k-tuples that contain several
vertices of S and were thus counted several times as a result. Since S0 ⊆ E′′ this yields

|E′′|
(3.6)

≥
⌊
ξ

(
n− 1

k − 1

)⌋
n

k + d
+ |S0| −

k−1∑
j=1

(j − 1)|Sj |.
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Note that since E′′ ⊆ E′′′ we only need to consider values of j up to k − 1 in the summation,
rather than k. Now, note that

|S0| −
k∑

j=1

(j − 1)|Sj | =
(
n

k

)
−
∑
v∈S

(
n− 1

k − 1

)
=

(
n

k

)
−
(

n

k + d
+ o(1)

)(
n− 1

k − 1

)

=

(
1− k

k + d
+ o(1)

)(
n

k

)
.

Hence, as (k − 1)|Sk| = ((k − 1)/(k + d)k + o(1))
(
n
k

)
,

(3.7) |E′′| ≥ (ξ + o(1))

(
n− 1

k − 1

)
n

k + d
+

(
1− k

k + d
+

k − 1

(k + d)k
+ o(1)

)(
n

k

)
.

Now, let E′ := E ∩ E′′. Also, note that by Proposition 2.2,

e(G) ≤
∑
e∈E

∑
v∈e\S

w(v) +
∑
e∈E′

∑
v∈e∩S

w(v) + |E\E′|.

Recall that dG(v) < (ξ+ ε/2)
(
n−1
k−1
)

for all v ∈ V \S and that by (3.6) the number of edges in E′

incident to v is at most ξ
(
n−1
k−1
)

for all v ∈ S. So

e(G) ≤
∑
v∈V

(ξ + ε/2)

(
n− 1

k − 1

)
w(v) + |E\E′|.

Now note that |E\E′| ≤ |
(
V
k

)
\E′′| =

(
n
k

)
−|E′′| and recall that the size of w is less than n/(k+d).

So

e(G) < (ξ + ε/2)

(
n− 1

k − 1

)
n

k + d
+

(
n

k

)
− |E′′|

(3.7)

≤ (ξ + ε/2)

(
n− 1

k − 1

)
n

k + d
− (ξ + o(1))

(
n− 1

k − 1

)
n

k + d

+

(
k

k + d
− k − 1

(k + d)k
+ o(1)

)(
n

k

)
≤

(
k

k + d
− k − 1

(k + d)k
+ ε

)(
n

k

)
.

The final inequality holds since n0 is sufficiently large. By definition, this shows that

f
n/(k+d)
0 (k, n) ≤

(
k

k + d
− k − 1

(k + d)k
+ o(1)

)(
n

k

)
.

This completes the inductive step and hence the proof. �

4. Minimum degree conditions for fractional matchings

The following proposition generalises Proposition 1.1 in [1], with a similar proof idea. It
allows us to transform bounds involving edge densities into bounds involving d-degrees.
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Proposition 4.1. Let ε ≥ 0, let k, d, n be integers with n ≥ k ≥ 3, 1 ≤ d ≤ k − 2, and
d < (1 − ε1/d)n. Let a ∈ [0, (1 − ε1/d)/k]. Suppose H is a k-uniform hypergraph on n vertices,

such that for at least (1− ε)
(
n
d

)
d-tuples of vertices L ∈

(V (H)
d

)
we have

degH(L) ≥ fan0 (k − d, n− d).

Then H has a fractional matching of size an.

Proof. The outline of the proof goes as follows. We will assume that there is no fractional
matching of size an in a k-uniform hypergraph H = (V,E) on n vertices and then show that for

more than ε
(
n
d

)
d-tuples of vertices L ∈

(
V
d

)
, the neighbourhood hypergraph H(L) of L in H has

no fractional matching of size an. This will imply that for more than ε
(
n
d

)
d-tuples of vertices

L, degH(L) = e(H(L)) < fan0 (k − d, n− d). This will prove the result in contrapositive.
So suppose H = (V,E) is an n-vertex k-uniform hypergraph, with no fractional matching of

size an. Then by Proposition 2.1, H has a fractional vertex cover, w say, of size less than an.
Let

Ew :=

{
e ∈

(
V

k

)
:
∑
v∈e

w(v) ≥ 1

}
,

and let Hw := (V,Ew). Since H ⊆ Hw we can, without loss of generality, replace H with Hw.

Let U ⊆ V be the set of bε1/dnc+ d vertices of smallest weights. Let L :=
(
U
d

)
. Note that

|L| =
(
bε1/dnc+ d

d

)
>

(ε1/dn)d

d!
= ε

nd

d!
≥ ε
(
n

d

)
.

Consider any L ∈ L. Let Hw(L) be the neighbourhood hypergraph of L in Hw. We will show
that Hw(L) has no fractional matching of size an. Without loss of generality we may assume
that the elements of L all have equal weights, w(L) say. (If not, we could replace these weights
by their average, which would alter neither

∑
v∈V w(v) nor

∑
v∈ew(v) for any e ⊇ L. These are

the only two quantities involving weights that we will consider in what follows.) Observe that
w(L) < 1/k, else the size of w would be at least

n(1− ε1/d)

k
≥ an.

We now define a new weight function w′(v) on the vertices in V :

w′(v) := min {max {0, w∗(v)} , 1} , where w∗(v) :=
w(v)− w(L)

1− kw(L)
.

Note that only for vertices u ∈ U\L can it be that w∗(u) < 0. Note also that since w(v) ≥ 0 for
all v ∈ V , we have that w∗(u) ≥ −w(L)/(1− kw(L)) for such vertices u. Hence,∑

v∈V
w′(v) ≤

(∑
v∈V

w∗(v)

)
+ |U\L| w(L)

1− kw(L)
<
an− nw(L) + ε1/dnw(L)

1− kw(L)

= an
1− (1/a)(1− ε1/d)w(L)

1− kw(L)
≤ an,

and for any given e ∈ {e′ ∈ Ew : e′ ⊇ L} we have that∑
v∈e

w′(v) ≥ min

{∑
v∈ew(v)− kw(L)

1− kw(L)
, 1

}
≥ min

{
1− kw(L)

1− kw(L)
, 1

}
= 1.
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Moreover,
∑

v∈Lw
′(v) = 0. It follows that the function w′ restricted to V \L is a fractional

vertex cover of Hw(L) of size less than an, and so by Proposition 2.1, Hw(L) has no fractional
matching of size an, which completes the proof. �

We can now derive Theorems 1.9 and 1.11.

Proof of Theorem 1.9. Let k′ := k−d and n′ := n−d. Then Theorem 1.8 and Proposition 2.3
together imply that

fan0 (k − d, n− d) = f
a(n′+d)
0 (k′, n′) ≤ fan′+1

0 (k′, n′) ≤
(

1− (1− a)k
′
+ o(1)

)(n′
k′

)
=
(

1− (1− a)k−d + o(1)
)(n− d

k − d

)
.

The upper bound in Theorem 1.9 follows now from Proposition 4.1 applied with ε = 0. The
lower bound follows from (2.1). �

Proof of Theorem 1.11. Let k′ := k − d and n′ := n − d. Then Theorem 1.10 and Proposi-
tion 2.3 together imply that

f
n/k
0 (k − d, n− d) = f

(n′+d)/(k′+d)
0 (k′, n′) ≤ fn

′/(k′+d)+1
0 (k′, n′)

≤
(

k′

k′ + d
− k′ − 1

(k′ + d)k′
+ o(1)

)(
n′

k′

)
=

(
k − d
k
− k − d− 1

kk−d
+ o(1)

)(
n− d
k − d

)
.

So Theorem 1.11 follows now from Proposition 4.1 applied with ε = 0. �

The case ε > 0 of Proposition 4.1 will be used in the next section.

5. Constructing integer matchings from fractional ones

We will construct integer matchings from fractional ones using the Weak Hypergraph Regu-
larity Lemma. Before stating this we will need the following definitions.

Given a k-tuple (V1, . . . , Vk) of disjoint subsets of the vertices of a k-uniform hypergraph
G = (V,E), we define (V1, . . . , Vk)G to be the k-partite subhypergraph with vertex classes
V1, . . . , Vk induced on G. We let

dG(V1, . . . , Vk) =
e((V1, . . . , Vk)G)∏

i∈{1,...,k} |Vi|

denote the density of (V1, . . . , Vk)G.

Definition 5.1 (ε-regularity). Let ε > 0, let G = (V,E) be a k-uniform hypergraph, and let
V1, . . . , Vk ⊆ V be disjoint. We say that (V1, . . . , Vk)G is ε-regular if for every subhypergraph
(V ′1 , . . . , V

′
k)G with V ′i ⊆ Vi and |V ′i | ≥ ε|Vi| for each i ∈ {1, . . . , k}, we have that

|dG(V ′1 , . . . , V
′
k)− dG(V1, . . . , Vk)| < ε.

The following result was proved by Chung [5]. The proof follows the lines of that of the
original Regularity Lemma for graphs [30].



14 DANIELA KÜHN, DERYK OSTHUS AND TIMOTHY TOWNSEND

Lemma 5.2 (Weak Hypergraph Regularity Lemma). For all integers k ≥ 2, L0 ≥ 1, and every
ε > 0 there exists N = N(ε, L0, k) such that if G = (V,E) is a k-uniform hypergraph on n ≥ N
vertices, then V has a partition V0, . . . , VL such that the following properties hold:

(i) L0 ≤ L ≤ N and |V0| ≤ εn,
(ii) |V1| = · · · = |VL|,

(iii) for all but at most ε
(
L
k

)
k-tuples {i1, . . . , ik} ∈

([L]
k

)
, we have that (Vi1 , . . . , Vik)G is ε-

regular.

We call the partition classes V1, . . . , VL clusters, and V0 the exceptional set. For our purposes
we will in fact use the degree form of the Weak Hypergraph Regularity Lemma.

Lemma 5.3 (Degree Form of the Weak Hypergraph Regularity Lemma). For all integers k ≥ 2,
L0 ≥ 1 and every ε > 0, there is an N = N(ε, L0, k) such that for every d ∈ [0, 1) and for every
hypergraph G = (V,E) on n ≥ N vertices there exists a partition of V into V0, V1, . . . , VL and a
spanning subhypergraph G′ of G such that the following properties hold:

(i) L0 ≤ L ≤ N and |V0| ≤ εn,
(ii) |V1| = · · · = |VL| =: m,

(iii) dG′(v) > dG(v)− (d+ ε)nk−1 for all v ∈ V ,
(iv) every edge of G′ with more than one vertex in a single cluster Vi, for some i ∈ {1, . . . , L},

has at least one vertex in V0,

(v) for all k-tuples {i1, . . . , ik} ∈
([L]
k

)
, we have that (Vi1 , . . . , Vik)G′ is ε-regular and has density

either 0 or > d.

The proof is very similar to that of the degree form of the Regularity Lemma for graphs, so
we omit it here; for details see [31].

We now define a type of hypergraph that will be essential in our application of the Weak
Hypergraph Regularity Lemma.

Definition 5.4 (Reduced Hypergraph). Let G = (V,E) be a k-uniform hypergraph. Given
parameters ε > 0, d ∈ [0, 1) and L0 ≥ 1 we define the reduced hypergraph R = R(ε, d, L0) of
G as follows. Apply the degree form of the Weak Hypergraph Regularity Lemma to G, with
parameters ε, d, L0 to obtain a spanning subhypergraph G′ and a partition V0, . . . , VL of V , with
exceptional set V0 and clusters V1, . . . , VL. Then R has vertices V1, . . . , VL, and there exists an
edge between Vi1 , . . . , Vik precisely when (Vi1 , . . . , Vik)G′ is ε-regular with density greater than d.

The following lemma tells us that this reduced hypergraph (almost) inherits the edge density
and minimum degree properties of the original hypergraph. The proof is similar to that of the
well known versions for graphs, but we include it here for completeness.

Lemma 5.5.

(i) Suppose c > 0, k ≥ 2, L0 ≥ 1 and 0 < ε ≤ d ≤ c/4. Let G be a k-uniform hypergraph
with e(G) ≥ c|G|k. Let R = R(ε, d, L0) be the reduced hypergraph of G. Then e(R) ≥
(c− 4d)|R|k.

(ii) Suppose c > 0, k ≥ 2, 1 ≤ ` ≤ k − 1, L0 ≥ 1, and 0 < ε ≤ d ≤ c3/64. Let G be a
k-uniform hypergraph with δ`(G) ≥ c|G|k−`. Let R = R(ε, d, L0) be the reduced hypergraph

of G. Then at least
(|R|

`

)
−d1/3(2k)`|R|` of the `-tuples of vertices of R have degree at least

(c− 4d1/3)|R|k−`.
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Proof. Throughout this proof let G′ be the spanning subhypergraph of G obtained by applying
the degree form of the Weak Hypergraph Regularity Lemma to G with parameters ε, d, L0; let
V1, . . . , VL denote the vertices of R, and let m denote the size of these clusters.

To prove (i), suppose that e(R) < (c − 4d)|R|k. So there are less than (c − 4d)|R|k k-tuples

{i1, . . . , ik} ∈
([L]
k

)
such that (Vi1 , . . . , Vik)G′ has non-zero density. Note that at most mk edges

lie in such a k-tuple. So

e(G′ − V0) < (c− 4d)|R|kmk ≤ (c− 4d)|G|k.
However, given any vertex x ∈ V (G′) we know that dG′(x) > dG(x) − (d + ε)|G|k−1. Note
that since |V0| ≤ ε|G|, we have that the number of edges incident to x that contain a vertex

in V0 is at most ε|G|
( |G|
k−2
)
≤ ε|G|k−1. Hence for all v ∈ V (G′ − V0), we have that dG′−V0(v) >

dG(v)− (d+ 2ε)|G|k−1. So

e(G′ − V0) =

∑
v∈V (G′−V0)

dG′−V0(v)

k
>

(∑
v∈V (G) dG(v)

)
−
(∑

v∈V0
dG(v)

)
− (d+ 2ε)|G|k

k
.

Since |V0| ≤ ε|G|, this implies that

e(G′ − V0) > e(G)− (d+ 3ε)|G|k

k
> (c− 4d)|G|k,

a contradiction. This proves (i).
To prove (ii), recall from the proof of (i) that for any vertex v ∈ V (G′ − V0) we have that

dG′−V0(v) > dG(v)− (d+ 2ε)|G|k−1 ≥ dG(v)− 3d|G|k−1.

We call an `-tuple A of vertices of G′ − V0 bad if degG′−V0(A) ≤ degG(A) − 3d1/3|G|k−`. So

for each v ∈ V (G′ − V0) there are at most
(
k−1
`−1
)
d2/3|G|`−1 bad `-tuples A with v ∈ A. (This

follows by double-counting the number of pairs (A, e) where A is a bad `-tuple with v ∈ A
and e ∈ E(G)\E(G′ − V0) is an edge containing A.) This in turn implies that in total at most(
k−1
`−1
)
d2/3|G|` of the `-tuples A are bad. Given 1 ≤ s ≤ k and an s-tuple (Vi1 , . . . , Vis) of clusters

of R, we say that an s-tuple A of vertices of G′ − V0 lies in (Vi1 , . . . , Vis) if |A ∩ Viα | = 1
for all α ∈ {1, . . . , s}. We call an `-tuple (Vi1 , . . . , Vi`) of clusters of R nice if there are less

than d1/3m` bad `-tuples A of vertices of G′ − V0 which lie in (Vi1 , . . . , Vi`). So less than(
k−1
`−1
)
d1/3|G|`/m` ≤ d1/3(2k)`|R|` of the `-tuples of clusters of R are not nice. Hence it suffices

to show that any nice `-tuple of clusters of R has degree at least (c− 4d1/3)|R|k−` in R.
Consider any nice `-tuple of clusters of R, say (Vi1 , . . . , Vi`). Let A denote the set of all `-

tuples A of vertices of G′−V0 which lie in (Vi1 , . . . , Vi`) and are not bad. So |A| ≥ (1−d1/3)m`.
Moreover, the number of edges e of G′ − V0 with |e ∩ Viα | = 1 for all α ∈ {1, . . . , `} is at least

(5.1)
∑
A∈A

degG′−V0(A) ≥ |A|
(
c− 3d1/3

)
|G|k−` ≥

(
c− 4d1/3

)
|G|k−`m`.

Now suppose that the degree in R of (Vi1 , . . . , Vi`) is less than (c−4d1/3)|R|k−`. Then the number

of (k − `)-tuples {j1, . . . , jk−`} ∈
( [L]
k−`
)

for which (Vi1 , . . . , Vi` , Vj1 , . . . , Vjk−`)G′ is ε-regular with

density greater than d is less than (c − 4d1/3)|R|k−`. Note that at most mk edges of G′ − V0
lie in such a subhypergraph. So the number of edges e of G′ − V0 with |e ∩ Viα | = 1 for all
α ∈ {1, . . . , `} is less than

(c− 4d1/3)|R|k−`mk ≤ (c− 4d1/3)|G|k−`m`,
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contradicting (5.1). This completes the proof. �

The following lemma uses all of the previous results of this section to allow us to convert our
fractional matchings into integer ones. We will use the notation a � b to mean that we can
find an increasing function f for which all of the conditions in the proof are satisfied whenever
a ≤ f(b).

Lemma 5.6. Let k ≥ 2 and 1 ≤ ` ≤ k − 1 be integers, and let ε > 0.

(i) Suppose that for some b, c ∈ (0, 1) and some integer n0, any k-uniform hypergraph G∗

on n ≥ n0 vertices with e(G∗) ≥ cnk has a fractional matching of size (b + ε)n. Then
there exists an integer n′0 such that any k-uniform hypergraph G on n ≥ n′0 vertices with
e(G) ≥ (c+ ε)nk has an (integer) matching of size at least bn.

(ii) Suppose that for some b, c ∈ (0, 1) and some integer n0, any k-uniform hypergraph on
n ≥ n0 vertices with at least (1 − ε)

(
n
`

)
`-tuples of vertices of degree at least cnk−` has a

fractional matching of size (b+ε)n. Then there exists an integer n′0 such that any k-uniform
hypergraph G on n ≥ n′0 vertices with δ`(G) ≥ (c + ε)nk−` has an (integer) matching of
size at least bn.

Proof. We only prove (ii) here; the proof of (i) is very similar (using Lemma 5.5(i) rather than
(ii)). Define n′0 ∈ N and new constants ε′ and d such that 0 < 1/n′0 � ε′ � d� ε, c, 1/k, 1/n0.
Let G be a k-uniform hypergraph on n ≥ n′0 vertices, with δ`(G) ≥ (c+ ε)nk−1. Let G′ be the
spanning subhypergraph of G obtained by applying the degree form of the Weak Hypergraph
Regularity Lemma to G with parameters ε′, d, n0. Let R := R(ε′, d, n0) be the corresponding

reduced hypergraph, and let L := |R|. By Lemma 5.5(ii) at least (1− ε)
(
L
`

)
`-tuples of vertices

of R have degree at least

(c+ ε− 4d1/3)Lk−` ≥ cLk−`.

So by the assumption in the statement of the lemma, R has a fractional matching, F say, of size
(b+ ε)L.

For each e ∈ E(R), let Ke := d(1− 2ε′)F (e)me, where m is the size of each of the clusters of
R. Now construct an integer matching, M say, in G by greedily adding to M edges of G′ until,
for each e = {Vj1 , . . . , Vjk} ∈ E(R), M contains precisely Ke edges of (Vj1 , . . . , Vjk)G′ . Note that
at each stage of this process the number of vertices in each Vi ∈ V (R) that would be covered by
M is at most∑

e:Vi∈e
Ke ≤

∑
e:Vi∈e

((1− 2ε′)F (e)m+ 1) ≤ (1− 2ε′)m+

(
L− 1

k − 1

)
≤ (1− ε′)m.

Note also that for every edge e = {Vj1 , . . . , Vjk} ∈ E(R), we have that (Vj1 , . . . , Vjk)G′ is ε′-
regular with density d > ε′. So indeed, by the definition of ε′-regularity, it is possible to
successively add edges to M in order to obtain a matching M as desired.

Note that the size of M is∑
e∈E(R)

Ke ≥
∑

e∈E(R)

(1− 2ε′)F (e)m = (1− 2ε′)m(b+ ε)L ≥ (1− 2ε′)(b+ ε)(1− ε′)n ≥ bn.

So indeed G has an (integer) matching of size at least bn. �
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Now, using Lemma 5.6(i), Theorem 1.8 and the lower bound (2.1) immediately yields Theo-
rem 1.2. We can also now prove Theorem 1.5.

Proof of Theorem 1.5. Let ε′ > 0 and let 0 < ε′′ � ε′, ε, 1/k, 0.48/(k− d)− a. Let n0 ∈ N be
sufficiently large and suppose that n ≥ n0. Let k′ := k − d and n′ := n− d. Then Theorem 1.8
implies that

f
(a+ε′′)n
0 (k − d, n− d) = f

(a+ε′′)(n′+d)
0 (k′, n′) ≤ f (a+2ε′′)n′

0 (k′, n′)

≤
(

1− (1− a− 2ε′′)k
′
+
ε′

4

)(
n′

k′

)
≤
(

1− (1− a)k−d +
ε′

2

)(
n− d
k − d

)
.

So by Proposition 4.1, if H is a k-uniform hypergraph on n vertices such that for at least

(1− ε′′)
(
n
d

)
d-tuples of vertices L ∈

(V (H)
d

)
we have

degH(L) ≥ 1− (1− a)k−d + ε′/2

(k − d)!
nk−d ≥

(
1− (1− a)k−d +

ε′

2

)(
n− d
k − d

)
,

then H has a fractional matching of size (a+ ε′′)n. So by Lemma 5.6(ii), any k-uniform hyper-
graph G on n ≥ n′0 vertices (where n′0 is sufficiently large) with

δd(G) ≥
(

1− (1− a)k−d + ε′
)(n− d

k − d

)
≥
(

1− (1− a)k−d + ε′/2

(k − d)!
+ ε′′

)
nk−d

has an (integer) matching of size at least an. This gives the upper bound in Theorem 1.5. The
lower bound follows from (2.1). �

We can prove Theorem 1.6 in a similar way, but to do so we will need to use the absorbing
technique as introduced by Rödl, Ruciński and Szemerédi [29]. More precisely, we use the exis-
tence of a small and powerful matching Mabs in G which, by ‘absorbing’ vertices, can transform
any almost perfect matching into a perfect matching. Mabs has the property that whenever X
is a sufficiently small set of vertices of G not covered by Mabs (and |X| ∈ kN) there exists a
matching in G which covers precisely the vertices in X ∪ V (Mabs). Since this part of the proof
of Theorem 1.6 is very similar to the corresponding part of the proof of Theorem 1.1 in [1], we
only sketch it.

Proof of Theorem 1.6 (sketch). Let ε > 0 and suppose that G is a k-uniform hypergraph
on n vertices with minimum d-degree at least

(5.2)

(
k − d
k
− k − d− 1

kk−1
+ ε

)(
n− d
k − d

)
>

(
1

2
+ ε

)(
n− d
k − d

)
.

(5.2) implies that we can use the Strong Absorbing Lemma from [13] to find an absorbing
matching Mabs in G, and set G′ := G\V (Mabs). Using the degree condition, Theorem 1.11 gives
us a perfect fractional matching in G′ for sufficiently large n. Lemma 5.6(ii) then transforms
this into an almost perfect integer matching Malm in G′. We then extend Malm ∪Mabs to a
perfect matching of G by using the absorbing property of Mabs. �
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6. An application on the minimum number of disjoint cliques in graphs of given
edge density

Another application of Theorem 1.2 concerns the problem of determining the minimum num-
ber of disjoint copies of Kr in a (2-uniform hyper)graph of given edge density, where Kr denotes
the complete graph on r vertices. We will use Theorem 1.2 to give a lower bound on this
quantity.

Let br(m,n) be the smallest number of (not necessarily disjoint) copies of Kr in a graph with
n vertices and m edges. Define

br(a) := lim
n→∞

br
(⌊
a
(
n
2

)⌋
, n
)(

n
r

) .

Similarly, let hr(m,n) be the smallest number of disjoint copies of Kr in a graph with n vertices
and m edges. Define

hr(a) := lim inf
n→∞

hr
(⌊
a
(
n
2

)⌋
, n
)

n/r
.

The problem of determining h3(a) was considered by Erdős [7] and Moon [23], but in general
very little is known about hr(a). However, br(a) has been been the focus of much attention
and has recently been determined for all r ≥ 3 [24, 26, 27]. In the interest of deriving a more
transparent bound on hr(a), we will also consider a simpler function that bounds br(a) from
below and is quite close to br(a). Let

b′r(a) :=

r−1∏
i=1

(ia− i+ 1).

Lovász and Simonovits [20] showed that br(a) ≥ b′r(a), for r ≥ 3 and a ∈ [1− 1/(r − 1), 1).
We now derive our lower bound on hr(a). This bound is unlikely to be close to the correct

value of hr(a), but it is better than the bound obtained by greedily removing disjoint copies of
Kr, and for r ≥ 4 is the only non-trivial result we are aware of.

Corollary 6.1. Let r ≥ 3. Then

hr(a) ≥ min
{
r
(

1− (1− br(a))1/r
)
, 0.479

}
.

In particular, for a ∈ [1− 1/(r − 1), 1),

(6.1) hr(a) ≥ min

r
1−

(
1−

r−1∏
i=1

(ia− i+ 1)

)1/r
 , 0.479

 .

Proof. Let G = (V,E) be a graph with n vertices and ba
(
n
2

)
c edges. Then G contains at least

(br(a) + o(1))
(
n
r

)
copies of Kr. Consider the r-uniform hypergraph H with vertex set V and

edge set {e ∈
(
V
r

)
: G[e] = Kr}. So H has at least (br(a) + o(1))

(
n
r

)
edges. So by Theorem 1.2,

H has a matching, M say, with

|M | ≥ min
{(

1− (1− br(a))1/r + o(1)
)
n, 0.479n/r

}
.

Then {G[e] : e ∈M} is a set of |M | disjoint copies of Kr in G. Hence,

hr(a) ≥ min
{
r
(

1− (1− br(a))1/r
)
, 0.479

}
.

�
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Below we plot the edge-density a of a graph (on the horizontal axis) against the lower
bound (6.1) on hr(a), for r = 3, 4, 5 respectively.
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