Decompositions of dense graphs into small subgraphs

joint work with Ben Barber, Daniela Kühn, Allan Lo

University of Birmingham

August 2015

A graph G has an F-decomposition if the edges of G can be covered by edge-disjoint copies of F.

A graph G has an F-decomposition if the edges of G can be covered by edge-disjoint copies of F.

A graph G has an F-decomposition if the edges of G can be covered by edge-disjoint copies of F.

Question

When does G have an F-decomposition?

Question

When does G have an F-decomposition?

If G has a triangle decomposition, then

- (a) the number of edges of G is divisible by 3;
- (b) every vertex has even degree.

Question

When does G have an F-decomposition?

If G has a triangle decomposition, then

- (a) the number of edges of G is divisible by 3;
- (b) every vertex has even degree.

A necessary condition

- If G has an F-decomposition, then
 - (a) the number of edges in F divides the number of edges in G;
 - (b) gcd(F) divides gcd(G), where gcd(H) is the largest integer dividing the degree of every vertex of a graph H.
- G is said to be F-divisible if G satisfies (a) and (b).

F-divisibility

F-divisibility

- (a) the number of edges in F divides the number of edges in G
- (b) gcd(F) divides gcd(G), where gcd(H) is the largest integer dividing the degree of every vertex of a graph H

F-divisibility

F-divisibility

(a) the number of edges in F divides the number of edges in G

(b) gcd(F) divides gcd(G), where gcd(H) is the largest integer dividing the degree of every vertex of a graph H

F-divisiblity is not sufficient for *F*-decomposition.

The problem of deciding whether a graph G has an F-decomposition is NP-complete if F contains a connected component with at least 3 edges.

Decompositions of complete host graphs

Theorem (Kirkman 1847)

Every triangle-divisible K_n has a triangle decomposition. (i.e. $n \equiv 1,3 \mod 6$)

Theorem (Kirkman 1847)

Every triangle-divisible K_n has a triangle decomposition. (i.e. $n \equiv 1,3 \mod 6$)

Theorem (Wilson 1975)

For *n* large, every *F*-divisible K_n has an *F*-decomposition.

Theorem (Kirkman 1847)

Every triangle-divisible K_n has a triangle decomposition. (i.e. $n \equiv 1,3 \mod 6$)

Theorem (Wilson 1975)

For *n* large, every *F*-divisible K_n has an *F*-decomposition.

Generalization to hypergraph cliques:

Theorem (Keevash 2014⁺)

For $r \leq q \ll n$, every complete *r*-uniform hypergraph on *n* vertices $\mathcal{K}_n^{(r)}$ (subject to the necessary divisibility conditions) has a $\mathcal{K}_q^{(r)}$ -decomposition.

Conjecture (Nash-Williams 1970)

Every large triangle-divisible graph *G* on *n* vertices with $\delta(G) \ge 3n/4$ has a triangle decomposition.

conjecture generalizes to K_r-decompositions

Conjecture (Nash-Williams 1970)

Every large triangle-divisible graph *G* on *n* vertices with $\delta(G) \ge 3n/4$ has a triangle decomposition.

conjecture generalizes to K_r -decompositions Extremal example: blow up each vertex of C_4 to a K_m (*m* odd and divisible by 3).

Each triangle has at least one edge in one of the four cliques but less than a third of the edges lie inside the cliques.

Theorem (Gustavsson 1991, Keevash 2014⁺)

For every graph *F*, there exist ε and n_0 such that every *F*-divisible graph *G* on $n \ge n_0$ vertices with $\delta(G) \ge (1 - \varepsilon)n$ has an *F*-decomposition.

For $F = K_r$, Gustavsson states $\varepsilon = 10^{-37} r^{-94}$.

Theorem (Gustavsson 1991, Keevash 2014⁺)

For every graph *F*, there exist ε and n_0 such that every *F*-divisible graph *G* on $n \ge n_0$ vertices with $\delta(G) \ge (1 - \varepsilon)n$ has an *F*-decomposition.

For $F = K_r$, Gustavsson states $\varepsilon = 10^{-37} r^{-94}$.

Theorem (Yuster 2002)

Let *F* be a bipartite graph with $\delta(F) = 1$. If *G* is *F*-divisible and $\delta(G) \ge (\frac{1}{2} + o(1)) n$, then *G* has an *F*-decomposition.

Theorem (Gustavsson 1991, Keevash 2014⁺)

For every graph *F*, there exist ε and n_0 such that every *F*-divisible graph *G* on $n \ge n_0$ vertices with $\delta(G) \ge (1 - \varepsilon)n$ has an *F*-decomposition.

For $F = K_r$, Gustavsson states $\varepsilon = 10^{-37} r^{-94}$.

Theorem (Yuster 2002)

Let *F* be a bipartite graph with $\delta(F) = 1$. If *G* is *F*-divisible and $\delta(G) \ge (\frac{1}{2} + o(1)) n$, then *G* has an *F*-decomposition.

Theorem (Bryant and Cavenagh 2014⁺)

If *G* is C_4 -divisible and $\delta(G) \ge \left(\frac{31}{32} + o(1)\right) n$, then *G* has a C_4 -decomposition.

Fractional decompositions

fractional *F*-decomposition of *G*: give every copy of *F* in *G* a weight $w(F) \in [0, 1]$ such that $\sum_{F:e \in E(F)} w(F) = 1$ for each edge *e* of *G*

Fractional decompositions

fractional *F*-decomposition of *G*: give every copy of *F* in *G* a weight $w(F) \in [0, 1]$ such that $\sum_{F:e \in E(F)} w(F) = 1$ for each edge *e* of *G*

fractional decomposition threshold $\delta_{frac}(F)$: smallest $c \in [0, 1]$ s.t. every large graph G with $\delta(G) \ge cn$ has fractional F-decomposition

Fractional decompositions

fractional *F*-decomposition of *G*: give every copy of *F* in *G* a weight $w(F) \in [0, 1]$ such that $\sum_{F:e \in E(F)} w(F) = 1$ for each edge *e* of *G*

fractional decomposition threshold $\delta_{frac}(F)$: smallest $c \in [0, 1]$ s.t. every large graph G with $\delta(G) \ge cn$ has fractional F-decomposition

fractional K₃-decomposition threshold:

Garaschuk (2014): $\delta_{frac}(K_3) \le 0.956$ Dross (2015⁺): $\delta_{frac}(K_3) \le 0.9$

fractional K_r -decomposition threshold:

Yuster (2005): $\delta_{frac}(K_r) \leq 1 - \frac{1}{9r^{10}}$ Dukes (2012): $\delta_{frac}(K_r) \leq 1 - \frac{1}{16r^4}$ Barber, Kühn, Lo, Montgomery, Osthus (2015⁺): $\delta_{frac}(K_r) \leq 1 - \frac{1}{10^4 r^{3/2}}$

Every large triangle-divisible graph *G* with $\delta(G) \ge (\delta_{frac}(K_3) + o(1))n$ has a triangle decomposition.

Every large triangle-divisible graph *G* with $\delta(G) \ge (\delta_{frac}(K_3) + o(1))n$ has a triangle decomposition.

Theorem (Barber, Kühn, Lo, Osthus 2014⁺)

If *F* is *r*-regular, then every large *F*-divisible graph *G* with $\delta(G) \ge (\max\{\delta_{frac}(F), 1-1/3r\} + o(1))n$ has a *F*-decomposition.

Every large triangle-divisible graph *G* with $\delta(G) \ge (\delta_{frac}(K_3) + o(1))n$ has a triangle decomposition.

Theorem (Barber, Kühn, Lo, Osthus 2014⁺)

If *F* is *r*-regular, then every large *F*-divisible graph *G* with $\delta(G) \ge (\max\{\delta_{frac}(F), 1-1/3r\} + o(1)) n$ has a *F*-decomposition.

Corollary

- Every large triangle-divisible graph G with δ(G) ≥ (0.9 + o(1))n has a triangle decomposition.
- Every large K_r-divisible graph G with δ(G) ≥ (1 − 1/10⁴r^{3/2})n has a K_r-decomposition.

Every large triangle-divisible graph *G* with $\delta(G) \ge (\delta_{frac}(K_3) + o(1))n$ has a triangle decomposition.

Theorem (Barber, Kühn, Lo, Osthus 2014⁺)

If *F* is *r*-regular, then every large *F*-divisible graph *G* with $\delta(G) \ge (\max\{\delta_{frac}(F), 1-1/3r\} + o(1)) n$ has a *F*-decomposition.

Corollary

- Every large triangle-divisible graph G with δ(G) ≥ (0.9 + o(1))n has a triangle decomposition.
- Every large K_r-divisible graph G with δ(G) ≥ (1 − 1/10⁴r^{3/2})n has a K_r-decomposition.
- Every large *F*-divisible graph *G* with δ(*G*) ≥ (1 − c/|*F*|²)n has an *F*-decomposition.

Every large triangle-divisible graph *G* with $\delta(G) \ge (\delta_{frac}(K_3) + o(1))n$ has a triangle decomposition.

Every large triangle-divisible graph *G* with $\delta(G) \ge (\delta_{frac}(K_3) + o(1))n$ has a triangle decomposition.

Will use:

Theorem (Haxell and Rödl 2001)

Every large graph *G* with $\delta(G) \ge \delta_{frac}(K_3)n$ can be decomposed into edge-disjoint copies of K_3 and a remainder *R* with εn^2 uncovered edges.

Problem: What to do with leftover?

Planning ahead

Plan

- Take out highly structured subgraph A.
- It also be a sparse remainder R.
- **③** Use 'structure' of A to decompose $A \cup R$ into triangles.

Planning ahead

Plan

- Take out highly structured subgraph A.
- 2 Take out many triangles to leave a sparse remainder R.
- **③** Use 'structure' of A to decompose $A \cup R$ into triangles.

Assume now that all graphs are triangle-divisible.

Definition

An absorber is a graph A such that $A \cup R$ has a triangle decomposition for any sparse graph R.

Plan

- Take out highly structured subgraph A.
- It also be a sparse remainder R.
- Solution Use 'structure' of A to decompose $A \cup R$ into triangles.

Assume now that all graphs are triangle-divisible.

Definition

An absorber is a graph A such that $A \cup R$ has a triangle decomposition for any sparse graph R.

An absorber for a graph *R* is a graph A_R such that A_R and $A_R \cup R$ both have a triangle decomposition.

Approach: take A to be union of A_R over all possible sparse remainders R.

Plan

- Take out highly structured subgraph A.
- 2 Take out many triangles to leave a sparse remainder R.
- **③** Use 'structure' of A to decompose $A \cup R$ into triangles.

Assume now that all graphs are triangle-divisible.

Definition

An absorber is a graph A such that $A \cup R$ has a triangle decomposition for any sparse graph R.

An absorber for a graph *R* is a graph A_R such that A_R and $A_R \cup R$ both have a triangle decomposition.

Approach: take A to be union of A_R over all possible sparse remainders R.

Far more than n^2 possibilities for *R*, so no hope of finding one absorber for each *R*.

Aim

Reduce the number of possible remainders R.

Let *m* be a large integer and equipartition the vertex set into $V_1, \ldots, V_{\frac{n}{m}}$ each of size *m*. Can we ensure that every edge of *R* is contained within some V_i ?

Aim

Reduce the number of possible remainders R.

Let *m* be a large integer and equipartition the vertex set into $V_1, \ldots, V_{\frac{n}{m}}$ each of size *m*. Can we ensure that every edge of *R* is contained within some V_i ?

Aim

Reduce the number of possible remainders R.

Let *m* be a large integer and equipartition the vertex set into $V_1, \ldots, V_{\frac{n}{m}}$ each of size *m*. Can we ensure that every edge of *R* is contained within some V_i ?

Lemma	
Yes.	

Let R_i be the part of R contained within V_i . For each i, there are at most $2^{\binom{m}{2}}$ possibilities for R_i . So we only need to find $2^{\binom{m}{2}}n/m = O(n)$ absorbers.

A graph *T* is an (H_1, H_2) -transformer if both $H_1 \cup T$ and $T \cup H_2$ have triangle decompositions.

A graph *T* is an (H_1, H_2) -transformer if both $H_1 \cup T$ and $T \cup H_2$ have triangle decompositions.

Proposition

If H_2 has a triangle decomposition, then $T \cup H_2$ is an absorber for H_1 .

A graph *T* is an (H_1, H_2) -transformer if both $H_1 \cup T$ and $T \cup H_2$ have triangle decompositions.

Proposition

If H_2 has a triangle decomposition, then $T \cup H_2$ is an absorber for H_1 .

Write $H_1 \leftrightarrow H_2$ if there is an (H_1, H_2) -transformer.

Useful fact

• \leftrightarrow is symmetric

A graph *T* is an (H_1, H_2) -transformer if both $H_1 \cup T$ and $T \cup H_2$ have triangle decompositions.

Proposition

If H_2 has a triangle decomposition, then $T \cup H_2$ is an absorber for H_1 .

Write $H_1 \leftrightarrow H_2$ if there is an (H_1, H_2) -transformer.

Useful fact

- \leftrightarrow is symmetric
- \leftrightarrow is transitive—if $H_1 \leftrightarrow H_2 \leftrightarrow H_3$, then $H_1 \leftrightarrow H_3$

A graph *T* is an (H_1, H_2) -transformer if both $H_1 \cup T$ and $T \cup H_2$ have triangle decompositions.

A graph *T* is an (H_1, H_2) -transformer if both $H_1 \cup T$ and $T \cup H_2$ have triangle decompositions.

Suppose H_1 is isomorphic to H_2 .

A graph *T* is an (H_1, H_2) -transformer if both $H_1 \cup T$ and $T \cup H_2$ have triangle decompositions.

Suppose H_1 is isomorphic to H_2 . $H_1 = C_9$ Τ C_{9}

A graph *T* is an (H_1, H_2) -transformer if both $H_1 \cup T$ and $T \cup H_2$ have triangle decompositions.

Suppose H_1 is isomorphic to H_2 .

A graph *T* is an (H_1, H_2) -transformer if both $H_1 \cup T$ and $T \cup H_2$ have triangle decompositions.

Suppose H_1 is isomorphic to H_2 .

This allows us to 'move graphs around'.

Identifying vertices

Identify the green vertices of H_2 .

Identify the green vertices of H_2 .

Note that T is still an (H_1, H_2) -transformer.

So we can 'identify vertices' (providing no multiple edges are created).

Identify the green vertices of H_2 .

Note that T is still an (H_1, H_2) -transformer.

So we can 'identify vertices' (providing no multiple edges are created). Since \leftrightarrow is symmetric, we can 'split vertices' (providing the resulting graph is still triangle-divisible).

Let xy be an edge.

Let xy be an edge.

Let xy be an edge.

- Attach a triangle to x
- Split the vertex x.

Let xy be an edge.

- Attach a triangle to x
- Split the vertex x.

We can subdivide xy into a path of length 4.

Let xy be an edge.

- Attach a triangle to x
- Split the vertex x.

We can subdivide xy into a path of length 4.

So we can

- identify vertices;
- split a vertex;
- subdivide an edge.

Suppose that e(H) = 3k.

Subdivide all edges of *H*.

- Subdivide all edges of H.
- Identify all original vertices of H.

- Subdivide all edges of H.
- Identify all original vertices of H.
- Let J be a union of k vertex-disjoint triangles.

- Subdivide all edges of H.
- 2 Identify all original vertices of *H*.
- Let J be a union of k vertex-disjoint triangles.
- Subdivide all edges of J.

- Subdivide all edges of H.
- 2 Identify all original vertices of *H*.
- Let J be a union of k vertex-disjoint triangles.
- Subdivide all edges of J.
- Identify all original vertices of J.

- Subdivide all edges of H.
- 2 Identify all original vertices of H.
- Let J be a union of k vertex-disjoint triangles.
- Subdivide all edges of J.
- Identify all original vertices of J.
- Since \leftrightarrow is transitive, $H \leftrightarrow J$. Thus *H* has an absorber.

Every large triangle-divisible graph *G* with $\delta(G) \ge (\delta_{frac}(K_3) + o(1))n$ has a triangle decomposition.

Every large triangle-divisible graph *G* with $\delta(G) \ge (\delta_{frac}(K_3) + o(1))n$ has a triangle decomposition.

Problem

Determine $\delta_{frac}(F)$, i.e. the minimum degree threshold for a graph *G* to have a fractional *F*-decomposition.

• For triangles, showing that $\delta_{trac}(K_3) = 3/4$ could be combined with our results to show the actual 'decomposition threshold' is (3/4 + o(1))n.

• Actually, showing that 3n/4 guarantees '(fractional) almost decomposition' would suffice.

For *n* sufficiently large, every C_{ℓ} -divisible graph *G* on *n* vertices with

$$\delta(G) \geq egin{cases} \left(rac{2}{3}+o(1)
ight)n & ext{if } \ell=4, \ \left(rac{1}{2}+o(1)
ight)n & ext{if } \ell\geq 6 ext{ is even}, \end{cases}$$

has a C_{ℓ} -decomposition.

asymptotically best possible

 $\ell \geq 6$ even

$$\delta = n/2 - 1$$

neither component is C_{ℓ} -divisible, but entire graph is

For *n* sufficiently large, every C_{ℓ} -divisible graph *G* on *n* vertices with

$$\delta(G) \geq egin{cases} \left(rac{2}{3}+o(1)
ight)n & ext{if } \ell=4, \ \left(rac{1}{2}+o(1)
ight)n & ext{if } \ell\geq 6 ext{ is even}, \end{cases}$$

has a C_{ℓ} -decomposition.

asymptotically best possible

 $\ell = 4$ (Kahn & Winkler)

 $\delta = 3n/5 - 1$, odd number of edges in blown-up C_5

For *n* sufficiently large, every C_{ℓ} -divisible graph *G* on *n* vertices with

$$\delta(G) \geq egin{cases} \left(rac{2}{3}+o(1)
ight)n & ext{if } \ell=4, \ \left(rac{1}{2}+o(1)
ight)n & ext{if } \ell\geq 6 ext{ is even}, \end{cases}$$

has a C_{ℓ} -decomposition.

asymptotically best possible

$$\ell = 4$$
 (Taylor)

 $\delta = 2n/3 - 2$

every C_4 has even number of edges inside A, but e(A) is odd