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(a) the number of edges of G is divisible by 3;

(b) every vertex has even degree.
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(b) gcd(F) divides gcd(G), where gcd(H) is the largest integer
dividing the degree of every vertex of a graph H.

G is said to be F -divisible if G satisfies (a) and (b).
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Decompositions of complete host graphs

Theorem (Kirkman 1847)

Every triangle-divisible Kn has a triangle decomposition. (i.e. n ≡ 1,3
mod 6)

Theorem (Wilson 1975)

For n large, every F -divisible Kn has an F -decomposition.

Generalization to hypergraph cliques:

Theorem (Keevash 2014+)

For r ≤ q� n, every complete r -uniform hypergraph on n vertices
K (r)

n (subject to the necessary divisibility conditions) has a
K (r)

q -decomposition.
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Triangle decompositions of graphs of large minimum degree

Conjecture (Nash-Williams 1970)

Every large triangle-divisible graph G on n vertices with δ (G)≥ 3n/4
has a triangle decomposition.

conjecture generalizes to Kr -decompositions

Extremal example: blow up each vertex of C4 to a Km (m odd and
divisible by 3).

Each triangle has at least one edge in one of the four cliques but less
than a third of the edges lie inside the cliques.
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Decompositions of graphs of large minimum degree

Theorem (Gustavsson 1991, Keevash 2014+)

For every graph F , there exist ε and n0 such that every F -divisible
graph G on n ≥ n0 vertices with δ (G)≥ (1− ε)n has an
F -decomposition.

For F = Kr , Gustavsson states ε = 10−37r−94.

Theorem (Yuster 2002)

Let F be a bipartite graph with δ (F) = 1. If G is F -divisible and
δ (G)≥

(
1
2 +o(1)

)
n, then G has an F -decomposition.

Theorem (Bryant and Cavenagh 2014+)

If G is C4-divisible and δ (G)≥
(

31
32 +o(1)

)
n, then G has a

C4-decomposition.
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Fractional decompositions

fractional F -decomposition of G: give every copy of F in G a weight
w(F) ∈ [0,1] such that ∑F :e∈E(F) w(F) = 1 for each edge e of G

1
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1
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⇒ +

fractional decomposition threshold δfrac(F): smallest c ∈ [0,1] s.t.
every large graph G with δ (G)≥ cn has fractional F -decomposition

fractional K3-decomposition threshold:
Garaschuk (2014): δfrac(K3)≤ 0.956
Dross (2015+): δfrac(K3)≤ 0.9

fractional Kr -decomposition threshold:
Yuster (2005): δfrac(Kr )≤ 1− 1

9r10

Dukes (2012): δfrac(Kr )≤ 1− 1
16r4

Barber, Kühn, Lo, Montgomery, Osthus (2015+): δfrac(Kr )≤ 1− 1
104r3/2
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From fractional to ‘real’ decompositions

Theorem (Barber, Kühn, Lo, Osthus 2014+)

Every large triangle-divisible graph G with δ (G)≥ (δfrac(K3)+o(1))n
has a triangle decomposition.

Theorem (Barber, Kühn, Lo, Osthus 2014+)

If F is r -regular, then every large F -divisible graph G with
δ (G)≥ (max{δfrac(F),1−1/3r}+o(1))n has a F -decomposition.

Corollary

Every large triangle-divisible graph G with δ (G)≥ (0.9+o(1))n
has a triangle decomposition.

Every large Kr -divisible graph G with δ (G)≥ (1−1/104r3/2)n
has a Kr -decomposition.

Every large F -divisible graph G with δ (G)≥ (1− c/|F |2)n has
an F -decomposition.



From fractional to ‘real’ decompositions
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Theorem (Barber, Kühn, Lo, Osthus 2014+)

If F is r -regular, then every large F -divisible graph G with
δ (G)≥ (max{δfrac(F),1−1/3r}+o(1))n has a F -decomposition.

Corollary

Every large triangle-divisible graph G with δ (G)≥ (0.9+o(1))n
has a triangle decomposition.

Every large Kr -divisible graph G with δ (G)≥ (1−1/104r3/2)n
has a Kr -decomposition.

Every large F -divisible graph G with δ (G)≥ (1− c/|F |2)n has
an F -decomposition.



From fractional to ‘real’ decompositions
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Proof idea

Theorem (Barber, Kühn, Lo, Osthus 2014+)

Every large triangle-divisible graph G with δ (G)≥ (δfrac(K3)+o(1))n
has a triangle decomposition.

Will use:

Theorem (Haxell and Rödl 2001)

Every large graph G with δ (G)≥ δfrac(K3)n can be decomposed into
edge-disjoint copies of K3 and a remainder R with εn2 uncovered
edges.

Problem: What to do with leftover?
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Planning ahead

Plan
1 Take out highly structured subgraph A.
2 Take out many triangles to leave a sparse remainder R.
3 Use ‘structure’ of A to decompose A∪R into triangles.

Assume now that all graphs are triangle-divisible.

Definition
An absorber is a graph A such that A∪R has a triangle decomposition
for any sparse graph R.
An absorber for a graph R is a graph AR such that AR and AR ∪R both
have a triangle decomposition.

Approach: take A to be union of AR over all possible sparse
remainders R.
Far more than n2 possibilities for R, so no hope of finding one
absorber for each R.
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Absorbers

Aim
Reduce the number of possible remainders R.

V1 V2 V n
m

Let m be a large integer and equipartition the vertex set into
V1, . . . ,V n

m
each of size m. Can we ensure that every edge of R is

contained within some Vi?

Lemma
Yes.

Let Ri be the part of R contained within Vi .
For each i , there are at most 2(

m
2) possibilities for Ri .

So we only need to find 2(
m
2)n/m = O(n) absorbers.
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Definition

A graph T is an (H1,H2)-transformer if both H1∪T and T ∪H2 have
triangle decompositions.

Proposition

If H2 has a triangle decomposition, then T ∪H2 is an absorber for H1.

Write H1↔ H2 if there is an (H1,H2)-transformer.

Useful fact
↔ is symmetric

↔ is transitive—if H1↔ H2↔ H3, then H1↔ H3
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triangle decompositions.

Suppose H1 is isomorphic to H2.

H2 = C9

H1 = C9

This allows us to ‘move graphs around’.
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Identifying vertices

Identify the green vertices of H2.

H2

H1

T

Note that T is still an (H1,H2)-transformer.
So we can ‘identify vertices’ (providing no multiple edges are created).
Since↔ is symmetric, we can ‘split vertices’ (providing the resulting
graph is still triangle-divisible).
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Subdividing an edge

Let xy be an edge.

1 Attach a triangle to x
2 Split the vertex x .

x y

z w

We can subdivide xy into a path of length 4.

So we can

identify vertices;

split a vertex;

subdivide an edge.
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Constructing an absorber for a given H

Suppose that e(H) = 3k .

1 Subdivide all edges of H.
2 Identify all original vertices of H.
3 Let J be a union of k vertex-disjoint triangles.
4 Subdivide all edges of J.
5 Identify all original vertices of J.
6 Since↔ is transitive, H↔ J.

Thus H has an absorber.
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Open problem: better fractional thresholds

Theorem (Barber, Kühn, Lo, Osthus 2014+)

Every large triangle-divisible graph G with δ (G)≥ (δfrac(K3)+o(1))n
has a triangle decomposition.

Problem

Determine δfrac(F), i.e. the minimum degree threshold for a graph G to
have a fractional F -decomposition.

• For triangles, showing that δfrac(K3) = 3/4 could be combined with
our results to show the actual ‘decomposition threshold’ is
(3/4+o(1))n.
• Actually, showing that 3n/4 guarantees ‘(fractional) almost
decomposition’ would suffice.
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our results to show the actual ‘decomposition threshold’ is
(3/4+o(1))n.
• Actually, showing that 3n/4 guarantees ‘(fractional) almost
decomposition’ would suffice.



Decompositions into even cycles

Theorem (Barber, Kühn, Lo, Osthus 2014+)

For n sufficiently large, every C`-divisible graph G on n vertices with

δ (G)≥

{(
2
3 +o(1)

)
n if `= 4,(

1
2 +o(1)

)
n if `≥ 6 is even,

has a C`-decomposition.

asymptotically best possible

`≥ 6 even`≥ 6 even

neither component is C`-divisible, but entire graph is

δ = n/2−1
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Decompositions into even cycles

Theorem (Barber, Kühn, Lo, Osthus 2014+)

For n sufficiently large, every C`-divisible graph G on n vertices with

δ (G)≥

{(
2
3 +o(1)

)
n if `= 4,(

1
2 +o(1)

)
n if `≥ 6 is even,

has a C`-decomposition.

asymptotically best possible

`= 4 (Kahn & Winkler)

δ = 3n/5−1, odd number of edges in blown-up C5
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Decompositions into even cycles

Theorem (Barber, Kühn, Lo, Osthus 2014+)

For n sufficiently large, every C`-divisible graph G on n vertices with

δ (G)≥

{(
2
3 +o(1)

)
n if `= 4,(

1
2 +o(1)

)
n if `≥ 6 is even,

has a C`-decomposition.

asymptotically best possible

`= 4 (Taylor)

n/3n/3

A

n/3

δ = 2n/3−2

every C4 has even number of edges inside A, but e(A) is odd


