On the decomposition threshold of a graph
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A necessary condition

If G has an F-decomposition, then
(a) the number of edges in F divides the number of edges in G;

(b) gcd(F) divides gcd(G), where ged(H) is the largest integer
dividing the degree of every vertex of a graph H.

G is said to be F-divisible if G satisfies (a) and (b).
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(a) the number of edges in F divides the number of edges in G

(b) gcd(F) divides gcd(G), where ged(H) is the largest integer
dividing the degree of every vertex of a graph H

F-divisiblity is not sufficient for F-decomposition.

The problem of deciding whether a graph G has an F-decomposition
is NP-complete if F contains a connected component with at least 3
edges.
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Decompositions of complete host graphs

Theorem (Kirkman 1847)

Every triangle-divisible K, has a triangle decomposition. (i.,e. n=1,3
mod 6)

Theorem (Wilson 1975)

For nlarge, every F-divisible K, has an F-decomposition.

Generalization to hypergraph cliques:

Theorem (Keevash 2014 ™)

For r < g < n, every complete r-uniform hypergraph on n vertices
K,Sr) (subject to the necessary divisibility conditions) has a
K{")-decomposition.
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Triangle decompositions of graphs of large minimum degree

Conjecture (Nash-Williams 1970)

Every large triangle-divisible graph G on n vertices with §(G) > 3n/4
has a triangle decomposition.

conjecture generalizes to K.-decompositions
Extremal example: blow up each vertex of C4 to a K;; (m odd and

divisible by 3).

Each triangle has at least one edge in one of the four cliques but less
than a third of the edges lie inside the cliques.
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Decomposition threshold:

Definition

For a given graph F, let d4ec(F) denote the smallest & € [0, 1] such
that every F-divisible graph G with §(G) > (6 + o(1))|G| has an
F-decomposition.

Conjecture (Nash-Williams 1970)

Odec(K3) = 3/4.




Clique decompositions of graphs of large minimum degree

Definition

For a given graph F, let d4ec(F) denote the smallest § € [0, 1] such
that every F-divisible graph G with §(G) > (6 + o(1))|G| has an
F-decomposition.

| A

Conjecture
5dec ( Kr) — ,_,_% .

Theorem (Gustavsson 1991)
Saec(Kr) <1 —107%r7%

Yuster: dgec(tree) =1/2
Bryant & Cavenagh: Sgec(Cs) < 31/32
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fractional decomposition threshold y,.(F): smallest ¢ € [0,1] s.t.
every large graph G with §(G) > cn has fractional F-decomposition

fractional K3-decomposition threshold:
Garaschuk (2014): 8sac(K3) < 0.956
Dross (2015T): &fa0(K3) < 0.9
fractional K;-decomposition threshold:
Yuster (2005): Spac(K;) < 1— 51

9,10
Dukes (2012): 8prac(Kr) <1 — 1o+

Barber, Kiihn, Lo, Montgomery, Osthus (20157): 8x.c(K;) < 1— m‘JW
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From fractional to ‘real’ decompositions

Theorem (Barber, Glock, Kiihn, Lo, Montgomery, Osthus 2014/16™)
° 5dec(Kr) = 6frac(Kr) e
@ Sgec(F) < max{8pac(F),1— W}

v

Corollary

@ Ogec(Kr) <0.9
@ Ogec(Kr) <1— mﬂw
o 5dec(F) S 1—

1
104 ¢ (F)3/2




Bipartite graphs

Theorem (Barber, Kiihn, Lo, Osthus)

@ Ouec(Cs) =2/3
@ Ogec(Cor) = 1/2 for every £ > 3.

C2K7£Z3 C4
0=n/2—1 0=2/3

neither component is
Cy-divisible



Theorem (Glock, Kiihn, Lo, Montgomery, Osthus)

Let F be bipartite and connected. Then

GE {1/2 ona(F) = 1

2/3 otherwise

In particular,
@ Ouec(Krr) =2/3forr>2
@ Ogec(Krry1)=1/2forr>2
@ Jgec(tree) = 1/2 (Yuster)
° 5dec(03) = 2/3



A set X € V(F) is called C4-supporting in F if there exist distinct
a,be€ Xandc,d € V(F)\ X such that ac,bd, cd € E(F).

We define

Thet(F) := ged{e(F[X]) : X € V(F) is not C4-supporting in F}



Motivation

Thet(F) = 1 if and only if there copies Fq, ..., Fs of F in Gy such that
ged{e(Fi[A]),...,e(Fs[A]) : =}1.
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Motivation

Thet(F) = 1 if and only if there copies Fq, ..., Fs of F in Gy such that
ged{e(Fi[A]),...,e(Fs[A]) : =}1.
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Theorem (Barber, Glock, Kiihn, Lo, Montgomery, Osthus 2014/16™)

@ Ogec(Kr) = Srac(Kr) -
@ Jgec(F) < max{dsac(F),1— x(+)+1}




Theorem (Barber, Glock, Kiihn, Lo, Montgomery, Osthus 2014/16™)
o adec(Kr) — 6frac(Kr) .
® Sdeo(F) < max{Spac(F),1 — wFyri}

Use the existence of an approximate decomposition as a black box

Theorem (Haxell and Rédl 2001)

Every large graph G with §(G) > J#ac(F)n can be decomposed into
edge-disjoint copies of F and a remainder R with €n? uncovered

edges.




Absorption

1.) Remove sparse absorbing graph A from G,
2.) find approximate F-decomposition of G — A, call leftover L,
3.) hope that LU A has an F-decomposition.

Difficult! Use iterative absorption approach. Split up the

absorbing process into many steps which gradually make leftover
smaller and smaller.



Given an approximate decomposition with leftover L', construct ‘lazy

cleaner graph L}, sothat L'U L. contains copies .Z" of F so

that leftover edges 12 = L' U L! Z " lie entirely in X;.

clean —




Repeat with X5 inside X;

Xi

—



Repeat this ‘cover-down step’ until leftover L! has bounded size and
lies within X;

L! having bounded size = only boundedly many possibilities
Ry,...,Rs

=- suffices to find an ‘absorber’ A; for each /, i.e. A;UR; has an
F-decomposition, but also A; has an F-decomposition



Building blocks for absorbers A;: edge-switchers

Cy-switcher S double-star-switcher S’
SUred has F-dec S’ Ured has F-dec
SUblue has F-dec S’ Ublue has F-dec

Think of red as ‘old’ leftover and of blue as ‘new’ leftover.






Theorem (Glock, Kithn, Lo, Montgomery, Osthus 2016™)

Let F be a graph and x := x(F).

(i) 8 <max{8:,1—1/(x+1)}

(i) If x >5,then 6 € {6f,1—1/x,1—1/(x+1)};
(iii) If x =2, then 8 € {0,1/2,2/3}.
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2.) Suppose that 8gec(F) <1—1/(x+1)

= Any almost complete (divisible) (x + 1)-partite graph has

F-decomposition!
x=4
s L)
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1.) Show Sgec(F) <1—1/(x+1)
2.) Suppose that 8gec(F) <1—1/(x+1)

= Any almost complete (divisible) (x + 1)-partite graph has
F-decomposition!

x=4
= SUred and SUblue both have S Q
F-decomposition

= S is an C4-switcher (similar for
double-star-switcher)

But can find S (in G) at 6(G) >
(1—1/x+0(1))[G|

= Ogec(F) <1-—1/y
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Open problem: better fractional thresholds

Theorem (Barber, Kiihn, Lo, Osthus 2014™T)

Every triangle-divisible graph G with (G) > (8ac(Ks) +0(1))n has a
triangle decomposition.

Problem

| \

Determine Sfc(F), i.e. the minimum degree threshold for a graph G to
have a fractional F-decomposition.

4

e For triangles, showing that &44c(K3) = 3/4 could be combined with
our results to show the actual ‘decomposition threshold’ is
(3/4+o0(1))n.

e Actually, showing that 3n/4 guarantees ‘(fractional) almost
decomposition’ would suffice.
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r-partite G has K,-decomposition = G locally balanced

5(G) := ‘partite minimum degree’

Theorem (Barber, Kiihn, Lo, Osthus, Taylor 2015T)

Le} G be locally balanced r-partite graph with vertex classes of size n.
If 6(G) > (872" (K,)+ o(1))nthen G has a K;-decomposition.
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r-partite G is locally balanced if every vertex has same degree into
each class (apart from its own)

r-partite G has K,-decomposition = G locally balanced

5(G) := ‘partite minimum degree’

Theorem (Barber, Kiihn, Lo, Osthus, Taylor 2015T)

Le} G be locally balanced r-partite graph with vertex classes of size n.
If 6(G) > (872" (K,)+ o(1))nthen G has a K;-decomposition.

frac

Chowla, Erdos and Straus 1960: case when G complete r-partite

Dukes 2015": 872" (Ky) < 19

Montgomery 20151: 6P (K,) <1 —

frac 1063



Completion of Latin squares

Conjecture (Daykin & Haggkvist, 1984)

Every partially complete n x n Latin square in which every row,
column, symbol is used at most n/4 times, can be completed to a
Latin square.

follows from 3-partite version of Nash-Williams conjecture on
Kz-decompositions



Completion of Latin squares

Conjecture (Daykin & Haggkvist, 1984)

Every partially complete n x n Latin square in which every row,
column, symbol is used at most n/4 times, can be completed to a
Latin square.

follows from 3-partite version of Nash-Williams conjecture on
Kz-decompositions

Conjecture true for large n if every row, column, symbol is used at
most 3n/104 times.

@ improves previous bounds of Bartlett, Chetwynd & Haggkuvist,
Gustavsson

@ get analogue or mutually orthogonal Latin squares



