On the decomposition threshold of a graph

Deryk Osthus

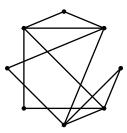
University of Birmingham

joint work with Ben Barber, Stefan Glock, Daniela Kühn, 'Allan Lo, Richard Montgomery, Amelia

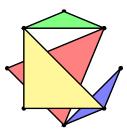
Taylor

May 2016

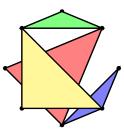
A graph G has an F-decomposition if the edges of G can be covered by edge-disjoint copies of F.



A graph G has an F-decomposition if the edges of G can be covered by edge-disjoint copies of F.



A graph G has an F-decomposition if the edges of G can be covered by edge-disjoint copies of F.



Question

When does G have an F-decomposition?

When does G have an F-decomposition?

If G has a triangle decomposition, then

- (a) the number of edges of G is divisible by 3;
- (b) every vertex has even degree.

When does G have an F-decomposition?

If G has a triangle decomposition, then

- (a) the number of edges of G is divisible by 3;
- (b) every vertex has even degree.

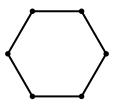
A necessary condition

- If G has an F-decomposition, then
 - (a) the number of edges in F divides the number of edges in G;
 - (b) gcd(F) divides gcd(G), where gcd(H) is the largest integer dividing the degree of every vertex of a graph H.
- G is said to be F-divisible if G satisfies (a) and (b).

F-divisibility

F-divisibility

- (a) the number of edges in F divides the number of edges in G
- (b) gcd(F) divides gcd(G), where gcd(H) is the largest integer dividing the degree of every vertex of a graph H

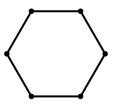


F-divisibility

F-divisibility

(a) the number of edges in F divides the number of edges in G

(b) gcd(F) divides gcd(G), where gcd(H) is the largest integer dividing the degree of every vertex of a graph H



F-divisiblity is not sufficient for *F*-decomposition.

The problem of deciding whether a graph G has an F-decomposition is NP-complete if F contains a connected component with at least 3 edges.

Theorem (Kirkman 1847)

Every triangle-divisible K_n has a triangle decomposition. (i.e. $n \equiv 1,3 \mod 6$)

Theorem (Kirkman 1847)

Every triangle-divisible K_n has a triangle decomposition. (i.e. $n \equiv 1,3 \mod 6$)

Theorem (Wilson 1975)

For *n* large, every *F*-divisible K_n has an *F*-decomposition.

Theorem (Kirkman 1847)

Every triangle-divisible K_n has a triangle decomposition. (i.e. $n \equiv 1,3 \mod 6$)

Theorem (Wilson 1975)

For *n* large, every *F*-divisible K_n has an *F*-decomposition.

Generalization to hypergraph cliques:

Theorem (Keevash 2014⁺)

For $r \leq q \ll n$, every complete *r*-uniform hypergraph on *n* vertices $\mathcal{K}_n^{(r)}$ (subject to the necessary divisibility conditions) has a $\mathcal{K}_q^{(r)}$ -decomposition.

Conjecture (Nash-Williams 1970)

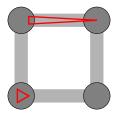
Every large triangle-divisible graph *G* on *n* vertices with $\delta(G) \ge 3n/4$ has a triangle decomposition.

conjecture generalizes to K_r-decompositions

Conjecture (Nash-Williams 1970)

Every large triangle-divisible graph *G* on *n* vertices with $\delta(G) \ge 3n/4$ has a triangle decomposition.

conjecture generalizes to K_r -decompositions Extremal example: blow up each vertex of C_4 to a K_m (*m* odd and divisible by 3).



Each triangle has at least one edge in one of the four cliques but less than a third of the edges lie inside the cliques.

What if the host graph G is not complete?

What if the host graph *G* is not complete?

Decomposition threshold:

Definition

For a given graph *F*, let $\delta_{dec}(F)$ denote the smallest $\delta \in [0, 1]$ such that every *F*-divisible graph *G* with $\delta(G) \ge (\delta + o(1))|G|$ has an *F*-decomposition.

What if the host graph G is not complete?

Decomposition threshold:

Definition

For a given graph *F*, let $\delta_{dec}(F)$ denote the smallest $\delta \in [0, 1]$ such that every *F*-divisible graph *G* with $\delta(G) \ge (\delta + o(1))|G|$ has an *F*-decomposition.

Conjecture (Nash-Williams 1970)

 $\delta_{dec}({\it K}_3)=3/4.$

For a given graph *F*, let $\delta_{dec}(F)$ denote the smallest $\delta \in [0, 1]$ such that every *F*-divisible graph *G* with $\delta(G) \ge (\delta + o(1))|G|$ has an *F*-decomposition.

Conjecture

$$\delta_{dec}(K_r) = \frac{r}{r+1}.$$

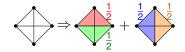
Theorem (Gustavsson 1991)

 $\delta_{dec}(K_r) \leq 1 - 10^{-37} r^{-94}$

Yuster: $\delta_{dec}(tree) = 1/2$ Bryant & Cavenagh: $\delta_{dec}(C_4) \le 31/32$

Fractional decompositions

fractional *F*-decomposition of *G*: give every copy of *F* in *G* a weight $w(F) \in [0, 1]$ such that $\sum_{F:e \in E(F)} w(F) = 1$ for each edge *e* of *G*



Fractional decompositions

fractional *F*-decomposition of *G*: give every copy of *F* in *G* a weight $w(F) \in [0, 1]$ such that $\sum_{F:e \in E(F)} w(F) = 1$ for each edge *e* of *G*

fractional decomposition threshold $\delta_{frac}(F)$: smallest $c \in [0, 1]$ s.t. every large graph G with $\delta(G) \ge cn$ has fractional F-decomposition

Fractional decompositions

fractional *F*-decomposition of *G*: give every copy of *F* in *G* a weight $w(F) \in [0, 1]$ such that $\sum_{F:e \in E(F)} w(F) = 1$ for each edge *e* of *G*

fractional decomposition threshold $\delta_{frac}(F)$: smallest $c \in [0, 1]$ s.t. every large graph G with $\delta(G) \ge cn$ has fractional F-decomposition

fractional K_3 -decomposition threshold:

Garaschuk (2014): $\delta_{frac}(K_3) \leq 0.956$ Dross (2015⁺): $\delta_{frac}(K_3) \leq 0.9$ **fractional** K_r -decomposition threshold: Yuster (2005): $\delta_{frac}(K_r) < 1 - \frac{1}{9r^{10}}$ Dukes (2012): $\delta_{frac}(K_r) < 1 - \frac{1}{16r^4}$ Barber, Kühn, Lo, Montgomery, Osthus (2015⁺): $\delta_{frac}(K_r) < 1 - \frac{1}{10^4 r^{3/2}}$

•
$$\delta_{dec}(K_r) = \delta_{frac}(K_r)$$
 .

•
$$\delta_{dec}(K_r) = \delta_{frac}(K_r)$$
.

•
$$\delta_{dec}(F) \leq \max\{\delta_{frac}(F), 1 - \frac{1}{\chi(F)+1}\}$$

•
$$\delta_{dec}(K_r) = \delta_{frac}(K_r)$$
.

•
$$\delta_{dec}(F) \leq \max\{\delta_{frac}(F), 1 - \frac{1}{\chi(F)+1}\}$$

•
$$\delta_{dec}(K_r) = \delta_{frac}(K_r)$$
 .

•
$$\delta_{dec}(F) \leq \max\{\delta_{frac}(F), 1 - \frac{1}{\chi(F)+1}\}$$

Corollary

•
$$\delta_{dec}(K_r) \leq$$
 0.9

•
$$\delta_{dec}(K_r) \leq 1 - \frac{1}{10^4 r^{3/2}}$$

•
$$\delta_{dec}(F) \leq 1 - \frac{1}{10^4 \chi(F)^{3/2}}$$

Theorem (Barber, Kühn, Lo, Osthus)

•
$$\delta_{dec}(C_4)=2/3$$

•
$$\delta_{dec}(C_{2\ell})=1/2$$
 for every $\ell\geq 3$.

$$C_{2\ell}, \ell \geq 3$$

 C_4

 $\delta = n/2 - 1$ neither component is C_ℓ -divisible $\delta=$ 2/3

Theorem (Glock, Kühn, Lo, Montgomery, Osthus)

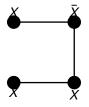
Let F be bipartite and connected. Then

$$\delta_{dec}(F) = egin{cases} 1/2 & ext{if } au_{hcf}(F) = 1 \ 2/3 & ext{otherwise} \end{cases}$$

In particular,

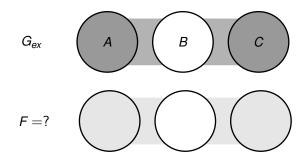
- $\delta_{dec}(K_{r,r})=2/3$ for $r\geq 2$
- $\delta_{dec}(K_{r,r+1}) = 1/2$ for $r \geq 2$
- $\delta_{dec}(\text{tree}) = 1/2$ (Yuster)
- $\delta_{dec}(Q_3)=2/3$

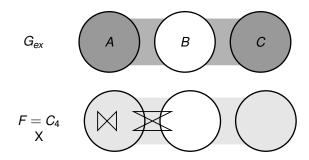
A set $X \in V(F)$ is called C_4 -supporting in F if there exist distinct $a, b \in X$ and $c, d \in V(F) \setminus X$ such that $ac, bd, cd \in E(F)$.

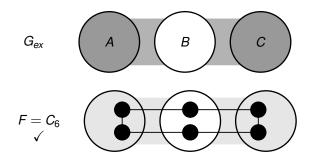


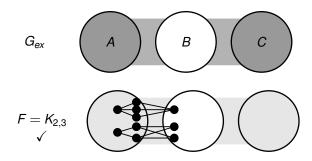
We define

 $\tau_{hcf}(F) := gcd\{e(F[X]) : X \in V(F) \text{ is not } C_4 \text{-supporting in } F\}$









•
$$\delta_{dec}(K_r) = \delta_{frac}(K_r)$$
.

•
$$\delta_{dec}(K_r) = \delta_{frac}(K_r)$$
.

•
$$\delta_{dec}(F) \leq \max\{\delta_{frac}(F), 1-\frac{1}{\chi(F)+1}\}$$

•
$$\delta_{dec}(\kappa_r) = \delta_{frac}(\kappa_r)$$
 .

•
$$\delta_{dec}(F) \leq \max\{\delta_{frac}(F), 1 - \frac{1}{\chi(F)+1}\}$$

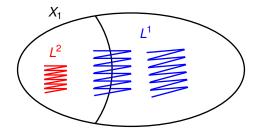
Use the existence of an approximate decomposition as a black box

Theorem (Haxell and Rödl 2001)

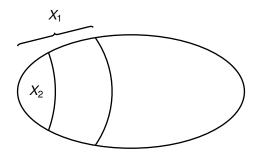
Every large graph *G* with $\delta(G) \ge \delta_{frac}(F)n$ can be decomposed into edge-disjoint copies of *F* and a remainder *R* with εn^2 uncovered edges.

- 1.) Remove sparse absorbing graph A from G,
- 2.) find approximate *F*-decomposition of G A, call leftover *L*,
- 3.) hope that L∪A has an F-decomposition. Difficult! Use iterative absorption approach. Split up the absorbing process into many steps which gradually make leftover smaller and smaller.

Given an approximate decomposition with leftover L^1 , construct 'lazy cleaner' graph L^1_{clean} so that $L^1 \cup L^1_{clean}$ contains copies \mathscr{F}^1 of F so that leftover edges $L^2 = L^1 \cup L^1_{clean} - \mathscr{F}^1$ lie entirely in X_1 .



Repeat with X_2 inside X_1



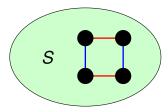
Repeat this 'cover-down step' until leftover L^t has bounded size and lies within X_t

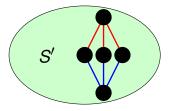
 L^t having bounded size \Rightarrow only boundedly many possibilities R_1, \ldots, R_s

 \Rightarrow suffices to find an 'absorber' A_i for each i, i.e. $A_i \cup R_i$ has an

F-decomposition, but also A_i has an F-decomposition

Building blocks for absorbers A_i: edge-switchers





 C_4 -switcher S $S \cup$ red has F-dec $S \cup$ blue has F-dec

double-star-switcher S' $S' \cup \text{red}$ has F-dec $S' \cup \text{blue}$ has F-dec

Think of red as 'old' leftover and of blue as 'new' leftover.

Discretization

Theorem (Glock, Kühn, Lo, Montgomery, Osthus 2016⁺)

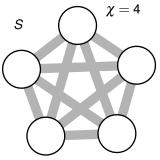
Let *F* be a graph and $\chi := \chi(F)$.

(i)
$$\delta_F \leq \max\{\delta_F^*, 1-1/(\chi+1)\};$$

(ii) If
$$\chi \geq 5$$
, then $\delta_F \in \{\delta^*_F, 1-1/\chi, 1-1/(\chi+1)\};$

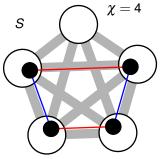
(iii) If
$$\chi =$$
 2, then $\delta_{F} \in \{0, 1/2, 2/3\}$.

- 1.) Show $\delta_{dec}(F) \leq 1 1/(\chi + 1)$
- 2.) Suppose that $\delta_{dec}(F) < 1 1/(\chi + 1)$



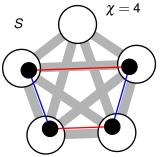
- 1.) Show $\delta_{dec}(F) \leq 1 1/(\chi + 1)$
- 2.) Suppose that $\delta_{dec}(F) < 1 1/(\chi + 1)$

 $\Rightarrow S \cup \text{red and } S \cup \text{blue both have}$ *F*-decomposition



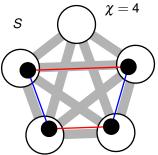
- 1.) Show $\delta_{dec}(F) \leq 1 1/(\chi + 1)$
- 2.) Suppose that $\delta_{dec}(F) < 1 1/(\chi + 1)$

⇒ *S*∪red and *S*∪blue both have *F*-decomposition ⇒ *S* is an *C*₄-switcher (similar for double-star-switcher) But can find *S* (in *G*) at $\delta(G) \ge (1-1/\chi + o(1))|G|$



- 1.) Show $\delta_{dec}(F) \leq 1 1/(\chi + 1)$
- 2.) Suppose that $\delta_{dec}(F) < 1 1/(\chi + 1)$

 $\Rightarrow S \cup \text{red and } S \cup \text{blue both have}$ F-decomposition $\Rightarrow S \text{ is an } C_4\text{-switcher (similar for double-star-switcher)}$ But can find S (in G) at $\delta(G) \ge (1 - 1/\chi + o(1))|G|$ $\Rightarrow \delta_{dec}(F) \le 1 - 1/\chi$



Theorem (Barber, Kühn, Lo, Osthus 2014⁺)

Every triangle-divisible graph *G* with $\delta(G) \ge (\delta_{frac}(K_3) + o(1))n$ has a triangle decomposition.

Theorem (Barber, Kühn, Lo, Osthus 2014⁺)

Every triangle-divisible graph *G* with $\delta(G) \ge (\delta_{frac}(K_3) + o(1))n$ has a triangle decomposition.

Problem

Determine $\delta_{frac}(F)$, i.e. the minimum degree threshold for a graph *G* to have a fractional *F*-decomposition.

• For triangles, showing that $\delta_{trac}(K_3) = 3/4$ could be combined with our results to show the actual 'decomposition threshold' is (3/4 + o(1))n.

• Actually, showing that 3n/4 guarantees '(fractional) almost decomposition' would suffice.

r-partite *G* is locally balanced if every vertex has same degree into each class (apart from its own)

r-partite *G* has K_r -decomposition \implies *G* locally balanced

 $\hat{\delta}(G)$:= 'partite minimum degree'

r-partite *G* is locally balanced if every vertex has same degree into each class (apart from its own)

r-partite *G* has K_r -decomposition \implies *G* locally balanced

 $\hat{\delta}(G)$:= 'partite minimum degree'

Theorem (Barber, Kühn, Lo, Osthus, Taylor 2015⁺)

Let *G* be locally balanced *r*-partite graph with vertex classes of size *n*. If $\hat{\delta}(G) \ge (\delta_{frac}^{partite}(K_r) + o(1))n$ then *G* has a K_r -decomposition.

Chowla, Erdős and Straus 1960: case when G complete r-partite

r-partite *G* is locally balanced if every vertex has same degree into each class (apart from its own)

r-partite *G* has K_r -decomposition \implies *G* locally balanced

 $\hat{\delta}(G)$:= 'partite minimum degree'

Theorem (Barber, Kühn, Lo, Osthus, Taylor 2015⁺)

Let *G* be locally balanced *r*-partite graph with vertex classes of size *n*. If $\hat{\delta}(G) \ge (\delta_{frac}^{partite}(K_r) + o(1))n$ then *G* has a K_r -decomposition.

Chowla, Erdős and Straus 1960: case when G complete r-partite

Dukes 2015⁺: $\delta_{frac}^{partite}(K_3) \leq \frac{101}{104}$ Montgomery 2015⁺: $\delta_{frac}^{partite}(K_r) \leq 1 - \frac{1}{10^6 r^3}$

Conjecture (Daykin & Häggkvist, 1984)

Every partially complete $n \times n$ Latin square in which every row, column, symbol is used at most n/4 times, can be completed to a Latin square.

follows from 3-partite version of Nash-Williams conjecture on K_3 -decompositions

Conjecture (Daykin & Häggkvist, 1984)

Every partially complete $n \times n$ Latin square in which every row, column, symbol is used at most n/4 times, can be completed to a Latin square.

follows from 3-partite version of Nash-Williams conjecture on K_3 -decompositions

Corollary

Conjecture true for large *n* if every row, column, symbol is used at most 3n/104 times.

- improves previous bounds of Bartlett, Chetwynd & Häggkvist, Gustavsson
- get analogue or mutually orthogonal Latin squares