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F -decompositions

Definition

A graph G has an F -decomposition if the edges of G can be covered
by edge-disjoint copies of F .

Question

When does G have an F -decomposition?
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Question

When does G have an F -decomposition?

If G has a triangle decomposition, then

(a) the number of edges of G is divisible by 3;

(b) every vertex has even degree.

A necessary condition

If G has an F -decomposition, then

(a) the number of edges in F divides the number of edges in G;

(b) gcd(F) divides gcd(G), where gcd(H) is the largest integer
dividing the degree of every vertex of a graph H.

G is said to be F -divisible if G satisfies (a) and (b).
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is NP-complete if F contains a connected component with at least 3
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Decompositions of complete host graphs

Theorem (Kirkman 1847)

Every triangle-divisible Kn has a triangle decomposition. (i.e. n ≡ 1,3
mod 6)

Theorem (Wilson 1975)

For n large, every F -divisible Kn has an F -decomposition.

Generalization to hypergraph cliques:

Theorem (Keevash 2014+)

For r ≤ q� n, every complete r -uniform hypergraph on n vertices
K (r)

n (subject to the necessary divisibility conditions) has a
K (r)

q -decomposition.
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Triangle decompositions of graphs of large minimum degree

Conjecture (Nash-Williams 1970)

Every large triangle-divisible graph G on n vertices with δ (G)≥ 3n/4
has a triangle decomposition.

conjecture generalizes to Kr -decompositions

Extremal example: blow up each vertex of C4 to a Km (m odd and
divisible by 3).

Each triangle has at least one edge in one of the four cliques but less
than a third of the edges lie inside the cliques.



Triangle decompositions of graphs of large minimum degree

Conjecture (Nash-Williams 1970)

Every large triangle-divisible graph G on n vertices with δ (G)≥ 3n/4
has a triangle decomposition.

conjecture generalizes to Kr -decompositions
Extremal example: blow up each vertex of C4 to a Km (m odd and
divisible by 3).

Each triangle has at least one edge in one of the four cliques but less
than a third of the edges lie inside the cliques.



The decomposition threshold

Question

What if the host graph G is not complete?

Decomposition threshold:

Definition

For a given graph F , let δdec(F) denote the smallest δ ∈ [0,1] such
that every F -divisible graph G with δ (G)≥ (δ + o(1))|G| has an
F -decomposition.

Conjecture (Nash-Williams 1970)

δdec(K3) = 3/4.
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Clique decompositions of graphs of large minimum degree

Definition

For a given graph F , let δdec(F) denote the smallest δ ∈ [0,1] such
that every F -divisible graph G with δ (G)≥ (δ + o(1))|G| has an
F -decomposition.

Conjecture

δdec(Kr ) = r
r+1 .

Theorem (Gustavsson 1991)

δdec(Kr )≤ 1−10−37r−94

Yuster: δdec(tree) = 1/2
Bryant & Cavenagh: δdec(C4)≤ 31/32



Fractional decompositions

fractional F -decomposition of G: give every copy of F in G a weight
w(F) ∈ [0,1] such that ∑F :e∈E(F) w(F) = 1 for each edge e of G

1
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1
2

1
2⇒ +

fractional decomposition threshold δfrac(F): smallest c ∈ [0,1] s.t.
every large graph G with δ (G)≥ cn has fractional F -decomposition

fractional K3-decomposition threshold:
Garaschuk (2014): δfrac(K3)≤ 0.956
Dross (2015+): δfrac(K3)≤ 0.9
fractional Kr -decomposition threshold:
Yuster (2005): δfrac(Kr ) < 1− 1

9r10

Dukes (2012): δfrac(Kr ) < 1− 1
16r4

Barber, Kühn, Lo, Montgomery, Osthus (2015+): δfrac(Kr ) < 1− 1
104r3/2
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From fractional to ‘real’ decompositions

Theorem (Barber, Glock, Kühn, Lo, Montgomery, Osthus 2014/16+)

δdec(Kr ) = δfrac(Kr ) .

δdec(F)≤max{δfrac(F),1− 1
χ(F)+1}

Corollary
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Theorem (Barber, Glock, Kühn, Lo, Montgomery, Osthus 2014/16+)

δdec(Kr ) = δfrac(Kr ) .

δdec(F)≤max{δfrac(F),1− 1
χ(F)+1}

Corollary

δdec(Kr )≤ 0.9

δdec(Kr )≤ 1− 1
104r3/2

δdec(F)≤ 1− 1
104χ(F)3/2



From fractional to ‘real’ decompositions
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Bipartite graphs

Theorem (Barber, Kühn, Lo, Osthus)

δdec(C4) = 2/3

δdec(C2`) = 1/2 for every `≥ 3.

C2`, `≥ 3

neither component is
C`-divisible

δ = n/2−1

n/2n/2

C4

n/3n/3 n/3

δ = 2/3



Theorem (Glock, Kühn, Lo, Montgomery, Osthus)

Let F be bipartite and connected. Then

δdec(F) =

{
1/2 if τhcf (F) = 1

2/3 otherwise

In particular,

δdec(Kr ,r ) = 2/3 for r ≥ 2

δdec(Kr ,r+1) = 1/2 for r ≥ 2

δdec(tree) = 1/2 (Yuster)

δdec(Q3) = 2/3



A set X ∈ V (F) is called C4-supporting in F if there exist distinct
a,b ∈ X and c,d ∈ V (F)\X such that ac,bd ,cd ∈ E(F).

X

X

X̄

X̄

We define

τhcf (F) := gcd{e(F [X ]) : X ∈ V (F) is not C4-supporting in F}
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τhcf (F) = 1 if and only if there copies F1, . . . ,Fs of F in Gex such that
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Gex BA C
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Motivation

τhcf (F) = 1 if and only if there copies F1, . . . ,Fs of F in Gex such that
gcd{e(F1[A]), . . . ,e(Fs[A]) : =}1.

Gex BA C

F = K2,3

X



Proof idea

Theorem (Barber, Glock, Kühn, Lo, Montgomery, Osthus 2014/16+)

δdec(Kr ) = δfrac(Kr ) .

δdec(F)≤max{δfrac(F),1− 1
χ(F)+1}

Use the existence of an approximate decomposition as a black box

Theorem (Haxell and Rödl 2001)

Every large graph G with δ (G)≥ δfrac(F)n can be decomposed into
edge-disjoint copies of F and a remainder R with εn2 uncovered
edges.
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Absorption

1.) Remove sparse absorbing graph A from G,

2.) find approximate F -decomposition of G−A, call leftover L,

3.) hope that L∪A has an F -decomposition.
Difficult! Use iterative absorption approach. Split up the
absorbing process into many steps which gradually make leftover
smaller and smaller.



Given an approximate decomposition with leftover L1, construct ‘lazy
cleaner’ graph L1

clean so that L1∪L1
clean contains copies F 1 of F so

that leftover edges L2 = L1∪L1
clean−F 1 lie entirely in X1.

X1

L1

L2



Repeat with X2 inside X1

X2

X1



Repeat this ‘cover-down step’ until leftover Lt has bounded size and
lies within Xt

Lt having bounded size⇒ only boundedly many possibilities
R1, . . . ,Rs

⇒ suffices to find an ‘absorber’ Ai for each i , i.e. Ai ∪Ri has an
F -decomposition, but also Ai has an F -decomposition



Switchers

Building blocks for absorbers Ai : edge-switchers

S

C4-switcher S
S∪ red has F -dec
S∪blue has F -dec

S′

double-star-switcher S′

S′∪ red has F -dec
S′∪blue has F -dec

Think of red as ‘old’ leftover and of blue as ‘new’ leftover.



Discretization

Theorem (Glock, Kühn, Lo, Montgomery, Osthus 2016+)

Let F be a graph and χ := χ(F).

(i) δF ≤max{δ ∗F ,1−1/(χ + 1)};
(ii) If χ ≥ 5, then δF ∈ {δ ∗F ,1−1/χ,1−1/(χ + 1)};
(iii) If χ = 2, then δF ∈ {0,1/2,2/3}.
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⇒ Any almost complete (divisible) (χ + 1)-partite graph has
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Open problem: better fractional thresholds

Theorem (Barber, Kühn, Lo, Osthus 2014+)

Every triangle-divisible graph G with δ (G)≥ (δfrac(K3) + o(1))n has a
triangle decomposition.

Problem

Determine δfrac(F), i.e. the minimum degree threshold for a graph G to
have a fractional F -decomposition.

• For triangles, showing that δfrac(K3) = 3/4 could be combined with
our results to show the actual ‘decomposition threshold’ is
(3/4 + o(1))n.
• Actually, showing that 3n/4 guarantees ‘(fractional) almost
decomposition’ would suffice.
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Decompositions of r -partite host graphs

r -partite G is locally balanced if every vertex has same degree into
each class (apart from its own)

r -partite G has Kr -decomposition =⇒ G locally balanced

δ̂ (G) := ‘partite minimum degree’

Theorem (Barber, Kühn, Lo, Osthus, Taylor 2015+)

Let G be locally balanced r -partite graph with vertex classes of size n.
If δ̂ (G)≥ (δ

partite
frac (Kr ) + o(1))n then G has a Kr -decomposition.

Chowla, Erdős and Straus 1960: case when G complete r -partite

Dukes 2015+: δ
partite
frac (K3)≤ 101

104

Montgomery 2015+: δ
partite
frac (Kr )≤ 1− 1

106r3
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Completion of Latin squares

Conjecture (Daykin & Häggkvist, 1984)

Every partially complete n×n Latin square in which every row,
column, symbol is used at most n/4 times, can be completed to a
Latin square.

follows from 3-partite version of Nash-Williams conjecture on
K3-decompositions

Corollary

Conjecture true for large n if every row, column, symbol is used at
most 3n/104 times.

improves previous bounds of Bartlett, Chetwynd & Häggkvist,
Gustavsson

get analogue or mutually orthogonal Latin squares
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