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Abstract
We compare the notions of an end that exist in the graph-theoretical
and, independently, in the topological literature. These notions con-
flict except for locally finite graphs, and we show how each can be
expressed in the context of the other. We find that the topological
ends of a graph are precisely the undominated of its graph-theoretical
ends, and that graph theoretical ends have a simple topological de-
scription generalizing the definition of a topological end.

1 Introduction, and overview of results

In 1931, Freudenthal [5] introduced ends of certain topological spaces X
as points at infinity for compactification purposes. Essentially, those ends
are defined ‘from above’ as descending sequences U1 ⊇ U2 ⊇ . . . of connected
open sets with compact frontiers ∂Ui, such that

⋂
i U i = ∅. In 1964, Halin [8]

independently introduced ends of infinite graphs. These are defined ‘from
below’ as equivalence classes of 1-way infinite paths in the graph, two such
paths being equivalent if no finite set of vertices separates them.

For locally finite graphs these two definitions agree: there is a natural
bijection between their topological ends and their graph-theoretical ends.
This correspondence is well known and has become a standard tool in the
study of locally finite graphs, especially of Cayley graphs of finitely generated
groups. See eg. [11, 12, 13, 16] for references.

For graphs with vertices of infinite degree, however, the two notions of
an end differ, and it is the purpose of this note to clarify their relationship.
This has become relevant in the context of our papers [3, 4], where we found
that some ends of arbitrary infinite graphs behaved better than others. It
now turns out that these are precisely their topological ends.

We shall bridge the gap between the topological and the graph-theoretical
notion of an end in two ways. We prove that, when a graph G is viewed as
a 1-complex, its topological ends correspond naturally to those of its graph-
theoretical ends ω that are not dominated, ie. for which there is no vertex
sending an infinite fan to a ray in ω. (Note that such a dominating vertex
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would have infinite degree.) We thus have an injection e �→ ωe from the
topological ends e of G onto its undominated graph-theoretical ends.

Conversely, we show that arbitrary graph-theoretical ends ω of a graph G
can still be expressed topologically, as follows. Let fω be the function that
assigns to every compact set Z ⊆ G (these are essentially the finite subgraphs
of G) the unique connected component U of G \ Z that contains a tail of
every ray in ω. Then the ‘directions’ in which fω points are compatible in the
sense that fω(Z) ⊇ fω(Z ′) whenever Z ⊆ Z ′. We prove that every function
f : Z �→ U from the set of compact subsets Z of G to the components of
G \ Z with this compatibility property arises from an end ω in this way,
and thus that ω �→ fω is a bijection between the ends of G and all those
functions f .

Topological ends e in more general spaces X can be expressed similarly.
Indeed, given a defining sequence U1 ⊇ U2 ⊇ . . . for e, it is easy to see
that the function f(∂Ui) �→ Ui (for all i) extends uniquely to a function
f : Z �→ U (which we denote as fe) mapping all compact Z ⊆ X compatibly
to components of G \ Z, and different ends e yield different functions fe.

When X is a graph then all these maps are compatible as expected.
More precisely, the composition of e �→ ωe and ω �→ fω commutes with the
injection e �→ fe, so fωe

= fe.

2 Ends in graphs

In this section, we briefly review the standard definition of ends in graphs,
define the ‘direction’ functions f mentioned in the introduction (so far, just
for graphs), and establish the injection ω �→ fω mapping ends to directions.

Ends of graphs were introduced by Halin [8], and his definition (given
below) has been adopted by most writers in graph theory. (For notable
exceptions see Jung & Niemeyer [12] and Hahn et al. [7]; an overview of
existing concepts and their relationship has been given by Hien [9].)

A 1-way infinite path is a ray . The subrays of rays are their tails. Two
rays R,R′ in a graph G are equivalent if no finite set of vertices separates
them in G, i.e. if G contains infinitely many disjoint R–R′ paths. This is an
equivalence relation on the set of rays in G; its equivalence classes are the
(graph-theoretical) ends of G. The set of ends of G is denoted by Ω(G), and
given a ray R ⊆ G we write ω(R) for the end of G containing R.

We say that a vertex x of G dominates an end ω of G if G contains
an infinite x–R fan for some ray R ∈ ω, or equivalently, if x cannot be
separated by finitely many vertices from some (and hence any) ray in ω. We
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write Ω′(G) for the set of all undominated ends of G.
When S is a finite set of vertices, then G − S has a unique component

containing a tail of some (and hence every) ray of a given end ω; we say
that ω belongs to that component.

We will need the following standard lemma; its proof is included for
completeness.

Lemma 2.1 Let U be an infinite set of vertices in a connected graph G.
Then G contains either a ray R with |U | disjoint U–R paths (possibly trivial)
or a subdivided star with |U | leaves in U . (Note that if U is uncountable then
the latter holds.)

Proof. Let T be a minimal subtree of G that contains all the vertices of U .
Note that every edge of T lies on a U–U path in T .

Suppose first that T contains a vertex t whose degree in T is |U |. Since
every T -edge at x lies on a U–U path, T contains a subdivided star with
centre x and |U | leaves in U .

Suppose now that T contains no such vertex t. Then |U | = |T | = ℵ0

and T is locally finite, so T contains a ray R. As every edge of T lies on a
U–U path in T , it is easy to find infinitely many disjoint R–U paths in T
inductively. �

Let S = S(G) be the set of all finite sets of vertices in a given graph G.
Let us call a map f with domain S a direction of G if f maps every S ∈ S
to a component of G − S and f(S) ⊇ f(S′) whenever S ⊆ S′. Note that
for S1, S2 ∈ S we have both f(S1 ∪ S2) ⊆ f(S1) and f(S1 ∪ S2) ⊆ f(S2); in
particular,

f(S1) ∩ f(S2) �= ∅. (1)

We denote the set of directions in G by D(G).
The following relationship between ends and directions was observed by

Robertson, Seymour and Thomas [15], who considered directions in a crim-
inology context (calling them ℵ0-havens). However, they apparently missed
the one non-trivial aspect of the proof (surjectivity), so we prove the result
in full.

Theorem 2.2 Let G be an infinite graph. For every end ω of G there is a
unique direction fω of G such that, for every S ∈ S, fω(S) is the component
of G− S to which ω belongs. The map ω �→ fω is a bijection between Ω(G)
and D(G).
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Proof. It is straightforward to check that the function fω assigning to every
S ∈ S the component of G−S to which ω belongs is indeed a direction of G,
and that the map ω �→ fω is injective. We show that this map is surjective,
ie. that for every direction f ∈ D(G) there is an end ω ∈ Ω(G) such that
f = fω.

Given S ∈ S, let us write Ŝ := V (f(S)) ∪N(f(S)) for the set of vertices
in f(S) and their neighbours in S. Thus Ŝ ⊇ Ŝ′ whenever S ⊆ S′. Put

S∗ :=
⋂
S∈S

Ŝ.

Suppose first that S∗ is infinite (and hence meets f(S) for every S ∈ S).
Then it is easy to construct a ray R through infinitely many vertices in S∗

(considering as S initial segments of the ray being constructed), and it is
easily checked that fω(R) = f .

Suppose now that S∗ is finite. Replacing G by f(S∗), we may assume
that S∗ = ∅ and G is connected. (Formally, we define a direction f ′ in
G′ := G − S∗ by f ′(S) := f(S∗ ∪ S); then a ray found for G′ and f ′ also
works for G and f .) We can now find an infinite sequence S1, S2, . . . of non-
empty sets in S such that f(Si) contains both Si+1 and f(Si+1), for all i.
(Then Si+1 separates Si from f(Si+1) in G.) Indeed, having constructed Si

we can find for every s ∈ Si an Ss ∈ S such that s /∈ Ŝs (because s /∈ S∗),
and take as Si+1 the set of vertices in S :=

⋃
s∈Si

Ss that have a neighbour
in f(S). Then f(Si+1) = f(S), because Si+1 ⊆ S implies f(Si+1) ⊇ f(S)
but f(S) is already a component of G − Si+1. Together with Ŝ ⊆ Ŝs �� s
this implies s /∈ Ŝ = Ŝi+1 ⊇ Si+1. Thus G[Ŝi+1] is a connected subgraph of
G−Si containing both f(Si+1) and Si+1, so by (1) the component of G−Si

containing it must be f(Si).
Since all the Si are disjoint, the descending sequence Ŝ1 ⊇ Ŝ2 ⊇ . . . has

an empty overall intersection: every vertex in Ŝi has distance at least i− 1
from S1 (because every S1–Ŝi path has to pass through all the disjoint sets
S2, . . . , Si−1), so no vertex can lie in Ŝi for every i. For every i pick a vertex
ui ∈ f(Si), and note that for U = {ui | i ∈ N} Lemma 2.1 must return a
ray R: the centre of any subidivided star with infinitely many leaves in U
would lie outside Ŝi for some i, and all its paths to leaves uj with j ≥ i

would have to pass through the finite set Si ⊆ Ŝi a contradiction. By the
same argument, the existence of infinitely many disjoint U–R paths (cf.
Lemma 2.1) implies that every f(Si) contains a tail of R.

To show that fω(R) = f , consider any S ∈ S. Choose i large enough that
S ∩ f(Si) = ∅. Then f(Si) is a connected subgraph of G − S, and by (1)
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the component of G−S containing it must be f(S). So f(S) contains a tail
of R, giving fω(R)(S) = f(S) as desired. �

3 Ends in topological spaces

In this section, we review the standard definition of ends in general topo-
logical spaces. As with graphs in Section 2, we define directions in such
spaces, and show that ends canonically induce directions. (However, not all
directions arise from ends.)

Ends in topological spaces have been considered in a variety of contexts
and with a corresponding variety of definitions. We adopt the original def-
inition proposed by Freudenthal [5], which appears to be the fundamental
concept adopted also by more recent standard works such as Hughes &
Ranicki [10].

Let X be an arbitrary Hausdorff space. Given a subset Y ⊆ X, we write
Y for the closure of Y , and ∂Y := Y ∩X \ Y for its frontier. In order to define
the (topological) ends of X, we consider infinite sequences U1 ⊇ U2 ⊇ . . .
of non-empty connected open subsets of X such that each ∂Ui is compact
and

⋂
i≥1 U i = ∅. Note that then no U i can be compact. We say that two

such sequences U1 ⊇ U2 ⊇ . . . and U ′
1 ⊇ U ′

2 ⊇ . . . are equivalent if for every
i there exist j, k such that Ui ⊇ U ′

j and U ′
i ⊇ Uk. The equivalence classes of

those sequences are the topological ends of X, and the set of all topological
ends of X is denoted by E(X). If U1 ⊇ U2 ⊇ . . . is a sequence contained in
a topological end e, we say that U1 ⊇ U2 ⊇ . . . represents e.

We remark that, given any sequence U1 ⊇ U2 ⊇ . . . of sets in X with⋂
i≥1 U i = ∅, the above assumptions about the Ui are equivalent to just

requiring them to be components of X \Xi with compact Xi. Indeed, any
connected open set U is a component of X \ ∂U , so the Ui above are indeed
components of X − Xi with compact Xi := ∂Ui. Conversely, for every
compact Z ⊆ X the frontier of any component of X \ Z is a closed subset
of Z and hence compact. Thus if each Ui is a component of X \ Xi with
compact Xi, it is a non-empty connected open set with compact frontier.

A proof of the following easy lemma can be found in [5, Satz 3].

Lemma 3.1 If e and e′ are distinct topological ends of X, and if U1 ⊇ U2 ⊇
. . . and U ′

1 ⊇ U ′
2 ⊇ . . . are sequences representing e and e′ respectively, then

Ui ∩ U ′
i = ∅ for some i. �
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Next, let us define directions for arbitrary Hausdorff spacesX. A function
g with domain the set of compact subsets Z ⊆ X is a direction of X if g(Z) is
a connected component of X \Z and g(Z) ⊇ g(Z ′) whenever Z ⊆ Z ′. Since
connected components are non-empty, this implies that g(Z) �= ∅ for all Z;
in particular, X itself cannot be compact. As the union of two compact
sets is again compact, all such functions satisfy (1)—just as for graphs. We
denote the set of directions of X by D(X).

Topological ends canonically define directions, as follows. Given e ∈
E(X), with representing sequence U1 ⊇ U2 ⊇ . . . , say, put g(∂Ui) := Ui

for all i. This map extends uniquely to a direction ge of X: given any com-
pact Z ⊆ X, there exists an i such that Z ∩ U j = ∅ for all j ≥ i (because⋂

i U i = ∅ and Z is compact), and we let ge(Z) be the connected component
of X \Z containing Ui. It is easily checked that ge is indeed a direction, and
that it is the only direction g of X satisfying g(∂Ui) = Ui for all i.

Lemma 3.2 The map E(X) → D(X) defined by e �→ ge is injective. �
Proof. Suppose that ge = ge′ =: g for e �= e′. Choose i as in Lemma 3.1.
Then g(∂Ui ∪ ∂U ′

i) ⊆ Ui ∩ U ′
i = ∅, a contradiction. �

We shall see in Section 4 that the map of Lemma 3.2 need not be surjec-
tive, not even for graphs.

4 Ends of graphs as 1-complexes

We now come to compare the concepts of ends and directions in graphs with
the corresponding topological concepts. We shall find that while the con-
cepts of directions correspond canonically, the notions of an end do not. But
we shall see that the topological ends of a graph do correspond canonically
to a subset of its graph-theoretical ends, those that are not dominated.

For this purpose, we consider a graph G as a 1-complex with the usual
identification topology. Thus, every edge is homeomorphic to the real inter-
val [0, 1], and the basic open neighbourhoods of a vertex x are the unions
of half-open intervals [x, z), one from every edge [x, y] at x. Note that our
graphs may have vertices of infinite degree, in which case this topology dif-
fers from the subspace topology of G in any graph-theoretical ‘embedding’
of G in Euclidean 3-space (say). We remark that a subset of G is connected
if and only if it is path-connected, which is not difficult to show.

The following lemma is also straightforward to verify.
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Lemma 4.1 A subset Z ⊆ G is compact if and only if Z is closed and
contains only finitely many vertices and inner points from only finitely many
edges. �

Given a subgraph H of G, we must distinguish between the (graph-
theoretical) components of the graph G−H and the connected components
of the topological space G \ H. (As usual, G − H is the subgraph of G
induced by all the vertices outside H, while G \ H is a difference of point
sets.) However, there is a simple relationship between the two:

Lemma 4.2 If H ⊆ G is a subgraph and U is a connected component of
G \H, then either U is the interior of an edge of G with endvertices in H,
or the graph G−H has a component C such that U is the union of C with
the interiors of all the C–H edges of G. �

Lemmas 4.1 and 4.2 imply that our topological and our graph-theoretical
definitions of directions are compatible in the following obvious sense. Let
us say that f ′ ∈ D(G) extends f ∈ D(G) if f(S) ⊆ f ′(S) for every S ∈ S.

Corollary 4.3 Every direction f ∈ D(G) of a graph G extends uniquely to
a direction f ′ ∈ D(G) of the Hausdorff space G, and the map f �→ f ′ defined
in this way is a bijection between D(G) and D(G).

Proof. Given a compact set Z ⊆ G, pick a finite subgraph H ⊆ G con-
taining Z, and let f ′(Z) be the unique connected component of G \ Z con-
taining f(V (H)). It is easy to check that f ′ is well defined and indeed a
direction of the space G, and that the map f �→ f ′ is injective.

To show that f �→ f ′ is surjective, let f ′ ∈ D(G) be given. To define f ,
consider a finite set S of vertices and put H := G[S]. By Lemma 4.2,
f ′(H) contains a component C of G − S, and we put f(S) := C. It is
again easy to check that f is a well-defined function in D(G) whose unique
extension in D(G) is f ′. �

Here are two more consequences of Lemma 4.1:

Lemma 4.4 Let e ∈ E(G), and let U1 ⊇ U2 ⊇ . . . be a sequence representing
e. Then G does not contain a subdivided star S such that every Ui contains
a leaf of S.

Proof. Suppose there is a subdivided star S as stated, with centre s say.
Since

⋂
U i = ∅, there is an i such that s /∈ U i. But Ui contains infinitely

many leaves of S (because every Uj with j > i contains a leaf, which again
lies in only finitely many U j). So the compact set ∂Ui meets infinitely many
of the subdivided edges of S, contrary to Lemma 4.1. �
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Lemma 4.5 Let R ⊆ G be a ray, and let U ⊆ G be a connected set with
compact frontier. If G contains infinitely many disjoint paths between R and
vertices in U , then U contains a tail of R. �

Our next lemma shows how topological ends define graph-theoretical
ends:

Lemma 4.6 For every topological end e ∈ E(G) there exists a unique end
ωe ∈ Ω(G) such that for every sequence U1 ⊇ U2 ⊇ . . . representing e each
Ui contains a ray from ωe.

Proof. Let U1 ⊇ U2 ⊇ . . . be a fixed sequence representing e. None of the
Ui is just an interval on an edge of G, because U i is not compact. As Ui is
connected, it therefore contains a vertex ui. Since

⋂
U i = ∅, we can choose

these ui distinct. By Lemmas 2.1 and 4.4, the component of G containing
U1 contains a ray R and disjoint paths from R to infinitely many ui. By
Lemma 4.5, every Ui contains a tail of R. And if U ′

1 ⊇ U ′
2 ⊇ . . . is any other

sequence representing e, then every U ′
i contains some Uj and hence a tail

of R. Let ωe := ω(R).
To show the uniqueness of ωe let τ �= ωe be another end of G, and let

S ∈ S separate ωe from τ . Since
⋂
U i = ∅, there is an i such that S∩Ui = ∅.

As Ui is connected, but no connected component of G \ S contains both a
ray from ωe and a ray from τ , it follows that Ui cannot contain a ray from τ .

�

Let σ : E(G) → Ω(G) denote the map defined by σ : e �→ ωe. This map
blends naturally with the maps between ends and directions we have defined
so far. Indeed, its composition with our maps ω �→ fω from Section 2 and
f �→ f ′ from Corollary 4.3 is easily seen to commute with our map e �→ ge

from Section 3 (Fig. 1):

E

DDΩ

∈ ∈ ∈

∈

f ′ω gee

e

inj inj

bijbij

→→

→→→→
(2.2) (4.3)

(4.8) (3.2)

=fω( )e ω( )e

Figure 1: The topological ends of G induce corresponding directions and graph-
theoretical ends
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Proposition 4.7 For every topological end e of G we have f ′ωe
= ge. �

Our aim now is to show that σ is a bijection between E(G) and Ω′(G),
the set of undominated ends of G.

Lemma 4.8 The function σ : e �→ ωe is injective.

Proof. Let e �= e′ ∈ E(G), with representing sequences U1 ⊇ U2 ⊇ . . . and
U ′

1 ⊇ U ′
2 ⊇ . . . say. By Lemma 3.1 there is an i such that Ui ∩ U ′

i = ∅. By
definition, ωe has a ray R in Ui, and ωe′ has a ray R′ in U ′

i . By Lemma 4.5
there cannot be infinitely many disjoint R–R′ paths in G, so ωe �= ωe′ . �

Next, we show that σ sends E(G) to Ω′(G):

Lemma 4.9 No end of the form ωe is dominated.

Proof. Let ω ∈ Ω(G) be an end dominated by some vertex x ∈ G. Suppose
that ω = ωe for some e ∈ E(G). Let U1 ⊇ U2 ⊇ . . . be a sequence repre-
senting e, and choose i large enough that x /∈ U i. By definition of ωe (in
Lemma 4.6), Ui contains a ray R ∈ ω. As x dominates ω, the compact set
∂Ui meets infinitely many disjoint x–R paths, contradicting Lemma 4.1.

�

It remains to show that σ sends E(G) onto Ω′(G). Let us call an end ω
fat if it contains a family of uncountably many disjoint rays.

Lemma 4.10 Every fat end of G is dominated.

Proof. Let ω ∈ Ω(G) be fat. Pick a vertex from each of some uncountably
many disjoint rays in ω. By Lemma 2.1, G contains a subdivided star S with
uncountably many leaves among the vertices picked. Choose a countably in-
finite subset of these leaves, and use the equivalence of the rays in ω to extend
the corresponding paths from S disjointly to some fixed ray R ∈ ω. Then
the centre of S sends an infinite fan to R, and hence dominates ω. �

Theorem 4.11 In every infinite graph G, the function σ : E(G) → Ω(G)
is injective with image Ω′(G). Thus, σ maps the topological ends of G bijec-
tively to its undominated ends.

Proof. It only remains to show that for every undominated end ω there is a
topological end e such that ω = ωe. Let R = {R1, R2, . . . } be a maximal set
of disjoint rays in ω; recall that, by Lemma 4.10, any such set is countable.
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Put X :=
⋃

R. For every i choose a sequence P i
1 ⊆ P i

2 ⊆ . . . of finite initial
subpaths of Ri whose union is Ri, and put

Xi :=
⋃
j≤i

P j
i and Yi := X −Xi .

Note that X1 ⊂ X2 ⊂ . . . and Y1 ⊃ Y2 ⊃ . . . . Let Ci be the unique
component of G−Xi that contains a ray from ω, and let Ui be the unique
connected component of G\Xi that contains a ray from ω. Then Yi ⊆ Ci ⊆
Ui, and by Lemma 4.2

Ui is the union of Ci with the interiors of all the Xi–Ci edges. (∗)

In particular, Ui is open and ∂Ui ⊆ V (Xi). Hence ∂Ui is compact. Our aim
is to show that

⋂
i≥1 U i = ∅; then U1 ⊇ U2 ⊇ . . . represents a topological

end e of G, and clearly ωe = ω.
By (∗), Ĉi := U i is the subgraph of G consisting of Ci together with

all Xi–Ci edges. Hence if
⋂

i U i �= ∅, then G has a vertex z that lies in
every Ĉi. Choose i large enough that z /∈ Yi. For every j ≥ i pick a z–Yj

path Qj = z . . . yj in Ĉj . Then the only vertices of Qj that are contained
in X are yj and possibly s. Moreover, each yj lies on only finitely many
paths Qk. Let H ⊆ G be the union of some infinite set of Qj with yj /∈ Qk

for all k �= j. Then the only vertices of H − z in X are these yj , and they
all have degree 1 in H. Now apply Lemma 2.1 to H with the set U of all
these yj . If the lemma returns a ray R, then R ∈ ω (because R is joined by
infinitely many disjoint paths to vertices on X), and R has no vertex in X
other than possibly z. So a tail of R violates the maximality of R. If the
lemma returns a star, then the centre of this star dominates ω, contrary to
the choice of ω. �
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