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Abstract

Let H be any non-bipartite graph. We determine
asymptotically the minimum degree of a graph G which
ensures that G has a perfect H-packing. More precisely,
we determine the smallest number τ having the follow-
ing property: For every positive constant γ there exists
an integer n0 = n0(γ,H) such that every graph G whose
order n ≥ n0 is divisible by |H| and whose minimum de-
gree is at least (τ + γ)n contains a perfect H-packing.
The value of τ depends on the relative sizes of the colour
classes in the optimal colourings of H. The proof is algo-
rithmic, which shows that the problem of finding a max-
imum H-packing is polynomially solvable for graphs G
whose minimum degree is at least (τ + γ)n. On the
other hand, given any positive constant γ, we show that
for infinitely many (non-bipartite) graphs H the corre-
sponding decision problem becomes NP-complete if one
considers input graphs G of minimum degree at least
(τ − γ)n.

1 Introduction

Given two graphs H and G, an H-packing in G is
a collection of vertex-disjoint copies of H in G. H-
packings are natural generalizations of graph matchings
(which correspond to the case when H consists of a
single edge). An H-packing in G is called perfect if
it covers all vertices of G. In this case, we also say that
G contains an H-factor or a perfect H-matching. Hell
and Kirkpatrick [9] showed that the decision problem
whether a graph G has a perfect H-packing is NP-
complete if and only if H has a component which
contains at least 3 vertices. They were motivated by
questions arising in timetabling (see [8]).

Hurkens and Schrijver [10] gave an (|H|/2 + ε)-
approximation algorithm (where ε > 0 is arbitrary)
for the optimization problem of finding a maximum H-
packing. On the other hand, Kann [11] proved that
the problem is APX-hard if H has a component which
contains at least three vertices. (In other words, it is
impossible to approximate the optimum solution within
an arbitrary factor unless P=NP.) The results in [9]
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imply that in the remaining cases the problem can
be solved in polynomial time. Moreover the following
theorem of Alon and Yuster [3] shows that the problem
can be solved in polynomial time for instances G which
are sufficiently dense:

Theorem 1.1. [Alon and Yuster [3]] For every γ >
0 and each graph H there exists an integer n0 =
n0(γ,H) such that every graph G whose order n ≥ n0

is divisible by |H| and whose minimum degree is at
least (1 − 1/χ(H) + γ)n contains a perfect H-packing.
Moreover, there is an algorithm which finds this H-
packing in time O(n2.376).

Komlós, Sárközy and Szemerédi [17] showed that the
term γn in Theorem 1.1 can be replaced by a constant
C(H) > 0 depending only on H, which had been
conjectured in [3]. As observed in [3], there are graphs
H for which this constant C(H) cannot be omitted
completely.

On the other hand, there are graphs H for which
the bound on the minimum degree can be improved
significantly: for the case where H = K−` (i.e. a
complete graph with one edge removed) and ` ≥ 4, we
[19] proved that one can replace the chromatic number
with the critical chromatic number in Theorem 1.1.
Here the critical chromatic number χcr(H) of a graph
H is defined as (χ(H) − 1)h/(h − σ(H)), where σ(H)
denotes the minimum size of the smallest colour class in
a colouring of H with χ(H) colours and where h denotes
the order of H. Note that χcr(H) always satisfies
χ(H) − 1 < χcr(H) ≤ χ(H) and equals χ(H) if and
only if for every colouring of H with χ(H) colours, all
of the colour classes have equal size. Up to the error
term γn, the minimum degree condition of the result
in [19] is best possible. The case ` = 4 was solved
earlier by Kawarabayashi [12] with the exact bound on
the minimum degree.

Here, we determine all non-bipartite graphs H for
which the critical chromatic number is the relevant
parameter which guarantees a perfect H-packing. We
also show that for all remaining non-bipartite graphs as
well as for all connected bipartite ones, Theorem 1.1 is
best possible up to the error term γn.

We say that a colouring of H is optimal if it uses
exactly χ(H) =: ` colours and call an optimal colouring



of H minimal if the smallest colour class has size σ(H).
Given an optimal colouring c, let x1 ≤ x2 ≤ · · · ≤ x`
denote the sizes of the colour classes of c. Put

D(c) := {xi+1 − xi | i = 1, . . . , `− 1}.

Let D(H) denote the union of all the sets D(c) taken
over all optimal colouring c. We denote by hcfχ(H)
the highest common factor of all integers in D(H).
(If D(H) = {0} we set hcfχ(H) := ∞.) Note that
D(H) = {0} if and only if χ(H) = χcr(H). Moreover, it
is easy to see that there are graphs H with hcfχ(H) = 1
but such that for all optimal colourings c the highest
common factor of all integers in D(c) is strictly bigger
than 1. Thus for such graphs H there is no single
optimal colouring which ‘certifies’ that hcfχ(H) = 1.

Theorem 1.2. For every positive constant γ and every
graph H with hcfχ(H) = 1 and χ(H) ≥ 3 there exists
an integer n0 = n0(γ,H) such that every graph G whose
order n ≥ n0 is divisible by |H| and whose minimum
degree is at least (1− 1/χcr(H) + γ)n contains a perfect
H-packing. Moreover, this perfect H-packing can be
found in time O(n3.376).

Theorem 1.2 is essentially best possible in three ways.
Firstly, in Proposition 2.1 we show that for those non-
bipartite graphs H to which Theorem 1.2 does not
apply, Theorem 1.1 is best possible up to the error
term γn. This is also easily seen to be the case when
H is connected and bipartite (see Section 2). The case
when H is bipartite but not connected will be covered
in [20]. In that case, the result also depends on the
relative sizes of the components of H.

Secondly, in Proposition 2.2 we show that for all
graphs H a minimum degree of at least (1−1/χcr(H))n
is necessary to guarantee a perfect H-packing. An
easy modification of the examples in Proposition 2.2
shows that there are graphs H for which the term γn in
Theorem 1.2 cannot be replaced by 0. By using much
more involved arguments than those described here, in
the full version [20] of this paper we show that the term
γn can be replaced by a constant depending only on H.
(However, we do not produce an explicit algorithm in
this case.)

Thirdly, the algorithmic assertion of Theorem 1.2
(and Theorem 1.1) is also best possible for many
graphs H. More precisely, suppose that H is either a K`

with ` ≥ 3 or a complete `-partite graph whose second
smallest vertex class has size at least 2. For any such
H and any fixed γ > 0 the problem of deciding whether
a graph G has a perfect H-packing is NP-complete for
the class of all instances G with minimum degree at
least (1− 1/χcr(H)− γ)n. It would be very interesting

to know whether this hardness result can be extended
to all connected graphs H on at least 3 vertices. See
Section 3 for details.

Another class of graphs for which H-packing prob-
lems have been studied are planar graphs. Berman et
al. [6] have shown that if H is a connected outerpla-
nar graph and all the instances G are planar the perfect
H-packing problem is still NP-complete. On the other
hand, they showed that the problem can be solved in
linear time if H is a planar triangulation on at least 4
vertices. Baker [5] showed that the corresponding max-
imization problem admits a polynomial time approxi-
mation scheme for any planar graph H (i.e. the solution
can be approximated within any given constant factor
in polynomial time).

In our proof of Theorem 1.2 we will use the following
result of Komlós [14]. It gives an essentially best
possible bound on the minimum degree of a graph G
which ensures the existence of an almost perfect H-
packing in G. Here the critical chromatic number is
the relevant parameter for any graph H.

Theorem 1.3. [Komlós [14]] For every graph H and
every γ1 > 0 there exists an integer n1 = n1(γ1,H) such
that every graph G of order n ≥ n1 and minimum degree
at least (1 − 1/χcr(H))n contains an H-packing which
covers all but at most γ1n vertices of G.

The bound on the number of leftover vertices in
Theorem 1.3 was reduced to a constant depending only
on H by Shokoufandeh and Zhao [22], but we will not
make use of this.

2 Notation, tools and extremal examples

Throughout this paper we omit floors and ceilings
whenever this does not affect the argument. We write
e(G) for the number of edges of a graph G, |G| for
its order, δ(G) for its minimum degree, ∆(G) for its
maximum degree, χ(G) for its chromatic number and
χcr(G) for its critical chromatic number as defined in
Section 1. We denote the degree of a vertex x ∈ G by
dG(x) and its neighbourhood by NG(x).

Given disjoint A,B ⊆ V (G), an A–B edge is an
edge of G with one endvertex in A and the other in B;
the number of these edges is denoted by eG(A,B) or
e(A,B) if this is unambiguous. We write (A,B)G for
the bipartite subgraph of G whose vertex classes are A
and B and whose edges are all A–B edges in G. More
generally, we write (A,B) for a bipartite graph with
vertex classes A and B.

The next proposition implies that for those non-
bipartite graphs H to which Theorem 1.2 does not apply
Theorem 1.1 is essentially best possible.



Proposition 2.1. Let H be a graph such that χ(H) >
2 and hcfχ(H) > 1. Then there are infinitely many
graphs G whose order n is divisible by |H| and whose
minimum degree is (1− 1/χ(H))n− 1 but which do not
contain a perfect H-packing.

Proof. Put ` := χ(H). Given k ∈ N, let G denote the
complete `-partite graph with vertex classes U1, . . . , U`
where |U1| = k|H| − 1, |U2| = k|H|+ 1 and |Ui| = |H|k
for i = 3, . . . , `. Thus |G| = k`|H| and δ(G) =
(`− 1)k|H| − 1 = (1− 1/χ(H))|G| − 1. Thus it remains
to show that G does not have a perfect H-packing. So
consider disjoint copies H1, . . . ,Hi of H in G. Put xi :=
|U1 \V (H1∪ · · ·∪Hi)| and yi := |U3 \V (H1∪ · · ·∪Hi)|.
By induction it follows that yi − xi ≡ 1 mod hcfχ(H).
As hcfχ(H) > 1 this implies that xi 6= yi and so at least
one of xi, yi is nonzero. This shows that no H-packing
covers all the vertices in U1 ∪ U3 and thus G cannot
contain a perfect H-packing. �

Note that Proposition 2.1 carries over to connected
graphs H of chromatic number 2. Indeed, let k ∈ N
be odd and let G be the disjoint union of two cliques
of order b|H|k/2c and d|H|k/2e. Then the minimum
degree of G is b(1−1/χ(H))|G|c−1. However it is easy
to check that b|H|k/2c is not divisible by |H|. Thus G
cannot contain a perfect H-packing as H is connected.

For completeness we also include the short proof
of the fact that a minimum degree of at least (1 −
1/χcr(H))|G| is necessary to guarantee a perfect H-
packing in a graph G. This fact was already observed
in [14].

Proposition 2.2. For every graph H with χ(H) ≥ 2
there are infinitely many graphs G whose order n is
divisible by |H| and whose minimum degree is (1 −
1/χcr(H))n − 1 but which do not contain a perfect H-
packing.

Proof. Let ` := χ(H). Consider any minimal colouring
of H and let x1 ≤ · · · ≤ x` denote the sizes of the
colour classes. Thus x1 = σ(H). Let s1 := (` − 1)x1

and s := x2 + · · · + x`. Given k ∈ N, let G denote the
complete `-partite graph with vertex classes U1, . . . , U`
where |U1| = ks1 − 1, |U2| = ks + 1 and |Ui| = ks
for every i ≥ 3. Then |G| = k(` − 1)|H| and δ(G) =
(`− 2)ks+ ks1 − 1 = (1− 1/χcr(H))|G| − 1. However,
every copy of H in G contains at most |H| − x1 = s
vertices in U2∪· · ·∪U`. Thus any H-packing in G covers
at most s|U1|/x1 < |G| − |U1| vertices in U2 ∪ · · · ∪ U`.
So G cannot contain a perfect H-packing. �

Given a graph H as in Theorem 1.2, the following
lemma gives a sufficient condition on the sizes of the

vertex classes of a complete χ(H)-partite graph G which
ensures that G has a perfect H-packing. It is a special
case of Lemma 12 in [20].

Lemma 2.1. Let H be a graph with ` := χ(H) ≥ 3 and
hcfχ(H) = 1. Put ξ := (` − 1)σ(H)/(|H| − σ(H)). Let
0 < β1 � λ1 � ξ, 1 − ξ, 1/|H| be positive constants.
Suppose that G is a complete `-partite graph with vertex
classes U1, . . . , U` such that |G| � |H| is divisible by
|H|, (1 − λ
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1 )|U`| ≤ ξ|Ui| ≤ (1 − λ1)|U`| for all

i < ` and such that | |Ui| − |Uj | | ≤ β1n whenever
1 ≤ i < j < `. Then G contains a perfect H-packing.

3 Hardness results for algorithms

For convenience, let Pack(H) denote the problem of
deciding whether a graph G contains a perfect H-
packing. We also need to define a restricted version of
this problem. For this, we say that a graph G is c-dense
if it has minimum degree at least c|G|. Let Pack(H, c)
denote the problem of deciding whether a c-dense input
graph G contains a perfect H-packing.

Theorem 3.1. Let ` ≥ 2 be an integer. Let H be a
graph such that either H = K` and ` ≥ 3 or such that
H is a complete `-partite graph with vertex classes of
size x1 ≤ · · · ≤ x` where x2 ≥ 2. Let γ be such that
0 < γ < 1−1/χcr(H). Then Pack(H, c) is NP-complete
for any c ≤ 1− 1/χcr(H)− γ.

Proof. We first consider the case when H is a complete
`-partite graph with vertex classes of size x1 ≤ · · · ≤ x`
where x2 ≥ 2. Let H ′ := Kx1,x2 and fix c ≤ 1 −
1/χcr(H) − γ. We will prove the result by a reduction
from the H ′-packing problem. Since H ′ is a connected
graph on at least 3 vertices, the latter problem was
proved to be NP-complete by Hell and Kirkpatrick [8].
Thus, it suffices to show that for every instance G of
Pack(H ′), we can construct (in polynomial time) an
instance F = F (G) of Pack(H, c), so that F has a
perfect H-packing if and only if G has a perfect H ′-
packing.

Let z1 := (` − 1)x1 and z := x2 + · · · + x`. Let
B∗ denote the complete `-partite graph with one vertex
class of size z1 and `− 1 vertex classes of size z. Given
an integer t, let B∗(t) denote the complete `-partite
graph with one vertex class Z1 of size z1t and ` − 1
vertex classes Z2, . . . , Z` of size zt. Note that B∗(t) has
a perfect H-packing consisting of (`− 1)t copies of H.

Let t := d|G|/γe and k := |G|/|H ′|. Clearly, we may
assume that k is an integer. We now obtain F from the
disjoint union of B∗(t), G and ` − 2 independent sets
I3, . . . , I` of sizes kx3, . . . , kx` by connecting all vertices
of G to all vertices of B∗(t)−Z2 as well as to all vertices
in I3∪· · ·∪I`. Moreover, for all i = 3, . . . , `, we connect



all vertices in Ii to all vertices of B∗(t)−Zi as well as to
all vertices in each Ij with j 6= i. It is easily seen that
F is c-dense.

Clearly, if G has a perfect H ′-packing, then F has
a perfect H-packing. Now suppose that G does not
have a perfect H ′-packing. We have to show that F
does not have a perfect H-packing. So suppose that H
is a perfect H-packing in F . Given 0 ≤ j < x1, let
Hj(G) ⊆ H denote the collection of all those copies of
H which do not avoid G and meet Z1 in precisely j
vertices. Note that each such copy meets G in at least
x1 +x2− j vertices and it avoids Z2. Put nj = |Hj(G)|.
So there exists an integer D ≥ 0 such that

(3.1) D +
x1−1∑
j=0

nj(x1 + x2 − j) = |G| = (x1 + x2)k.

Moreover, if a copy of H in H0(G) meets G in precisely
x1 + x2 vertices, then these vertices form the H ′-
subgraph of that copy. Since G does not have a perfect
H ′-packing, it follows that either D > 0 or nj > 0 for
some j ≥ 1 (or both). Define D′ by setting D′ := D if
D > 0 and D′ := −1 if D = 0. Thus (3.1) implies that

(3.2)
x1−1∑
j=0

nj ≥ k −D′/(x1 + x2).

LetH(G) denote the union of all theHj(G). Since every
copy of H in H \ H(G) contains at least x1 vertices in
Z1 there are at most (|Z1|−

∑x1−1
j=0 jnj)/x1 such copies.

Since all these copies have to cover all those vertices in
F − Z1 which do not belong to copies of H in H(G) it
follows that

tz1 −
∑x1−1
j=0 jnj

x1
· z ≥ |F − Z1| −

x1−1∑
j=0

nj(|H| − j)

=(`− 1)tz + k|H| −
x1−1∑
j=0

nj(|H| − j).

This in turn implies that
∑x1−1
j=0 nj(x1 − j) ≥ x1k.

Together with (3.1) the latter implies that
∑x1−1
j=0 nj ≤

k − D/x2. However, this contradicts (3.2) and thus
completes the proof that F does not have a perfect H-
packing.

Now consider the case when H = K`. This time, we
will prove the result by a reduction from the H-packing
problem. Thus for every instance G of Pack(H), we will
construct an instance F = F (G) of Pack(H, c), so that
F has a perfect H-packing if and only if G has one. This
time, F is obtained from the complete `-partite graph
with vertex classes Z1, . . . , Z` of size t := d|G|/γe by

adding G and connecting all vertices of G to all vertices
in Z1 ∪ · · · ∪ Z`−1. Again, it is easily seen that F is
c-dense.

Clearly, if G has a perfect H-packing, then F has
one too. Now suppose that G does not have a perfect
H-packing but that H is a perfect H-packing in F . Let
H(G) ⊆ H denote the collection of all those copies of
H which meet G. Every such copy of H avoids Z`.
Moreover, since G does not have a perfect H-packing,
at least one vertex of Z1 ∪ · · · ∪ Z`−1 is contained in
some copy of H in H(G). Consider the subgraph F ′ of
F obtained by deleting the vertices in all the copies of H
in H(G). Then the `th vertex class of F ′ still has size
|Z`| whereas the union of all the other vertex classes of
F ′ has size < (` − 1)|Z`|. Thus F ′ does not contain a
perfect H-packing, a contradiction. �

Note that the graph F constructed in the reduction
has size polynomial in |G| even if γ = |G|−K , say,
where K > 0 is an arbitrary constant. Thus, given any
constant K > 0, the assertion of the theorem actually
remains valid for the class of all instances G whose
minimum degree is at least (1− 1/χcr(H)− |G|−K)|G|.

It would be interesting to know whether the asser-
tion of the theorem can be extended to all graphs H for
which Pack(H) is NP-complete (i.e. those which con-
tain a component with at least 3 vertices). Similarly,
it might be true that the optimization problem of find-
ing a maximum H-packing is APX-complete for all such
graphs H and for all instances G whose minimum de-
gree is at least (1−1/χcr(H)−γ)|G|. This is open even
if H is a triangle.

4 The Regularity lemma and the Blow-up
lemma

The purpose of this section is to collect all the informa-
tion we need about Szemerédi’s Regularity lemma and
and the Blow-up lemma of Komlós, Sárközy and Sze-
merédi [15]. See [18] and [13] for surveys about these.
Let us start with some more notation. The density of a
bipartite graph G = (A,B) is defined to be

d(A,B) :=
e(A,B)
|A||B|

.

Given ε > 0, we say that G is ε-regular if for all sets
X ⊆ A and Y ⊆ B with |X| ≥ ε|A| and |Y | ≥ ε|B|
we have |d(A,B) − d(X,Y )| < ε. Given d ∈ [0, 1],
we say that G is (ε, d)-superregular if all sets X ⊆ A
and Y ⊆ B with |X| ≥ ε|A| and |Y | ≥ ε|B| satisfy
d(X,Y ) > d and, furthermore, if dG(a) > d|B| for all
a ∈ A and dG(b) > d|A| for all b ∈ B.

We will use the following degree form of Szemerédi’s
Regularity lemma which can be easily derived from the



classical version. Proofs of the latter are for example
included in [4] and [7].

Lemma 4.1. (Regularity lemma) For all ε > 0 and
all integers k0 there is an N = N(ε, k0) such that for
every number d ∈ [0, 1] and for every graph G on at
least N vertices there exist a partition of V (G) into
V0, V1, . . . , Vk and a spanning subgraph G′ of G such
that:

• k0 ≤ k ≤ N , |V0| ≤ ε|G|, |V1| = · · · = |Vk| =: L,

• dG′(x) > dG(x)− (d+ ε)|G| for all vertices x ∈ G,

• for all i ≥ 1 the graph G′[Vi] is empty and for all
1 ≤ i < j ≤ k the graph (Vi, Vj)G′ is ε-regular and
has density either 0 or > d.

The sets Vi (i ≥ 1) are called clusters, V0 is
called the exceptional set. Given clusters and G′ as in
Lemma 4.1, the reduced graph R is the graph whose
vertices are V1, . . . , Vk and in which Vi is joined to Vj
whenever (Vi, Vj)G′ is ε-regular and has density > d.
Thus ViVj is an edge of R if and only if G′ has an edge
between Vi and Vj .

We will also use the Blow-up lemma of Komlós,
Sárközy and Szemerédi [15]. It implies that dense
regular pairs behave like complete bipartite graphs
with respect to containing bounded degree graphs as
subgraphs.

Lemma 4.2. (Blow-up lemma) Given a graph F on
{1, . . . , f} and numbers d,∆ > 0, there is a positive
number ε0 = ε0(d,∆, f) such that the following holds.
Given L1, . . . , Lf ∈ N and ε ≤ ε0, let F ∗ be the graph
obtained from F by replacing each vertex i ∈ F with
a set Vi of Li new vertices and joining all vertices in
Vi to all vertices in Vj whenever ij is an edge of F .
Let G be a spanning subgraph of F ∗ such that for every
edge ij ∈ F the graph (Vi, Vj)G is (ε, d)-superregular.
Then G contains a copy of every subgraph H of F ∗ with
∆(H) ≤ ∆.

5 Proof of Theorem 1.2

5.1 Further notation and sketch of the proof
Before we can outline the idea of the proof, we need to
introduce some more notation. Let H, G and γ be as
in Theorem 1.2. Put ` := χ(H) ≥ 3. Fix a minimal
colouring c of H and let x1 ≤ x2 ≤ · · · ≤ x` denote
sizes of the colour classes of c. So σ(H) = x1. Put
z1 := (`− 1)x1, z := x2 + · · ·+ x` and

ξ :=
z1

z
=

(`− 1)σ(H)
|H| − σ(H)

.

Note that ξ < 1 since hcfχ(H) = 1 (and thus x1 < x`).
Let B∗ denote the complete `-partite graph with one
vertex class of size z1 and `− 1 vertex classes of size z.
Note that B∗ has a perfect H-packing consisting of `−1
copies of H. Moreover,

(5.3) χcr(H) = χcr(B∗) = `− 1 + ξ.

Let s be a sufficiently large integer and λ � γ, ξ, 1 − ξ
be a positive constant. Let B′ denote the complete `-
partite graph with one vertex class of size s1 := ξ(1+λ)s
and ` − 1 vertex classes of size s. Moreover, we choose
λ and s in such a way that B′ contains a perfect B∗-
packing. Note that

(5.4) χcr(B′) =
(`− 1)|B′|
|B′| − s1

= `− 1 + ξ(1 + λ).

We now give an outline of the proof of Theorem 1.2.
We first apply the Regularity lemma to our given graph
G in order to obtain a reduced graph R. Then we
apply Theorem 1.3 to R to obtain an almost perfect B′-
packing of R. The surplus γn in the minimum degree of
G ensures that we are able to apply Theorem 1.3 here.
Next we add all the clusters of R which are not covered
by this B′-packing to the exceptional set V0. For each
exceptional vertex x ∈ V0 we then choose a copy of H
which consists of x together with |H|−1 vertices lying in
some clusters. All these copies of H will be disjoint for
distinct exceptional vertices. We remove all the vertices
of G contained in these copies from the clusters they
belong to.

Our next aim is to apply the Blow-up lemma to each
copy B′i of B′ in the B′-packing of R in order to find an
H-packing in G which covers all the vertices belonging
to (the modified) clusters in B′i. Then all these H-
packings together with all the copies of H chosen so
far for the exceptional vertices would form a perfect H-
packing in G. However, a necessary condition for this is
that the complete `-partite graph F ∗i whose jth vertex
class is the union of all clusters in the jth vertex class
of B′i (for all j = 1, . . . , `) has a perfect H-packing. We
will apply Lemma 2.1 to ensure this. One condition
in Lemma 2.1 is that |H| has to divide |F ∗i |. It turns
out that this can be achieved by taking out a bounded
number of suitable further copies of H. The second
condition in Lemma 2.1 is that the ` − 1 larger vertex
classes of F ∗i must have roughly the same size, u say,
while the smallest vertex should be a little larger than
ξu. But this second condition was the reason why we
chose a B′-packing in R and not simply a B∗-packing:
the ratio of the size of the smallest vertex class of B′ to
the size of the other classes is ξ(1+γ) and in subsequent
steps of the proof, we changed this ratio only by a



comparatively small amount, so we can still satisfy the
second condition Lemma 2.1 with room to spare.

5.2 Applying the Regularity lemma and choos-
ing the packing in the reduced graph We will fix
further constants satisfying the following hierarchy

(5.5) 0 < ε� d� γ1 � β � α� λ� γ, ξ, 1− ξ.

Moreover, we choose β, γ1 and a new integer k0 such
that

(5.6) γ1 � 1/|B′|, k0 ≥ n1(γ1, B
′),

where n1 is as defined in Theorem 1.3. In what follows,
we assume that the order n of our given graph G is
sufficiently large for our estimates to hold. We now
apply the Regularity lemma with parameters ε and d
to our given graph G to obtain clusters, an exceptional
set V0 and a reduced graph R. (5.3) and (5.5) together
with the well-known fact that the minimum degree of G
is almost inherited by its reduced graph (see e.g. [21,
Prop. 9]) imply that

δ(R) ≥
(

1− 1
`− 1 + ξ

+
γ

2

)
|R|.

Together with (5.4) and the fact that λ � γ by (5.5)
this implies that δ(R) ≥ (1 − 1/χcr(B′))|R|. Since
also |R| ≥ k0 ≥ n1(γ1, B

′) by (5.6), we may apply
Theorem 1.3 to R to find a B′-packing which covers all
but at most γ1|R| vertices of R. We denote the copies
of B′ in this packing by B′1, . . . , B

′
k′ . We delete all the

clusters not contained in some B′i from R and add all
the vertices lying in these clusters to the exceptional
set V0. Thus

|V0| ≤ εn+ γ1n ≤ 2γ1n.

From now on, we denote by R the subgraph of the
reduced graph induced by all the remaining clusters.
Since γ1 � γ we still have that

δ(R) ≥
(

1− 1
`− 1 + ξ

+
γ

4

)
|R|.(5.7)

Recall that by definition of B′, each B′i contains a
perfect B∗-packing. Fix such a B∗-packing for each
i = 1, . . . , k′. The union of all these B∗-packings
gives us a perfect B∗-packing B∗ in R. (Instead of
introducing B∗, we could also have worked with the B′-
packing throughout, but considering B∗ does simplify
some calculations later on.)

Let L′ := (1 − ε|B′|)L. It is easy to check that for
all i = 1, . . . , k′ we can replace each cluster Va in B′i

by a subcluster of size L′ such that for each edge VaVb
of B′i the bipartite subgraph of G′ between the chosen
subclusters of Va and Vb is (2ε, d/2)-superregular (see
e.g. [21, Prop. 8]). Add all the vertices of G which do
not lie in one of the chosen subclusters to the exceptional
set V0. Then

(5.8) |V0| ≤ 3γ1n.

From now on, we refer to the chosen subclusters as the
clusters of R. Next we partition each of these clusters
Va into a red part V reda and a blue part V bluea such
that | |V reda | − |V bluea | | ≤ εL′ = ε|Va| and such that
| |NG(x) ∩ V reda | − |NG(x) ∩ V bluea | | ≤ εL′ for every
vertex x ∈ G. (Consider a random partition to see
that there are V reda and V bluea with these properties.)
Together all these partitions of the clusters of R yield
a partition of the vertices of G − V0 into red and
blue vertices. We will use these partitions to ensure
that even after some modifications which we have to
carry out during the proof, the edges of the B′i will
still correspond to superregular subgraphs of G′. More
precisely, in Section 5.3 we will choose certain copies of
H in G, but each copy will avoid all the red vertices.
All the vertices contained in these copies of H will be
removed from the clusters they belong to. However,
if we look at the (modified) bipartite subgraph of G′

which corresponds to some edge VaVb of B′i, then this
subgraph of G′ will still be (5ε, d/5)-superregular since
it still contains all vertices in V reda and V redb . After
Section 5.3, we will remove only a bounded number of
further vertices from the clusters, which will also not
affect the superregularity significantly.

5.3 Incorporating the exceptional vertices
Given an exceptional vertex x ∈ V0, we call a copy
B ∈ B∗ of B∗ useful for x if there are ` − 1 clusters
belonging to different vertex classes of B such that x
has at least αL′ neighbours in each of these clusters.
Let kx denote the number of copies of B∗ in B∗ which
are useful for x. Then

kxL
′|B∗|+ (|B∗| − kx)(|B∗|L′ − (1− α)L′(z1 + z))

≥ dG(x)− |V0|
(5.3),(5.5),(5.8)

≥
(

1− 1
`− 1 + ξ

+
γ

2

)
L′|B∗||B∗|.

A straightforward calculation now shows that kx ≥
ξ|B∗|

2 . Since γ1 � β, ξ, 1/|B∗| by (5.5) and (5.6), this in
turn shows that kxβL′ � |V0|. Thus we can assign each
exceptional vertex x ∈ V0 greedily to some Bx ∈ B∗ in
such a way that Bx is useful for x and that to each B ∈
B∗ we assign at most βL′ exceptional vertices. For each
x ∈ V0 we now choose a copy of H in G which contains



x and whose other vertices all lie in clusters belonging
to Bx. Since at most βL′ � αL′ exceptional vertices
are assigned to Bx but x has at least αL′ neighbours in
`−1 clusters belonging to different vertex classes of Bx,
this can be done in such a way that these copies of H in
G are disjoint for distinct exceptional vertices and such
that they avoid all the red vertices of G. (Indeed, the
existence of such copies of H in G easily follows from
a ‘greedy’ argument based on the ε-regularity of the
bipartite subgraphs of G′ corresponding to the edges of
the Bx ⊆ R, see e.g. Lemma 7.3.2 in [7] or Theorem 2.1
in [18]. We will often use this and similar facts below.)
We remove all the vertices lying in these copies of H
from the clusters they belong to.

5.4 Making the blow-up of each B ∈ B∗ divisible
by |H| Given a subgraph S ⊆ R, we denote by VG(S) ⊆
V (G) the union of all the clusters belonging to S. Our
aim is to apply the Blow-up lemma to each copy B′i in
the B′-packing of R in order to find a H-packing in G
which covers all the vertices of VG(B′i). Then all these
H-packings together with all the copies of H chosen for
the exceptional vertices in Section 5.3 yield a perfect H-
packing in G. However, to be able to apply the Blow-up
lemma we have to ensure that the complete `-partite
graph whose jth vertex class is the union of all the
clusters lying in the jth vertex class of B′i (j = 1, . . . , `)
contains a perfect H-packing. By Lemma 2.1 this will
turn out to be the case if |H| divides the order of this
complete `-partite graph, i.e. if |H| divides |VG(B′i)|. To
achieve the latter, we will take out a bounded number
of further copies of H in G (i.e. we will remove all
the vertices lying in these copies from the clusters they
belong to). In fact, we will take out a bounded number
of copies of H in G to achieve that |H| even divides
|VG(B)| for each B ∈ B∗.

For this, we define an auxiliary graph F whose
vertices are the elements of B∗ and in which B1, B2 ∈ B∗
are adjacent if the reduced graph R contains a copy of
K` with one vertex in B1 and ` − 1 vertices in B2 or
vice versa.

To motivate the definition of F , let us first consider
the case when F is connected. If B1, B2 ∈ B∗ are
adjacent in F then G contains a copy of H with one
vertex in VG(B1) and all the other vertices in VG(B2)
or vice versa. In fact, we can even find |H| − 1 disjoint
such copies of H in G by using the ‘greedy’ argument
referred to in Section 5.3. Taking out a suitable number
of such copies (at most |H| − 1), we can achieve that
the size of the subset of VG(B1) obtained in this way
is divisible by |H|. Thus we can ‘shift the remainders
mod |H|’ along a spanning tree of F to achieve that
|VG(B)| is divisible by |H| for each B ∈ B∗. (To see

this, use that
∑
B∈B∗ |VG(B)| is divisible by |H| since

|G| is divisible by |H|.)
Thus in what follows we may assume that F is not

connected. Let C denote the set of all components of F .
Given a component C of F , we denote by VR(C) ⊆ V (R)
the set of all those clusters which belong to some B ∈ B∗
with B ∈ C. We write VG(C) ⊆ V (G) for the union of
all the clusters in VR(C). We first show that we can
take out a bounded number of copies of H in G in order
to make |VG(C)| divisible by |H| for each C ∈ C. After
that, we can ‘shift the remainders mod |H|’ within each
component C ∈ C along a spanning tree as indicated
above to make |VG(B)| divisible by |H| for each B ∈ B∗.
For our argument, we will need the following claim.

Claim 1. Let C1, C2 ∈ C and let a ∈ VR(C2). Then

|NR(a) ∩ VR(C1)| <
(

1− 1
`− 1 + ξ

+
γ

4

)
|VR(C1)|.

Suppose not. Then there is some B ∈ B∗ such that
B ∈ C1 and such that

|NR(a) ∩B| ≥
(

1− 1
`− 1 + ξ

+
γ

4

)
|B|

= |B| − z +
γ|B|

4
.

This implies that a has a neighbour in at least ` − 1
vertex classes of B. Thus R contains a copy of K`

which consists of a together with `− 1 of its neighbours
in B. But by definition of the auxiliary graph F , this
means that B is adjacent in F to the copy B0 ∈ B∗ that
contains a, i.e. B and B0 lie in the same component of
F , a contradiction. This completes the proof of Claim 1.

Claim 2. There exist a component C ′ ∈ C, a copy K of
K` in R and a vertex a0 ∈ V (R)\(V (K)∪VR(C ′)) such
that K meets VR(C ′) in exactly one vertex and such that
a0 is joined to all the remaining vertices in K.
As δ(R) > 1/2, there exists an edge a1a2 ∈ R which
joins the vertex sets corresponding to two different
components of F , i.e. there are distinct C1, C2 ∈ C
such that a1 ∈ VR(C1) and a2 ∈ VR(C2). By (5.7)
the number of common neighbours of a1 and a2 in R is
at least (

1− 2
`− 1 + ξ

+
γ

4

)
|R|.

To prove the claim, we will now distinguish two cases.

Case 1. At least
(

1− 2
`−1+ξ + γ

4

)
|V (R) \ VR(C1)|

common neighbours of a1 and a2 lie outside VR(C1).
Let a3 be a common neighbour of a1 and a2 outside
VR(C1). Claim 1 and (5.7) together imply that the



number of common neighbours of a1, a2 and a3 outside
VR(C1) is at least(

1− 3
`− 1 + ξ

+
γ

4

)
|V (R) \ VR(C1)|.

Choose such a common neighbour a4. Continuing in
this way we obtain distinct vertices a2, . . . , a` outside
VR(C1) which together with a1 from a copy K of K`

in R. As before, Claim 1 and (5.7) together imply that
the number of common neighbours of a2, . . . , a` outside
VR(C1) is at least γ|V (R)\VR(C1)|/4. Let a0 be such a
common neighbour. Then Claim 2 holds with C ′ := C1,
K and a0. Thus we may now consider

Case 2. At least
(

1− 2
`−1+ξ + γ

4

)
|VR(C1)| common

neighbours of a1 and a2 lie in VR(C1).
In this case we proceed similarly as in Case 1. How-
ever, this time we choose a0, a3, . . . , a` inside VR(C1).
Indeed, this can be done since Claim 1 and (5.7) to-
gether imply that each vertex in VR(C1) has at least(

1− 1
`−1+ξ + γ

4

)
|VR(C1)| neighbours in VR(C1). Then

Claim 2 holds with C ′ := C2.

Claim 3. We can make |VG(B)| divisible by |H| for all
B ∈ B∗ by taking out at most |B∗||H| copies of H in G.
We first take out some copies of H in G to achieve
that |VG(C)| is divisible by |H| for each C ∈ C. To
do this we proceed as follows. We apply Claim 2 to
find a component C1 ∈ C, a copy K of K` in R and
a vertex a0 ∈ V (R) \ (V (K) ∪ VR(C1)) such that K
meets VR(C1) in exactly one vertex, a1 say, and such
that a0 is joined to all vertices in K − a1. Thus G
contains a copy H ′ of H which has exactly one vertex
x ∈ VG(C1) and whose other vertices lie in clusters
belonging to V (K − a1)∪ {a0}. (Indeed, we can choose
the vertices of H ′ lying in the same vertex class as x
in the cluster a0 and the vertices lying in other vertex
classes in the clusters belonging to K − a1.) In fact,
G contains |H| − 1 (say) disjoint such copies of H.
Now suppose that |VG(C1)| ≡ j mod |H|. Then we
take out j disjoint such copies of H in G to achieve
that |VG(C1)| is divisible by |H|, i.e. we delete the
vertices in these copies from the clusters they belong
to. Next we consider the graphs F1 := F − V (C1) and
R1 := R − VR(C1) instead of F and R. Claim 1 and
(5.7) together imply that

δ(R1) ≥
(

1− 1
`− 1 + ξ

+
γ

4

)
|R1|.

Now suppose that |C| ≥ 3. Then similarly as in the
proof of Claim 2 one can find a component C2 ∈
C \ {C1}, a copy K ′ of K` in R1 and a vertex a′0 ∈

V (R1) \ (V (K ′) ∪ VR(C2)) such that K ′ meets VR(C2)
in exactly one vertex, a2 say, and such that a′0 is joined
to K − a2. As before, we take out at most |H| − 1
copies of H in G to achieve that |VG(C2)| is divisible
by |H|. As |G| was divisible by |H|, we can continue
in this fashion to achieve that |VG(C)| is divisible by
|H| for all components C ∈ C. In this process, we have
to take out at most (|C| − 1)(|H| − 1) copies of H in
G. Now we consider each component C ∈ C separately.
By proceeding as in the connected case for each C and
taking out at most (|C|−1)(|H|−1) further copies of H
in G in each case, we can make |VG(B)| divisible by |H|
for each B ∈ B∗. Hence, in total, we have taken out at
most (|C| − 1)(|H| − 1) + (|B∗| − |C|)(|H| − 1) ≤ |B∗||H|
copies of H in G.

5.5 Applying the Blow-up lemma As described
at the beginning of Section 5.4, we now consider each
B′i ⊆ R (i ≤ k′) where the vertices of R are the modified
clusters (i.e. they do not contain vertices lying in the
copies of H removed in Sections 5.3 and 5.4). For each
i ≤ k′ let G′i denote the subgraph of G′ corresponding
to B′i. Thus G′i is the `-partite subgraph of G′ whose
jth vertex class is the union of all the clusters lying in
the jth vertex class of B′i (j = 1, . . . , `). In Section 5.4
we made |G′i| = |VG(B′i)| divisible by |H| for each i.
Moreover, in Section 5.3 we have removed at most
|H|βL′ vertices from each cluster and in Section 5.4 we
removed only a bounded number of further vertices. So
altogether we removed at most 2|H|βL′ vertices from
each cluster. Since β � λ � ξ, 1 − ξ, |H| by (5.5)
and (5.6), we may apply Lemma 2.1 to conclude that
the complete `-partite graph whose vertex classes are
the same as the vertex classes of G′i has a perfect H-
packing. (Recall it was for this purpose that we chose
the smallest vertex class of B′ to be ξ(1 + λ) times as
large as the others in the definition of B′—and not just
ξ times as large.)

Moreover, each of the bipartite subgraphs of G′i
corresponding to an edge of B′i is still (6ε, d/6)-
superregular. Indeed, since all the copies of H chosen
in Section 5.3 avoid the red vertices of G, the removal
of the vertices in all these copies results in bipartite
subgraphs of G′i which are still (5ε, d/5)-superregular.
(This was already observed at the end of Section 5.2.)
In Section 5.4 we only removed a bounded number
of further vertices in each cluster. Thus after Sec-
tion 5.4 the bipartite subgraphs of G′i are still (6ε, d/6)-
superregular. Hence, for each i = 1, . . . , k′, we may
apply the Blow-up lemma to find a perfect H-packing
in G′i. Together with all the copies of H chosen so far,
all these H-packings form a perfect H-packing in G, as
desired.



5.6 Algorithmic aspects of the proof In this
section, we point out those parts of the proof where
the translation into an algorithm is nontrivial. Alon et
al. [1] described an algorithm which finds the partition
guaranteed by the Regularity lemma in time O(n2.376).
An algorithmic version of the Blow-up lemma was found
by Komlós, Sárközy and Szemerédi [16]. The algorithm
runs in time O(n3.376). Note that the application of
Theorem 1.3 to the reduced graph takes just constant
time, as the order of the reduced graph is bounded.
The partition of the vertex sets referred to in the
paragraph after (5.8) can be found in time O(n3). This
follows e.g. from [2, Ch. 15, Thm. 1.2] and its proof by
considering the adjacency matrix of G. Also, each of
the O(n) copies of H which we remove in Section 5.3
to incorporate the exceptional vertices can be found
in time O(n2) using the ‘greedy’ argument described
in [7, 18].
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R. Yuster, The algorithmic aspects of the Regularity
lemma, J. Algorithms 16 (1994), 80–109.

[2] N. Alon and J. Spencer, The Probabilistic Method (2nd
edition), Wiley-Interscience 2000.

[3] N. Alon and R. Yuster, H-factors in dense graphs,
J. Combin. Theory B 66 (1996), 269–282.

[4] B. Bollobás, Modern Graph Theory, Graduate Texts in
Mathematics 184, Springer-Verlag 1998.

[5] B.S. Baker, Approximation algorithms for NP-
complete problems on planar graphs, Proc. 24th
Ann. IEEE Symp. on Foundations of Computer Sci-
ence (1983), 265–273.

[6] F. Berman, D. Johnson, T. Leighton, P.W. Shor
and L. Snyder, Generalized planar matching, J. Al-
gorithms 11 (1990), 153–184.

[7] R. Diestel, Graph Theory, Graduate Texts in Mathe-
matics 173, Springer-Verlag 1997.

[8] P. Hell and D.G. Kirkpatrick, Scheduling, matching
and colouring, Colloquia Math. Soc. Bolyai 25 (1978),
273–279.

[9] P. Hell and D.G. Kirkpatrick, On the complexity of
general graph factor problems, SIAM J. Computing 12
(1983), 601–609.

[10] C. Hurkens and A. Schrijver, On the size of systems
of sets every t of which have an SDR, with an appli-
cation to the worst-case ratio of heuristics for packing
problems, SIAM J. Disc. Math. 2 (1989), 68-72.

[11] V. Kann, Maximum bounded H-matching is MAX
SNP-complete, Information Processing Letters 49
(1994), 309–318.

[12] K. Kawarabayashi, K−4 -factors in a graph, J. Graph
Theory 39 (2002), 111–128.

[13] J. Komlós, The Blow-up lemma, Comb. Probab. Com-
put. 8 (1999), 161–176.

[14] J. Komlós, Tiling Turán theorems, Combinatorica 20
(2000), 203–218.

[15] J. Komlós, G. N. Sárközy and E. Szemerédi, Blow-up
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Lemma and its applications in graph theory, Bolyai
Society Mathematical Studies 2, Combinatorics, Paul
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[21] D. Kühn, D. Osthus and A. Taraz, Large planar
subgraphs in dense graphs, J. Combin. Theory B, to
appear.

[22] A. Shokoufandeh and Y. Zhao, Proof of a conjecture of
Komlós, Random Struct. Alg. 23 (2003) 180–205.


