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Abstract. Let n be sufficiently large and suppose that G is a digraph on n vertices where
every vertex has in- and outdegree at least n/2. We show that G contains every orientation of
a Hamilton cycle except, possibly, the antidirected one. The antidirected case was settled by
DeBiasio and Molla, where the threshold is n/2 + 1. Our result is best possible and improves
on an approximate result by Häggkvist and Thomason.

1. Introduction

A classical result on Hamilton cycles is Dirac’s theorem [3] which states that if G is a graph on
n ≥ 3 vertices with minimum degree δ(G) ≥ n/2, then G contains a Hamilton cycle. Ghouila-
Houri [4] proved an analogue of Dirac’s theorem for digraphs which guarantees that any digraph
of minimum semidegree at least n/2 contains a consistently oriented Hamilton cycle (where the
minimum semidegree δ0(G) of a digraph G is the minimum of all the in- and outdegrees of the
vertices in G). In [8], Keevash, Kühn and Osthus proved a version of this theorem for oriented
graphs. Here the minimum semidegree threshold turns out to be δ0(G) ≥ (3n − 4)/8. (In a
digraph we allow two edges of opposite orientations between a pair or vertices, in an oriented
graph at most one edge is allowed between any pair of vertices.)

Instead of asking for consistently oriented Hamilton cycles in an oriented graph or digraph,
it is natural to consider different orientations of a Hamilton cycle. For example, Thomason [14]
showed that every sufficiently large strongly connected tournament contains every orientation
of a Hamilton cycle. Häggkvist and Thomason [7] proved an approximate version of Ghouila-
Houri’s theorem for arbitrary orientations of Hamilton cycles. They showed that a minimum
semidegree of n/2 + n5/6 ensures the existence of an arbitrary orientation of a Hamilton cycle
in a digraph. This improved a result of Grant [5] for antidirected Hamilton cycles. The exact
threshold in the antidirected case was obtained by DeBiasio and Molla [2], here the threshold is
δ0(G) ≥ n/2 + 1, i.e., larger than in Ghouila-Houri’s theorem. In Figure 1, we give two digraphs
G on 2m vertices which satisfy δ0(G) = m and have no antidirected Hamilton cycle, showing
that this bound is best possible. (The first of these examples is already due to Cai [1].)

Theorem 1.1 (DeBiasio & Molla, [2]). There exists an integer m0 such that the following
hold for all m ≥ m0. Let G be a digraph on 2m vertices. If δ0(G) ≥ m, then G contains an
antidirected Hamilton cycle, unless G is isomorphic to F 1

2m or F 2
2m. In particular, if δ0(G) ≥

m+ 1, then G contains an antidirected Hamilton cycle.

In this paper, we settle the problem by completely determining the exact threshold for arbi-
trary orientations. We show that a minimum semidegree of n/2 suffices if the Hamilton cycle
is not antidirected. This bound is best possible by the extremal examples for Ghouila-Houri’s
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Figure 1. In digraphs F 1
2m and F 2

2m, A and B are independent sets of size m−1
and bold arrows indicate that all possible edges are present in the directions
shown.

theorem, i.e., if n is even, the digraph consisting of two disjoint complete digraphs on n/2 ver-
tices and, if n is odd, the complete bipartite digraph with vertex classes of size (n − 1)/2 and
(n+ 1)/2.

Theorem 1.2. There exists an integer n0 such that the following holds. Let G be a digraph on
n ≥ n0 vertices with δ0(G) ≥ n/2. If C is any orientation of a cycle on n vertices which is not
antidirected, then G contains a copy of C.

Kelly [9] proved an approximate version of Theorem 1.2 for oriented graphs. He showed that
the semidegree threshold for an arbitrary orientation of a Hamilton cycle in an oriented graph
is 3n/8 + o(n). It would be interesting to obtain an exact version of this result. Further related
problems on digraph Hamilton cycles are discussed in [10].

2. Proof sketch

The proof of Theorem 1.2 utilizes the notion of robust expansion which has been very useful
in several settings recently. Roughly speaking, a digraph G is a robust outexpander if every
vertex set S of reasonable size has an outneighbourhood which is at least a little larger than
S itself, even if we delete a small proportion of the edges of G. A formal definition of robust
outexpansion is given in Section 4. In Lemma 4.4, we observe that any graph satisfying the
conditions of Theorem 1.2 must be a robust outexpander or have a large set which does not
expand, in which case we say that G is ε-extremal. Theorem 1.2 was verified for the case when
G is a robust outexpander by Taylor [13] based on the approach of Kelly [9]. This allows us to
restrict our attention to the ε-extremal case. We introduce three refinements of the notion of ε-
extremality: ST -extremal, AB-extremal and ABST -extremal. These are illustrated in Figure 2,
the arrows indicate that G is almost complete in the directions shown. In each of these cases, we
have that |A| ∼ |B| and |S| ∼ |T |. If G is ST -extremal, then the sets A and B are almost empty
and so G is close to the digraph consisting of two disjoint complete digraphs on n/2 vertices. If
G is AB-extremal, then the sets S and T are almost empty and so in this case G is close to the
complete bipartite digraph with vertex classes of size n/2 (thus both digraphs in Figure 1 are
AB-extremal). Within each of these cases, we further subdivide the proof depending on how
many changes of direction the desired Hamilton cycle has. Note that in the directed setting the
set of extremal structures is much less restricted than in the undirected setting (in the undirected
case, it is well known that all the near extremal graphs are close to the complete bipartite graph
Kn/2,n/2 or two disjoint cliques on n/2 vertices).
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Figure 2. An ABST -extremal graph. When G is AB-extremal, the sets S and
T are almost empty and when G is ST -extremal the sets A and B are almost
empty.

The main difficulty in each of the cases is covering the exceptional vertices, i.e., those vertices
with low in- or outdegree in the vertex classes where we would expect most of their neighbours
to lie. When G is AB-extremal, we also consider the vertices in S ∪ T to be exceptional and,
when G is ST -extremal, we consider the vertices in A ∪ B to be exceptional. In each case we
find a short path P in G which covers all of these exceptional vertices. When the cycle C is close
to being consistently oriented, we cover these exceptional vertices by short consistently oriented
paths and when C has many changes of direction, we will map sink or source vertices in C to
these exceptional vertices (here a sink vertex is a vertex of indegree two and a source vertex is
a vertex of outdegree two).

An additional difficulty is that in the AB- and ABST -extremal cases we must ensure that the
path P leaves a balanced number of vertices in A and B uncovered. Once we have found P in
G, the remaining vertices of G (i.e., those not covered by P ) induce a balanced almost complete
bipartite digraph and one can easily embed the remainder of C using a bipartite version of
Dirac’s theorem. When G is ST -extremal, our aim will be to split the cycle C into two paths
PS and PT and embed PS into the digraph G[S] and PT into G[T ]. So a further complication
in this case is that we need to link together PS and PT as well as covering all vertices in A∪B.

This paper is organised as follows. Sections 3 and 4 introduce the notation and tools which
will be used throughout this paper. In Section 4.3 we describe the structure of an ε-extremal
digraph and formally define what it means to be ST -, AB- or ABST -extremal. The remaining
sections prove Theorem 1.2 in each of these three cases: we consider the ST -extremal case in
Section 5, the AB-extremal case in Section 6 and the ABST -extremal case in Section 7.

3. Notation

Let G be a digraph on n vertices. We will write xy ∈ E(G) to indicate that G contains
an edge oriented from x to y. If G is a digraph and x ∈ V (G), we will write N+

G (x) for the

outneighbourhood of x and N−G (x) for the inneighbourhood of x. We define d+G(x) := |N+
G (x)|

and d−G(x) := |N−G (x)|. We will write, for example, d±G(x) ≥ a to mean d+G(x), d−G(x) ≥ a. We
sometimes omit the subscript G if this is unambiguous. We let δ0(G) := min{d+(x), d−(x) : x ∈
V (G)}. If A ⊆ V (G), we let d+A(x) := |N+

G (x) ∩ A| and define d−A(x) and d±A(x) similarly. We
say that x ∈ V (G) is a sink vertex if d+(x) = 0 and a source vertex if d−(x) = 0.

Let A,B ⊆ V (G) and xy ∈ E(G). If x ∈ A and y ∈ B we say that xy is an AB-edge. We write
E(A,B) for the set of all AB-edges and we write E(A) for E(A,A). We let e(A,B) := |E(A,B)|
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and e(A) := |E(A)|. We write G[A,B] for the digraph with vertex set A ∪ B and edge set
E(A,B)∪E(B,A) and we write G[A] for the digraph with vertex set A and edge set E(A). We
say that a path P = x1x2 . . . xq is an AB-path if x1 ∈ A and xq ∈ B. If x1, xq ∈ A, we say that
P is an A-path. If A ⊆ V (P ), we say that P covers A. If P is a collection of paths, we write
V (P) for

⋃
P∈P V (P ).

Let P = x1x2 . . . xq be a path. The length of P is the number of its edges. Given sets
X1, . . . , Xq ⊆ V (G), we say that P has form X1X2 . . . Xq if xi ∈ Xi for i = 1, 2, . . . , q. We will
use the following abbreviation

(X)k := XX . . .X︸ ︷︷ ︸
k times

.

We will say that P is a forward path of the form X1X2 . . . Xq if P has form X1X2 . . . Xq and
xixi+1 ∈ E(P ) for all i = 1, 2, . . . , q−1. Similarly, P is a backward path of the form X1X2 . . . Xq

if P has form X1X2 . . . Xq and xi+1xi ∈ E(P ) for all i = 1, 2, . . . , q − 1.
A digraph G is oriented if it is an orientation of a simple graph (i.e., if there are no x, y ∈ V (G)

such that xy, yx ∈ E(G)). Suppose that C = (u1u2 . . . un) is an oriented cycle. We let σ(C)
denote the number of sink vertices in C. We will write (uiui+1 . . . uj) or (uiCuj) to denote
the subpath of C from ui to uj . In particular, (uiui+1) may represent the edge uiui+1 or
ui+1ui. Given edges e = (ui, ui+1) and f = (uj , uj+1), we write (eCf) for the path (uiCuj+1).
We say that an edge (uiui+1) is a forward edge if (uiui+1) = uiui+1 and a backward edge if
(uiui+1) = ui+1ui. We say that a cycle is consistently oriented if all of its edges are oriented
in the same direction (forward or backward). We define a consistently oriented subpath P of
C in the same way. We say that P is forward if it consists of only forward edges and backward
if it consists of only backward edges. A collection of subpaths of C is consistent if they are all
forward paths or if they are all backward paths. We say that a path or cycle is antidirected if
it contains no consistently oriented subpath of length two.

Given C as above, we define dC(ui, uj) to be the length of the path (uiCuj) (so, for example,
dC(u1, un) = n − 1 and dC(un, u1) = 1). For a subpath P = (uiui+1 . . . uk) of C, we call
ui the initial vertex of P and uk the final vertex. We write (ujP ) := (ujuj+1 . . . uk) and
(Puj) := (uiui+1 . . . uj). If P1 and P2 are subpaths of C, we define dC(P1, P2) := dC(v1, v2),
where vi is the initial vertex Pi. In particular, we will use this definition when one or both of
P1, P2 are edges. Suppose P1, P2, . . . , Pk are internally disjoint subpaths of C such that the final
vertex of Pi is the initial vertex of Pi+1 for i = 1, . . . , k− 1. Let x denote the initial vertex of P1

and y denote the final vertex of Pk. If x 6= y, we write (P1P2 . . . Pk) for the subpath of C from
x to y. If x = y, we sometimes write C = (P1P2 . . . Pk).

We will also make use of the following notation: a � b. This means that we can find an
increasing function f for which all of the conditions in the proof are satisfied whenever a ≤ f(b).
It is equivalent to setting a := min{f1(b), f2(b), . . . , fk(b)}, where each fi(b) corresponds to
the maximum value of a allowed in order that the corresponding argument in the proof holds.
However, in order to simplify the presentation, we will not determine these functions explicitly.

4. Tools

4.1. Hamilton cycles in dense graphs and digraphs. We will use the following standard
results concerning Hamilton paths and cycles. Theorem 4.1 is a bipartite version of Dirac’s
theorem. Proposition 4.2 is a simple consequence of Dirac’s theorem and this bipartite version.

Theorem 4.1 (Moon & Moser, [12]). Let G = (A,B) be a bipartite graph with |A| = |B| = n.
If δ(G) ≥ n/2 + 1, then G contains a Hamilton cycle.
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Proposition 4.2. (i) Let G be a digraph on n vertices with δ0(G) ≥ 7n/8. Let x, y ∈ V (G)
be distinct. Then G contains a Hamilton path of any orientation between x and y.

(ii) Let m ≥ 10 and G = (A,B) be a bipartite digraph with |A| = m + 1 and |B| = m.
Suppose that δ0(G) ≥ (7m+ 2)/8. Let x, y ∈ A. Then G contains a Hamilton path of any
orientation between x and y.

Proof. To prove (i), we define an undirected graph G′ on the vertex set V (G) where uv ∈ E(G′)
if and only if uv, vu ∈ E(G). Let G′′ be the graph obtained from G′ by contracting the vertices
x and y to a single vertex x′ with NG′′(x′) := NG′(x) ∩NG′(y). Note that

δ(G′′) ≥ (n− 1)/2 = |G′′|/2.
Hence G′′ has a Hamilton cycle by Dirac’s theorem. This corresponds to a Hamilton path of
any orientation between x and y in G.

For (ii), we proceed in the same way, using Theorem 4.1 instead of Dirac’s theorem. �

4.2. Robust expanders. Let 0 < ν ≤ τ < 1, letG be a digraph on n vertices and let S ⊆ V (G).
The ν-robust outneighbourhood RN+

ν,G(S) of S is the set of all those vertices x ∈ V (G) which have

at least νn inneighbours in S. G is called a robust (ν, τ)-outexpander if |RN+
ν,G(S)| ≥ |S|+ νn

for all S ⊆ V (G) with τn < |S| < (1− τ)n.
Recall from Section 1 that Kelly [9] showed that any sufficiently large oriented graph with

minimum semidegree at least (3/8 +α)n contains any orientation of a Hamilton cycle. It is not
hard to show that any such oriented graph is a robust outexpander (see [11]). In fact, in [9],
Kelly observed that his arguments carry over to robustly expanding digraphs of linear degree.
Taylor [13] has verified that this is indeed the case, proving the following result.

Theorem 4.3 ([13]). Suppose 1/n � ν ≤ τ � η < 1. Let G be a digraph on n vertices with
δ0(G) ≥ ηn and suppose G is a robust (ν, τ)-outexpander. If C is any orientation of a cycle on
n vertices, then G contains a copy of C.

4.3. Structure. Let ε > 0 and G be a digraph on n vertices. We say that G is ε-extremal if
there is a partition A,B, S, T of its vertices into sets of sizes a, b, s, t such that |a− b|, |s− t| ≤ 1
and e(A ∪ S,A ∪ T ) < εn2.

The following lemma describes the structure of a graph which satisfies the conditions of
Theorem 1.2.

Lemma 4.4. Suppose 0 < 1/n � ν � τ, ε < 1 and let G be a digraph on n vertices with
δ0(G) ≥ n/2. Then G satisfies one of the following:

(i) G is ε-extremal;
(ii) G is a robust (ν, τ)-outexpander.

Proof. Suppose that G is not a robust (ν, τ)-outexpander. Then there is a set X ⊆ V (G) with
τn ≤ |X| ≤ (1− τ)n and |RN+

ν,G(X)| < |X|+ νn. Define RN+ := RN+
ν,G(X). We consider the

following cases:

Case 1: τn ≤ |X| ≤ (1/2−
√
ν)n.

We have

|X|n/2 ≤ e(X,RN+) + e(X,RN+) ≤ |X||RN+|+ νn2 ≤ |X|(|RN+|+ νn/τ),

so |RN+| ≥ (1/2− ν/τ)n ≥ |X|+ νn, which gives a contradiction.

Case 2: (1/2 + ν)n ≤ |X| ≤ (1− τ)n.
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For any v ∈ V (G) we note that d−X(v) ≥ νn. Hence |RN+| = |G| ≥ |X|+ νn, a contradiction.

Case 3: (1/2−
√
ν)n < |X| < (1/2 + ν)n.

Suppose that |RN+| < (1/2 − 3ν)n. Since δ0(G) ≥ n/2, each vertex in X has more than

3νn outneighbours in RN+. Thus, there is a vertex v 6∈ RN+ with more than 3νn|X|/n > νn
inneighbours in X, which is a contradiction. Therefore,

(1) (1/2− 3ν)n ≤ |RN+| < |X|+ νn < (1/2 + 2ν)n.

Write A0 := X \RN+, B0 := RN+ \X, S0 := X ∩RN+ and T0 := X ∩RN+. Let a0, b0, s0, t0,
respectively, denote their sizes. Note that |X| = a0+s0, |RN+| = b0+s0 and a0+b0+s0+t0 = n.
It follows from (1) and the conditions of Case 3 that

(1/2−
√
ν)n ≤ a0 + s0, b0 + t0, b0 + s0, a0 + t0 ≤ (1/2 +

√
ν)n

and so |a0 − b0|, |s0 − t0| ≤ 2
√
νn. Note that

e(A0 ∪ S0, A0 ∪ T0) = e(X,RN+) < νn2.

By moving at most
√
νn vertices between the setsA0 andB0 and

√
νn between the sets S0 and T0,

we obtain new sets A,B, S, T of sizes a, b, s, t satisfying |a−b|, |s−t| ≤ 1 and e(A∪S,A∪T ) ≤ εn2.
So G is ε-extremal. �

4.4. Refining the notion of ε-extremality. Let n ∈ N and ε, ε1, ε2, ε3, ε4, η1, η2, τ be positive
constants satisfying

1/n� ε� ε1 � ε2 � η1 � τ � ε3 � ε4 � η2 � 1.

We now introduce three refinements of ε-extremality. (The constants ε2 and ε4 do not appear
in these definitions but will be used at a later stage in the proof so we include them here for
clarity.) Let G be a digraph on n vertices.

Firstly, we say that G is ST -extremal if there is a partition A,B, S, T of V (G) into sets of
sizes a, b, s, t such that:

(P1) a ≤ b, s ≤ t;
(P2) bn/2c − ε3n ≤ s, t ≤ dn/2e+ ε3n;
(P3) δ0(G[S]), δ0(G[T ]) ≥ η2n;
(P4) d±S (x) ≥ n/2− ε3n for all but at most ε3n vertices x ∈ S;

(P5) d±T (x) ≥ n/2− ε3n for all but at most ε3n vertices x ∈ T ;
(P6) a+ b ≤ ε3n;
(P7) d−T (x), d+S (x) > n/2− 3η2n and d−S (x), d+T (x) ≤ 3η2n for all x ∈ A;

(P8) d−S (x), d+T (x) > n/2− 3η2n and d−T (x), d+S (x) ≤ 3η2n for all x ∈ B.

Secondly, we say that G is AB-extremal if there is a partition A,B, S, T of V (G) into sets of
sizes a, b, s, t such that:

(Q1) a ≤ b, s ≤ t;
(Q2) bn/2c − ε3n ≤ a, b ≤ dn/2e+ ε3n;
(Q3) δ0(G[A,B]) ≥ n/50;
(Q4) d±B(x) ≥ n/2− ε3n for all but at most ε3n vertices x ∈ A;

(Q5) d±A(x) ≥ n/2− ε3n for all but at most ε3n vertices x ∈ B;
(Q6) s+ t ≤ ε3n;
(Q7) d−A(x), d+B(x) ≥ n/50 for all x ∈ S;

(Q8) d−B(x), d+A(x) ≥ n/50 for all x ∈ T ;
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(Q9) if a < b, d±B(x) < n/20 for all x ∈ B; d−B(x) < n/20 for all x ∈ S and d+B(x) < n/20 for all
x ∈ T .

Thirdly, we say that G is ABST -extremal if there is a partition A,B, S, T of V (G) into sets
of sizes a, b, s, t such that:

(R1) a ≤ b, s ≤ t;
(R2) a, b, s, t ≥ τn;
(R3) |a− b|, |s− t| ≤ ε1n;
(R4) δ0(G[A,B]) ≥ η1n;
(R5) d+B∪S(x), d−A∪S(x) ≥ η1n for all x ∈ S;

(R6) d+A∪T (x), d−B∪T (x) ≥ η1n for all x ∈ T ;

(R7) d±B(x) ≥ b− ε1/3n for all but at most ε1n vertices x ∈ A;

(R8) d±A(x) ≥ a− ε1/3n for all but at most ε1n vertices x ∈ B;

(R9) d+B∪S(x) ≥ b+s−ε1/3n and d−A∪S(x) ≥ a+s−ε1/3n for all but at most ε1n vertices x ∈ S;

(R10) d+A∪T (x) ≥ a+ t−ε1/3n and d−B∪T (x) ≥ b+ t−ε1/3n for all but at most ε1n vertices x ∈ T .

Proposition 4.5. Suppose

1/n� ε� ε1 � η1 � τ � ε3 � η2 � 1

and G is an ε-extremal digraph on n vertices with δ0(G) ≥ n/2. Then there is a partition of
V (G) into sets A,B, S, T of sizes a, b, s, t satisfying one of the following:

• (P2)–(P8);
• (Q2)–(Q9) with a ≤ b;
• (R2)–(R10).

Proof. Consider a partition A0, B0, S0, T0 of V (G) into sets of sizes a0, b0, s0, t0 such that
|a0 − b0|, |s0 − t0| ≤ 1 and e(A0 ∪ S0, A0 ∪ T0) < εn2. Define

X1 := {x ∈ A0 ∪ S0 : d+B0∪S0
(x) < n/2−

√
εn},

X2 := {x ∈ A0 ∪ T0 : d−B0∪T0(x) < n/2−
√
εn},

X3 := {x ∈ B0 ∪ T0 : d+A0∪T0(x) < n/2−
√
εn},

X4 := {x ∈ B0 ∪ S0 : d−A0∪S0
(x) < n/2−

√
εn}

and let X :=
⋃4
i=1Xi. We now compute an upper bound for |X|. Each vertex x ∈ X1 has

d+A0∪T0(x) >
√
εn, so |X1| ≤ εn2/

√
εn =

√
εn. Also, each vertex x ∈ X2 has d−A0∪S0

(x) >
√
εn,

so |X2| ≤
√
εn. Observe that

|A0 ∪ T0|n/2− εn2 ≤ e(B0 ∪ T0, A0 ∪ T0)
≤ (n/2−

√
εn)|X3|+ |A0 ∪ T0|(|B0 ∪ T0| − |X3|)

which gives

|X3|(|A0 ∪ T0| − n/2 +
√
εn) ≤ |A0 ∪ T0|(|B0 ∪ T0| − n/2) + εn2 ≤ 2εn2.

So |X3| ≤ 2εn2/(
√
εn/2) = 4

√
εn. Similarly, we find that |X4| ≤ 4

√
εn. Therefore, |X| ≤

10
√
εn.

Case 1: a0, b0 < 2τn.
Let Z := X ∪ A0 ∪ B0. Choose disjoint Z1, Z2 ⊆ Z so that d±S0

(x) ≥ 2η2n for all x ∈ Z1

and d±T0(x) ≥ 2η2n for all x ∈ Z2 and |Z1 ∪ Z2| is maximal. Let S := (S0 \ X) ∪ Z1 and

T := (T0 \X) ∪ Z2. The vertices in Z \ (Z1 ∪ Z2) can be partitioned into two sets A and B so
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that d+S (x), d−T (x) ≥ n/2− 3η2n for all x ∈ A and d−S (x), d+T (x) ≥ n/2− 3η2n for all x ∈ B. The
partition A,B, S, T satisfies (P2)–(P8).

Case 2: s0, t0 < 2τn.
Partition X into four sets Z1, Z2, Z3, Z4 so that d±B0

(x) ≥ n/5 for all x ∈ Z1; d
±
A0

(x) ≥ n/5 for

all x ∈ Z2; d
+
B0

(x), d−A0
(x) ≥ n/5 for all x ∈ Z3 and d−B0

(x), d+A0
(x) ≥ n/5 for all x ∈ Z4. Then

set A1 := (A0 \X) ∪ Z1, B1 := (B0 \X) ∪ Z2.
Assume, without loss of generality, that |A1| ≤ |B1|. To ensure that the vertices in B satisfy

(Q9), choose disjoint sets B′, B′′ ⊆ B1 so that |B′∪B′′| is maximal subject to: |B′∪B′′| ≤ |B1|−
|A1|, d+B1

(x) ≥ n/20 for all x ∈ B′ and d−B1
(x) ≥ n/20 for all x ∈ B′′. Set B := B1 \ (B′ ∪ B′′),

S1 := (S0 \ X) ∪ Z3 ∪ B′ and T1 := (T0 \ X) ∪ Z4 ∪ B′′. To ensure that the vertices in S ∪ T
satisfy (Q9), choose sets S′ ⊆ S1, T ′ ⊆ T1 which are maximal subject to: |S′|+ |T ′| ≤ |B|− |A1|,
d±B(x) ≥ n/20 for all x ∈ S′ and d±B(x) ≥ n/20 for all x ∈ T ′. We define A := A1 ∪ S′ ∪ T ′,
S := S1 \ S′ and T := T1 \ T ′. Then a ≤ b and (Q2)–(Q9) hold.

Case 3: a0, b0, s0, t0 ≥ 2τn− 1.
The case conditions imply a0, b0, s0, t0 < n/2−τn. Then, since δ0(G) ≥ n/2, each vertex must

have at least 2η1n inneighbours in at least two of the sets A0, B0, S0, T0. The same holds when we
consider outneighbours instead. So we can partition the vertices in X into sets Z1, Z2, Z3, Z4 so
that: d±B0

(x) ≥ 2η1n for all x ∈ Z1; d
±
A0

(x) ≥ 2η1n for all x ∈ Z2; d
+
B0∪S0

(x), d−A0∪S0
(x) ≥ 2η1n

for all x ∈ Z3 and d+A0∪T0(x), d−B0∪T0(x) ≥ 2η1n for all x ∈ Z4. Let A := (A0 \ X) ∪ Z1,

B := (B0 \X) ∪ Z2, S := (S0 \X) ∪ Z3 and T := (T0 \X) ∪ Z4. This partition satisfies (R2)–
(R10). �

The above result implies that to prove Theorem 1.2 for ε-extremal graphs it will suffice to
consider only graphs which are ST -extremal, AB-extremal or ABST -extremal. Indeed, to see
that we may assume that a ≤ b and s ≤ t, suppose that G is ε-extremal. Then G has a partition
satisfying (P2)–(P8), (Q2)–(Q9) or (R2)–(R10) by Proposition 4.5. Note that relabelling the
sets of the partition (A,B, S, T ) by (B,A, T, S) if necessary allows us to assume that a ≤ b. If
s ≤ t, then we are done. If s > t, reverse the orientation of every edge in G to obtain the new
graph G′. Relabel the sets (A,B, S, T ) by (A,B, T, S). Under this new labelling, the graph G′

satisfies all of the original properties as well as a ≤ b and s ≤ t. Obtain C ′ from the cycle C
by reversing the orientation of every edge in C. The problem of finding a copy of C in G is
equivalent to finding a copy of C ′ in G′.

5. G is ST -extremal

The aim of this section is to prove the following lemma which settles Theorem 1.2 in the case
when G is ST -extremal.

Lemma 5.1. Suppose that 1/n � ε3 � ε4 � η2 � 1. Let G be a digraph on n vertices such
that δ0(G) ≥ n/2 and G is ST -extremal. If C is any orientation of a cycle on n vertices, then
G contains a copy of C.

We will split the proof of Lemma 5.1 into two cases based on how close the cycle C is to being
consistently oriented. Recall that σ(C) denotes the number of sink vertices in C. Observe that
in any oriented cycle, the number of sink vertices is equal to the number of source vertices.
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5.1. C has many sink vertices, σ(C) ≥ ε4n. The rough strategy in this case is as follows.
We would like to embed half of the cycle C into G[S] and half into G[T ], making use of the
fact that these graphs are nearly complete. At this stage, we also suitably assign the vertices in
A∪B to G[S] or G[T ]. We will partition C into two disjoint paths, PS and PT , each containing
at least σ(C)/8 sink vertices, which will be embedded into G[S] and G[T ]. The main challenge
we will face is finding appropriate edges to connect the two halves of the embedding.

Lemma 5.2. Suppose that 1/n � ε3 � ε4 � η2 � 1. Let G be a digraph on n vertices with
δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying (P1)–(P8). Let C be an
oriented cycle on n vertices with σ(C) ≥ ε4n. Then there exists a partition S∗, T ∗ of the vertices
of G and internally disjoint paths R1, R2, PS , PT such that C = (PSR1PTR2) and the following
hold:

(i) S ⊆ S∗ and T ⊆ T ∗;
(ii) |PT | = |T ∗|;
(iii) PS and PT each contain at least ε4n/8 sink vertices;
(iv) |Ri| ≤ 3 and G contains disjoint copies RGi of Ri such that RG1 is an ST -path, RG2 is a

TS-path and all interior vertices of RGi lie in S∗.

In the proof of Lemma 5.2 we will need the following proposition.

Proposition 5.3. Suppose that 1/n� ε3 � ε4 � η � 1. Let G be a digraph on n vertices with
δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying (P1)–(P8).

(i) If a = b ∈ {0, 1} then there are two disjoint edges between S and T of any given direction.
(ii) If A = ∅ then there are two disjoint TS-edges.
(iii) If a = 1 and b ≥ 2 then there are two disjoint TS-edges.
(iv) There are two disjoint edges in E(S, T ∪A) ∪ E(T, S ∪B).

Proof. Let

S′ := {x ∈ S : N+
A (x), N−B (x) = ∅} and T ′ := {x ∈ T : N+

B (x), N−A (x) = ∅}.

First we prove (i). If a = b ∈ {0, 1} then it follows from (P7), (P8) that |S′|, |T ′| ≥ n/4. Since
s ≤ t, it is either the case that s ≤ (n− 1)/2− b or s = t = n/2− b. If s ≤ (n− 1)/2− b choose
any x 6= y ∈ S′. Both x and y have at least dn/2− ((n− 1)/2− b− 1 + b)e = 2 inneighbours and
outneighbours in T , so we find the desired edges. Otherwise s = t = n/2− b and each vertex in
S′ must have at least one inneighbour and at least one outneighbour in T and each vertex in T ′

must have at least one inneighbour and at least one outneighbour in S. It is now easy to check
that (i) holds. Indeed, König’s theorem gives the two required disjoint edges provided they have
the same direction. Using this, it is also easy to find two edges in opposite directions.

We now prove (ii). Suppose that A = ∅. We have already seen that the result holds when
B = ∅. So assume that b ≥ 1. Since s ≤ (n− b)/2, each vertex in S must have at least b/2 + 1
inneighbours in T ∪B. Assume for contradiction that there are no two disjoint TS-edges. Then
all but at most one vertex in S must have at least b/2 inneighbours in B. So e(B,S) ≥ bn/8
which implies that there is a vertex v ∈ B with d+S (v) ≥ n/8. But this contradicts (P8). So
there must be two disjoint TS-edges.

For (iii), suppose that a = 1 and b ≥ 2. Since s ≤ (n− b− 1)/2, each vertex in S must have
at least (b+ 1)/2 inneighbours in T ∪B. Assume that there are no two disjoint TS-edges. Then
all but at most one vertex in S have at least (b − 1)/2 inneighbours in B. So e(B,S) ≥ nb/12
which implies that there is a vertex v ∈ B with d+S (v) ≥ n/12 which contradicts (P8). Hence
(iii) holds.
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For (iv), we observe that min{s+b, t+a} ≤ (n−1)/2 or s+b = t+a = n/2. If s+b ≤ (n−1)/2
then each vertex in S has at least two outneighbours in T ∪A, giving the desired edges. A similar
argument works if t + a ≤ (n− 1)/2. If s + b = t + a = n/2 then each vertex in S has at least
one outneighbour in T ∪ A and each vertex in T has at least one outneighbour in S ∪ B. It is
easy to see that there must be two disjoint edges in E(S, T ∪A) ∪ E(T, S ∪B). �

Proof of Lemma 5.2. Observe that C must have a subpath P1 of length n/3 containing at
least ε4n/3 sink vertices. Let v ∈ P1 be a sink vertex such that the subpaths (P1v) and (vP1)
of P1 each contain at least ε4n/7 sink vertices. Write C = (v1v2 . . . vn) where v1 := v and write
k′ := n− t.

Case 1: a ≤ 1
If a = b, set S∗ := S ∪ A ∪ B, T ∗ := T , R1 := (vk′vk′+1) and R2 := (vnv1) = vnv1. By

Proposition 5.3(i), G contains a pair of disjoint edges between S and T of any given orientation.
So we can map vnv1 to a TS-edge and (vk′vk′+1) to an edge between S and T of the correct
orientation such that the two edges are disjoint.

Suppose now that b ≥ a + 1. By Proposition 5.3(ii)–(iii), we can find two disjoint TS-edges
e1 and e2. If vk′ is not a source vertex, set S∗ := S ∪ A ∪ B, T ∗ := T , R1 := (vk′−1vk′vk′+1)
and R2 := vnv1. Map vnv1 to e1. If vk′+1vk′ ∈ E(C), map R1 to a path of the form SST which
uses e2. Otherwise, since vk′ is not a source vertex, R1 is a forward path. Using (P8), we find a
forward path of the form SBT for RG1 .

So let us suppose that vk′ is a source vertex. Let b1 ∈ B and set S∗ := S ∪A ∪B \ {b1} and
T ∗ := T ∪ {b1}. Let R1 := (vk′−1vk′) = vk′vk′−1 and R2 := vnv1. We know that vnv1, vk′vk′−1 ∈
E(C), so we can map these edges to e1 and e2.

In each of the above, we define PS and PT to be the paths, which are internally disjoint from
R1 and R2, such that C = (PSR1PTR2). Note that (i)–(iv) are satisfied.

Case 2: a ≥ 2
Apply Proposition 5.3(iv) to find two disjoint edges e1, e2 ∈ E(S, T ∪A)∪E(T, S∪B). Choose

any distinct x, y ∈ A ∪B such that x and y are disjoint from e1 and e2.
First let us suppose that vk′ is a sink vertex. If e1, e2 ∈ E(S,A) ∪ E(T, S ∪ B), set S∗ :=

S ∪ A ∪ B, T ∗ := T , R1 := (vk′−1vk′vk′+1) and R2 := (vnv1v2). If e1 ∈ E(T, S ∪ B), use (P3)
and (P8) to find a path of the form S(S ∪ B)T which uses e1 for RG1 . If e1 ∈ E(S,A), we use
(P7) to find a path of the form SAT using e1 for RG1 . In the same way, we find a copy RG2 of
R2. If exactly one of ei, e2 say, lies in E(S, T ), set S∗ := (S ∪ A ∪ B) \ {x}, T ∗ := T ∪ {x},
R1 := (vk′−1vk′vk′+1) and R2 := (v1v2). Then v2v1 can be mapped to e2 and we use e1 to find a
copy RG1 of R1 as before. If both e1, e2 ∈ E(S, T ), set S∗ := (S∪A∪B)\{x, y}, T ∗ := T ∪{x, y},
R1 := (vk′−1vk′) and R2 := (v1v2). Then map v2v1 and vk′−1vk′ to the edges e1 and e2.

Suppose now that (vk′−1vk′vk′+1) is a consistently oriented path. If e2 6∈ E(S, T ), let S∗ :=
S ∪ A ∪ B, T ∗ := T , R1 := (vk′−1vk′vk′+1) and R2 := (vnv1v2) and, if e2 ∈ E(S, T ), let
S∗ := (S ∪ A ∪ B) \ {x}, T ∗ := T ∪ {x}, R1 := (vk′−1vk′vk′+1) and R2 := (v1v2). Then use the
edge e2 to find a copy RG2 of R2 as above. We use (P7) or (P8) to map R1 to a backward path
of the form SAT or a forward path of the form SBT as appropriate.

We let PS and PT be paths which are internally disjoint from R1 and R2 such that C =
(PSR1PTR2). Then (i)–(iv) are satisfied.

It remains to consider the case when vk′ is a source vertex. We now consider the vertex vk′−1
instead of vk′ . Note that C cannot contain two adjacent source vertices, so either vk′−1 is a
sink vertex or (vk′−2vk′−1vk′) is a backward path. We proceed as previously. Note that when
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we define the path PT it will have one additional vertex and so we must allocate an additional
vertex from A ∪B to T ∗, we are able to do this since a+ b > 3. �

Apply Lemma 5.2 to G and C to obtain internally disjoint subpaths R1, R2, PS and PT of
C as well as a partition S∗, T ∗ of V (G). Let RGi be copies of Ri in G satisfying the properties
of the lemma. Write R′ for the set of interior vertices of the RGi . Define GS := G[S∗ \ R′] and
GT := G[T ∗]. Let xT and xS be the images of the final vertices of R1 and R2 and let yS and
yT be the images of the initial vertices of R1 and R2, respectively. Also, let VS := S∗ ∩ (A ∪B)
and VT := T ∗ ∩ (A ∪B).

The following proposition allows us to embed copies of PS and PT in GS and GT . The idea
is to greedily find a short path which will contain all of the vertices in VS and VT and any
vertices of “low degree”. We then use that the remaining graph is nearly complete to complete
the embedding.

Proposition 5.4. Let GS, PS, PT , xS, yS, xT and yT be as defined above.

(i) There is a copy of PS in GS such that the initial vertex of PS is mapped to xS and the
final vertex is mapped to yS.

(ii) There is a copy of PT in GT such that the initial vertex of PT is mapped to xT and the
final vertex is mapped to yT .

Proof. We prove (i), the proof of (ii) is identical. Write PS = (u1u2 . . . uk). An averaging
argument shows that there exists a subpath P of PS of order at most ε4n containing at least√
ε3n sink vertices.

Let X := {x ∈ S : d+S (x) < n/2 − ε3n or d−S (x) < n/2 − ε3n}. By (P4), |X| ≤ ε3n and so,
using (P3), we see that every vertex x ∈ X is adjacent to at least η2n/2 vertices in S \X. So
we can assume that xS , yS ∈ S \X since otherwise we can embed the second and penultimate
vertices on PS to vertices in S \X and consider these vertices instead.

Let u′1 be the initial vertex of P and u′k be the final vertex. Define m1 := dPS
(u1, u

′
1) + 1 and

m2 := dPS
(u′k, uk) +1. Suppose first that m1,m2 > η22n. We greedily find a copy PG of P in GS

which covers all vertices in VS ∪X such that u′1 and u′k are mapped to vertices s1, s2 ∈ S \X.
This is possible since any two vertices in X can be joined by a path of length at most three of
any given orientation, by (P3) and (P4), and we can use each vertex in VS as the image of a
sink or source vertex of P . Partition (V (GS) \ V (PG)) ∪ {s1, s2}, arbitrarily, into two sets L1

and L2 of size m1 and m2 respectively so that s1, xS ∈ L1 and s2, yS ∈ L2. Consider the graphs
Gi := GS [Li] for i = 1, 2. Then (P4) implies that δ(Gi) ≥ mi − ε3n − ε4n ≥ 7mi/8. Applying
Proposition 4.2(i), we find suitably oriented Hamilton paths from s1 to xS in G1 and s2 to yS
in G2 which, when combined with P , form a copy of PS in GS (with endvertices xS and yS).

It remains to consider the case when m1 < η22n or m2 < η22n. Suppose that the former holds
(the latter is similar). Let P ′ be the subpath of PS between u1 and u′k. So P ⊆ P ′. Similarly
as before, we first greedily find a copy of P ′ in GS which covers all vertices of X ∪ VS and then
extend this to an embedding of PS . �

Proposition 5.4 allows us to find copies of PS and PT in GS and GT with the desired endver-
tices. Combining these with RG1 and RG2 found in Lemma 5.2, we obtain a copy of C in G. This
proves Lemma 5.1 when σ(C) ≥ ε4n.

5.2. C has few sink vertices, σ(C) < ε4n. Our approach will closely follow the argument
when C had many sink vertices. The main difference will be how we cover the exceptional
vertices, i.e. the vertices in A ∪B. We will call a consistently oriented subpath of C which has
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length 20 a long run. If C contains few sink vertices, it must contain many of these long runs.
So, whereas previously we used sink and source vertices, we will now use long runs to cover the
vertices in A ∪B.

Proposition 5.5. Suppose that 1/n� ε� 1 and n/4 ≤ k ≤ 3n/4. Let C be an oriented cycle
with σ(C) < εn. Then we can write C as (u1u2 . . . un) such that there exist:

(i) Long runs P1, P2 such that P1 is a forward path and dC(P1, P2) = k,
(ii) Long runs P ′1, P

′
2, P

′
3, P

′
4 such that dC(P ′i , P

′
i+1) = bn/4c for i = 1, 2, 3.

Proof. Let P be a subpath of C of length n/8. Let Q be a consistent collection of vertex
disjoint long runs in P of maximum size. Then |Q| ≥ 2εn, with room to spare. We can write C
as (u1u2 . . . un) so that the long runs in Q are forward paths.

Suppose that (i) does not hold. For each Qi ∈ Q, let Q′i be the path of length 20 such that
dC(Qi, Q

′
i) = k. Since Q′i is not a long run, Q′i must contain at least one sink or source vertex.

The paths Q′i are disjoint so, in total, C must contain at least |Q|/2 ≥ εn > σ(C) sink vertices,
a contradiction. Hence (i) holds.

We call a collection of four disjoint long runs P1, P2, P3, P4 good if P1 ∈ Q and dC(Pi, Pi+1) =
bn/4c for all i = 1, 2, 3. Suppose C does not contain a good collection of long runs. In particular,
this means that each long run in Q does not lie in a good collection. For each path Qi ∈
Q, let Qi,1, Qi,2, Qi,3 be subpaths of C of length 20 such that dC(Qi, Qi,j) = jbn/4c. Since
{Qi, Qi,1, Qi,2, Qi,3} does not form a good collection, at least one of the Qi,j must contain a
sink or source vertex. The paths Qi,j where Qi ∈ Q and j = 1, 2, 3 are disjoint so, in total, C
must contain at least |Q|/2 ≥ εn > σ(C) sink vertices, which is a contradiction. This proves
(ii). �

The following proposition finds a collection of edges oriented in an atypical direction for an
ε-extremal graph. We will use these edges to find consistently oriented S- and T -paths covering
all of the vertices in A ∪ B. This proposition will be used again in Section 7.1, where it allows
us to correct an imbalance in the sizes of A and B.

Proposition 5.6. Let G be a digraph on n vertices with δ0(G) ≥ n/2. Let d ≥ 0 and suppose
A,B, S, T is a partition of V (G) into sets of size a, b, s, t with t ≥ s ≥ d+2 and b = a+d. Then
G contains a collection M of d+ 1 edges in E(T, S ∪B)∪E(B,S) satisfying the following. The
endvertices of M outside B are distinct and each vertex in B is the endvertex of at most one
TB-edge and at most one BS-edge in M . Moreover, if e(T, S) > 0, then M contains a TS-edge.

Proof. Let k := t − s. We define a bipartite graph G′ with vertex classes S′ := S ∪ B and
T ′ := T ∪B together with all edges xy such that x ∈ S′, y ∈ T ′ and yx ∈ E(T, S ∪B)∪E(B,S).
We claim that G′ has a matching of size d + 2. To prove the claim, suppose that G′ has a
vertex cover X of size |X| < d+ 2. Then |X ∩ S′| < (d− k)/2 + 1 or |X ∩ T ′| < (d+ k)/2 + 1.
Suppose that the former holds and consider any vertex t1 ∈ T \ X. Since δ+(G) ≥ n/2 and
a + t = (n − d + k)/2, t1 has at least (d − k)/2 + 1 outneighbours in S′. But these vertices
cannot all be covered by X. So we must have that |X ∩T ′| < (d+k)/2+1. Consider any vertex
s1 ∈ S \X. Now δ−(G) ≥ n/2 and a+ s = (n− d− k)/2, so s1 must have at least (d+ k)/2 + 1
inneighbours in T ′. But not all of these vertices can be covered by X. Hence, any vertex cover
of G′ must have size at least d + 2 and so König’s theorem implies that G′ has a matching of
size d+ 2.

If e(T, S) > 0, either the matching contains a TS-edge, or we can choose any TS-edge e and
at least d of the edges in the matching will be disjoint from e. This corresponds to a set of d+ 1
edges in E(T, S ∪B) ∪ E(B,S) in G with the required properties. �
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We define a good path system P to be a collection of disjoint S- and T -paths such that each
path P ∈ P is consistently oriented, has length at most six and covers at least one vertex
in A ∪ B. Each good path system P gives rise to a modified partition AP , BP , SP , TP of the
vertices of G (we allow AP , BP to be empty) as follows. Let IntS(P) be the set of all interior
vertices on the S-paths in P and IntT (P) be the set of all interior vertices on the T -paths. We set
AP := A\V (P), BP := B\V (P), SP := (S∪IntS(P))\IntT (P) and TP := (T∪IntT (P))\IntS(P)
and say that AP , BP , SP , TP is the P-partition of V (G).

Lemma 5.7. Suppose that 1/n � ε3 � ε4 � η2 � 1. Let G be a digraph on n vertices with
δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying (P1)–(P8). Let C be a cycle
on n vertices with σ(C) < ε4n. Then there exists t∗ such that one of the following holds:

• There exist internally disjoint paths PS , PT , R1, R2 such that:
(i) C = (PSR1PTR2);
(ii) |PT | = t∗;

(iii) R1 and R2 are paths of length two and G contains disjoint copies RGi of Ri whose
interior vertices lie in V (G)\T . Moreover, RG1 is an ST -path and RG2 is a TS-path.

• There exist internally disjoint paths PS , P
′
S , PT , P

′
T , R1, R2, R3, R4 such that:

(i) C = (PSR1PTR2P
′
SR3P

′
TR4);

(ii) |PT |+ |P ′T | = t∗ and |PS |, |P ′S |, |PT |, |P ′T | ≥ n/8;
(iii) R1, R2, R3, R4 are paths of length two and G contains disjoint copies RGi of Ri whose

interior vertices lie in V (G) \ T . Moreover, RG1 and RG3 are ST -paths and RG2 and
RG4 are TS-paths.

Furthermore, G has a good path system P such that the paths in P are disjoint from each RGi ,
P covers (A ∪B) \

⋃
V (RGi ) and the P-partition AP , BP , SP , TP of V (G) satisfies |TP | = t∗.

Proof. Let d := b− a and k := t− s.
We first obtain a good path system P0 covering A ∪ B as follows. Apply Proposition 5.6 to

obtain a collection M0 of d + 1 edges as described in the proposition. Choose M ⊆ M0 of size
d such that M contains a TS-edge if d ≥ 1 and e(T, S) > 0. We use each edge e ∈ M together
with properties (P3), (P5) and (P8) to cover one vertex in B by a consistently oriented path of
length at most six as follows. If e ∈ E(T,B) and e is disjoint from all other edges in M , find a
consistently oriented path of the form TBT using e. If e ∈ E(B,S) and e is disjoint from all
other edges in M , find a consistently oriented path of the form SBS using e. If e ∈ E(T, S),
we note that (P3), (P5) and (P8) allows us to find a consistently oriented path of length three
between any vertex in B and any vertex in T . So we can find a consistently oriented path of
the form SB(T )3S which uses e. Finally, if e ∈ E(T,B) and shares an endvertex with another
edge e′ ∈M ∩E(B,S) we find a consistently oriented path of the form SB(T )3BS using e and
e′. This path uses two edges in M but covers two vertices in B. Since we have many choices for
each such path, we can choose them to be disjoint, so M allows us to find a good path system
P1 covering d vertices in B.

Label the vertices in A by a1, a2, . . . , aa and the remaining vertices in B by b1, b2, . . . , ba. We
now use (P6)–(P8) to find a consistently oriented S- or T -path Li covering each pair ai, bi. If
1 ≤ i ≤ d(4a+k)/8e, cover the pair ai, bi by a path of the form SBTAS. If d(4a+k)/8e < i ≤ a
cover the pair ai, bi by a path of the form TASBT . Let P2 :=

⋃a
i=1 Li.

We are able to choose all of these paths so that they are disjoint and thus obtain a good path
system P0 := P1 ∪ P2 covering A ∪ B. Let AP0 , BP0 , SP0 , TP0 be the P0-partition of V (G) and
let t′ := |TP0 |, s′ := |SP0 |.
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By Proposition 5.5(i), we can enumerate the vertices of C so that there are long runs P1, P2

such that P1 is a forward path and dC(P1, P2) = t′. We will find consistently oriented ST - and
TS-paths for RG1 and RG2 which depend on the orientation of P2. The paths R1 and R2 will be
consistently oriented subpaths of P1 and P2 respectively, whose position will be chosen later.

Case 1: b ≥ a+ 2.
Suppose first that P2 is a backward path. If P1 contains a path of the form SB(T )3BS, let b0

and b′0 be the two vertices in B on this path. Otherwise, let b0 and b′0 be arbitrary vertices in B
which are covered by P1. Use (P8) to find a forward path for RG1 which is of the form S{b0}T .
We also find a backward path of the form T{b′0}S for RG2 . We choose the paths RG1 and RG2 to
be disjoint from all paths in P0 which do not contain b0 or b′0.

Suppose now that P2 is a forward path. If a ≥ 1, consider the path L1 ∈ P2 covering a1 ∈ A
and b1 ∈ B. Find forward paths of the form S{b1}T for RG1 and T{a1}S for RG2 , using (P7) and
(P8), which are disjoint from all paths in P0 \ {L1}. Finally, we consider the case when a = 0.
Recall that e(T, S) > 0 by Proposition 5.3(ii) and so M contains a TS-edge. Hence there is a
path P ′ in P1 of the form SB(T )3S, covering a vertex b0 ∈ B and an edge t1s1 ∈ E(T, S), say.
We use (P3) and (P8) to find forward paths of the form S{b0}T for RG1 and {t1}{s1}S for RG2
which are disjoint from all paths in P0 \ {P ′}.

Obtain the good path system P from P0 by removing all paths meeting RG1 or RG2 . Let
AP , BP , SP , TP be the P-partition of V (G) and t∗ := |TP |. The only vertices which could have
moved to obtain TP from TP0 are interior vertices on the paths in P0 \P, so |t∗− t′| ≤ 2 ·5 = 10.
Thus we can choose R1 and R2 to be subpaths of length two of P1 and P2 so that |PT | = t∗,
where PS and PT are defined by C = (PSR1PTR2).

Case 2: b ≤ a+ 1.

Case 2.1: a ≤ 1.
If a = b, by Proposition 5.3(i) we can find disjoint e1, e2 ∈ E(S, T ) and disjoint e3 ∈ E(S, T ),

e4 ∈ E(T, S). Note that P0 = P2, since a = b, so we may assume that all paths in P0 are disjoint
from e1, e2, e3, e4. If P2 is a forward path, find a forward path of the form SST for RG1 using e3
and a forward path of the form TSS for RG2 using e4. If P2 is a backward path, find a forward
path of the form SST for RG1 using e1 and a backward path of the form TSS for RG2 using e2.
In both cases, we choose RG1 and RG2 to be disjoint from all paths in P0.

If b = a + 1, note that there exist e1 ∈ E(S, T ) and e2 ∈ E(T, S). (To see this, use that
δ0(G) ≥ n/2 and the fact that (P7) and (P8) imply that |{x ∈ S : N+

A (x), N−B (x) = ∅}| ≥ n/4.)
We may assume that all paths in P2 are disjoint from e1, e2. Let b0 ∈ B be the vertex covered
by the single path in P1. Find a forward path of the form S{b0}T for RG1 , using (P8). Find
a consistently oriented path of the form TSS for RG2 which uses e1 if P2 is a backward path
and e2 if P2 is a forward path. Choose the paths RG1 and RG2 to be disjoint from the paths in
P0 \ P1 = P2.

In both cases, we obtain the good path system P from P0 by removing at most one path
which meets RG1 or RG2 . Let AP , BP , SP , TP be the P-partition of V (G) and let t∗ := |TP |. The
only vertices which could have moved to obtain TP from TP0 are interior vertices on the path in
P0 \ P if P0 6= P, so |t∗ − t′| ≤ 5. So we can choose subpaths Ri of Pi so that |PT | = t∗, where
PS and PT are defined by C = (PSR1PTR2).

Case 2.2: 2 ≤ a ≤ k.



ARBITRARY ORIENTATIONS OF HAMILTON CYCLES IN DIGRAPHS 15

If P2 is a forward path, consider a1 ∈ A and b1 ∈ B which were covered by the path L1 ∈ P0.
Use (P7) and (P8) to find forward paths, disjoint from all paths in P0\{L1}, of the form S{b1}T
and T{a1}S for RG1 and RG2 respectively.

Suppose now that P2 is a backward path. We claim that G contains 2− d disjoint ST -edges.
Indeed, suppose not. Then d+T (x) ≤ 1 − d for all but at most one vertex in S. Note that

b+ s = (n− k + d)/2, so d+A∪T (x) ≥ (k − d)/2 + 1 for all x ∈ S. So

e(S,A) ≥ (s− 1)((k − d)/2 + 1− (1− d)) = (s− 1)(k + d)/2 ≥ nk/8 ≥ na/8.

Hence, there is a vertex x ∈ A with d−S (x) ≥ n/8, contradicting (P7). Let E = {ei : 1 ≤ i ≤ 2−d}
be a set of 2− d disjoint ST -edges. We may assume that P2 is disjoint from E.

If a = b, use (P3) to find a forward path of the form SST using e1 for RG1 and a backward
path of the form TSS using e2 for R2. If b = a + 1, let b0 ∈ B be the vertex covered by the
single path in P1. Use (P3) and (P8) to find a forward path of the form S{b0}T for RG1 and a
backward path of the form TSS using e1 for RG2 . We choose the paths RG1 and RG2 to be disjoint
from all paths in P2.

In both cases, we obtain the good path system P from P0 by removing at most one path
which meets RG1 or RG2 . Let AP , BP , SP , TP be the P-partition of V (G) and t∗ := |TP |. The
only vertices which could have moved to obtain TP from TP0 are interior vertices on the path in
P0 \ P if P0 6= P, so |t∗ − t′| ≤ 5. Thus we can choose R1 and R2 to be subpaths of length two
of P1 and P2 so that |PT | = t∗, where PS and PT are defined by C = (PSR1PTR2).

Case 2.3: a ≥ 2, k.
We note that

t′ − s′ = |(T ∪ IntT (P0)) \ IntS(P0)| − |(S ∪ IntS(P0)) \ IntT (P0)|
= |(T ∪ IntT (P2)) \ IntS(P2)| − |(S ∪ IntS(P2)) \ IntT (P2)|+ c

= (t+ 3a− 4d(4a+ k)/8e)− (s+ 4d(4a+ k)/8e − a) + c

= 4a+ k − 8d(4a+ k)/8e+ c

where −7 ≤ c ≤ 1 is a constant representing the contribution of interior vertices on the path in
P1 if b = a+ 1 and c = 0 if b = a. In particular, this implies that |t′ − s′| ≤ 15 and

(n− 15)/2 ≤ s′, t′ ≤ (n+ 15)/2.

Apply Proposition 5.5(ii) to find long runs P ′1, P
′
2, P

′
3, P

′
4 such that dC(P ′i , P

′
i+1) = bn/4c

for i = 1, 2, 3. Let xi be the initial vertex of each P ′i . If {P ′i , P ′i+2} is consistent for some
i ∈ {1, 2}, consider a1 ∈ A, b1 ∈ B which which were covered by the path L1 ∈ P0. If P ′i , P

′
i+2

are both forward paths, let RG1 and RG2 be forward paths of the form S{b1}T and T{a1}S
respectively. If P ′i , P

′
i+2 are both backward paths, let RG1 and RG2 be backward paths of the form

S{a1}T and T{b1}S respectively. Choose the paths RG1 and RG2 to be disjoint from the paths
in P := P0 \ {L1}. Let AP , BP , SP , TP be the P-partition of V (G) and let t∗ = |TP |. The only
vertices which could have been added or removed to obtain TP from TP0 are interior vertices on
L1 so (n− 15)/2− 3 ≤ t∗ ≤ (n+ 15)/2 + 3. Then we can choose R1 and R2 to be subpaths of
length two of P ′i and P ′i+2 so that |PT | = t∗, where PS , PT are defined so that C = (PSR1PTR2).

So let us assume that {P ′i , P ′i+2} is not consistent for i = 1, 2. We may assume that the paths
P ′1 and P ′4 are both forward paths, by relabelling if necessary, and we illustrate the situation in
Figure 3.

Consider the vertices ai ∈ A and bi ∈ B covered by the paths Li ∈ P0 for i = 1, 2. Let
P := P0 \ {L1, L2} and let AP , BP , SP , TP be the P-partition of V (G). Let t∗ := |TP |. The
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Figure 3. A good collection of long runs.

only vertices which can have been added or removed to obtain TP from TP0 are interior vertices
on the paths L1 and L2, so (n − 15)/2 − 6 ≤ t∗ ≤ (n + 15)/2 + 6. Find a forward path of the
form S{b1}T for RG1 . Then find backward paths of the form T{b2}S and S{a1}T for RG2 and
RG3 respectively. Finally, find a forward path of the form T{a2}S for RG4 . We can choose the
paths RGi to be disjoint from all paths in P. Since P ′1 and P ′2 are of length 20 we are able to
find subpaths R1, R2, R3, R4 of P ′1, P

′
2, P

′
3, P

′
4 so that |PT |+ |P ′T | = t∗, where PS , P

′
S , PT , P

′
T are

defined so that C = (PSR1PTR2P
′
SR3P

′
TR4). �

In order to prove Lemma 5.1 in the case when σ(C) < ε4n, we first apply Lemma 5.7 to G.
We now proceed similarly as in the case when C has many sink vertices (see Proposition 5.4)
and so we only provide a sketch of the argument. We first observe that any subpath of the cycle
of length 100ε4n must contain at least

(2) b100ε4n/21c − 2ε4n > 2ε3n ≥ a+ b ≥ |P|
disjoint long runs. Let s1 be the image of the initial vertex of PS . Let P ∗S be the subpath of PS
formed by the first 100ε4n edges of PS . We can cover all S-paths in P and all vertices x ∈ S
which satisfy d+S (x) < n/2 − ε3n or d−S (x) < n/2 − ε3n greedily by a path in G starting from
s1 which is isomorphic to P ∗S . Note that (2) ensures that P ∗S contains |P| disjoint long runs. So
we can map the S-paths in P to subpaths of these long runs. Let P ′′S be the path formed by
removing from PS all edges in P ∗S .

If Lemma 5.7(i) holds and thus PS is the only path to be embedded in G[S], we apply
Proposition 4.2(i) to find a copy of P ′′S in G[S], with the desired endvertices. If Lemma 5.7(ii)
holds, we must find copies of both PS and P ′S in G[S]. So we split the graph into two subgraphs
of the appropriate size before applying Proposition 4.2(i) to each. We do the same to find copies
of PT (or PT and P ′T ) in G[T ]. Thus, we obtain a copy of C in G. This completes the proof of
Lemma 5.1.

6. G is AB-extremal

The aim of this section is to prove the following lemma which shows that Theorem 1.2 is
satisfied whenG is AB-extremal. Recall that an AB-extremal graph closely resembles a complete
bipartite graph. We will proceed as follows. First we will find a short path which covers all of
the exceptional vertices (the vertices in S ∪ T ). It is important that this path leaves a balanced
number of vertices uncovered in A and B. We will then apply Proposition 4.2 to the remaining,
almost complete, balanced bipartite graph to embed the remainder of the cycle.
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Lemma 6.1. Suppose that 1/n � ε3 � 1. Let G be a digraph on n vertices with δ0(G) ≥ n/2
and assume that G is AB-extremal. If C is any orientation of a cycle on n vertices which is
not antidirected, then G contains a copy of C.

If b > a, the next lemma implies that E(B ∪ T,B) contains a matching of size b − a + 2.
We can use b− a of these edges to pass between vertices in B whilst avoiding A allowing us to
correct the imbalance in the sizes of A and B.

Proposition 6.2. Suppose 1/n� ε3 � 1. Let G be a digraph on n vertices with δ0(G) ≥ n/2.
Suppose A,B, S, T is a partition of V (G) satisfying (Q1)–(Q9) and b = a + d for some d > 0.
Then there is a matching of size d+ 2 in E(B ∪ T,B).

Proof. Consider a maximal matching M in E(B ∪ T,B) and suppose that |M | ≤ d+ 1. Since
a+ s ≤ (n− d)/2, each vertex in B has at least d/2 inneighbours in B ∪ T . In particular, since
M was maximal, each vertex in B \ V (M) has at least d/2 inneighbours in V (M). Then there
is a v ∈ V (M) ⊆ B ∪ T with

d+B(v) ≥ (b− 2|M |)
2|M |

d

2
≥ n

20
,

contradicting (Q9). Therefore |M | ≥ d+ 2. �

We say that P is an exceptional cover of G if P ⊆ G is a copy of a subpath of C and

(EC1) P covers S ∪ T ;
(EC2) both endvertices of P are in A;
(EC3) |A \ V (P )|+ 1 = |B \ V (P )|.

We will use the following notation when describing the form of a path. If X,Y ∈ {A,B} then
we write X ∗Y for any path which alternates between A and B whose initial vertex lies in X and
final vertex lies in Y . For example, A∗A(ST )2 indicates any path of the form ABAB . . . ASTST .

Suppose that P is of the form Z1Z2 . . . Zm, where Zi ∈ {A,B, S, T}. Let Zi1 , Zi2 , . . . , Zij be
the appearances of A and B, where ij < ij+1. If Zij = A = Zij+1 , we say that Zij+1 is a repeated
A. We define a repeated B similarly. Let rep(A) and rep(B) be the numbers of repeated As and
repeated Bs, respectively. Suppose that P has both endvertices in A and P uses ` + rep(B)
vertices from B. Then P will use ` + rep(A) + 1 vertices from A (we add one because both
endvertices of P lie in A). So we have that

(3) |B \ V (P )| − |A \ V (P )| = b− a− rep(B) + rep(A) + 1.

Given a set of edges M ⊆ E(G) we define the graph GM ⊆ G whose vertex set is V (G) and
whose edge set is E(A,B ∪ S) ∪ E(B,A ∪ T ) ∪ E(T,A) ∪ E(S,B) ∪M ⊆ E(G). Informally, in
addition to the edges of M , GM has edges between two vertex classes when the bipartite graph
they induce in G is dense.

We will again split our argument into two cases depending on the number of sink vertices
in C.

6.1. Finding an exceptional cover when C has few sink vertices, σ(C) < ε4n. It is
relatively easy to find an exceptional cover when C has few sink vertices by observing that
C must contain many disjoint consistently oriented paths of length three. We can use these
consistently oriented paths to cover the vertices in S ∪ T by forward paths of the form ASB or
BTA, for example.
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Proposition 6.3. Suppose 1/n � ε3 � ε4 � 1. Let G be a digraph on n vertices with
δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying (Q1)–(Q9). If σ(C) < ε4n,
then there is an exceptional cover of G of length at most 21ε4n.

Proof. Let d := b − a. Let P be any subpath of C of length 20ε4n. Let Q be a maximum
consistent collection of disjoint paths of length three in P , such that dC(Q,Q′) ≥ 7 for all
distinct Q,Q′ ∈ Q. Then

|Q| ≥ (b20ε4n/7c − 2ε4n)/2 > 4ε3n > d+ s+ t.

If necessary, reverse the order of all vertices in C so that the paths in Q are forward paths. Apply
Proposition 6.2 to find a matchingM ⊆ E(B∪T,B) of size d and writeM = {e1, . . . , em, fm+1, . . . , fd},
where ei ∈ E(B) and fi ∈ E(T,B). Map the initial vertex of P to any vertex in A. We will
greedily find a copy of P in GM which covers M and S ∪ T as follows.

Note that, by (Q8), we can cover each edge fi ∈M by a forward path of the form BTB. By
(Q7), each of the vertices in S can be covered by a forward path of the form ASB. Similarly,
(Q8) allows us to find a forward path of the form BTA covering each vertex in T . Moreover,
note that (Q2)–(Q5) allow us to find a path of length three of any orientation between any pair
of vertices x ∈ A and y ∈ B using only edges from E(A,B) ∪ E(B,A). So we can find a copy
of P which covers every edge in M and every vertex in (S ∪ T ) \ V (M) by a copy of a path in
Q and which has the form

(A ∗BB)m(A ∗BTB)d−m(A ∗ASB)s(A ∗BT )t−d+mA ∗X,

where X ∈ {A,B}. We may assume that X = A by extending the path P by one vertex if
necessary. Let PG denote this copy of P in G.

Now (EC1) and (EC2) hold. It remains to check (EC3). Observe that PG contains no repeated
As and exactly d repeated Bs, these occur in the subpath of PG of the form (A ∗ BB)m(A ∗
BTB)d−m. By (3), we see that

|B \ V (PG)| − |A \ V (PG)| = 1,

so (EC3) is satisfied. Hence PG forms an exceptional cover. �

6.2. Finding an exceptional cover when C has many sink vertices, σ(C) ≥ ε4n. When
C is far from being consistently oriented, we use sink and source vertices to cover the vertices in
S ∪ T . A natural approach would be to try to cover the vertices in S ∪ T by paths of the form
ASA and BTB whose central vertex is a sink or by paths of the form ATA and BSB whose
central vertex is a source. In essence, this is what we will do, but there are some technical issues
we will need to address. The most obvious is that each time we cover a vertex in S or T by a
path of one of the above forms, we will introduce a repeated A or a repeated B, so we will need
to cover the exceptional vertices in a “balanced” way.

Let P be a subpath of C and let m be the number of sink vertices in P . Suppose that
P1, P2, P3 is a partition of P into internally disjoint paths such that P = (P1P2P3). We say that
P1, P2, P3 is a useful tripartition of P if there exist Qi ⊆ V (Pi) such that:

• P1 and P2 have even length;
• |Qi| ≥ bm/12c for i = 1, 2, 3;
• all vertices in Q1 ∪Q3 are sink vertices and are an even distance apart;
• all vertices in Q2 are source vertices and are an even distance apart.
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Note that a useful tripartition always exists. We say that Q1,Q2,Q3 are sink/source/sink sets
for the tripartition P1, P2, P3. We say that a subpath L ⊆ P2 is a link if L has even length and,
if, writing x for the initial vertex and y for the the final vertex of L, the paths (P2x) and (yP2)
each contain at least |Q2|/3 elements of Q2.

Proposition 6.4. Let 1/n � ε � η � τ ≤ 1. Let G be a digraph on n vertices and let
A,B, S, T be a partition of V (G). Let SA, SB be disjoint subsets of S and TA, TB be disjoint
subsets of T . Let a := |A|, b := |B|, sA := |SA|, sB := |SB|, tA := |TA|, tB := |TB| and let
a1 ∈ A. Suppose that:

(i) a, b ≥ τn;
(ii) sA, sB, tA, tB ≤ εn;

(iii) δ0(G[A,B]) ≥ ηn;
(iv) d±B(x) ≥ b− εn for all but at most εn vertices x ∈ A;

(v) d±A(x) ≥ a− εn for all but at most εn vertices x ∈ B;

(vi) d−A(x) ≥ ηn for all x ∈ SA, d+B(x) ≥ ηn for all x ∈ SB, d+A(x) ≥ ηn for all x ∈ TA and

d−B(x) ≥ ηn for all x ∈ TB.

Suppose that P is a path of length at most η2n which contains at least 200εn sink vertices. Let
P1, P2, P3 be a useful tripartition of P with sink/source/sink sets Q1,Q2,Q3. Let L ⊆ P2 be a
link. Suppose that G \ (SA ∪ SB ∪ TA ∪ TB) contains a copy LG of L which is an AB-path if
dC(P,L) is even and a BA-path otherwise. Let rA be the number of repeated As in LG and rB
be the number of repeated Bs in LG. Let G′ be the graph with vertex set V (G) and edges

E(A,B ∪ SA) ∪ E(B,A ∪ TB) ∪ E(TA, A) ∪ E(SB, B) ∪ E(LG).

Then G′ contains a copy PG of P such that:

• LG ⊆ PG;
• PG covers SA, SB, TA, TB;
• a1 is the initial vertex of PG;
• The final vertex of PG lies in B if P has even length and A if P has odd length;
• PG has sA + tA + rA repeated As and sB + tB + rB repeated Bs.

Proof. We may assume, without loss of generality, that the initial vertex of P lies in Q1. If
not, let x be the first vertex on P lying in Q1 and greedily embed the initial segment (Px) of
P starting at a1 using edges in E(A,B) ∪ E(B,A). Let a′1 be the image of x. We can then use
symmetry to relabel the sets A,B, SA, SB, TA, TB, if necessary, to assume that a′1 ∈ A.

We will use (vi) to find a copy of P which covers the vertices in SA ∪ TB by sink vertices in
Q1 ∪ Q3 and the vertices in SB ∪ TA by source vertices in Q2. We will use that |Qi| ≥ 15εn
for all i and also that (iii)–(v) together imply that G′ contains a path of length three of any
orientation between any pair of vertices in x ∈ A and y ∈ B. Consider any q1 ∈ Q1 and q2 ∈ Q2.
The order in which we cover the vertices will depend on whether dC(q1, q2) is even or odd (note
that the parity of dC(q1, q2) does not depend on the choice of q1 and q2).

Suppose first that dC(q1, q2) is even. We find a copy of P in G′ as follows. Map the initial
vertex of P to a1. Then greedily cover all vertices in TB so that they are the images of sink
vertices in Q1 using a path PG1 which is isomorphic to P1 and has the form (A ∗BTBB)tBA ∗A.
Let xL be the initial vertex of L and yL be the final vertex. Let xGL and yGL be the images of xL
and yL in LG. Cover all vertices in SB so that they are the images of source vertices in Q2 using
a path isomorphic to (P2xL) which starts from the final vertex of PG1 and ends at xGL . This path
has the form (A ∗BSBB)sBA ∗X, where X := A if dC(P,L) is even and X := B if dC(P,L) is
odd. Now use the path LG. Next cover all vertices in TA so that they are the images of source
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vertices in Q2 using a path isomorphic to (yLP2) whose initial vertex is yGL . This path has the
form Y ∗A(B ∗ATAA)tAB ∗B, where Y := B if dC(P,L) is even and Y := A if dC(P,L) is odd.
Let PG2 denote the copy of P2 obtained in this way. Finally, starting from the final vertex of
PG2 , find a copy of P3 which covers all vertices in SA by sink vertices in Q3 and has the form
(B ∗ASAA)sAB ∗B if P (and thus also P3) has even length and (B ∗ASAA)sAB ∗A if P (and
thus also P3) has odd length. If dC(q1, q2) is odd, we find a copy of P which covers TB, TA,
V (LG), SB, SA (in this order) in the same way. Observe that PG has sA + tA + rA repeated As
and sB + tB + rB repeated Bs, as required. �

We are now in a position to find an exceptional cover. The proof splits into a number of
cases and we will require the assumption that C is not antidirected. We will need a matching
found using Proposition 6.2 and a careful assignment of the remaining vertices in S ∪ T to sets
SA, SB, TA and TB to ensure that the path found by Proposition 6.4 leaves a balanced number
of vertices in A and B uncovered.

Lemma 6.5. Suppose 1/n� ε3 � ε4 � 1. Let G be a digraph on n vertices with δ0(G) ≥ n/2.
Suppose A,B, S, T is a partition of V (G) satisfying (Q1)–(Q9). If C is an oriented cycle on n
vertices, C is not antidirected and σ(C) ≥ ε4n, then there is an exceptional cover P of G of
length at most 2ε4n.

Proof. Let d := b− a, k := t− s and r := s + t. Since σ(C) ≥ ε4n, we can use an averaging
argument to guarantee a subpath Q′ of C of length at most ε4n such that Q′ contains at least
2
√
ε3n sink vertices. Let Q be an initial subpath of Q′ which has odd length and contains

√
ε3n

sink vertices.

Case 1: a < b or s < t.
We will find disjoint sets of vertices SA, SB, TA, TB, of sizes sA, sB, tA, tB respectively, and a

matching M ′ = E ∪ E′ (where E and E′ are disjoint) such that the following hold:

(E1) SA ∪ SB = S and TA ∪ TB = T \ V (E′);
(E2) E ⊆ E(B), |E| ≤ d;
(E3) E′ ⊆ E(B ∪ T,B) ∪ E(A,A ∪ T ) and 1 ≤ |E′| ≤ 2;
(E4) If p := |E′ ∩ E(B)| − |E′ ∩ E(A)|, then sA + tA + d = sB + tB + p+ |E|.

We find sets satisfying (E1)–(E4) as follows. Suppose first that n is odd. Note that we can
find a matching M ⊆ E(B∪T,B) of size d+1. Indeed, if a < b then M exists by Proposition 6.2
and if a = b, and so s < t, we use that a+ s < n/2 and δ0(G) ≥ n/2 to find M of size d+ 1 = 1.
Fix one edge e ∈M and let E′ := {e}. There are r′ := r − |V (E′) ∩ T | vertices in S ∪ T which
are not covered by E′. Set d′ := min{r′, d− p} and let E ⊆ (M \E′)∩E(B) have size d− p−d′.

Suppose that n is even. If a < b, by Proposition 6.2, we find a matching M of size d + 2 in
E(B ∪ T,B). Fix two edges e1, e2 ∈M and let E′ := {e1, e2}. Choose r′, d′ and E as above.

If n is even and a = b, then a + s = b + s = (n − k)/2 ≤ n/2 − 1. So d+A∪T (x) ≥ k/2 for

each x ∈ A and d−B∪T (x) ≥ k/2 for each x ∈ B. Either we can find a matching M of size two
in E(B ∪ T,B) ∪ E(A,A ∪ T ) or t = s + 2 and there is a vertex v ∈ T such that A ⊆ N−(v)
and B ⊆ N+(v). In the latter case, move v to S to get a new partition satisfying (Q1)–(Q9)
and the conditions of Case 2. So we will assume that the former holds. Let E′ := M , E := ∅,
r′ := r − |V (E′) ∩ T | and d′ := −p.

In each of the above cases, note that d′ ≡ r′ mod 2 and |d′| ≤ r′. So we can choose disjoint
subsets SA, SB, TA, TB satisfying (E1) such that sA + tA = (r′− d′)/2 and sB + tB = (r′+ d′)/2.
Then (E4) is also satisfied.
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We construct an exceptional cover as follows. Let L1 denote the oriented path of length two
whose second vertex is a sink and let L2 denote the oriented path of length two whose second
vertex is a source. For each e ∈ E′, we find a copy L(e) of L1 or L2 covering e. If e ∈ E(A) let
L(e) be a copy of L1 of the form AAB, if e ∈ E(B) let L(e) be a copy of L1 of the form ABB, if
e ∈ E(A, T ) let L(e) be a copy of L1 of the form ATB and if e ∈ E(T,B) let L(e) be a copy of
L2 of the form ATB. Note that for each e ∈ E′, the orientation of L(e) is the same regardless
of whether it is traversed from its initial vertex to final vertex or vice versa. This means that
we can embed it either as an AB-path or a BA-path.

Let a1 be any vertex in A and let e1 ∈ E′. Let rA and rB be the number of repeated As
and Bs, respectively, in L(e1). So rA = 1 if and only if e1 ∈ E(A), otherwise rA = 0. Also,
rB = 1 if and only if e1 ∈ E(B), otherwise rB = 0. Consider a useful tripartition P1, P2, P3 of
Q. Let L ⊆ P2 be a link which is isomorphic to L(e1). Let x denote the final vertex of Q. Using
Proposition 6.4 (with 2ε3, ε4, 1/4 playing the roles of ε, η, τ), we find a copy QG of Q covering
SA, SB, TA, TB whose initial vertex is a1. Moreover, L(e1) ⊆ QG ⊆ G{e1} ⊆ GM , the final vertex

xG of QG lies in A, QG has sA + tA + rA repeated As and sB + tB + rB repeated Bs. If |E′| = 2,
let e2 ∈ E′ \ {e1}. Let Q′′ := (xQ′). Let y be the second source vertex in Q′′ if e2 ∈ E(T,B)
and the second sink vertex in Q′′ otherwise. Let y− be the vertex preceding y on C, let y+ be
the vertex following y on C and let q := dC(x, y−). Find a path in G whose initial vertex is xG

which is isomorphic to (Q′′y−) and is of the form A ∗ A if q is even and A ∗B if q is odd, such
that the final vertex of this path is an endvertex of L(e2). Then use the path L(e2) itself. Let
Z := B if q is even and Z := A if q is odd. Finally, extend the path to cover all edges in E using
a path of the form Z ∗ B(A ∗ ABB)|E|A which is isomorphic to an initial segment of (y+Q′′).
Let P denote the resulting extended subpath of C, so Q ⊆ P ⊆ Q′. Let PG be the copy of P in
GM .

Note that (EC1) and (EC2) hold. Each repeated A in PG is either a repeated A in QG or
it occurs when PG uses L(e2) in the case when e2 ∈ E(A). Similarly, each repeated B in PG

is either a repeated B in QG or it occurs when PG uses L(e2) in the case when e2 ∈ E(B) or
when PG uses an edge in E. Substituting into (3) and recalling (E4) gives

|B \ V (PG)| − |A \ V (PG)| =b− a− (sB + tB + |E|+ |E′ ∩ E(B)|) + (sA + tA + |E′ ∩ E(A)|) + 1

=d− (sB + tB + |E|)− p+ (sA + tA) + 1 = 1.

So (EC3) is satisfied and PG is an exceptional cover.

Case 2: a = b and s = t.
If s = t = 0 then any path consisting of one vertex in A is an exceptional cover. So we will

assume that s, t ≥ 1. We say that C is close to antidirected if it contains an antidirected subpath
of length 500ε3n.

Case 2.1: C is close to antidirected.
If there is an edge e ∈ E(T,B) ∪ E(B,S) ∪ E(S,A) ∪ E(A, T ) then we are able to find an

exceptional cover in the graph G{e}. We illustrate how to do this when e = t1b1 ∈ E(T,B), the
other cases are similar. Since C is close to but not antidirected, it follows that C contains a
path P of length 500ε3n which is antidirected except for the initial two edges which are oriented
consistently. Let s1 ∈ S. If the initial edge of P is a forward edge, let P ′ be the subpath of P
consisting of the first three edges of P and find a copy (P ′)G of P ′ in G of the form A{s1}BA. If
the initial edge of P is a backward edge, let P ′ consist of the first two edges of P and let (P ′)G

be a backward path of the form B{s1}A. Let P ′′ be the subpath of P formed by removing from
P all edges in P ′. Let xG ∈ A be the final vertex of (P ′)G. Set SA := S \ {s1}, TB := T \ {t1}
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and SB, TA := ∅. Let P1, P2, P3 be a useful tripartition of P ′′. As in Case 1, let L2 denote the
oriented path of length two whose second vertex is a source. Let L ⊆ P2 be a link which is
isomorphic to L2 and map L to a path LG of the form BTA which uses the edge t1b1. We use
Proposition 6.4 to find a copy (P ′′)G of P ′′ which uses LG, covers SA ∪ TB and whose initial
vertex is mapped to xG. Moreover, the final vertex of P ′′ is mapped to A ∪ B and (P ′′)G has
sA = s − 1 repeated As and tB = t − 1 repeated Bs. Let PG be the path (P ′)G ∪ (P ′′)G.
Then PG satisfies (EC1) and we may assume that (EC2) holds, by adding a vertex in A as a
new initial vertex and/or final vertex if necessary. The repeated As and Bs in PG are precisely
the repeated As and Bs in (P ′′)G. Therefore, (3) implies that (EC3) holds and PG forms an
exceptional cover.

Let us suppose then that E(T,B)∪E(B,S)∪E(S,A)∪E(A, T ) is empty. If S = {s1}, T = {t1}
then, since δ0(G) ≥ n/2, G must contain the edge s1t1 and edges a1s1, b1t1 for some a1 ∈ A, b1 ∈
B. Since C is not antidirected but has many sink vertices we may assume that C contains a
subpath P = (uvxyz) where uv, vx, yx ∈ E(C). We use the edges a1s1, s1t1, b1t1, as well as an
additional AB- or BA-edge, to find a copy PG of P in G of the form ASTBA. The path PG

forms an exceptional cover.
If s = t = 2 and e(S) = e(T ) = 2, we find an exceptional cover as follows. Write S = {s1, s2},

T = {t1, t2}. We have that sisj , titj ∈ E(G) for all i 6= j. Note that C is not antidirected, so
C must contain a path of length six which is antidirected except for its initial two edges which
are consistently oriented. Suppose first that the initial two edges of P are forward edges. Let
a1 ∈ A be an inneighbour of s1. Note that s2 has an inneighbour in T , without loss of generality
t1. Let b1 ∈ B be an inneighbour of t2 and a2 ∈ A be an outneighbour of b1. We find a copy PG

of P which has the form ASSTTBA and uses the edges a1s1, s1s2, t1s2, t1t2, b1t2, b1a2, in this
order. If the initial two edges of P are backward, we instead find a path of the form ATTSSBA.
Note that in both cases, PG satisfies (EC1) and (EC2). PG has no repeated As and Bs and (3)
implies that (EC3) holds. So PG forms an exceptional cover.

So let us assume that s, t ≥ 2 and, additionally, e(S) + e(T ) < 4 if s = 2. There must exist
two disjoint edges e1 = t1s1, e2 = s2t2 where s1, s2 ∈ S and t1, t2 ∈ T (since δ0(G) ≥ n/2 and
E(T,B) ∪ E(B,S) ∪ E(S,A) ∪ E(A, T ) = ∅). We use these edges to find an exceptional cover
as follows. We let SA := S \ {s1, s2}, TB := T \ {t1, t2}, sA := |SA| and tB := |TB|. We use e1
and e2 to find an antidirected path PG which starts with a backward edge and is of the form

A{t1}{s1}A(B ∗ASAA)sAB ∗B{s2}{t2}B(A ∗BTBB)sBA.

The length of PG is less than 500ε3n. So, as C is close to antidirected, C must contain a subpath
isomorphic to PG. We claim that PG is an exceptional cover. Clearly, PG satisfies (EC1) and
(EC2). For (EC3), note that PG contains an equal number of repeated As and repeated Bs.
Then (3) implies that |B ∩ V (PG)| = |A ∩ V (PG)|+ 1.

Case 2.2: C is far from antidirected.
Recall that Q is a subpath of C of length at most ε4n containing at least

√
ε3n sink vertices.

Let Q be a maximum collection of sink vertices in Q such that all vertices in Q are an even
distance apart, then |Q| ≥ √ε3n/2. Partition the path Q into 11 internally disjoint subpaths
so that Q = (P1P

′
1P2P

′
2 . . . P5P

′
5P6) and each subpath contains at least 300ε3n elements of Q.

Note that each P ′i has length greater than 500ε3n and so is not antidirected, that is, each P ′i
must contain a consistently oriented subpath P ′′i of length two. At least three of the P ′′i must
form a consistent set. Thus there must exist i < j such that dC(P ′′i , P

′′
j ) is even and {P ′′i , P ′′j } is

consistent. We may assume, without loss of generality, that P ′′i , P
′′
j are forward paths and that
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the second vertex of Pi is in Q. Let P be the subpath of Q whose initial vertex is the initial
vertex of Pi and whose final vertex is the final vertex of P ′′j .

We will find an exceptional cover isomorphic to P as follows. Choose s1 ∈ S and t1 ∈ T
arbitrarily. Set SA := S \ {s1} and TB := T \ {t1}. Map the initial vertex of P to A. We find a
copy of P which maps each vertex in SA to a sink vertex in Pi and each vertex in TB to a sink
vertex in Pj . If dC(Pi, P

′′
i ) is even, P ′′i is mapped to a path L′ of the form A{s1}B and P ′′j is

mapped to a path L′′ of the form B{t1}A. If dC(Pi, P
′′
i ) is odd, P ′′i is mapped to a path L′ of

the form B{t1}A and P ′′j is mapped to a path L′′ of the form A{s1}B. Thus, if dC(Pi, P
′′
i ) is

even, we obtain a copy PG which starts with a path of the form A(B ∗ASAA)sAB ∗A, then uses
L′ and continues with a path of the form B ∗B(A ∗BTBB)tBA ∗B. Finally, the path uses L′′.
The case when dC(Pi, P

′′
i ) is odd is similar. (EC1) holds and we may assume that (EC2) holds

by adding one vertex to P if necessary. Note that PG contains an equal number of repeated As
and Bs, so (3) implies that (EC3) holds and PG is an exceptional cover. �

6.3. Finding a copy of C. Proposition 6.3 and Lemma 6.5 allow us to find a short exceptional
cover for any cycle which is not antidirected. We complete the proof of Lemma 6.1 by extending
this path to cover the small number of vertices of low degree remaining in A and B and then
applying Proposition 4.2.

Proof of Lemma 6.1. Let P be an exceptional cover of G of length at most 21ε4n, guaranteed
by Proposition 6.3 or Lemma 6.5. Let

X := {v ∈ A : d+B(v) < n/2− ε3n or d−B(v) < n/2− ε3n} and

Y := {v ∈ B : d+A(v) < n/2− ε3n or d−A(v) < n/2− ε3n}.
(Q4) and (Q5) together imply that |X ∪ Y | ≤ 2ε3n. Together with (Q3), this allows us to cover
the vertices in X ∪ Y by any orientation of a path of length at most ε4n. So we can extend P
to cover the remaining vertices in X ∪ Y (by a path which alternates between A and B). Let
P ′ denote this extended path. Thus |P ′| ≤ 22ε4n. Let x and y be the endvertices of P ′. We
may assume that x, y ∈ A \X. Let A′ := (A \V (P ′))∪{x, y} and B′ := B \V (P ′) and consider
G′ := G[A′, B′]. Note that |A′| = |B′|+ 1 by (EC3) and

δ0(G′) ≥ n/2− ε3n− 22ε4n ≥ (7|B′|+ 2)/8.

Thus, by Proposition 4.2(ii), G′ has a Hamilton path of any orientation between x and y in G.
We combine this path with P ′, to obtain a copy of C. �

7. G is ABST -extremal

In this section we prove that Theorem 1.2 holds for all ABST -extremal graphs. When G
is ABST -extremal, the sets A, B, S and T are all of significant size; G[S] and G[T ] look like
cliques and G[A,B] resembles a complete bipartite graph. The proof will combine ideas from
Sections 5 and 6.

Lemma 7.1. Suppose that 1/n � ε � ε1 � η1 � τ � 1. Let G be a digraph on n vertices
with δ0(G) ≥ n/2 and assume that G is ABST -extremal. If C is any orientation of a cycle on
n vertices which is not antidirected, then G contains a copy of C.

We will again split the proof into two cases, depending on how many changes of direction C
contains. In both cases, the first step is to find an exceptional cover (defined in Section 6) which
uses only a small number of vertices from A ∪B.
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7.1. Finding an exceptional cover when C has few sink vertices, σ(C) < ε2n. The
following lemma allows us to find an exceptional cover when C is close to being consistently
oriented. The two main components of the exceptional cover are a path PS ⊆ G[S] covering
most of the vertices in S and another path PT ⊆ G[T ] covering most of the vertices in T . We
are able to find PS and PT because G[S] and G[T ] are almost complete. A shorter path follows
which uses long runs (recall that a long run is a consistently oriented path of length 20) and a
small number of vertices from A ∪ B to cover any remaining vertices in S ∪ T . We use edges
found by Proposition 5.6 to control the number of repeated As and Bs on this path.

Lemma 7.2. Suppose 1/n � ε � ε1 � ε2 � η1 � τ � 1. Let G be a digraph on n vertices
with δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying (R1)–(R10). Let C be
an oriented cycle on n vertices. If σ(C) < ε2n, then G has an exceptional cover P such that
|V (P ) ∩ (A ∪B)| ≤ 2η21n.

Proof. Let s∗ := s − dε2ne and d := b − a. Define S′ ⊆ S to consist of all vertices x ∈ S
with d+B∪S(x) ≥ b+ s− ε1/3n and d−A∪S(x) ≥ a+ s− ε1/3n. Define T ′ ⊆ T similarly. Note that
|S \ S′|, |T \ T ′| ≤ ε1n by (R9) and (R10).

We may assume that the vertices of C are labelled so that the number of forward edges is at
least the number of backward edges. Let Q ⊆ C be a forward path of length two, this exists since
σ(C) < ε2n. If C is not consistently oriented, we may assume that Q is immediately followed
by a backward edge. Define e1, e2, e3 ∈ E(C) such that dC(e1, Q) = s∗, dC(Q, e2) = s∗ + 1,
dC(Q, e3) = 2. Let P0 := (e1Ce2).

If at least one of e1, e2 is a forward edge, define paths PT and PS of order s∗ so that P0 =
(e1PTQPSe2). In this case, map Q to a path QG in G of the form T ′AS′. If e1 and e2 are both
backward edges, our choice of Q implies that e3 is also a backward edge. Let PT and PS be
defined so that P0 = (e1PTQe3PSe2). So |PT | = s∗ and |PS | = s∗ − 1. In this case, map (Qe3)
to a path QG of the form T ′ABS′.

Let pT := |PT | and pS := |PS |. Our aim is to find a copy PG0 of P0 which maps PS to G[S]
and PT to G[T ]. We will find PG0 of the form F as given in Table 1. Let M be a set of d + 1

e1 forward forward backward backward
e2 forward backward forward backward

F B(T )pTA(S)pSB B(T )pTA(S)pSA A(T )pTA(S)pSB A(T )pTAB(S)pSA

Table 1. Proof of Lemma 7.2: PG0 has form F .

edges in E(T,B∪S)∪E(B,S) guaranteed by Proposition 5.6. We also define a subset M ′ of M
which we will use to extend PG0 to an exceptional cover. If e1, e2 are both forward edges, choose
M ′ ⊆ M of size d. Otherwise let M ′ := M . Let d′ := |M ′|. Let M ′1 be the set of all edges in
M ′ which are disjoint from all other edges in M ′ and let d′1 := |M ′1|. So M ′ \M ′1 consists of
(d′ − d′1)/2 =: d′2 disjoint consistently oriented paths of the form TBS.

We now fix copies eG1 and eG2 of e1 and e2. If e1 is a forward edge, let eG1 be a BT ′-edge,
otherwise let eG1 be a T ′A-edge. If e2 is a forward edge, let eG2 be a S′B-edge, otherwise let
eG2 be an AS′-edge. Let t1 be the endpoint of eG1 in T ′, s2 be the endpoint of eG2 in S′ and let
t2 ∈ T ′ and s1 ∈ S′ be the endpoints of QG. Let v be the final vertex of eG2 and let X ∈ {A,B}
be such that v ∈ X.

We now use (R5), (R6), (R9) and (R10) to find a collection P of at most 3ε1n + 1 disjoint,
consistently oriented paths which cover the edges in M ′ and the vertices in S \ S′ and T \ T ′.
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P uses each edge e ∈M ′1 in a forward path Pe of the form B(S ∪ T )jB for some 1 ≤ j ≤ 4 and

P uses each path in M ′ \M ′1 in a forward path of the form BT jBSj
′
B for some 1 ≤ j, j′ ≤ 4.

The remaining vertices in S \ S′, T \ T ′ are covered by forward paths in P of the form A(S)jB
or B(T )jA, for some 1 ≤ j ≤ 3.

Let S′′ ⊆ S \ (V (P) ∪ {s1, s2}) and T ′′ ⊆ T \ (V (P) ∪ {t1, t2}) be sets of size at most 2ε2n
so that |S′′| + pS = |S \ V (P)| and |T ′′| + pT = |T \ V (P)|. Note that S′′ ⊆ S′ and T ′′ ⊆ T ′.
So we can cover the vertices in S′′ by forward paths of the form ASB and we can cover the
vertices in T ′′ by forward paths of the form BTA. Let P ′ be a collection of disjoint paths thus
obtained. Let P1 be the subpath of order η21n following P0 on C. Note that P1 contains at least√
ε2n disjoint long runs. Each path in P ∪P ′ will be contained in the image of such a long run.

(Each forward path in P ∪P ′ might be traversed by PG1 in a forward or backward direction, for

example, a forward path of the form BT jBSj
′
B could appear in PG1 as a forward path of the

form BT jBSj
′
B or a backward path of the form BSj

′
BT jB.) So we can find a copy PG1 of P1

starting from v which uses P ∪ P ′ and has the form

X ∗AX1X2 . . . Xd′1
Y1Y2 . . . Yd′2Z1Z2 . . . Z`B ∗ Y

for some ` ≥ 0 and Y ∈ {A,B}, where

Xi ∈ {B(S ∪ T )jB ∗A : 1 ≤ j ≤ 4},

Yi ∈ {B(S ∪ T )jB(S ∪ T )j
′
B ∗A : 1 ≤ j, j′ ≤ 4} and

Zi ∈ {BA(S ∪ T )jB ∗A,B(S ∪ T )jA ∗A : 1 ≤ j ≤ 3}.
Let S∗ be the set of uncovered vertices in S together with the vertices s1, s2 and let T ∗ be

the set of uncovered vertices in T together with t1 and t2. Write GS := G[S∗] and GT := G[T ∗].
Now δ0(GT ) ≥ t − √ε2n ≥ 7|GT |/8 and so GT has a Hamilton path from t1 to t2 which is
isomorphic to PT , by Proposition 4.2(i). Similarly, we find a path isomorphic to PS from s1 to
s2 in GS . Altogether, this gives us the desired copy PG0 of P0 in G. Let PG := PG0 P

G
1 .

We now check that PG forms an exceptional cover. Clearly (EC1) holds and we may assume
that PG has both endvertices in A (by extending the path if necessary) so that (EC2) is also
satisfied. For (EC3), observe that PG1 contains exactly d′1 + 2d′2 = d′ repeated Bs, these occur
in the subpath of the form X1X2 . . . Xd′1

Y1Y2 . . . Yd′2 covering the edges in M ′. If e1 and e2
are both forward edges, then, consulting Table 1, we see that PG0 has no repeated As and
that there are no other repeated As or Bs in PG. Recall that in this case d′ = d, so (3) gives
|B\V (PG)|−|A\V (PG)| = d−d′+1 = 1. If at least one of e1, e2 is a backward edge, using Table 1,
we see that there is one repeated A in PG0 and there are no other repeated As or Bs in PG. In
this case, we have d′ = d+1, so (3) gives |B\V (PG)|−|A\V (PG)| = d−d′+1+1 = 1. Hence PG

satisfies (EC3) and forms an exceptional cover. Furthermore, |V (PG) ∩ (A ∪B)| ≤ 2η21n. �

7.2. Finding an exceptional cover when C has many sink vertices, σ(C) ≥ ε2n. In
Lemma 7.4, we find an exceptional cover when C contains many sink vertices. The proof will
use the following result which allows us to find short AB- and BA-paths of even length. We
will say that an AB- or BA-path P in G is useful if it has no repeated As or Bs and uses an
odd number of vertices from S ∪ T .

Proposition 7.3. Suppose 1/n � ε � ε1 � η1 � τ � 1. Let G be a digraph on n vertices
with δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying (R1)–(R10). Let L1 and
L2 be oriented paths of length eight. Then G contains disjoint copies LG1 and LG2 of L1 and L2
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such that each LGi is a useful path. Furthermore, we can specify whether LGi is an AB-path or
a BA-path.

Proof. Define S′ ⊆ S to be the set consisting of all vertices x ∈ S with d±S (x) ≥ η1n/2. Define
T ′ ⊆ T similarly. Note that |S \S′|, |T \T ′| ≤ ε1n by (R9) and (R10). We claim that G contains
disjoint edges e, f ∈ E(B ∪T, S′)∪E(A∪S, T ′). Indeed, if a+ s < n/2 it is easy to find disjoint
e, f ∈ E(B ∪ T, S′), since δ0(G) ≥ n/2. Otherwise, we must have a + s = b + t = n/2 and so
each vertex in S′ has at least one inneighbour in B ∪ T and each vertex in T ′ has at least one
inneighbour in A∪ S. Let G′ be the bipartite digraph with vertex classes A∪ S and B ∪ T and
all edges in E(B ∪ T, S′) ∪ E(A ∪ S, T ′). The claim follows from applying König’s theorem to
the underlying undirected graph of G′.

We demonstrate how to find a copy LG1 of L1 in G which is an AB-path. The argument
when LG1 is a BA-path is very similar. LG1 will have the form A ∗ B(T )i(S)j(T )kA ∗ B or
A ∗A(T )i(S)j(T )kB ∗B, for some i, j, k ≥ 0 such that i+ j + k is odd. Note then that LG1 will
have no repeated As or Bs.

First suppose that L1 is not antidirected, so L1 has a consistently oriented subpath L′ of
length two. We will find a copy of L1, using (R9)–(R10) to map L′ to a forward path of the
form ASB or BTA or a backward path of the form BSA or ATB. More precisely, if L′ is a
forward path, let LG1 be a path of the form A ∗ ASB ∗ B if dC(L1, L

′) is even and a path of
the form A ∗ BTA ∗ B if dC(L1, L

′) is odd. If L′ is backward, let LG1 be a path of the form
A ∗ATB ∗B if dC(L1, L

′) is even and a path of the form A ∗BSA ∗B if dC(L1, L
′) is odd.

Suppose now that L1 is antidirected. We will find a copy LG1 of L1 which contains e. If
e ∈ E(B,S′), we use (R9) and the definition of S′ to find a copy of L1 of the following form. If
the initial edge of L1 is a forward edge, we find LG1 of the form A(S)3B ∗B. If the initial edge
is a backward edge, we find LG1 of the form AB(S)3A ∗ B. If e ∈ E(A, T ′) we will use (R10)
and the definition of T ′ to find a copy of L1 of the following form. If the initial edge of L1 is
a forward edge, we find LG1 of the form A(T )3B ∗ B. If the initial edge is a backward edge, we
find LG1 of the form AB(T )3A ∗B.

If L1 is antidirected and e ∈ E(T, S′), we will use (R4), (R6), (R9), (R10) and the definition
of S′ to find a copy of L1 containing e. If the initial edge of L1 is a forward edge, find LG1 of the
form AB(S)2(T )2h−1A ∗B, where 1 ≤ h ≤ 2. If the initial edge is a backward edge, find LG1 of
the form A(T )2h−1(S)2B ∗B, where 1 ≤ h ≤ 2. Finally, we consider the case when e ∈ E(S, T ′).
If the initial edge of L1 is a forward edge, we find LG1 of the form AB(S)2h−1(T )2A ∗B, where
1 ≤ h ≤ 2. If the initial edge of L1 is a backward edge, we find LG1 of the form A(T )2(S)2h−1B∗B,
where 1 ≤ h ≤ 2.

We find a copy LG2 of L2 (which is disjoint from LG1 ) in the same way, using the edge f if L2

is an antidirected path. �

As in the case when there were few sink vertices, we will map long paths to G[S] and G[T ]. It
will require considerable work to choose these paths so that G contains edges which can be used
to link these paths together and so that we are able to cover the remaining vertices in S ∪ T
using sink and source vertices in a “balanced” way. In many ways, the proof is similar to the
proof of Lemma 6.5. In particular, we will use Proposition 6.4 to map sink and source vertices
to some vertices in S ∪ T .

Lemma 7.4. Suppose 1/n � ε � ε1 � ε2 � η1 � τ � 1. Let G be a digraph on n vertices
with δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying (R1)–(R10). Let C be an
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oriented cycle on n vertices which is not antidirected. If σ(C) ≥ ε2n, then G has an exceptional
cover P such that |V (P ) ∩ (A ∪B)| ≤ 5ε2n.

Proof. Let d := b − a. Define S′ ⊆ S to be the set consisting of all vertices x ∈ S with
d±S (x) ≥ η1n/2 and define T ′ ⊆ T similarly. Let S′′ := S \ S′ and T ′′ := T \ T ′. Note that

|S′′|, |T ′′| ≤ ε1n by (R9) and (R10). By (R5), all vertices x ∈ S′′ satisfy d−A(x) ≥ η1n/2 or

d+B(x) ≥ η1n/2 and, by (R6), all x ∈ T ′′ satisfy d+A(x) ≥ η1n/2 or d−B(x) ≥ η1n/2. In our proof
below, we will find disjoint sets SA, SB ⊆ S and TA, TB ⊆ T of suitable size such that

d−A(x) ≥ η1n/2 for all x ∈ SA and d+B(x) ≥ η1n/2 for all x ∈ SB;(4)

d−B(x) ≥ η1n/2 for all x ∈ TB and d+A(x) ≥ η1n/2 for all x ∈ TA.(5)

Note that (R9) implies that all but at most ε1n vertices from S could be added to SA or SB
and satisfy the conditions of (4). Similarly, (R10) implies that all but at most ε1n vertices in T
are potential candidates for adding to TA or TB so as to satisfy (5). We will write sA := |SA|,
sB := |SB|, tA := |TA| and tB := |TB|.

Let s∗ := s−d√ε1ne and let ` := 2dε2ne− 1. If C contains an antidirected subpath of length
`, let Q2 denote such a path. We may assume that the initial edge of Q2 is a forward edge by
reordering the vertices of C if necessary. Otherwise, choose Q2 to be any subpath of C of length

` such that Q2 contains at least ε
1/3
1 n sink vertices and the second vertex of Q2 is a sink. Let Q1

be the subpath of C of length ` such that dC(Q1, Q2) = 2s∗ + `. Note that if Q1 is antidirected
then Q2 must also be antidirected. Let e1, e2 be the final two edges of Q1 and let f1, f2 be the
initial two edges of Q2 (where the edges are listed in the order they appear in Q1 and Q2, i.e.,
(e1e2) ⊆ Q1 and (f1f2) ⊆ Q2). Note that f1 is a forward edge and f2 is a backward edge.

Let Q′ be the subpath of C of length 14 such that dC(Q′, Q2) = s∗. If Q′ is antidirected, let
Q be the subpath of Q′ of length 13 whose initial edge is a forward edge. Otherwise let Q ⊆ Q′
be a consistently oriented path of length two. We will consider the three cases stated below.

Case 1: Q1 and Q2 are antidirected. Moreover, {e2, f1} is consistent if and only if n is even.
We will assume that the initial edge of Q is a forward edge, the case when Q is a backward

path of length two is very similar. We will find a copy QG of Q which is a T ′S′-path. If Q
is a forward path of length two, map Q to a forward path QG of the form T ′AS′. If Q is
antidirected, we find a copy QG of Q as follows. Let Q′′ be the subpath of Q of length eight
such that dC(Q,Q′′) = 3. Recall that a path in G is useful if it has no repeated As or Bs and
uses an odd number of vertices from S ∪ T . Using Proposition 7.3, we find a copy (Q′′)G of Q′′

in G which is a useful AB-path. We find QG which starts with a path of the form T ′ABA, uses
(Q′′)G and then ends with a path of the form BAS′. Let qS and qT be the numbers of interior
vertices of QG in S and T , respectively.

If n is even, let e := e2 and, if n is odd, let e := e1. In both cases, let f := f1. The
assumptions of this case imply that e and f are both forward edges. Let P := (Q1CQ2) and
let PT and PS be subpaths of C which are internally disjoint from e, f and Q and are such that
(eCf) = (ePTQPSf). Our plan is to find a copy of PT in G[T ] and a copy of PS in G[S]. Let
pT := |PT | and pS := |PS |. If Q is a consistently oriented path we have that qS , qT = 0 and
pS + pT = dC(e, f) − 1. If Q is antidirected, then qS + qT is odd and pS + pT = dC(e, f) − 12.
So in both cases we observe that

(6) pS + pT + qS + qT ≡ dC(e, f)− 1 ≡ n mod 2.

Choose SA, SB, TA, TB to satisfy (4) and (5) so that S′′ \ V (QG) ⊆ SA ∪ SB, T ′′ \ V (QG) ⊆
TA ∪ TB, s = sA + sB + pS + qS , t = tA + tB + pT + qT and sA + tA + d = sB + tB. To see that
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this can be done, first note that the choice of s∗ implies that s− pS − qS ≥
√
ε1n/2 > |S′′|+ d

and t−pT − qT ≥
√
ε1n/2 > |T ′′|+d. Let r := s+ t− (pS +pT + qS + qT ). So r is the number of

vertices in S ∪ T which will not be covered by the copies of PT , PS or Q. Then (6) implies that

r ≡ s+ t− n ≡ d mod 2.

Thus we can choose the required subsets SA, SB, TA, TB so that sA + tA = (r − d)/2 and
sB+tB = (r+d)/2. Note that (R3) and the choice of s∗ also imply that sA+sB, tA+tB ≤ 2

√
ε1n.

Recall that Q1 is antidirected. So we can find a path (Q1e)
G isomorphic to (Q1e) which

covers the vertices in TA by source vertices and the vertices in TB by sink vertices. We choose
this path to have the form

X ∗A(BATAA ∗A)tA(BTBB ∗A)tBB ∗BT ′,

where X ∈ {A,B}. Observe that (Q1e)
G has tA repeated As and tB repeated Bs. Find a path

QG2 isomorphic to Q2 of the form

S′B ∗A(BASAA ∗A)sA(BSBB ∗A)sBB ∗B

which covers all vertices in SA by sink vertices and all vertices in SB by source vertices. QG2 has
sA repeated As and sB repeated Bs. So far, we have been working under the assumption that
Q starts with a forward edge. If Q is a backward path, the main difference is that we let e := e1
if n is even and let e := e2 if n is odd. We let f := f2 so that e and f are both backward edges
and we map Q to a backward path QG of the form T ′BS′. Then (6) holds and we can proceed
similarly as in the case when Q is a forward path.

We find copies of PT in G[T ′] and PS in G[S′] as follows. Greedily embed the first
√
ε1n

vertices of PT to cover all uncovered vertices x ∈ T ′ with d+T (x) ≤ t−ε1/3n or d−T (x) ≤ t−ε1/3n.
Note that, by (R10), there are at most ε1n such vertices. Write P ′T ⊆ PT for the subpath still
to be embedded and let t1 and t2 be the images of its endvertices in T . Let T ∗ denote the sets
of so far uncovered vertices in T together with t1 and t2 and define GT := G[T ∗]. We have that

δ0(GT ) ≥ t − ε1/3n − 3
√
ε1n ≥ 7|GT |/8, using (R2), and so we can apply Proposition 4.2(i)

to find a copy of P ′T in GT with the desired endpoints. In the same way, we find a copy of
PS in G[S′]. Together with QG, (Q1e)

G and QG2 , this gives a copy PG of P in G such that
|V (PG) ∩ (A ∪B)| ≤ 5ε2n.

The path PG satisfies (EC1) and we may assume that (EC2) holds, by extending the path
by one or two vertices, if necessary, so that both of its endvertices lie in A. Let us now verify
(EC3). All repeated As and Bs in PG are repeated As and Bs in the paths (Q1e)

G and QG2 . So
in total, PG has sA + tA repeated As and sB + tB repeated Bs. Then (3) gives that PG satisfies

|B \ V (PG)| − |A \ V (PG)| = d− (sB + tB) + (sA + tA) + 1 = 1.

So (EC3) is satisfied and PG is an exceptional cover.

Case 2: There exists e ∈ {e1, e2} and f ∈ {f1, f2} such that {e, f} is consistent and n−dC(e, f)
is even.

Let v be the final vertex of f . Recall the definitions of a useful tripartition and a link from Sec-
tion 6. Consider a useful tripartition P1, P2, P3 of (vQ2) and let Q1,Q2,Q3 be sink/source/sink
sets. Let L ⊆ P2 be a link of length eight such that dC(v, L) is even. If Q is a consistently
oriented path, use Proposition 7.3 to find a copy LG of L which is a useful BA-path if e is
forward and a useful AB-path if e is backward. Map Q to a path QG of the form T ′AS′ if Q is a
forward path and T ′BS′ if Q is a backward path. If Q is antidirected, let Q′′ be the subpath of
Q of length eight such that dC(Q,Q′′) = 3. Using Proposition 7.3, we find disjoint copies (Q′′)G
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of Q′′ and LG of L in G such that (Q′′)G is a useful AB-path and LG is as described above. We
find QG which starts with a path of the form T ′ABA, uses (Q′′)G and then ends with a path of
the form BAS′. Let qS be the number of interior vertices of QG and LG in S and let qT be the
number of interior vertices of QG and LG in T . Note that in all cases, QG is a T ′S′-path with
no repeated As or Bs.

Let P := (eCQ2) and let P0 := (eCf). Define subpaths PT and PS of C which are internally
disjoint from Q, e, f and are such that P0 = (ePTQPSf). Let pT := |PT | and pS := |PS |. Our
aim will be to find a copy PG0 of P0 which uses QG and maps PT to G[T ] and PS to G[S]. PG0
will have the form F given in Table 2. We fix edges eG and fG for e and f . If e is a forward
edge, then choose eG to be a BT ′-edge and fG to be an S′B-edge. If e is a backward edge, let
eG be a T ′A-edge and fG be an AS′-edge. We also define a constant d′ in Table 2 which will
be used to ensure that the final assignment is balanced. So, if rA and rB are the numbers of

Initial edge of Q forward forward backward backward
e forward backward forward backward

F BT pTASpSB AT pTASpSA BT pTBSpSB AT pTBSpSA

d′ d d+ 2 d− 2 d

Table 2. Proof of Lemma 7.4, Cases 2 and 3: PG0 has form F , where A denotes
an A-path with no repeated As or Bs.

repeated As and Bs in PG0 respectively, we will have rA − rB = d′ − d.
Note that

(7) pT + pS + qT + qS ≡ dC(e, f) ≡ n mod 2.

The number of vertices in S ∪ T which will not be covered by PG0 or LG is equal to r :=
s+ t− (pT + pS + qT + qS) and (7) implies that

r ≡ s+ t− n ≡ d ≡ d′ mod 2.

Also note that the choice of s∗ implies that s− pS − qS ≥
√
ε1n/2 > |S′′|+ d′ and t− pT − qT ≥√

ε1n/2 > |T ′′| + d′. Thus we can choose sets SA, SB, TA, TB satisfying (4) and (5) so that

S′′\V (QG∪LG) ⊆ SA∪SB, T ′′\V (QG∪LG) ⊆ TA∪TB, s = sA+sB+pS+qS , t = tA+tB+pT+qT
and sA + tA + d′ = sB + tB. (R3) and the choice of s∗ imply that sA + sB, tA + tB ≤ 2

√
ε1n.

Recall that v denotes the final vertex of f and let vG be the image of v in G. If vG ∈ A (i.e.,
if e is backward), let v′ := v and (v′)G := vG. If vG ∈ B, let v′ denote the successor of v on
C. If vv′ ∈ E(C), map v′ to an outneighbour of vG in A and, if v′v ∈ E(C), map v′ to an
inneighbour of vG in A. Let (v′)G be the image of v′. Then we can apply Proposition 6.4, with
2
√
ε1, η1/2, τ/2, (v

′)G playing the roles of ε, η, τ, a1, to find a copy (v′Q2)
G of (v′Q2) which starts

at (v′)G, covers SA, SB, TA, TB and contains LG. Note that we make use of (4) and (5) here.
We obtain a copy (vQ2)

G of (vQ2) (by combining vG(v′)G with (v′Q2)
G if v′ 6= v) which has

sA + tA repeated As and sB + tB repeated Bs.
We find copies of PT in G[T ] and PS in G[S] as in Case 1. Combining these paths with

(vQ2)
G, eG, QG and fG, we obtain a copy PG of P in G such that |V (PG) ∩ (A ∪ B)| ≤ 3ε2n.

The path PG satisfies (EC1) and we may assume that (EC2) holds, by extending the path if
necessary to have both endvertices in A. All repeated As and Bs in PG occur as repeated As
and Bs in the paths PG0 and (vQ2)

G so we can use (3) to see that

|B \ V (PG)| − |A \ V (PG)| = d− (sB + tB) + (d′ − d) + (sA + tA) + 1 = 1.
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Therefore, (EC3) is satisfied and PG is an exceptional cover.

Case 3: The assumptions of Cases 1 and 2 do not hold.
Recall that f1 is a forward edge and f2 is a backward edge. Since Case 2 does not hold, this

implies that e2 is a forward edge if n is even (otherwise e := e2 and f := f2 would satisfy the
conditions of Case 2) and e2 is a backward edge if n is odd (otherwise e := e2 and f := f1 would
satisfy the conditions of Case 2). In particular, since Case 1 does not hold, this in turn implies
that Q1 is not antidirected. We claim that Q1 \ {e2} is not antidirected. Suppose not. Then it
must be the case that {e1, e2} is consistent. If e1 and e2 are forward edges (and so n is even),
then e := e1 and f := f1 satisfy the conditions of Case 2. If e1 and e2 are both backward edges
(and so n is odd), then e := e1 and f := f2 satisfy the conditions of Case 2. Therefore, Q1 \{e2}
is not antidirected and must contain a consistently oriented path Q′1 of length two.

Let e := e2. If n is even, let f := f1 and, if n is odd, let f := f2. In both cases, we have
that {e, f} is consistent. Let P := (Q′1CQ2) and P0 := (ePf). Let PT and PS be subpaths of C
defined such that P0 = (ePTQPSf). Set pT := |PT | and pS := |PS |. Our aim is to find a copy
PG0 which is of the form given in Table 2. We also define a constant d′ as in Table 2. So if rA
and rB are the numbers of repeated As and Bs in PG0 respectively, then again rA− rB = d′− d.

Let v be the final vertex of f . Consider a tripartition P1, P2, P3 of (vQ2) and a link L ⊆ P2 of
length eight such that dC(v, L) is even. Proceed exactly as in Case 2 to find copies QG and LG

of Q and L. Use (R4), (R9) and (R10) to fix a copy (Q′1Ce)
G of (Q′1Ce) which is disjoint from

QG and LG and is of the form given in Table 3. Note that the interior of (Q′1Ce)
G uses exactly

Q′1 forward forward backward backward
dC(Q′1, e) odd even odd even

Form of (Q′1Ce)
G

if e is forward
BTA ∗BT ′ ASB ∗BT ′ BSA ∗BT ′ ATB ∗BT ′

Form of (Q′1Ce)
G

if e is backward
ASB ∗AT ′ BTA ∗AT ′ ATB ∗AT ′ BSA ∗AT ′

Table 3. Form of (Q′1Ce)
G in Case 3.

one vertex from S ∪ T and (Q′1Ce)
G has no repeated As or Bs. Write (Q′1)

G for the image of
Q′1. We also fix an edge fG for the image of f which is disjoint from QG, LG and (Q′1Ce)

G and
is an S′B-edge if e is forward and an AS′-edge if e is backward. Let qS be the number of interior
vertices of QG, LG and (Q′1)

G in S and let qT be the number of interior vertices of QG, LG and
(Q′1)

G in T .
Note that pS+pT +qS+qT ≡ dC(e, f)−1 ≡ n mod 2. Using the same reasoning as in Case 2,

we find sets SA, SB, TA, TB satisfying (4) and (5) such that S′′ \V (QG∪LG∪ (Q′1)
G) ⊆ SA∪SB,

T ′′ \ V (QG ∪ LG ∪ (Q′1)
G) ⊆ TA ∪ TB, s = sA + sB + pS + qS , t = tA + tB + pT + qT and

sA + tA + d′ = sB + tB. (R3) and the choice of s∗ imply that sA, tA, sB, tB ≤ 2
√
ε1n. Recall

that v denotes the final vertex of f . Similarly as in Case 2, we now use Proposition 6.4 to find
a copy (vQ2)

G of (vQ2) which covers SA, SB, TA, TB, contains LG and has sA + tA repeated As
and sB + tB repeated Bs.

We find copies of PT in G[T ] and PS in G[S] as in Case 1. Together with (Q′1Ce)
G, QG, fG

and (vQ2)
G, these paths give a copy PG of P in G such that |V (PG) ∩ (A ∪ B)| ≤ 5ε2n. The

path PG satisfies (EC1) and we may assume that (EC2) holds, by extending the path so that
both endvertices lie in A if necessary. All repeated As and Bs in PG occur as repeated As and
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Bs in the paths PG0 and (vQ2)
G, so we can use (3) to see that

|B \ V (PG)| − |A \ V (PG)| = d− (sB − tB)− (d− d′) + (sA + tA) + 1 = 1.

So (EC3) is satisfied and PG is an exceptional cover. �

7.3. Finding a copy of C. As we did in the AB-extremal case, we will now use an exceptional
cover to find a copy of C in G.

Proof of Lemma 7.1. Apply Lemma 7.2 or Lemma 7.4 to find an exceptional cover P of
G which uses at most 2η21n vertices from A ∪ B. Let P ′ be the path of length

√
ε1n following

P on C. Extend P by a path isomorphic to P ′, using this path to cover all x ∈ A such
that d+B(x) ≤ b − ε1/3n or d−B(x) ≤ b − ε1/3n and all x ∈ B such that d+A(x) ≤ a − ε1/3n or

d−A(x) ≤ a−ε1/3n, using only edges in E(A,B)∪E(B,A). Let P ∗ denote the resulting extended
path.

We may assume that both endvertices a1, a2 of P ∗ are in A and also that d±B(ai) ≥ b− ε1/3n
(by extending the path if necessary). Let A∗, B∗ denote those vertices in A and B which have
not already been covered by P ∗ together with a1 and a2 and let G∗ := G[A∗, B∗]. We have that
|A∗| = |B∗| + 1 and δ0(G∗) ≥ a − 3η21n ≥ (7|B∗| + 2)/8. Then G∗ has a Hamilton path of any
orientation with the desired endpoints by Proposition 4.2(ii). Together with P ∗, this gives a
copy of C in G. �
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