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Abstract

We extend the basic theory concerning the cycle space of a finite graph
to arbitrary infinite graphs, using as infinite cycles the homeomorphic
images of the unit circle in the graph together with its ends. We charac-
terize the spanning trees whose fundamental cycles generate the cycle
space, and prove infinite analogues to the standard characterizations
of finite cycle spaces in terms of edge-decomposition into single cycles
and orthogonality to cuts.

1 Introduction

One of the basic and well-known facts about finite graphs is that their funda-
mental cycles Ce (those consisting of a chord e = xy on some fixed spanning
tree T together with the path xTy joining the endvertices of e in T ) generate
their entire cycle space: every cycle of the graph can be written as a sum
mod 2 of fundamental cycles. Answering a question of Richter, we obtained
in [5] a generalization of this fact to locally finite infinite graphs and a nat-
ural notion of infinite cycles. Our approach was to consider the compact
topological space G of G together with its ends, and to define a circle in G
as a homeomorphic image in G of the unit circle. Thus every finite cycle of
G is a circle in G, but G can also have infinite circles, i.e. circles containing
infinitely many edges. It turns out that it makes sense to define a cycle of G
to be the set of edges contained in a circle in G, and hence we may extend
the definition of the cycle space of a finite graph to infinite graphs in a way
that allows for both infinite (topological) cycles and infinite sums (mod 2)
of these cycles.

The main result of [5] is that for suitable spanning trees of a locally
finite graph (namely, for its end-faithful spanning trees) all the cycles are
generated by the (finite) fundamental cycles. The same result is true also
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for the other elements of the cycle space, those that are non-trivial sums of
cycles. (This does not follow trivially for infinite sums.)

Our first aim in this paper is to prove similar results for arbitrary infinite
graphs: we shall characterize the spanning trees whose fundamental cycles
generate every cycle (Section 3) or the entire cycle space (Section 4).

Our second main aim will be to extend to infinite graphs – and infinite
cycles – two further standard results about finite cycle spaces: that every
element of the cycle space of a graph is an edge-disjoint union (rather than
just a sum) of cycles, and that a subgraph is an element of the cycle space if
and only if it meets every cut in an even number of edges. These two results
will be proved in Section 5, which uses a couple of lemmas from Section 4
but can otherwise be can be read independently of Sections 3 and 4.

We remark that, for some graphs, it is possible to strengthen our results
by allowing certain infinite sums in the definition of the cycle space that
cannot be allowed in general (and will therefore be disallowed in this paper):
sums where every edge lies in at most finitely many summands but some
vertices may lie in infinitely many. Those extensions require adjustments to
the end set of the underlying graph and its topology: only its ‘topological
ends’ (see [7]) are added as new ‘points at infinity’, while rays from other
ends converge to certain vertices. See [6] for details.

2 Basic facts and terminology

The terminology we use is that of [2], and we assume familiarity with [5].
We shall freely view a graph either as a combinatorial object or as the
topological space of a 1-complex. So every edge is homeomorphic to the real
interval [0, 1], the basic open sets around an inner point being just the open
intervals on the edge. The basic open neighbourhoods of a vertex x are the
unions of half-open intervals [x, z), one from every edge [x, y] at x; note that
we do not require local finiteness here.

A homeomorphic image (in the subspace topology) of the unit interval in
a topological space X will be called an arc in X; a homeomorphic image of
the unit circle in X is a circle in X. When A is an arc in X, we denote the
set of all inner points of A by Å. Similarly, when E is a set of edges, we
write E̊ for the set of all inner points of edges in E. The following lemma
can be proved by elementary topological arguments.

Lemma 2.1 Every arc in G between two vertices is a graph-theoretical path.
If X is an open subset of G, then the set of points in X that can be reached
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by an arc in X from a fixed point x ∈ X is open. The topological components
of X coincide with its arc-connected components. �

Given a spanning tree T in a graph G, every edge e ∈ E(G) \ E(T ) is a
chord of T , and the unique cycle Ce in T + e is a fundamental cycle with
respect to T . A rooted spanning tree T of G is normal if the endvertices of
every edge of G are comparable in the tree order induced by T . Countable
connected graphs have normal spanning trees, but not all uncountable ones
do; see [8] for details. We will use the following simple lemma, a proof can
be found in [9].

Lemma 2.2 Let x1, x2 ∈ V (G), and let T be a normal spanning tree of G.
For i = 1, 2 let Pi denote the path in T joining xi to the root of T . Then
V (P1) ∩ V (P2) separates x1 from x2 in G. �

We refer to 1-way infinite paths as rays, to 2-way infinite paths as double
rays, and to the subrays of rays or double rays as their tails. If we consider
two rays in a graph G as equivalent if no finite set of vertices separates them
in G, then the equivalence classes of rays are known as the ends of G. (The
grid, for example, has one end, and the binary tree has continuum many;
see [3] for more background.) We shall write G for the union of G (viewed
as a space, i.e. a set of points) and the set of its ends.

Given an end ω and a finite set S of vertices of G, there is exactly one
component C = CG(S, ω) of G − S which contains a tail of every ray in ω.
We say that ω belongs to C. Let CG(S, ω) denote the union of C := CG(S, ω)
with the set of all ends of G belonging to C. Write EG(S, ω) for the set of all
edges between S and C in G. Let Top denote the topology on G generated
by the open sets of the 1-complex G and all sets of the form

ĈG(S, ω) := CG(S, ω) ∪ E̊′
G(S, ω) ,

where E̊′
G(S, ω) is any union of half-edges (x, y] ⊂ e, one for every e ∈

EG(S, ω), with x ∈ e̊ and y ∈ C. So for each end ω, the sets ĈG(S, ω) with
S varying over the finite subsets of V (G) are the basic open neighbourhoods
of ω.

Throughout this paper we assume that G is endowed with Top. Thus G
is a Hausdorff space in which every ray converges to the end that contains
it. The following lemma summarizes some properties of arcs and circles
in G. The proof of the first part (for circles) can be found in [5, Lemma 4.3],
the remainder can be proved by elementary (though not completely trivial)
topological arguments.
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Lemma 2.3 For every arc A and every circle C in G the sets A ∩ G and
C∩G are dense in A and C, respectively. Moreover, every arc A in G whose
endpoints are vertices or ends, and every circle C in G, includes every edge
of G of which it contains an inner point. If x is a vertex in Å (respectively
on C), then A (respectively C) contains precisely two edges of G at x. �

By Lemma 2.3 every circle in G ‘has’ a well-defined set of edges, and it can
be recovered from those edges as their closure in G. It therefore makes sense
to define a cycle in G as a subgraph consisting of all the edges contained in
a given circle in G (and the vertices incident with those edges). Cycles are
always countable subgraphs, because every edge on a circle contains a point
that corresponds to a rational point on the unit circle. Moreover, every cycle
is clearly 2-regular, and therefore either a finite cycle or a disjoint union of
double rays.

In [5] we define the cycle space of a locally finite graph G essentially as
the set of those sums

∑
i∈I Ci of cycles Ci of G for which no edge of G occurs

in Ci for infinitely many indices i (where
∑

i∈I Ci denotes the subgraph of
G consisting of those edges that lie in Ci for an odd number of indices i). In
fact, in [5] we just considered the edge sets of cycles and their sums, rather
than the cycles themselves. In the presence of infinite degrees however, we
shall also have to take account of multiplicities of vertices if we want at least
some spanning trees to exist whose fundamental cycles generate the cycle
space. Indeed, let G be the graph obtained from two distinct vertices v
and w by adding new vertices x1, x2 . . . and joining them to both v and w.
Then the path P = vx1w is a well-defined sum of finite cycles according to
the above definition (and hence an element of the cycle space), but there
is no spanning tree T of G whose fundamental cycles sum to P : any such
sum would consist of infinitely many fundamental cycles each containing v
and w, and so the two edges of the path vTw would lie in infinitely many
summands (contradiction). Hence there is no spanning tree of G for which
the fundamental cycles generate its cycle space.

To overcome this problem we sharpen the requirements on the sums mak-
ing up the cycle space, as follows. Call a family (Gi)i∈I of subgraphs of a
graph G thin if no vertex of G lies in Gi for infinitely many i. Let the sum∑

i∈I Gi of this family be the subgraph of G consisting of all edges that lie
in Gi for an odd number of indices i (and the vertices incident with these
edges), and let the cycle space C(G) of G be the set of all sums of (thin
families of) cycles. Then C(G) is closed under finite sums, and we shall see
in Section 5 that it is even closed under infinite sums. Moreover, if G is
finite then this definition is compatible with the standard one (except that
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we now consider subgraphs of G rather than edge sets). Similarly, if G is
locally finite then our definition reduces to that given in [5].

We shall frequently use the following standard lemma about infinite graphs;
the proof is not difficult and is included in [4, Lemma 1.2].

Lemma 2.4 Let U be an infinite set of vertices in a connected graph G.
Then G contains either a ray R with infinitely many disjoint U–R paths or
a subdivided star with infinitely many leaves in U . �

Let H be a subgraph of G. Then every end ω of H is a subset of a unique
end ω′ of G. The map πHG : H → G which is the identity on H and sends
every end ω of H to the end ω′ of G containing it, is called the canonical
projection of H to G. Note that πHG is continuous.

H is called end-faithful in G if πHG maps the ends of H bijectively to
the ends of G, i.e. if every end of G contains rays from exactly one end
of H. H is end-respecting in G if πHG is injective. Lemma 2.4 implies that
end-respecting spanning subgraphs of locally finite graphs are end-faithful,
but this is not true in general. We remark that normal spanning trees are
end-faithful, with π−1 (as well as π) continuous [3].

Let us call H separation-faithful in G if a finite set S ⊆ V (H) of vertices
never separates two vertices of H − S in H unless it also separates these
two vertices in G. (Note that the converse always holds trivially.) In other
words, for every finite S ⊆ V (H) the components of H −S are precisely the
intersections of H with the components of G−S. If H is separation-faithful
in G then, clearly, it is end-respecting. In fact, it is as close to end-faithful as
its size allows, representing all the ends of G to which its vertices converge:

Lemma 2.5 Let H be a separation-faithful subgraph of G. Then

(i) πHG is a topological embedding, ie. πHG is injective and π−1
HG (as well

as πHG) is continuous;

(ii) πHG(H) is closed in G.

Proof. (i) is straightforward.
(ii) Let ω be a point in the closure of πHG(H) in G; we wish to show that

ω ∈ πHG(H). Since πHG is the identity on H, we may assume that ω is an
end; let R ⊆ G be a ray from ω. We shall construct a ray Q ∈ ω in H; then
πHG will map the end of Q in H to ω, as desired.

We start by constructing a countably infinite set P of disjoint H–R paths
in G (possibly trivial); recall that an H–R path meets H and R only in its
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first and last vertex, respectively. This can be done inductively: having
picked finitely many such paths, let S be the union of their vertex sets and
recall that, since ω lies in the closure of πHG(H), the basic open neighbour-
hoods ĈG(S, ω) of ω have a point (and hence a vertex) in H. We can then
find our next H–R path in C.

Having completed the construction of P, we let G′ denote the union of R
and all the paths in P. Given vertices x ∈ R and y ∈ G′, we say that y lies
above x (and x below y) if y lies in the unique infinite component of G′ − x.
Similarly, if x ∈ P ∈ P and y ∈ G′, then y lies above x (and x below y)
if y lies in the unique infinite component of G′ − P . So only vertices lying
on a common path in P are incomparable with respect to this relation; in
particular, the vertices in H ∩G′ form an infinite increasing chain.

Pick any vertex x0 ∈ H ∩ G′, and set Q0 := {x0}. We shall now define
paths Q1, Q2, . . . in H such that, for all i ≥ 1, Qi meets G′ in its endvertices
but in no other vertex, Qi starts at the last vertex xi−1 of Qi−1, is otherwise
disjoint from Q0∪ . . .∪Qi−1, and ends at a vertex xi ∈ G′ above xi−1. Then
all the Qi together will form a ray Q ⊆ H which meets G′ infinitely often,
and which is therefore equivalent to R.

So let i ≥ 0 and suppose that we have already constructed Q0, . . . , Qi.
Let S be the union of V (Q1 ∪ . . . ∪Qi) \ {xi} with the set of all vertices in
H ∩G′ below xi. By the properties assumed for Q1, . . . , Qi all of S ∩G′ lies
below xi, so xi lies in the same component of G′−S ⊆ G−S as the (infinitely
many) vertices of H∩G′ above it. Since H is separation-respecting, the same
is true in H − S. So H − S contains a path from xi to another vertex of G′

which we may choose as Qi+1. �

When H ⊆ G is separation-faithful, then Lemma 2.5 (i) says that we
may think of H as a subspace of G; in particular, circles in H remain circles
in G. (When H is not separation-faithful this will normally fail, as πHG may
identify distinct ends on an H-circle into a single end of G.) Lemma 2.5 (ii),
on the other hand, implies the converse: any circle in G whose edges all lie
in H will already be a circle in H, ie. H contains all the required ends too.
Let us note these observations formally for later use:

Corollary 2.6 Let H be a separation-faithful subgraph of G.

(i) If C is a circle in H then πHG(C) is a circle in G.

(ii) If C is a circle in G and C ∩G ⊆ H, then π−1
HG(C) is a circle in H.

(iii) The cycles of H are precisely the cycles of G that are subgraphs of H.
In particular, C(H) ⊆ C(G).
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Proof. (i) is immediate from Lemma 2.5 (i).
(ii) By Lemma 2.3, C is the closure of C ∩ G in G. Since C ∩ G ⊆ H,

this implies that C lies in the closure of H = πHG(H) in G, which by
Lemma 2.5 (ii) is (contained in) πHG(H). So C ⊆ πHG(H), and thus π−1

HG(C)
is well-defined; it is a circle in H by Lemma 2.5 (i).

(iii) The first assertion follows from (i) and (ii) together with the fact
that πHG is the identity on H and maps ends to ends. The second assertion
follows. �

Lemma 2.7 Every countable subgraph G′ of G can be extended to a count-
able separation-faithful subgraph of G.

Proof. Let us define a sequence H0 ⊆ H1 ⊆ . . . of countable subgraphs
of G, as follows. Put H0 := G′. Let Hi+1 be a graph obtained from Hi

by adding, for every finite set S ⊆ V (Hi) and for every pair of distinct
components D1, D2 of Hi − S that are contained in a common component
D of G− S, a D1–D2 path in D. Clearly if Hi is countable then so is Hi+1,
and hence H :=

⋃
i∈N

Hi too is countable.
Let us show that H is separation-faithful. Suppose on the contrary that

for some finite S ⊆ V (H) there are vertices x1, x2 ∈ H−S that are separated
by S in H but not in G. Let j be large enough that Hj contains both x1

and x2 as well as S. Then x1, x2 belong to distinct components D1, D2 of
Hj −S but to a common component D of G−S, so D1∪D2 ⊆ D. Hence by
construction, Hj+1 ⊆ H contains an x1–x2 path avoiding S, contradicting
the choice of x1 and x2. �

Since an infinite cycle C in a graph G is just a disjoint union of rays,
it is never a cycle in itself, ie. in the graph C. A standard application of
Corollary 2.6 and Lemma 2.7, however, will be that C is a cycle in some
countable subgraph of G:

Lemma 2.8 For every cycle C in a graph G there exists a countable sub-
graph H of G such that C is a cycle in H.

Proof. Recall that cycles are countable subgraphs. By Lemma 2.7, G has
a countable separation-faithful subgraph H such that C is a subgraph of H.
By Corollary 2.6 (iii), C is also a cycle in H. �
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When we consider spanning trees, the following observation from [5] shows
that we shall want those to be end-respecting: any other spanning tree T
would contain an infinite cycle, which – apart from being counterintuitive –
could not be a sum of fundamental cycles. (Clearly, in any such sum each
fundamental cycle present could be taken to occur exactly once, but then
the sum would contain its chord and hence not lie in T .)

Lemma 2.9 Let T be a spanning tree of a graph G, and assume that T
contains no infinite cycle of G. Then T is end-respecting.

Proof. Suppose T contains two rays from a common end ω of G which are
inequivalent in T . Then these rays can be chosen so as to meet precisely in
their common first vertex. Their union C and ω together then form a circle
in G, and so C ⊆ T is a cycle. �

3 The generating theorem for cycles

In this section we characterize the spanning trees of a graph G whose fun-
damental cycles generate every cycle of G.

z x0

y1

R

T

Q

ω

Figure 1: The infinite cycle R ∪Q is not a sum of fundamental cycles

In [5] we showed that if G is locally finite, then these are precisely its end-
respecting (equivalently: end-faithful) spanning trees. In general, however,
this need not be true. Consider the graph G obtained from two rays R =
x0x1x2 . . . and Q = x0y1y2 . . . that meet only in their first point x0 by
adding the edges xiyi for all i ≥ 1, and adding a new vertex z joined to
all the xi (Fig. 1). Then R and Q belong to the same end ω of G. Thus
R ∪ Q ∪ {ω} is a circle in G, and so R ∪ Q is a cycle in G. But if T is the
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spanning tree of G consisting of Q together with all edges at z, then T is
end-respecting (even end-faithful), but R ∪ Q is not a sum of fundamental
cycles: since all these contain z, any sum of them would have to be finite.

The above example motivates the consideration of the following subclass
of the end-respecting spanning trees.

Definition Given a graph G, let T (G) denote the class of all end-respecting
spanning trees T of G which do not contain a subdivided infinite star S
whose leaves lie on a ray R ⊆ G such that G contains another ray R′ which
is equivalent to but disjoint from R.

Note that there are graphs G for which T (G) is empty; Kℵ1 and Kℵ0,ℵ1

are obvious examples. On the other hand, using Lemma 2.2 one can easily
show that T (G) contains every normal spanning tree of G. We do not know
whether there are graphs G for which T (G) is non-empty but which have
no normal spanning tree.

Theorem 3.1 Let T be a spanning tree of G. Every cycle of G is the sum
of fundamental cycles if and only if T ∈ T (G).

For the proof of this theorem we first need some lemmas.

Lemma 3.2 Given any spanning tree T of G, every finite cycle C of G is
the sum of fundamental cycles. More precisely, C is equal to the sum Z of
all the fundamental cycles Ce with e ∈ E(C) \ E(T ).

Proof. Clearly C+Z is a finite subgraph of T with all degrees even. Hence
C + Z = ∅, i.e. C = Z. �

Lemma 3.3 Let T be a spanning tree of G, let Z be a sum of fundamental
cycles, and let D be a set of finite cycles in Z ∪ T . If no two elements of D
share an edge outside T , then D is thin.

Proof. Suppose that x is a vertex that lies on infinitely many cycles D ∈
D. By Lemma 3.2, each of these D is a sum of fundamental cycles Ce

with e ∈ E(D) \ E(T ), so x lies on some Ce with e ∈ E(D) \ E(T ). By
assumption these edges e differ for different D, so x lies on infinitely many
Ce. As each e lies in Z, all these Ce are among the fundamental cycles whose
sum is Z (indeed, Z must be the sum of the fundamental cycles Ce with
e ∈ E(Z) \ E(T )), which contradicts the definition of sum. �
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Lemma 3.4 Let A be an arc in G, and let x �= y be vertices on A. Let X
be a closed subset of G which avoids the subarc of A between x and y. Then
G contains an x–y path P with P ∩X = ∅.
Proof. Let A′ be the subarc of A between x and y. Choose a cover N of A′

by basic open sets of G each avoiding X. As A′ is compact, N contains a
finite subcover of A′, {N1, . . . , Nk} say, where we may assume that N	∩A′ �=
∅ for all �.

Let us show that H := (N1∪· · ·∪Nk)∩G is a connected subspace of G. If
not, then H is the union of two disjoint non-empty open subsets H1 and H2

of H. Since each N	 is a basic open set, N	∩G is connected and hence lies in
either H1 or H2. Let U1 be the union of all N	 with N	∩G ⊆ H1, and define
U2 similarly. Since two N	 cannot share an end if their intersections with G
are disjoint, U1 and U2 are disjoint. Thus A′ is the union of the two disjoint
non-empty open sets A′ ∩ U1 and A′ ∩ U2, contradicting its connectedness.

So H is connected. Lemma 2.1 together with the fact that H contains
both x and y imply that H also contains a (graph-theoretical) path P be-
tween these two vertices. Clearly, P is as required. �

An orientation of an arc A is a linear ordering of its points which is
induced by a homeomorphism σ : [0, 1] → A (i.e. if a, b ∈ A then a < b if
σ−1(a) < σ−1(b) in [0, 1]). Given an oriented arc #A and a ∈ A, we will refer
to the points b ∈ A with b < a as the points left of a, and analogously we
will speak of points to the right of a. We write a #A for the (oriented) subarc
of A consisting of all the points a′ ≥ a, and define #Aa and a #Ab analogously.
A sequence (ei)∞i=1 of distinct edges or vertices on A is monotone if there is
an orientation of A such that each ei lies between ei−1 and ei+1, i.e. on the
right of ei−1 and on the left of ei+1. A sequence (ei)∞i=1 of distinct edges or
vertices on a circle C is monotone if there is a subarc A of C containing each
ei and (ei)∞i=1 is monotone on A. An orientation of C is a choice of one of
the two orientations of every arc A ⊆ C such that all these orientations are
compatible on their intersections. Given an oriented circle #C and a, b ∈ C
with a �= b we define a#Cb to be the (oriented) subarc of C between a and b.

Lemma 3.5 Let A be an arc in G. Let (ei)∞i=1 and (fi)∞i=1 be monotone
sequences of distinct edges on A converging from different sides to an end ω
of G lying on A. Then ω contains two disjoint rays R and R′ such that R
contains every ei while R′ contains every fi.

Proof. First fix an orientation of A. We may assume that (ei)∞i=1 converges
to ω from the left, and (fi)∞i=1 converges to ω from the right. Let ei =: x1

ix
2
i
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and fi =: y1
i y

2
i where x1

i lies on the left of x2
i and y1

i lies on the right of
y2

i . Let Ai := x2
i
#Ax1

i+1 and A′
i := #Ax1

1 ∪ x2
i+1

#A, and let Bi := y1
i+1

#Ay2
i and

B′
i := y1

1
#A ∪ #Ay2

i+1.
We will construct the rays R and R′ inductively, extending in each step

the initial segments of R and R′ already defined. Thus suppose that for
some i ≥ 0 we have constructed finite disjoint paths Ri and R′

i which are
empty if i = 0, and for i > 0 are such that Ri joins x2

1 to x1
i+1, contains each

ej with 1 < j ≤ i and avoids A′
i, while R′

i joins y2
1 to y1

i+1, contains each fj

with 1 < j ≤ i and avoids B′
i.

Let us now extend Ri and R′
i. By Lemma 3.4 there is an x2

i+1–x
1
i+2

path P in G which avoids the closed set Ri ∪ R′
i ∪ A′

i+1. Put Ri+1 :=
Riei+1P . Applying Lemma 3.4 again, we find a yi+1

2 –yi+2
1 path P ′ which

avoids Ri+1 ∪R′
i ∪B′

i+1. Put R′
i+1 := R′

ifi+1P
′. Continuing inductively, we

obtain rays R :=
⋃∞

i=1 Ri and R′ :=
⋃∞

i=1 R
′
i. But then e1R and f1R

′ are as
required. �

Lemma 3.6 Let T be a spanning tree of G, and let T1, T2 be subtrees of
T with finite intersection. Suppose that G has an end ω which, for each
i = 1, 2, contains disjoint rays Ri and R′

i such that Ri has infinitely many
vertices in Ti. Then T /∈ T (G).

Proof. For i = 1, 2, apply Lemma 2.4 to Ti with U := V (Ri ∩ Ti). If the
lemma returns a star in one of the Ti then T /∈ T (G) by definition of T (G).
But if it returns a ray in each Ti then both these rays lie in ω, and so T is
not end-respecting. Thus again T /∈ T (G). �

We will also need the following lemma from elementary topology [10,
p. 208]. A continuous image of [0, 1] in a topological space X is a (topolog-
ical) path in X; the images of 0 and 1 are its endpoints.

Lemma 3.7 Every path with distinct endpoints x, y in a Hausdorff space
X contains an arc in X between x and y. �

Proof of Theorem 3.1. To prove the forward implication, suppose that
T /∈ T (G). By Lemma 2.9 and the remark preceding it we may assume that
T is end-respecting. Thus there are disjoint equivalent rays R and R′ in G
such that T contains a subdivision S of an infinite star whose leaves lie on
R. Clearly, we may assume that R meets S only in its leaves. Let ω be the
end of G containing R and R′. Let P = x . . . x′ be an R–R′ path in G. Let
C ′ be the circle in G consisting of ω together with P , xR and x′R′. Let C
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be the cycle of C ′. Thus C = P ∪xR∪x′R′. Let D be the (infinite) set of all
finite cycles which consist of a finite subpath of xR between two consecutive
leaves of S on xR together with the path in S joining these leaves. Then
D is not thin, since the centre of S lies in all cycles in D. Lemma 3.3 now
implies that C cannot be a sum of fundamental cycles, as required.

To prove the converse implication, we now assume that T ∈ T (G). Let
C be a cycle of G; we shall prove that C is the sum of all the fundamental
cycles Ce of T with e ∈ C. Let C denote the set of these Ce. Let C ′ be
the defining circle of C, let C ′′ be the unit circle, and let σ : C ′′ → C ′ be a
homeomorphism.

We first show that C is a thin family. Suppose not, and let x be a vertex
that lies on Ce for infinitely many chords e of T on C. Since C ′ is compact,
these edges e have an accumulation point ω on C ′ (which must be an end),
and we may choose a monotone sequence e1, e2, . . . from among these edges
that converges to ω. Since x ∈ Cei , the endvertices of ei never lie in the same
component of T − x. Partitioning the components of T − x suitably into
two sets, we may write T as the union of two subtrees T1 and T2 that meet
precisely in x and are joined by infinitely many ei. Applying Lemma 3.5 to
a suitable subarc of C ′ containing all the ei as well as a monotone sequence
of edges on C ′ converging to ω from the other side, we obtain disjoint rays
R and R′ both belonging to ω and such that R contains every ei. Then R
meets both T1 and T2 infinitely often, and we may apply Lemma 3.6 with
R1 := R =: R2 and R′

1 := R′ =: R′
2 to conclude that T /∈ T (G), contrary to

our assumption.
It remains to prove that the cycles in C sum to C. We thus have to show

that an edge f of G lies on an odd number of the cycles in C if and only if
f ∈ C. This is clear when f is a chord of T (and Cf is a fundamental cycle),
so we assume that f ∈ T . Let G1 and G2 be the subgraphs of G induced
by the components of T − f , and let Ef be the set of all G1–G2 edges of G
(including f). Note that the edges e �= f in Ef are precisely the chords e of
T with f ∈ Ce. As C is thin, C contains only finitely many edges from Ef .

Let us show that the number of edges of C in Ef is even. Since σ is a
homeomorphism, C ′′ \σ−1(E̊f ∩C) consists of finitely many closed intervals,
I1, . . . , Ik say. Since each σ(Ii) ⊆ C ′ is path-connected, it suffices to show
that G1 and G2 belong to different path-components X1 and X2 of G \ E̊f :
then each σ(Ii) lies inside either X1 or X2, and thus E(C) ∩ Ef is even.
Suppose then that G1 and G2 are contained in the same path-component of
G \ E̊f . By Lemma 3.7, there is an arc A in G \ E̊f from a vertex of G1 to
one in G2. Let ω be the supremum of the points on A that lie in G1; this
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can only be an end. Choose monotone edge sequences (ei)∞i=1 and (fi)∞i=1

on A with all ei in G1 and all fi in G2, and so that (ei)∞i=1 and (fi)∞i=1

converge to ω from different sides. Apply Lemma 3.5 to obtain disjoint rays
R and R′ in ω such that R contains every ei while R′ contains every fi. Now
Lemma 3.6 applied with R1 := R =: R′

2 and R2 := R′ =: R′
1 implies that

T /∈ T (G), a contradiction.
So we have proved that C contains an even number of edges from Ef .

As f ∈ Ef , this means that f ∈ C if and only if C contains an odd number
of the edges e �= f from Ef , which it does if and only if f lies on an odd
number of fundamental cycles Ce ∈ C. �

4 Generating arbitrary elements of the cycle space

In this section we characterize the spanning trees whose fundamental cycles
generate not only each individual cycle but the entire cycle space of an
arbitrary graph. It turns out that these include all normal spanning trees.
We shall need this fact in the proof of our characterization theorem below,
so let us prove it first:

Lemma 4.1 Let G be a graph with a normal spanning tree T . Then every
element Z of the cycle space of G is the sum of fundamental cycles.

Proof. Write Z as the sum
∑

i∈I Zi of cycles of G. Since T (G) contains
the normal spanning tree T , Theorem 3.1 implies that each Zi is a sum∑

j∈Ji
Cj

i of fundamental cycles. We may assume that the Cj
i are distinct

for different j ∈ Ji. To prove the lemma, it suffices to show that the family
C := (Cj

i )i∈I,j∈Ji is thin, since then clearly Z is the sum of all the cycles in
C. So suppose that C is not thin. Then there is a vertex v which lies in the
fundamental cycles Cj

i for an infinite set J of pairs (i, j). Since T is normal,
every vertex set of a fundamental cycle Ce is a chain in T , its minimum and
maximum being joined by e. Thus choosing v minimal in T and possibly
discarding finitely many pairs from J , we may assume that v is the lowest
vertex (in T ) of each Cj

i with (i, j) ∈ J and thus incident with its chord ej
i .

As Cj
i is the only cycle in the family (Cj

i )j∈Ji that contains ej
i and this family

sums to Zi, we have v ∈ ej
i ∈ Zi for all (i, j) ∈ J . But each Zi has only

finitely many summands Cj
i containing v, so v ∈ Zi for infinitely many i.

Thus (Zi)i∈I is not thin, contradicting the fact that Z =
∑

i∈I Zi. �
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We remark that Lemma 4.1 does not extend to arbitrary spanning trees
in T (G). For example, consider the graph G obtained from infinitely many
disjoint finite cycles C1, C2, . . . by adding a new vertex s and joining it to
two vertices of each Ci. Let T be a spanning tree of G containing all the
edges of G incident with s. Then T ∈ T (G). But as each fundamental cycle
contains s, the element Z =

∑∞
i=1 Ci of the cycle space of G is not a sum of

fundamental cycles.
Let us then determine the subclass T ′(G) ⊆ T (G) of those spanning trees

of G whose fundamental cycles generate all of C(G). A comb C with back
R is obtained from a ray R and a sequence x1, x2, . . . of distinct vertices (to
be called the teeth of C) by adding for each i = 1, 2, . . . a (possibly trivial)
xi–R path Pi so that all the Pi are disjoint.

Definition Let T ′(G) be the class of all spanning trees T ∈ T (G) such
that G does not contain infinitely many disjoint finite cycles C1, C2, . . . for
which one of the following conditions holds (Fig. 2):

• T contains two subdivided infinite stars S1 and S2 such that S1 and
S2 meet at most in the centre of S1 which is then also the centre of S2,
and such that each Ci contains a leaf of both S1 and S2 (i = 1, 2, . . . ).

• T contains a subdivided infinite star S and a comb C such that S and
C are disjoint and each Ci contains both a leaf of S and a tooth of C
(i = 1, 2, . . . ).

Figure 2: The additional forbidden configurations for T ′(G)

As before, one can easily show using Lemma 2.2 that T ′(G) contains every
normal spanning tree of G.

Theorem 4.2 Let T be a spanning tree of a graph G. Every element of the
cycle space of G is a sum of fundamental cycles if and only if T ∈ T ′(G).
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For the proof of this theorem we again need a few lemmas. First recall
the following basic fact from point-set topology (see e.g. [1, Thm. 3.7]):

Lemma 4.3 Every continuous injective map from a compact space X to a
Hausdorff space Y is a topological embedding, i.e. a homeomorphism between
X and its image in Y under the subspace topology. �

Lemma 4.4 Let H1 ⊆ H2 be subgraphs of G, and let C be a cycle in H1.
If C is a cycle in G, then it is also a cycle in H2.

Proof. Let C ′ be the defining circle of C in H1. We show that the restriction
to C ′ of the canonical embedding πH1H2 is injective; then by Lemma 4.3 it is a
topological embedding (since πH1H2 is continuous), and so C = πH1H2(C

′)∩
H2 will be a cycle in H2.

Note first that πH1G maps C ′ onto the defining circle C ′′ of C in G: since
πH1G(C ′) is compact (and hence closed) and contains C as a dense subset,
it is the closure of C in G, which we know to be C ′′.

Now if πH1H2 is not injective on C ′ then neither is πH1G = πH2G ◦ πH1H2 ,
so there are two ends ω1, ω2 ∈ C ′ with πH1G(ω1) = πH1G(ω2). Pick x, y ∈ C
so that ω1, ω2 lie in distinct path-components of C ′ \{x, y}. Then πH1G(C ′ \
{x, y}) = C ′′\{x, y} is path-connected, contradicting the fact that removing
any two distinct points from a circle makes it path-disconnected. �

Lemma 4.5 Let T be a spanning tree of G, and let C1, C2, . . . ⊆ G be
disjoint finite cycles. From each Ci pick an edge ei not on T . If G has a
vertex x that lies on each of the fundamental cycles Cei, then T /∈ T ′(G).

Proof. As x ∈ Cei , each ei has its endvertices in two different components
of T − x. Partitioning these components suitably into two sets, we may
write T as the union of two subtrees T1 and T2 that meet precisely in x and
are joined by infinitely many ei. Applying Lemma 2.4 to T1 with U the set
of endvertices of these ei in T1, we obtain an infinite set I ⊆ N and either
a ray in T1 joined to all the ei with i ∈ I by disjoint paths in T1, or else
a subdivided star in T1 whose leaves are precisely the endvertices of the ei

with i ∈ I in T1. Now apply Lemma 2.4 to T2 with U the set of endvertices
of these ei (i ∈ I) in T2 to obtain an infinite set I ′ ⊆ I and either a ray or a
subdivided star in T2. If both applications of the lemma return a ray then
these rays are equivalent, and so T is not end-respecting. If both return a
star, then these stars can be chosen so as to meet at most in their common
centre (which then must be x). As ei ∈ Ci, each Ci with i ∈ I ′ contains
leaves of both stars. So these stars satisfy the first condition in the definition
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of T ′(G). Similarly, if the lemma returns a ray and a star, then they satisfy
the second condition in the definition of T ′(G). Thus in each case we have
shown that T /∈ T ′(G), as desired. �

Proof of Theorem 4.2. To prove the forward implication, suppose that
T /∈ T ′(G). By Theorem 3.1 we may assume that T ∈ T (G). Thus there
are disjoint finite cycles C1, C2, . . . in G satisfying one of the two conditions
in the definition of T ′(G). We consider only the case that T contains two
subdivided infinite stars S1 and S2 (which are either disjoint or meet only
in their common centre) such that each Ci meets both S1 and S2; the other
case is similar. We may assume that C1 ∪ C2 ∪ . . . avoids the path P ⊆ T
joining the centre of S1 to that of S2. On each Ci choose an S1–S2 path
Pi = xi . . . yi. Since Ci is disjoint from P , the xi–yi path in T forms a finite
cycle together with Pi. Let D denote the set of all these cycles, one for
each i. Then D is not thin, as every cycle in D contains the centre of S1.
Thus Lemma 3.3 implies that the element Z =

∑∞
i=1 Ci of the cycle space

of G cannot be the sum of fundamental cycles, as desired.
To prove the converse implication, suppose that T ∈ T ′(G), and let Z

be an element of the cycle space of G. Write Z as the sum
∑

i∈I Zi of
cycles Zi. By Theorem 3.1, each Zi is the sum of a thin family Ci = (Cj

i )j∈Ji

of (distinct) fundamental cycles. It suffices to show that C := (Cj
i )i∈I,j∈Ji is

a thin family: then clearly Z is the sum of all the cycles in C.
Suppose that C is not thin. Then some vertex x lies on infinitely many

cycles in C. Since every family Ci is thin, there exists an infinite set I ′ ⊆ I
such that for every i ∈ I ′ the vertex x lies on some cycle in Ci. Denoting the
defining chord of this (fundamental) cycle by ei, we thus have x ∈ Cei ∈ Ci

for every i ∈ I ′.
As the fundamental cycles in Ci are distinct, their defining chords do not

cancel in the sum
∑

C∈Ci
C = Zi, so ei ∈ Zi for every i. On the other

hand as the family (Zi)i∈I is thin, we have ei ∈ Zk for only finitely many k.
In particular, ei �= ek for all but finitely many k. Conversely, Zk contains
only finitely many ei (since Ck is thin and every Cei contains x), so Zk � ei

for only finitely many i. Replacing I ′ with an appropriate infinite subset if
necessary, we may therefore assume that ei ∈ Zk if and only if i = k (for all
i, k ∈ I ′), and further that I ′ is countable.

For Z ′ :=
∑

i∈I′ Zi the above implies that ei ∈ Z ′ for all i ∈ I ′. Moreover,
Lemmas 2.8 and 4.4 imply that Z ′ lies in the cycle space of a countable
subgraph H of G. Since every countable connected graph has a normal
spanning tree, Lemma 4.1 thus implies that Z ′ is a sum of a thin family
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C′ of finite cycles: of fundamental cycles of normal spanning trees of the
components of H. As every ei lies in Z ′ and hence in some cycle of C′,
and since each of these cycles meets only finitely many others, C′ has an
infinite subfamily of disjoint cycles each containing an edge ei with i ∈ I ′.
Lemma 4.5 now implies that T /∈ T ′(G), contradicting our assumption.

�

5 Cycle decompositions and cycle-cut orthogonality

In this section we establish infinite analogues of two further properties of
finite cycle spaces, properties that make no reference to spanning trees:
the fact that every element of the cycle space of a finite graph is an edge-
disjoint union of cycles (Theorem 5.2), and that the cycle space consists of
precisely those (edge sets of) subgraphs that are ‘orthogonal’ to every cut
(Theorem 5.4).

The basic idea for the proof of Theorem 5.2 is the same as in the finite
case: given Z ∈ C(G), we shall find a single cycle C ⊆ Z in G and then
iterate with Z − E(C), continuing until the cycles deleted from Z have
exhausted it. As in the finite case, none of the cycles from the constituent
sum of Z need be a subgraph of Z, so finding C is non-trivial. But while
for finite Z we can find C greedily inside Z (using the fact that all degrees
in Z are at least 2), this need not be possible when Z is infinite: a maximal
path in Z may be any double ray not defining a cycle, and it is then not
clear how to extend this double ray beyond its ends to a circle giving rise to
the desired cycle C.

Our main lemma for the proof of Theorem 5.2 thus deals with finding C,
and it does so in a countable subgraph H of G. Finding the right H in
which to do this will cause a few (managable) complications later on, but
the key advantage is that H, being countable, will have a normal spanning
tree T . We may then write any Z ∈ C(H) as a sum of finite cycles (namely,
of fundamental cycles with respect to T ; cf. Lemma 4.1), which will make
standard compactness arguments available for the construction of C.

Lemma 5.1 Let H be a countable subgraph of G, let Z ∈ C(H), and let
e = vw ∈ E(Z). Then H contains a topological path P from v to w such
that P ∩H ⊆ Z − e.

Proof. As H is countable, it has a normal spanning tree. Thus Lemma 4.1
implies that Z can be written as Z =

∑∞
i=1 Ci, where the Ci are finite cycles
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in H forming a thin family. Let H ′ :=
⋃∞

i=1 Ci. Replacing Z with the sum
Z ′ of those Ci that lie in the component of H ′ containing e, we may assume
that H ′ is connected. (Indeed, Z ′ ∈ C(H) and e ∈ Z ′ ⊆ Z; hence a proof of
the lemma for Z ′ implies it for Z.) Since the family (Ci)∞i=1 is thin, H ′ is
locally finite. Put Zi :=

∑i
j=1 Cj . As e ∈ Z, there exists an i0 > 0 such

that e ∈ Zi for all i ≥ i0. Furthermore, each Zi is finite and hence an edge-
disjoint union of finite cycles in H ′. Fix such a set of finite cycles for every
i ≥ i0, and let Di denote the cycle containing e. Let Pi be the finite path
Di − e, and orient it from v to w.

Let e1, e2, . . . be an enumeration of the edges in E(H ′)\{e}. Let us define
a sequence X0 ⊆ X1 ⊆ . . . of finite subsets of E(H ′) \ {e} and a sequence
I0 ⊇ I1 ⊇ . . . of infinite subsets of N so that the following holds for all
i = 0, 1 . . . :

Xi = {e1, . . . , ei} ∩ E(Pj) for all j ∈ Ii, and all these Pj induce the
same linear ordering on Xi and the same orientation on the edges
in Xi.

(∗)

To do this, we begin with X0 = ∅ and I0 = {i ∈ N | i ≥ i0}. For every
i ≥ 0 in turn, we then check whether ei+1 ∈ Pj for infinitely many j ∈ Ii.
If so, we put Xi+1 := Xi ∪ {ei+1} and choose Ii+1 ⊆ Ii so as to satisfy (∗)
for i + 1; if not, we let Xi+1 := Xi and put Ii+1 := {j ∈ Ii | ei+1 /∈ Pj}
(in which case Ii \ Ii+1 is finite, and (∗) again holds for i + 1). Finally, let
X :=

⋃∞
i=0 Xi, and write Ẋ for the subgraph of H consisting of the edges in

X and their incident vertices.
The set X is linearly ordered as follows. Given f, f ′ ∈ X, consider the

least index i such that f, f ′ ∈ Xi. If f precedes f ′ (say) on one Pj with
j ∈ Ii then it does so on every such Pj , and hence in particular on every
Pj with j ∈ Ik and k > i (since Ik ⊆ Ii). Similarly, every edge f ∈ X has
a unique orientation, its common orientation on every Pj with j ∈ Ii and i
large enough that f ∈ Xi.

Let us show that Ẋ ⊆ Z − e. Given an edge f ∈ X, we have f ∈ Pj ⊆
Zj − e for infinitely many j; indeed, by (∗) this holds for all j ∈ Ii with i
large enough that f ∈ Xi. But then f ∈ Zj for all large enough j (because
f lies on only finitely many Ci), and hence also f ∈ Z.

Using the local finiteness of H ′, it is in fact easy to show that Ẋ + e is a
2-regular subgraph of Z, in which two edges of X are adjacent if and only
if they are adjacent elements in the linear ordering on X. Indeed, given a
vertex u ∈ Ẋ choose k large enough that every edge of H ′ incident with u
precedes ek in the enumeration of all the edges ei, and pick j ∈ Ik. Then the
edges at u in Ẋ are precisely the edges at u in Xk, which by (∗) are precisely
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the edges at u in Pj . If u ∈ {v, w} there is one such edge; otherwise there
are two.

If X is finite, then Ẋ is a v–w path in Z − e, and thus Ẋ is a topological
path P as sought in the lemma. So let us assume that X is infinite. Then Ẋ
is a disjoint union of two rays Rv and Rw starting at v and w, respectively,
and possibly some further double rays. We will show that the closure of Ẋ
in H is a topological path P as desired.

Assign to Rv a half-open subinterval JRv of [0, 1] containing 0, to Rw a
half-open subinterval JRw containing 1, and to each double ray D ⊆ Ẋ an
open subinterval JD, in such a way that all these intervals are disjoint, their
order on [0, 1] (oriented from 0 to 1) reflects the order of their corresponding
rays and double rays induced by the linear ordering on X, and so that [0, 1]
is the closure of the union U of these subintervals. (Since Ẋ contains only
countably many double rays, this can be done in at most ω steps.) Let
σ : [0, 1] → H map each interval JQ continuously and bijectively onto its
ray or double ray Q so that the order of the edges of Q in X reflects that
induced by σ. Thus in particular σ(0) = v and σ(1) = w. In what follows
we will show that we can extend σ to a continuous map from [0, 1] to H by
mapping the points in [0, 1] \ U to suitable ends of H. The image of [0, 1]
will then be a path P as desired.

So let x be a point in [0, 1]\U . Choose a sequence (ui)∞i=1 of vertices of Ẋ
so that the sequence (σ−1(ui))∞i=1 is monotone in [0, 1] and converges to x.
Since H ′ is connected and locally finite, we may apply Lemma 2.4 to find a
ray Qx ⊆ H ′ such that H ′ contains infinitely many disjoint Qx–{ui | i ∈ N}
paths. Let ωx be the end of H containing Qx, and extend σ by setting
σ(x) := ωx. (We remark that although formally ωx depends on the choice of
(ui)∞i=1, this is not in fact the case. However, we shall not need this below.)

We have to prove that σ : [0, 1] → H is continuous. Clearly, σ is con-
tinuous in points of U . So let x ∈ [0, 1] \ U , and let N be a basic open
neighbourhood of ωx in H. Then N is of the form D̂ for some component
D of H − S with S ⊆ V (H) finite. We have to show that there is an open
neighbourhood O of x in [0, 1] such that σ(O) ⊆ D̂.

We will first show that there are points a �= b in [0, 1] such that x ∈ (a, b)
and either σ(a, x) ∩ Ẋ ⊆ D or σ(a, x) ∩ Ẋ ∩ D = ∅, and such that the
analogous assertion holds for (x, b). Let k := |S|, and suppose there is no
such point a (say). Then we can find a monotone sequence f1, . . . , fk+2 of
k + 2 distinct edges in X lying alternately inside and outside of D (and
having no incident vertex in S). As the sequence f1, . . . , fk+2 is monotone
in the ordering on X (and this ordering is well defined), every path Pj with
j ∈ Ii and i large enough that f1, . . . , fk+2 ∈ Xi contains all these edges in
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this order. But then Pj meets S in at least k + 1 vertices, a contradiction.
Hence there are points a and b as required.

Pr

X

X

Pr

f1

v1

Pr′

Pr′
fs

v2

σ(x)

P ′
1

P ′
2

v′2

f ′
s

v′1

f ′
1

Figure 3: Constructing the paths P ′
i

Let us now show that either σ(a, b)∩ Ẋ ⊆ D or σ(a, b)∩ Ẋ ∩D = ∅. This
will follow from the choice of a and b if there are sequences (vi)∞i=1 and (v′i)

∞
i=1

of distinct vertices of Ẋ such that (σ−1(vi))∞i=1 is monotone and converges to
x from the left while (σ−1(v′i))

∞
i=1 is monotone and converges to x from the

right, and such that H contains infinitely many disjoint paths P ′
i = vi . . . v

′
i.

We will construct such paths inductively (Fig. 3). Let (fi)∞i=1 and (f ′
i)

∞
i=1 be

monotone sequences of distinct edges of X such that (σ−1(fi))∞i=1 converges
to x from the left while (σ−1(f ′

i))
∞
i=1 converges to x from the right, and

such that fi+1 succeeds both fi and f ′
i+1 in the enumeration e1, e2, . . . of

E(H ′) \ {e}, and f ′
i+1 succeeds f ′

i in this enumeration (for all i ≥ 1). Let
k be such that f1 = ek, and pick r ∈ Ik. Then f1, f

′
1 ∈ Pr: if i < k is such

that ei = f ′
1, then r ∈ Ik ⊆ Ii and hence f ′

1 = ei ∈ Xi ⊆ E(Pr) by (∗).
Moreover, since f1 lies to the left of f ′

1 in X, it precedes f ′
1 on Pr. Let v1 be

the last vertex of f1 on Pr, and let v′1 be the first vertex of f ′
1 on Pr. Put

P ′
1 := v1Prv

′
1. Now let s > 1 be such that fs succeeds every edge of P ′

1 in the
sequence e1, e2, . . . , and such that no edge of E(P ′

1)∩X lies between fs and
f ′

s in X. Let k′ be such that fs = ek′ , and pick r′ ∈ Ik′ . Then fs, f
′
s ∈ Pr′ ,

and fs precedes f ′
s on Pr′ . Let v2 be the last vertex of fs on Pr′ , and let v′2 be

the first vertex of f ′
s on Pr′ . Put P ′

2 := v2Pr′v
′
2. Since ek′ succeeds every edge

from E(P ′
1) \X in the enumeration of the ei, condition (∗) implies that Pr′

(and hence P ′
2) has no edge in E(P ′

1)\X. And P ′
2 has no edge in E(P ′

1)∩X,
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because none of those edges lies between fs and f ′
s in X: since ek′ equals

or succeeds fs, f ′
s and every edge from E(P ′

1) ∩ X in the enumeration of
the ei, the position of any such edge on Pr′ relative to fs and f ′

s would be
the same as in X, i.e. it would precede fs or succeed f ′

s on Pr′ and hence
not lie on P ′

2. Thus P ′
1 and P ′

2 are edge-disjoint. Continuing inductively, we
obtain infinitely many edge-disjoint paths P ′

i = vi . . . v
′
i, one for every i ∈ N.

As all these paths lie in the locally finite graph H ′, infinitely many of them
are disjoint, as desired. Thus we have shown that either σ(a, b)∩ Ẋ ⊆ D or
σ(a, b) ∩ Ẋ ∩D = ∅.

By definition, ωx contains the ray Qx, and Qx was defined in such a way
that there is a sequence (ui)∞i=1 of distinct vertices in Ẋ such that H ′ con-
tains infinitely many disjoint Qx–{ui | i ∈ N} paths, and where (σ−1(ui))∞i=1

converges to x. Then all but finitely many of the points σ−1(ui) lie in (a, b).
Since σ(x) = ωx ∈ D̂, it follows that σ(a, b) ∩ Ẋ ⊆ D. Now let y ∈ (a, b) be
such that σ(y) is an end of H. Thus σ(y) = ωy, and ωy contains the ray Qy.
As before, the definition of Qy and the fact that σ(a, b)∩ Ẋ ⊆ D imply that
σ(y) ∈ D̂. Thus σ(a, b) ⊆ D̂, and we have shown that σ is continuous. �

Theorem 5.2 Every element of the cycle space of an infinite graph G is an
edge-disjoint union of cycles in G.

Proof. Let Z ∈ C(G) be given, and let Z =
∑

i∈I Zi where each Zi is a
cycle in G. We first show that I may be partitioned into countable sets Iα

so that for all α �= β the graphs
∑

i∈Iα
Zi and

∑
i∈Iβ

Zi are edge-disjoint.
To do this, consider the auxiliary graph G′ with vertex set I in which i �= j
are joined if Zi and Zj share an edge. As each Zi has only countably many
edges and each edge lies in only finitely many Zi, each i has only countably
many neighbours in G′. Thus every component of G′ is countable, and so
the vertex sets Iα of the components of G′ form a partition of I with the
desired properties. Hence, to prove the theorem, we may assume that I
itself is countable. Lemmas 2.8 and 4.4 now imply that there is a countable
subgraph H of G such that every Zi is a cycle in H, and thus Z is an element
of the cycle space of H.

Let us rename H as H0 and Z as Z0, so that from now on we may
use ‘H’ and ‘Z’ as variables in Lemma 5.1. Our aim is to write Z0 as
an edge-disjoint union of cycles C1, C2, . . . in G. We shall find these Cn

inductively inside Zn−1 :=
∑

i∈I Zi+C1+. . .+Cn−1 by applying Lemma 5.1
to Z = Zn−1 in a suitable subgraph Hn−1 of G. (Thus Cn ⊆ Zn−1, and
hence Z0 ⊃ Z1 ⊃ Z2 ⊃ . . . with Zn = Zn−1 + Cn.)
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Starting our inductive definition of the Cn at n = 1, let us assume that
C1, . . . , Cn−1 (and hence Z0, . . . , Zn−1) have been defined as above, and
that Hn−1 is some countable subgraph of G in which C1, . . . , Cn−1 and all
the Zi are cycles. To define Cn, let P be as provided by Lemma 5.1 for
H = Hn−1 and Z = Zn−1, where e = vw is taken to be the first edge in
Zn−1 from some fixed enumeration of all the edges of Z0. (As e will lie
in Cn, this choice of e ensures that all the Cn together exhaust Z0.) The
image πHG(P ) of P in G under the canonical projection πHG : H → G is a
path in G from v to w. Apply Lemma 3.7 to find an arc A ⊆ πHG(P ) in G
with endpoints v and w. Then A ∪ e is a circle in G whose cycle (in G) is
a subgraph of Zn−1 containing e, because P ∩ G = P ∩H ⊆ Zn−1 − e; we
take Cn to be this cycle.

By Lemma 2.8 there is a countable subgraph H ′ of G such that Cn is a
cycle in H ′. By Lemma 4.4 and our assumptions on Hn−1, all of C1, . . . , Cn

and all the Zi then are cycles in Hn := Hn−1 ∪H ′, as well as in G.
This completes the inductive definition of the cycles Cn. Since each Cn

is a subgraph of Zn−1 and Zn = Zn−1 + Cn, no edge of Cn is left in Zn,
and so the Cn are indeed edge-disjoint. By the choice of the edges e = vw,
every edge of Z = Z0 lies in some Cn, and the theorem follows. �

As mentioned before, the cycle space of a graph is not obviously closed
under taking infinite sums. Indeed, let (Zi)i∈I be a thin family of ele-
ments of C(G) (so that Z :=

∑
i∈I Zi is well defined), and for each i

let Zi =
∑

j∈Ji
Cj

i where all the Cj
i are cycles. Then the canonical way

to establish Z as an element of C(G) would be to write it as the ‘sum’
Z =

∑
i∈I, j∈Ji

Cj
i . But this ‘sum’ may be ill-defined, since the family of all

the cycles Cj
i need not be thin even though (Zi)i∈I is a thin family. For

example, if a vertex v lies on exactly two cycles Cj
i for each i, and if both

these cycles contain the same two edges at v, then v is not a vertex of Zi

(since we suppress isolated vertices in our definition of sum) and hence does
not contradict the thinness of the family (Zi)i∈I ; but it does prevent the
family of all the Cj

i from being thin.
This phenomenon does not occur, however, when the cycles Cj

i in each
of the sums Zi =

∑
j∈Ji

Cj
i are edge-disjoint: then V (Zi) =

⋃
j∈Ji

V (Cj
i ),

and hence if both (Zi)i∈I and all the (Cj
i )j∈Ji are thin families then so is

(Cj
i )i∈I, j∈Ji . Theorem 5.2 therefore implies that C(G) is indeed closed under

infinite as well as finite sums:

Corollary 5.3 The cycle space of an infinite graph is closed under taking
sums. �
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We now turn to our second result of this section, a cycle-cut orthogo-
nality characterization of the cycle space generalizing Theorem 7.1 of [5] to
arbitrary infinite graphs. Recall that a cut in G is a set E(A,B) of all the
edges of G between the two classes A and B of some bipartition of V (G).
A set S of vertices covers a cut F if every edge in F has a vertex in S. We
say that F is finitely covered if there exists a finite set of vertices covering F .

Theorem 5.4 Let G be any infinite graph, and let Z ⊆ G be any subgraph
without isolated vertices. Then the following statements are equivalent:

(i) Z ∈ C(G);

(ii) for every finitely covered cut F of G, |E(Z)∩F | is (finite and) even.

Proof. The proof of the implication (i)→(ii) is essentially the same as that
of the (i)→(ii) part of Theorem 7.1 in [5]. We now first have to prove that
|E(Z) ∩ F | is finite, but this is clear since F is covered by finitely many
vertices and Z ∈ C(G) implies that Z is locally finite.

If the graph G is countable then also the proof of the converse implica-
tion is similar to that of [5, Thm. 7.1], except that we now use a normal
rather than any end-faithful spanning tree. Every edge f = tt′ of a normal
spanning tree T of G has the property that every edge of G between the
two components of T −f has an endvertex among the finitely many vertices
below t and t′ in T . Therefore the cut of G associated with f (ie. the set of
edges of G between the two components of T − f) is finitely covered.

To prove (ii)→(i) for countable G, assume without loss of generality that
G is connected and let T be a normal spanning tree in G. Assuming (ii), we
show that Z is equal to the sum Z ′ ∈ C(G) of all the fundamental cycles Ce

with e ∈ E(Z) \ E(T ). For every chord e ∈ E(G) of T , clearly e ∈ Z if and
only if e ∈ Z ′. So consider an edge f ∈ T . Let Ef be the set of edges e �= f
of G between the two components of T − f . As shown above, Ef is finitely
covered. Since f ∈ Ce for precisely those chords e of T that lie in Ef , we
have f ∈ Z ′ if and only if |Ef ∩E(Z)| is odd. By (ii), the latter holds if and
only if f ∈ Z, as desired.

The basic idea in our proof of (ii)→(i) for arbitrary graphs G (which need
not have normal spanning trees) is to decompose Z into suitable countable
subgraphs Y , to extend these to countable separation-faithful subgraphs H
by Lemma 2.7, to use the countable case of (ii)→(i) to deduce that Y ∈
C(H) ⊆ C(G) (cf. Corollary 2.6), and finally to combine these results to give
Z ∈ C(G).

More precisely, let us prove the following claim.
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Let X be a subgraph of G without isolated vertices. Suppose that
X meets every finitely covered cut of G in an even number of edges.
Let X ′ be any component of X. Then X has a subgraph Y ∈ C(G)
that is a union of components of X and contains X ′.

(∗)

To prove (∗), note first that X is locally finite (with even degrees). Hence
every component of X is countable. Define a sequence H0 ⊆ H1 ⊆ . . . of
countable subgraphs of G as follows. Put H0 := X ′. Having defined Hi,
let H ′

i be the graph obtained from Hi by adding every component of X
that meets Hi. Then define Hi+1 as the graph obtained from H ′

i by adding,
for every finite set S ⊆ V (Hi) and for every pair of distinct components
D1, D2 of H ′

i − S that are contained in a common component D of G − S,
a D1–D2 path in D. Put H :=

⋃
i∈N

Hi, and let Y be the union of all the
components of X that meet H. Then H is countable, Y ⊆ H, and H is
separation-faithful in G (see the proof of Lemma 2.7 for details).

Let us show that Y satisfies (ii) in H, ie. that Y meets every cut F of H
that is covered by a finite set S ⊆ V (H) in an even number of edges. Let
such F and S be given, and let V (H) = A1 ∪A2 be the bipartition of V (H)
associated with F . Then every component of H − S has all its vertices in
one Ai. Since H is separation-faithful, each component of G−S contains at
most one component of H − S, and so it meets at most one of the Ai. Let
B1 be the union of A1 with (the vertex sets of) all the components of G−S
avoiding A2, and let B2 be the union of A2 with all the other components
of G − S. Then E(B1, B2) is a cut of G, covered by S. Therefore every
edge of E(B1, B2) that lies in X must lie in Y (by definition of Y , and
as S ⊆ V (H)), and hence in H (since Y ⊆ H), and hence in F . Thus
|E(Y ) ∩ F | = |E(X) ∩ E(B1, B2)|, and the latter is even by assumption.

Since we have already proved the implication (ii)→(i) for countable graphs
we may deduce that Y satisfies (i) in H. Thus, Y ∈ C(H) ⊆ C(G) by Corol-
lary 2.6 (iii), completing the proof of (∗).

Let us now use (∗) to prove (ii)→(i) for an arbitrary graph G. Let Z ⊆ G
be a subgraph that has no isolated vertices and satisfies (ii). Fix a well-
ordering of the components of Z. Let us decompose Z into a family of
subgraphs Yα ∈ C(G) as in (∗), to be defined inductively as follows.

To define Y0, we apply (∗) with X := Z to the first component X ′ of
Z in our well-ordering, and let Y0 be the graph Y ∈ C(G) obtained. Thus,
Y0 satisfies (i) in G. Since we have already shown (i)→(ii) for arbitrary
graphs, we may deduce that Y0 satisfies (ii). Thus Y0 meets every finitely
covered cut of G in an even number of edges, and hence so does Z − Y0.

To define Y1, we now take X ′ to be the first component of Z not contained
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in Y0, and consider X := Z−Y0. This time, (∗) yields a subgraph Y1 ∈ C(G)
of Z − Y0. As before, Y1 and hence also Z − Y0 − Y1 meets every finitely
covered cut of G in an even number of edges.

We continue transfinitely until we have found a sequence (Yα) of disjoint
subgraphs of Z whose union is Z and which all lie in C(G). Since Z is the
sum of all the Yα, Corollary 5.3 implies that Z ∈ C(G). �

6 An open problem

The subgraphs C of a finite graph G that are cycles or other elements of the
cycle space of G are easily characterized without any reference to a notion
of cyclicity (such as cyclic sequences of vertices etc.). For example, C is a
cycle if and only if it is 2-regular and connected, and C is an element of
C(G) if and only if all its vertices have even degree. Similarly, C ∈ C(G) if
and only if C is orthogonal to every cut of G, ie. meets every cut in an even
number of edges.

Since our definition of an infinite cycle appeals to an external notion of
cyclicity in an even stronger sense by making reference to the topology of the
unit circle, it seems all the more desirable to have similar characterizations
for infinite cycles:

Problem Characterize the cycles and the elements of the cycle space in an
infinite graph in purely combinatorial terms.

Theorem 5.4 offers such a characterization in terms of cuts. Alternatively,
one might try to extend the finite ‘even degree’ characterization of the cycle
space to infinite graphs. Clearly, any such characterization will have to refer
to ends, but the idea is that such reference should not explicitly appeal to
the topology on G. For example, one might try to define the ‘degree’ of an
end of G in such a way that a subgraph C of G lies in C(G) if and only if all
its vertices have even degree and all its ends have even or infinite degree.
One of the problems with such an approach will be in which subgraph to
measure the ‘degrees’ of these ends: probably not in G itself (since an end ω
of G that lies on C can contain further rays that have little to do with C),
and certainly not in C (where ω will typically split up into many unrelated
ends).
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Reinhard Diestel and Daniela Kühn, Mathematisches Seminar, Universität
Hamburg, Bundesstraße 55, D - 20146 Hamburg, Germany.

26


