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Abstract. In this paper, we study the large-scale structure of dense regular graphs.
This involves the notion of robust expansion, a recent concept which has already been
used successfully to settle several longstanding problems. Roughly speaking, a graph
is robustly expanding if it still expands after the deletion of a small fraction of its
vertices and edges. Our main result allows us to harness the useful consequences of
robust expansion even if the graph itself is not a robust expander. It states that every
dense regular graph can be partitioned into ‘robust components’, each of which is a
robust expander or a bipartite robust expander. We apply our result to obtain (amongst
others) the following.

(i) We prove that whenever ε > 0, every sufficiently large 3-connected D-regular graph
on n vertices with D ≥ (1/4+ε)n is Hamiltonian. This asymptotically confirms the
only remaining case of a conjecture raised independently by Bollobás and Häggkvist
in the 1970s.

(ii) We prove an asymptotically best possible result on the circumference of dense
regular graphs of given connectivity. The 2-connected case of this was conjectured
by Bondy and proved by Wei.

1. Introduction

1.1. The robust component structure of dense regular graphs. Our main result
states that any dense regular graph G is the vertex-disjoint union of a bounded number of
‘robust components’. Each such component has a strong expansion property that is highly
‘resilient’ and almost all edges of G lie inside these robust components. In other words,
the result implies that the large scale structure of dense regular graphs is remarkably
simple. This can be applied e.g. to Hamiltonicity problems in dense regular graphs. Note
that the structural information obtained in this way is quite different from that given by
Szemerédi’s regularity lemma.

The crucial notion in our partition is that of robust expansion. This is a structural
property which has close connections to Hamiltonicity. Given a graph G on n vertices,
S ⊆ V (G) and 0 < ν ≤ τ < 1, we define the ν-robust neighbourhood RNν,G(S) of S to
be the set of all those vertices of G with at least νn neighbours in S. We say G is a
robust (ν, τ)-expander if, for every S ⊆ V (G) with τn ≤ |S| ≤ (1 − τ)n, we have that
|RNν,G(S)| ≥ |S|+ νn.
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There is an analogous notion of robust outexpansion for digraphs. This was first intro-
duced in [25] and has been instrumental in proving several longstanding conjectures. For
example, Kühn and Osthus [23] recently settled a conjecture of Kelly from 1968 (for large
tournaments) by showing that every sufficiently large dense regular robust outexpander
has a Hamilton decomposition. Another example is the recent proof [20, 21] of Sumner’s
universal tournament conjecture from 1971.

Our main result allows us to harness the useful consequences of robust expansion even
if the graph itself is not a robust expander. For this, we introduce the additional notion
of ‘bipartite robust expanders’. Let G be a bipartite graph with vertex classes A and B.
Then clearly G is not a robust expander. However, we can obtain a bipartite analogue
of robust expansion by only considering sets S ⊆ A with τ |A| ≤ |S| ≤ (1 − τ)|A|. This
notion extends in a natural way to graphs which are ‘close to bipartite’.

Roughly speaking, our main result (Theorem 3.1) implies the following.

(†) For all r ∈ N and all ε > 0, any sufficiently large D-regular graph on n vertices with
D ≥ ( 1

r+1 + ε)n has a vertex partition into at most r robust expander components
and bipartite robust expander components, so that the number of edges between
these is o(n2).

We give a formal statement of this in Section 3. In Section 5 we obtain a generalisation
to almost regular graphs. (Here, G is ‘almost regular’ if ∆(G)− δ(G) = o(n).)

In the special case of dense vertex-transitive graphs (which are always regular), Christofides,
Hladký and Máthé [7] introduced a partition into ‘iron connected components’. (Iron con-
nectivity is closely related to robust expansion.) They applied this to resolve the dense case
of a question of Lovász [28] on Hamilton paths (and cycles) in vertex-transitive graphs. It
would be very interesting to obtain a similar partition result for further classes of graphs.
In particular, it might be possible to generalise Theorem 3.1 to sparser graphs.

In the current paper, we apply (†) to give an approximate solution to a longstanding
conjecture on Hamilton cycles in regular graphs (Theorem 1.2) as well as an asymptotically
optimal result on the circumference of dense regular graphs of given connectivity (Theo-
rem 1.4). We are also confident that our robust partition result will have applications to
other problems.

1.2. An application to Hamilton cycles in regular graphs. Consider the classical
result of Dirac that every graph on n ≥ 3 vertices with minimum degree at least n/2
contains a Hamilton cycle. Suppose we wish to strengthen this by reducing the degree
threshold at the expense of introducing some other condition(s). The two extremal exam-
ples for Dirac’s theorem (i.e. the disjoint union of two cliques and the almost balanced
complete bipartite graph) make it natural to consider regular graphs with some connec-
tivity property, see e.g. the recent survey of Li [26] and handbook article of Bondy [5].

In particular, Szekeres (see [14]) asked for which D every 2-connected D-regular graph
G on n vertices is Hamiltonian. Jackson [14] showed that D ≥ n/3 suffices. This improved
earlier results of Nash-Williams [29], Erdős and Hobbs [10] and Bollobás and Hobbs [3].
Hilbig [13] improved the degree condition to n/3 − 1, unless G is the Petersen graph
or another exceptional graph. As discussed later on in this section, this bound is best
possible.

Bollobás [2] as well as Häggkvist (see [14]) independently made the natural and far
more general conjecture that any t-connected regular graph on n vertices with degree at
least n/(t + 1) is Hamiltonian. However, the following counterexample (see Figure 1(i)),
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due to Jung [18] and independently Jackson, Li and Zhu [17], disproves this conjecture for
t > 3.

For m divisible by four, construct G as follows. Let C1, C2 be two disjoint copies of
Km+1 and let A,B be two disjoint independent sets of orders m,m− 1 respectively. Add
every edge between A and B. Add a set of m/2 independent edges from each of C1 and
C2 to A so that together these edges form a matching of size m. Delete m/4 independent
edges in each of C1, C2 so that G is m-regular. Then G has 4m + 1 vertices and is m/2-
connected. However G is not Hamiltonian since G \ A has |A| + 1 components (in other
words, G is not 1-tough).

m− 1m

m+ 1

m+ 1

C1

C2

A B

(i)

a

b

(ii)

Figure 1: Extremal examples for Conjecture 1.1.

Jackson, Li and Zhu [17] believe that the conjecture of Bollobás and Häggkvist is true
in the remaining open case when t = 3.

Conjecture 1.1. Let G be a 3-connected D-regular graph on n ≥ 13 vertices such that
D ≥ n/4. Then G contains a Hamilton cycle.

The 3-regular graph obtained from the Petersen graph by replacing one vertex with a
triangle shows that the conjecture does not hold for n = 12. The graph in Figure 1(i) is
extremal and the bound on D is tight.

As mentioned earlier, there exist non-Hamiltonian 2-connected regular graphs on n
vertices with degree close to n/3 (see Figure 1(ii)). Indeed, we can construct such a graph
G as follows. Start with three disjoint cliques on 3m vertices each. In the ith clique choose
disjoint sets Ai and Bi with |Ai| = |Bi| and |A1| = |A3| = m and |A2| = m− 1. Remove a
perfect matching between Ai and Bi for each i. Add two new vertices a and b, where a is
connected to all vertices in the sets Ai and b is connected to all vertices in all the sets Bi.
Then G is a (3m−1)-regular 2-connected graph on n = 9m+2 vertices. However, G is not
Hamiltonian because G \ {a, b} has three components. Therefore none of the conditions –
degree, order or connectivity – of Conjecture 1.1 can be relaxed.

There have been several partial results in the direction of Conjecture 1.1. Fan [11] and
Jung [18] independently showed that every 3-connected D-regular graph contains a cycle
of length at least 3D, or a Hamilton cycle. Li and Zhu [27] proved Conjecture 1.1 in the
case when D ≥ 7n/22 and Broersma, van den Heuvel, Jackson and Veldman [6] proved it
for D ≥ 2(n+7)/7. In [17] it is proved that, if G satisfies the conditions of the conjecture,
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any longest cycle in G is dominating provided that n is not too small. (Here, a subgraph
H of a graph G is dominating if G \ V (H) is an independent set.) By considering robust
partitions, we are able to prove an approximate version of the conjecture.

Theorem 1.2. For all ε > 0, there exists n0 ∈ N such that every 3-connected D-regular
graph on n ≥ n0 vertices with D ≥ (1/4 + ε)n is Hamiltonian.

In fact, if D is at least a little larger than n/5 but G is not Hamiltonian we also
determine the asymptotic structure of G (see Theorem 7.11). In a recent paper [19] we
use this to prove the exact version of Conjecture 1.1 for large n. Note that [19] does not
supersede this paper but rather uses it as an essential tool.

There are also natural analogues of the above results and questions for directed graphs.
Here, a D-regular directed graph is such that every vertex has both in- and outdegree
equal to D. An oriented graph is a digraph without 2-cycles.

Conjecture 1.3.

(a) For each D > 2, every D-regular oriented graph G on n vertices with D ≥ (n−1)/4
is Hamiltonian.

(b) Every strongly 2-connected D-regular digraph on n vertices with D ≥ n/3 is Hamil-
tonian.

(c) For each D > 2, every D-regular strongly 2-connected oriented graph G on n
vertices with D ≥ n/6 is Hamiltonian.

(a) was conjectured by Jackson [15], (b) and (c) were raised in [22], which also contains
a more detailed discussion of these conjectures.

1.3. An application to the circumference of regular graphs. More generally, we
also consider the circumference of dense regular graphs of given connectivity. Bondy [4]
conjectured that, for r ≥ 3, every sufficiently large 2-connected D-regular graph G on n
vertices with D ≥ n/r has circumference c(G) ≥ 2n/(r−1). (Here the circumference c(G)
of G is the length of the longest cycle in G.) This was confirmed by Wei [31], who proved
the conjecture for all n and in fact showed that c(G) ≥ 2n/(r−1)+2(r−3)/(r−1), which
is best possible. We are able to extend this (asymptotically) to t-connected dense regular
graphs.

Theorem 1.4. Let t, r ∈ N. For all ε > 0 there exists n0 ∈ N such that the following holds.
Whenever G is a t-connected D-regular graph on n ≥ n0 vertices where D ≥ (1/r + ε)n,
the circumference of G is at least min{t/(r − 1), 1− ε}n.

This is asymptotically best possible. Indeed, in Proposition 8.1 we show that, for every
t, r ∈ N, there are infinitely many n such that there exists a graph G on n vertices which
is ((n− t)/(r − 1)− 1)-regular and t-connected with c(G) ≤ tn/(r − 1) + t. Moreover, as
discussed above, the first extremal example in Figure 1 shows that in general min{t/(r −
1), 1− ε}n cannot be replaced by min{t/(r − 1), 1}n.

Theorem 1.4 shows that the conjecture of Bollobás and Häggkvist is in fact close to being
true after all – any t-connected regular graph with degree slightly higher than n/(t + 1)
contains an almost spanning cycle.
1.4. An application to bipartite regular graphs. One can consider similar questions
about dense regular bipartite graphs. Häggkvist [12] conjectured that every 2-connected
D-regular bipartite graph on n vertices with D ≥ n/6 is Hamiltonian. If true, this result
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would be best possible. Indeed, it was essentially verified by Jackson and Li [16] who
proved it in the case when D ≥ (n + 38)/6. Recently, Li [26] conjectured a bipartite
analogue of Conjecture 1.1, i.e. that every 3-connected D-regular bipartite graph on n
vertices with D ≥ n/8 is Hamiltonian.

Restricting to bipartite graphs strengthens the structural information implied by our
main result (†) considerably. So it seems likely that one can use our partition result to
make progress towards these and other related conjectures.

One might ask if a bipartite analogue of the conjecture of Bollobás and Häggkvist holds,
i.e. whether every t-connected D-regular bipartite graph on n vertices with D ≥ n/2(t+1)
contains a Hamilton cycle. However, as in the general case, it turns out that this is false for
t > 3. Indeed, for each t ≥ 2 and infinitely many D ∈ N, Proposition 8.2 guarantees a D-
regular bipartite graph G on 8D+2 vertices that is t-connected and contains no Hamilton
cycle. (This observation generalises one from [26], who considered the case when t = 3.)

As in the general case, one may also consider the circumference of dense regular bipartite
graphs. Indeed, the argument for Theorem 1.4 yields the following bipartite analogue.
Again, it is asymptotically best possible (see Proposition 8.2(i)).

Theorem 1.5. Let t, r ∈ N, where r is even. For all ε > 0 there exists n0 ∈ N such that
the following holds. Whenever G is a t-connected D-regular bipartite graph on n ≥ n0
vertices where D ≥ (1/r+ε)n, the circumference of G is at least min{2tn/(r−2), n}−εn.

1.5. Organisation of the paper and sketch proof of Theorem 1.2. This paper is
organised as follows. In the remainder of this section we sketch the proof of Theorem 1.2.
Section 2 lists some notation which will be used throughout. In Section 3 we state our
robust partition result (Theorem 3.1) which formalises (†). We prove it in Section 4, which
also contains a sketch of the argument. In Section 5 we derive a version of Theorem 3.1 for
almost regular graphs. In Section 6 we show how to find suitable path systems covering
the robust components obtained from Theorem 3.1. These tools are then used in Section 7
to prove Theorem 1.2 and used in Section 8 to prove Theorems 1.4 and 1.5.

In order to see how our partition result (†) may be applied, we now briefly outline the
argument used to prove Theorem 1.2.

Let ε > 0 and suppose that G is a 3-connected D-regular graph on n vertices, where
D ≥ (1/4 + ε)n. Now (†) gives us a robust partition V of G containing exactly k robust
expander components and ` bipartite robust expander components, where k + ` ≤ 3.

However, Theorem 3.1 actually gives the stronger bound that k + 2` ≤ 3, so there are
only five possible choices of (k, `) (see Proposition 3.2). Assume for simplicity that V
consists of three robust expander components G1, G2, G3. So (k, `) = (3, 0). The result
of [25] mentioned in Section 1.1 implies that Gi contains a Hamilton cycle for i = 1, 2, 3.
In fact, it can be used to show (see Corollary 6.9) that Gi is Hamilton p-linked for each
bounded p. (Here a graph G is Hamilton p-linked if, whenever x1, y1, . . . , xp, yp are distinct
vertices, there exist vertex-disjoint paths P1, . . . , Pp such that Pj connects xj to yj , and
such that together the paths P1, . . . , Pp cover all vertices of G.) This means that the
problem of finding a Hamilton cycle in G can be reduced to finding only a suitable set of
external edges, where an edge is external if it has endpoints in different Gi. We use the
assumption of 3-connectivity to find these external edges (in Section 7).

The cases where ` > 0 are more difficult since a bipartite graph does not contain a
Hamilton cycle if it is not balanced. So as well as suitable external edges, we need to find
some ‘balancing edges’ incident to the bipartite robust expander component. (Note that
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if ` > 0 we must have ` = 1 and k ≤ 1.) Suppose for example that we have k = ` = 1
and that we have a bipartite robust expander component with vertex classes A,B where
|A| = |B| + 1, as well as a robust expander component X and an edge e joining A to
X and an edge f joining B to X, where e and f are disjoint (so e and f are external
edges). Then one possible set of balancing edges consists e.g. of two further external edges
incident to A. Another example would be one edge inside A. These balancing edges are
guaranteed by our assumption that G is regular. We construct them in Section 7.

2. Notation

For A ⊆ V (G), complements are always taken within the entire graph G, so that
A := V (G) \ A. Given A ⊆ V (G), we write N(A) :=

⋃
a∈AN(a). For x ∈ V (G) and

A ⊆ V (G) we write dA(x) for the number of edges xy with y ∈ A. For A,B ⊆ V (G), we
write e(A,B) for the number of edges with exactly one endpoint in A and one endpoint
in B. (Note that A,B are not necessarily disjoint.) Define e′(A,B) := e(A,B)+e(A∩B).
So e′(A,B) =

∑
a∈A dB(a) =

∑
b∈B dA(b) and if A,B are disjoint then e′(A,B) = e(A,B).

For a digraph G, we write δ0(G) for the minimum of its minimum indegree and minimum
outdegree.

For distinct x, y ∈ V (G) and a path P with endpoints x and y, we sometimes write
P = xPy to emphasise this. Given disjoint subsets A,B of V (G), we say that P is an
AB-path if P has one endpoint in A and one endpoint in B. We call a vertex-disjoint
collection of paths a path system. We will often think of a path system P as a graph with
edge set

⋃
P∈P E(P ), so that e.g. V (P) is the union of the vertex sets of each path in P.

Throughout we will omit floors and ceilings where the argument is unaffected. The
constants in the hierarchies used to state our results are chosen from right to left. For
example, if we claim that a result holds whenever 0 < 1/n� a� b� c ≤ 1 (where n is
the order of the graph or digraph), then there is a non-decreasing function f : (0, 1]→ (0, 1]
such that the result holds for all 0 < a, b, c ≤ 1 and all n ∈ N with b ≤ f(c), a ≤ f(b) and
1/n ≤ f(a). Hierarchies with more constants are defined in a similar way.

3. Robust partitions of regular graphs

In this section we list the definitions which are required to state our main result. For a
graph G on n vertices, 0 < ν < 1 and S ⊆ V (G), recall that the ν-robust neighbourhood
RNν,G(S) of S to be the set of all those vertices with at least νn neighbours in S. Also,
recall that for 0 < ν ≤ τ < 1 we say that G is a robust (ν, τ)-expander if, for all sets
S of vertices satisfying τn ≤ |S| ≤ (1 − τ)n, we have that |RNν,G(S)| ≥ |S| + νn. For
S ⊆ X ⊆ V (G) we write RNν,X(S) := RNν,G[X](S).

We now introduce the concept of ‘bipartite robust expansion’. Let 0 < ν ≤ τ < 1.
Suppose that H is a (not necessarily bipartite) graph on n vertices and that A,B is a
partition of V (H). We say that H is a bipartite robust (ν, τ)-expander with bipartition
A,B if every S ⊆ A with τ |A| ≤ |S| ≤ (1 − τ)|A| satisfies |RNν,H(S) ∩ B| ≥ |S| + νn.
Note that the order of A and B matters here. We do not mention the bipartition if it is
clear from the context.

Note that for 0 < ν ′ ≤ ν ≤ τ ≤ τ ′ < 1, any robust (ν, τ)-expander is also a robust
(ν ′, τ ′)-expander (and the analogue holds in the bipartite case).
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Given 0 < ρ < 1, we say that U ⊆ V (G) is a ρ-component of a graph G on n vertices
if |U | ≥ √ρn and eG(U,U) ≤ ρn2. Let 0 < ρ ≤ ν ≤ 1. Let G be a graph containing a ρ-
component U and let S ⊆ U . We say that S is ν-expanding in U if |RNν,U (S)| ≥ |S|+ν|U |,
and non-ν-expanding otherwise. So if G[U ] is a robust (ν, τ)-expander for some τ , then
all S ⊆ U satisfying τ |U | ≤ |S| ≤ (1− τ)|U | are ν-expanding in U .

Recall that U1 = V (G) \ U1 and similarly for U2. Suppose that G is a graph on n
vertices and that U ⊆ V (G). We say that G[U ] is ρ-close to bipartite (with bipartition
U1, U2) if

(C1) U is the union of two disjoint sets U1 and U2 with |U1|, |U2| ≥
√
ρn;

(C2) ||U1| − |U2|| ≤ ρn;
(C3) e(U1, U2) + e(U2, U1) ≤ ρn2.

Note that (C1) and (C3) together imply that U is a ρ-component. Suppose that G is a
graph on n vertices and that U ⊆ V (G). Let 0 < ρ ≤ ν ≤ τ < 1. We say that G[U ] is a
(ρ, ν, τ)-robust expander component of G if

(E1) U is a ρ-component;
(E2) G[U ] is a robust (ν, τ)-expander.

We say that G[U ] is a bipartite (ρ, ν, τ)-robust expander component (with bipartition A,B)
of G if

(B1) G[U ] is ρ-close to bipartite with bipartition A,B;
(B2) G[U ] is a bipartite robust (ν, τ)-expander with bipartition A,B.

We say that U is a (ρ, ν, τ)-robust component if it is either a (ρ, ν, τ)-robust expander
component or a bipartite (ρ, ν, τ)-robust expander component.

Our main result states that any sufficiently dense regular graph has a partition into
(bipartite) robust expander components. Let k, `,D ∈ N and 0 < ρ ≤ ν ≤ τ < 1. Given a
D-regular graph G on n vertices, we say that V is a robust partition of G with parameters
ρ, ν, τ, k, ` if the following conditions hold.

(D1) V = {V1, . . . , Vk,W1, . . . ,W`} is a partition of V (G);
(D2) for all 1 ≤ i ≤ k, G[Vi] is a (ρ, ν, τ)-robust expander component of G;
(D3) for all 1 ≤ j ≤ `, there exists a partition Aj , Bj of Wj such that G[Wj ] is a bipartite

(ρ, ν, τ)-robust expander component with respect to Aj , Bj ;
(D4) for all X,X ′ ∈ V and all x ∈ X, we have dX(x) ≥ dX′(x). In particular, dX(x) ≥

D/m, where m := k + `;
(D5) for all 1 ≤ j ≤ ` we have dBj (u) ≥ dAj (u) for all u ∈ Aj and dAj (v) ≥ dBj (v) for

all v ∈ Bj ; in particular, δ(G[Aj , Bj ]) ≥ D/2m;

(D6) k + 2` ≤
⌊
(1 + ρ1/3)n/D

⌋
;

(D7) for all X ∈ V, all but at most ρn vertices x ∈ X satisfy dX(x) ≥ D − ρn.

As we shall see, (D6) can be derived from (D1)–(D5) but it is useful to state it explicitly.
Our main result is the following theorem, which we prove in the next section. As mentioned
in the introduction, we can use Theorem 3.1 to derive a version for almost regular graphs
(see Section 5).

Theorem 3.1. For all α, τ > 0 and every non-decreasing function f : (0, 1) → (0, 1),
there exists n0 ∈ N such that the following holds. For all D-regular graphs G on n ≥ n0
vertices where D ≥ αn, there exist ρ, ν with 1/n0 ≤ ρ ≤ ν ≤ τ ; ρ ≤ f(ν) and 1/n0 ≤ f(ρ),
and k, ` ∈ N such that G has a robust partition V with parameters ρ, ν, τ, k, `.
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When the degree of G is large, (D6) implies that there are only a small number of
possible choices for k and `.

Proposition 3.2. Let n,D ∈ N and suppose that 0 < 1/n � ρ � ν � τ � 1/r < 1

and ρ1/3 ≤ ε/2. Let G be a D-regular graph on n vertices where D ≥ (1/r + ε)n and
let V be a robust partition of G with parameters ρ, ν, τ, k, `. Then k + 2` ≤ r − 1 and so
` ≤ b(r − 1)/2c and k ≤ r − 1− 2`. In particular,

(i) if r = 4 then (k, `) ∈ S, where S := {(1, 0), (2, 0), (3, 0), (0, 1), (1, 1)};
(ii) if r = 5 then (k, `) ∈ S ∪ {(4, 0), (2, 1), (0, 2)}.

Proof. It suffices to show that k+2` ≤ r−1. By (D6) and our assumption that ρ1/3 ≤ ε/2
we have

k + 2` ≤
⌊

1 + ε/2

1/r + ε

⌋
=

⌊
r + rε/2

1 + rε

⌋
= r − 1,

as required. �

We will prove Theorem 1.2 separately for each of these cases in Proposition 3.2(i).
Proposition 3.2 is the only point of the proof where we need the full strength of the degree
condition D ≥ (1/4 + ε)n. Furthermore, Proposition 3.2(ii) implies that a dn/4e-regular
graph could have any of the structures specified by (i), as well as (k, `) = (4, 0), (2, 1), (0, 2).
Note also that Figure 1(i) has (k, `) = (2, 1) and Figure 1(ii) has (k, `) = (3, 0).

4. The proof of Theorem 3.1

We begin by giving a brief sketch of the argument.

4.1. Sketch proof of Theorem 3.1. The basic proof strategy is to successively refine
an appropriate partition of G. So let G be a D-regular graph on n vertices, where D is
linear in n. Suppose that G is not a (bipartite) robust expander. Then V (G) contains a
set S such that N is not much larger than S, where N := RNν,G(S) for appropriate ν.
Consider a minimal S with this property. Since G is regular, N cannot be significantly
smaller than S. One can use this to show that there are very few edges between S∪N and
X := V (G) \ (S ∪N). Moreover, one can show that S and N are either almost identical
or almost disjoint. In the former case, G[S ∪ N ] is a robust expander and in the latter
G[S ∪N ] is close to a bipartite robust expander. So in both cases, S ∪N is a (bipartite)
robust expander component. Similarly, if X is non-empty, it is either a (bipartite) robust
expander component or we can partition it further along the above lines. In this way, we
eventually arrive at the desired partition.

4.2. Preliminary observations. We will often use the following simple observation
about ρ-components.

Lemma 4.1. Let n,D ∈ N and ρ, ρ′, γ > 0 such that ρ ≤ ρ′ and γ ≥ ρ + ρ′. Let G be a
D-regular graph on n vertices and let U be a ρ-component of G. Then

(i) |U | ≥ D −√ρn;

(ii) if W,W ′ is a partition of U and W is a ρ′-component of G, then e(W ′,W ′) ≤ γn2;
(iii) if D ≥ 2

√
ρ′n, then U is a ρ′-component of G.

Let X ⊆ V (G) have bipartition X1, X2 such that G[X] is ρ-close to bipartite with biparti-
tion X1, X2. Then

(iv) |X1|, |X2| ≥ D − 2
√
ρn;
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(v) if D ≥ 3
√
ρ′n, then X is ρ′-close to bipartite.

Proof. To prove (i), note that

|U |D =
∑
x∈U

dG(x) = 2eG(U) + eG(U,U) ≤ |U |2 + ρn2.

So |U | ≥ D − ρn2/|U | ≥ D −√ρn, as required. To see (ii), note that

e(W ′,W ′) = e(W ′,W ) + e(W ′, U) ≤ e(W,W ) + e(U,U) ≤ (ρ+ ρ′)n2 ≤ γn2.
To see (iii), note first that e(U,U) ≤ ρn2 ≤ ρ′n2. Furthermore, (i) implies that |U | ≥
D −√ρn ≥

√
ρ′n.

We now prove (iv). Since e′(X1, X2) ≤ 2e(X1, X2) ≤ 2ρn2 and since G is D-regular, we
have that

(4.1) |X1|D − 2ρn2 ≤ e′(X1, V (G))− e′(X1, X2) = e′(X1, X2) ≤ |X1||X2|.
So |X2| ≥ D− 2ρn2/|X1| ≥ D− 2

√
ρn. A similar argument shows that |X1| ≥ D− 2

√
ρn.

Finally, (v) holds since (C2) and (C3) are immediate, and (C1) follows from (iv). �

The following lemma implies that, for any regular graph G and any S ⊆ V (G) that is
not too small, the robust neighbourhood of S cannot be significantly smaller than S itself.

Lemma 4.2. Let n,D ∈ N and suppose that 0 < 1/n � ρ � ν � τ � α < 1. Let U be
a ρ-component of a D-regular graph G on n vertices, where D ≥ αn. Let S ⊆ U satisfy
|S| ≥ τ |U |. Write N := RNν,U (S) and let Y := S \N and W := V (G) \ (S ∪N). Then

(i) e(S, Y ) ≤ νn2 and e(S,W ) ≤ 2νn2;
(ii) |N | ≥ |S| −

√
νn;

(iii) |N | ≥ D −
√
νn.

Proof. To prove (i), note that e(S, Y ) = eG[U ](S, Y ) ≤ |Y |ν|U | ≤ νn2. Moreover, e′(S,N ∩
U) =

∑
x∈N∩U dS(x) ≤ ν|U |2 ≤ νn2. Since U is a ρ-component of G, we have that

e(U,U) ≤ ρn2. Hence

(4.2) e′(S,N) = e′(S,N ∩ U) + e(S,U) ≤ (ν + ρ)n2 ≤ 2νn2.

This proves (i) as e(S,W ) ≤ e′(S,N). We now prove (ii). Certainly e′(S,N) ≤
∑

x∈N d(x) =
D|N |. Similarly

(4.3) e′(S,N) = D|S| − e′(S,N)
(4.2)

≥ D|S| − 2νn2.

Then |N | ≥ |S| − 2νn2/D ≥ |S| −
√
νn, which proves (ii). Finally, we prove (iii).

Lemma 4.1(i) implies that |U | ≥ D −√ρn, so

(4.4) |S| ≥ τ |U | ≥ τD/2.
Moreover, (4.3) implies that |S||N | ≥ e′(S,N) ≥ D|S| − 2νn2 and hence

|N | ≥ D − 2ν

|S|
n2

(4.4)

≥ D − 4ν

τD
n2 ≥ D −

√
νn,

as required. �

The next lemma gives some sufficient conditions for G[U ] to be close to bipartite when
G is a regular graph and U ⊆ V (G).
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Lemma 4.3. Let n,D ∈ N and suppose that 0 < 1/n� γ′ ≤ γ � α < 1 where γ′ ≤ γ7/6.
Suppose that G is a D-regular graph on n vertices where D ≥ αn. Let Y,Z be disjoint
subsets of V (G) such that

(i) |Y | ≥ γn;
(ii) ||Y | − |Z|| ≤ γn;
(iii) e(Y, Z) ≤ γ′n2.

Then G[Y ∪ Z] is γ1/3-close to bipartite with bipartition Y,Z.

Proof. First note that (C2) certainly holds with γ1/3 playing the role of ρ. Since e′(Y,Z) ≤
2e(Y, Z) ≤ 2γ′n2 and G is D-regular, we have that

(4.5) |Y |D − 2γ′n2 ≤ e′(Y, V (G))− e′(Y,Z) = e′(Y,Z) ≤ |Y ||Z|.

So |Z| ≥ D − 2γ′n2/|Y | ≥ 2γ1/6n and |Y | ≥ |Z| − γn ≥ γ1/6n. Thus (C1) holds. We also
have that

e(Z, Y ) ≤ e′(Z, Y ) = |Z|D − e′(Y, Z)
(4.5)

≤ (|Z| − |Y |)D + 2γ′n2

(ii)

≤ Dγn+ 2γ′n2 ≤ 3γn2.

So e(Y, Z) + e(Z, Y ) ≤ 4γn2 ≤ γ1/3n2 and therefore (C3) holds. �

We now show that if a regular graph G contains a non-expanding set S whose intersec-
tion with its robust neighbourhood is small, then G contains an induced subgraph which
is close to bipartite.

Lemma 4.4. Let n,D ∈ N and suppose that 0 < 1/n � ρ � ν � τ � α < 1. Suppose
that G is a D-regular graph on n vertices where D ≥ αn. Let U ⊆ V (G) be a ρ-component
of G. Suppose that S ⊆ U is non-ν-expanding in U and |S| ≥ τ |U |. Let N := RNν,U (S),
Y := S \N and Z := N \ S. Then

(i) ||Y | − |Z|| ≤
√
νn;

(ii) if also |Y | >
√
νn, then G[Y ∪ Z] is ν1/6-close to bipartite with bipartition Y,Z.

Proof. Let X := S ∩ N . So S = X ∪ Y and N = X ∪ Z. Since S is non-ν-expanding in
U , we have that |N | < |S|+ ν|U |. By Lemma 4.2(ii) we have that

|S| −
√
νn ≤ |N | < |S|+ ν|U | ≤ |S|+

√
νn,

which proves (i). To prove (ii), let W := S ∪N = X ∪ Y ∪ Z. Note that Lemma 4.2(i)
implies that

(4.6) e(Y, Z) = e(Y, S ∪W ) ≤ e(S, Y ) + e(S,W ) ≤ 3νn2.

Set γ′ := 3ν and γ :=
√
ν. Then γ′ ≤ γ5/6. So we can apply Lemma 4.3 to see that

G[Y ∪ Z] is ν1/6-close to bipartite with bipartition Y,Z. �

The next proposition formalises the fact that, if a graph G contains a subset U that is
close to bipartite; we may add or remove any small set of vertices so that it is still close
to bipartite (with slightly weaker parameters). We omit the proof as it is straightforward
to check that (C1)–(C3) are satisfied.
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Proposition 4.5. Let n,D ∈ N, 0 < 1/n � ρ1, ρ2 � α < 1 and let ρ ≥ ρ1 + 2ρ2.
Suppose that G is a D-regular graph on n vertices where D ≥ αn and let U ⊆ V (G) be
such that G[U ] is ρ1-close to bipartite, with bipartition A,B. Suppose that A′, B′ ⊆ V (G)
are disjoint and |A4A′| + |B4B′| ≤ ρ2n. Let U ′ := A′ ∪ B′. Then G[U ′] is ρ-close to
bipartite with bipartition A′, B′.

4.3. Properties of non-expanding subsets. In this subsection we prove that a ρ-
component is either a robust expander component, a bipartite robust expander component,
or the union of two ρ′-components (where ρ � ρ′). This forms the core of the proof of
Theorem 3.1.

For this, we first show that if U is a ρ-component in a regular graph G such that G[U ]
is not a robust expander, then either G[U ] is close to bipartite, or U can be decomposed
into two ρ′-components. To prove this, we consider a non-expanding set S and its ro-
bust neighbourhood N . We use our previous results to show that either S ∪ N and its
complement in U are both ρ′-components or G[U ] is ρ′-close to bipartite.

Lemma 4.6. Let n,D ∈ N and suppose that 0 < 1/n � ρ � ν � ρ′ � τ � α < 1. Let
U be a ρ-component of a D-regular graph G on n vertices where D ≥ αn. Suppose that
G[U ] is not a robust (ν, τ)-expander. Then at least one of the following hold:

(i) U has a partition U1, U2 such that each of U1, U2 is a ρ′-component of G;
(ii) G[U ] is ρ′-close to bipartite.

Proof. Since G[U ] is not a robust (ν, τ)-expander, there exists S ⊆ U with

(4.7) τ |U | ≤ |S| ≤ (1− τ)|U |
and |RNν,U (S)| < |S|+ ν|U |. Let N := RNν,U (S), X := S ∩N , Y := S \N , Z := N \ S
and W := V (G) \ (S ∪N). We consider two cases, depending on the size of Y .

Case 1. |Y | ≤
√
νn.

In this case, we will show that (i) holds. Let U1 := S ∪N = S ∪Z so that U1 = W . Then
Lemma 4.2(iii) implies that |U1| ≥ |N | ≥ D −

√
νn ≥

√
ρ′n. By Lemma 4.4(i), we have

|Z| ≤ |Y |+
√
νn ≤ 2

√
νn(4.8)

≤ τD/4 ≤ τ |U |/2,(4.9)

where the last inequality holds since |U | ≥ D−√ρn by Lemma 4.1(i). Now Lemma 4.2(i)
implies that

e(U1, U1) = e(S,W ) + e(Z,W ) ≤ 2νn2 + |Z|n
(4.8)

≤ 3
√
νn2.

So U1 is a 3
√
ν-component of G. Moreover, (4.9) and (4.7) together imply that

|U1| = |S|+ |Z| ≤ (1− τ/2) |U |.
Let U2 := U \ U1. Then |U2| ≥ τ |U |/2 ≥

√
ρ′n. Since U is a ρ-component, U1 is a

3
√
ν-component, and ρ + 3

√
ν ≤ ρ′, we can apply Lemma 4.1(ii) with U1, U2, ρ, 3

√
ν, ρ′

playing the roles of W,W ′, ρ, ρ′, γ respectively to see that e(U2, U2) ≤ ρ′n2. Thus U2 is a
ρ′-component of G and so (i) holds.

Case 2. |Y | >
√
νn.

Let U1 := Y ∪Z = S4N . Lemma 4.4(ii) implies that G[U1] is ν1/6-close to bipartite with

bipartition Y, Z. Therefore (C1) and (C3) imply that U1 is a ν1/6-component. Moreover,
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|U1| ≥ 2(D − 2ν1/12n) ≥ 2(D − 2
√
ρ′n) by Lemma 4.1(iv). Let U2 := U \ U1. Now

Lemma 4.1(ii) with U1, U2, ρ, ν
1/6, (ρ′/3)2 playing the roles of W,W ′, ρ, ρ′, γ implies that

e(U2, U2) ≤ (ρ′/3)2n2. If |U2| ≥ ρ′n/3 then U2 is a (ρ′/3)2-component. So Lemma 4.1(i)
implies that |U2| ≥ D − ρ′n/3 and thus U2 is actually a ρ′-component of G. So (i) holds
in this case.

Thus we may assume that |U2| < ρ′n/3. Let Y ′ := Y ∪U2 and Z ′ := Z. Then Y ′, Z ′ are
disjoint subsets whose union is U . Note that |Y ′4Y |+|Z ′4Z| = |U2| < ρ′n/3. Now Propo-

sition 4.5 with U1, U, Y, Z, Y
′, Z ′, ν1/6, ρ′/3, ρ′ playing the roles of U,U ′, A,B,A′, B′, ρ1, ρ2, ρ

implies that G[U ] is ρ′-close to bipartite with bipartition Y ′, Z ′. So (ii) holds. �

The following lemma is a bipartite analogue of Lemma 4.6. It states that if G is a regular
graph and U ⊆ V (G) such that G[U ] is close to bipartite and G[U ] is not a bipartite robust
expander, then U can be decomposed into two components. The proof is similar to that
of Lemma 4.6 – we find the partition by considering a non-expanding set and its robust
neighbourhood – and can be found in [30].

Lemma 4.7. Let n,D ∈ N and suppose that 0 < 1/n � ρ � ν � ρ′ � τ � α < 1. Let
G be a D-regular graph on n vertices where D ≥ αn. Suppose that U ⊆ V (G) is such that
G[U ] is ρ-close to bipartite with bipartition A,B and G[U ] is not a bipartite robust (ν, τ)-
expander with bipartition A,B. Then there is a partition U1, U2 of U such that U1, U2 are
ρ′-components.

4.4. Adjusting partitions. The results of this subsection will be needed to ensure (D4),
(D5) and (D7) in the proof of Theorem 3.1.

The next two lemmas state that (bipartite) robust expanders are indeed robust, in the
sense that the expansion property cannot be destroyed by adding or removing a small num-
ber of vertices. We omit the proofs as they follow from the definitions in a straightforward
way.

Lemma 4.8. Let 0 < ν � τ � 1. Suppose that G is a graph and U,U ′ ⊆ V (G) are
such that G[U ] is a robust (ν, τ)-expander and |U4U ′| ≤ ν|U |/2. Then G[U ′] is a robust
(ν/2, 2τ)-expander.

Lemma 4.9. Let 0 < ν � τ � 1. Suppose that U ⊆ V (G) and that G[U ] is a bipartite
robust (ν, τ)-expander with bipartition A,B. Let W,A′, B′ ⊆ V (G) be such that |W | ≤
ν|A|/2; A′ and B′ are disjoint; and |A4A′|+ |B4B′| ≤ ν|A|/2. Then

(i) G[U \W ] is a bipartite robust (ν/2, 2τ)-expander with bipartition A \W,B \W ;
(ii) G[A′ ∪B′] is a bipartite robust (ν/2, 2τ)-expander with bipartition A′, B′.

We now extend Lemma 4.9 by showing that, after adding and removing a small number
of vertices, a bipartite robust component is still a bipartite robust component, with slightly
weaker parameters. The proof may be found in [30].

Lemma 4.10. Let 0 < 1/n� ρ ≤ γ � ν � τ � α < 1 and suppose that G is a D-regular
graph on n vertices where D ≥ αn.

(i) Suppose that G[A∪B] is a bipartite (ρ, ν, τ)-robust expander component of G with
bipartition A,B. Let A′, B′ ⊆ V (G) be such that |A4A′| + |B4B′| ≤ γn. Then
G[A′ ∪B′] is a bipartite (3γ, ν/2, 2τ)-robust expander component of G with bipar-
tition A′, B′.
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(ii) Suppose that G[U ] is a bipartite (ρ, ν, τ)-robust expander component of G. Let
U ′ ⊆ V (G) be such that |U4U ′| ≤ γn. Then G[U ′] is a bipartite (3γ, ν/2, 2τ)-
robust expander component of G.

In any ρ-component, almost all vertices have very few neighbours outside the compo-
nent. In particular, most vertices have more neighbours within their own component than
in any other. The following lemma allows us to move a small number of vertices in a
partition into ρ-components so that this property holds for all vertices.

Lemma 4.11. Let m,n,D ∈ N and 0 < 1/n � ρ � α, 1/m ≤ 1. Let G be a D-regular
graph on n vertices where D ≥ αn. Suppose that U := {U1, . . . , Um} is a partition of
V (G) such that Ui is a ρ-component for each 1 ≤ i ≤ m. Then G has a vertex partition
V := {V1, . . . , Vm} such that

(i) |Ui4Vi| ≤ ρ1/3n;

(ii) Vi is a ρ1/3-component for each 1 ≤ i ≤ m;
(iii) if x ∈ Vi then dVi(x) ≥ dVj (x) for all 1 ≤ i, j ≤ m. In particular, dV (x) ≥ D/m

for all x ∈ V and all V ∈ V;
(iv) for all but at most ρ1/3n vertices x ∈ Vi we have dVi(x) ≥ D − 2

√
ρn.

Proof. First note that the second part of (iii) follows from the first. For each 1 ≤ i ≤ m,
let Xi be the collection of vertices y ∈ Ui with dUi

(y) ≥ √ρn. Since Ui is a ρ-component,

we have |Xi| ≤
√
ρn. Let Wi := Ui \Xi. Then each x ∈Wi satisfies

(4.10) dWi(x) = d(x)− dUi∪Xi
(x) ≥ d(x)−√ρn− |Xi| ≥ d(x)− 2

√
ρn.

Let X :=
⋃

1≤i≤mXi. Among all partitions X ′1, . . . , X
′
m of X, choose one such that∑

1≤i≤m e(Vi, Vi) is minimal, where Vi := Wi ∪X ′i. It is easy to see that dVi(x) ≥ dVj (x)

for all x ∈ X ′i and all 1 ≤ i, j ≤ m. So (iii) holds for all x ∈ X ′i and i ≤ m. Moreover, if
x ∈ Wi, then (4.10) implies that dVi(x) ≥ dWi(x) ≥ d(x) − 2

√
ρn ≥ d(x)/2. So (iii) also

holds for each vertex in Wi. Furthermore,∑
1≤i≤m

e(Vi, Vi) ≤
∑

1≤i≤m
e(Ui, Ui) ≤ ρmn2 ≤ ρ1/3n2

and hence each Vi is a ρ1/3-component, so (ii) holds.
Note that Ui ∩ Vi ⊇Wi, so

(4.11) |Ui4Vi| ≤
∑

1≤i≤m
|X ′i| = |X| ≤ m

√
ρn ≤ ρ1/3n,

which proves (i). Finally, (4.10) and the fact that |Vi \ Wi| ≤ |X| ≤ ρ1/3n by (4.11)
together imply (iv). �

The next lemma shows that, in a bipartite robust expander component, we can adjust
the bipartition slightly so that any vertex has at least as many neighbours in the opposite
class as within its own class. The resulting graph will still be a bipartite robust expander
component. The proof is very similar to that of Lemma 4.11 and may be found in [30].

Lemma 4.12. Let 0 < 1/n � ρ � ν � τ � α < 1 and let G be a D-regular graph on
n vertices where D ≥ αn. Suppose that U is a bipartite (ρ, ν, τ)-robust component of G.
Then there exists a bipartition A,B of U such that

(i) U is a bipartite (3
√
ρ, ν/2, 2τ)-robust component with partition A,B;
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(ii) dB(u) ≥ dA(u) for all u ∈ A, and dA(v) ≥ dB(v) for all v ∈ B;

4.5. Proof of the main result. We are now ready to prove Theorem 3.1 – that every
sufficiently dense regular graph has a robust partition. The first part of the proof is
an iteration of Lemmas 4.6 and 4.7 – we begin with the trivial partition of V (G) and
successively refine it by applying Lemma 4.7 to those components which are close to
bipartite and Lemma 4.6 to the others, until we obtain a partition into robust components.
We then use Lemma 4.11 to adjust the partition slightly and Lemma 4.12 to achieve an
appropriate bipartition of the bipartite robust expander components.

Proof of Theorem 3.1. Let t := 3d2/αe. Define further constants satisfying

0 < 1/n0 � ρ1 � ν1 � ρ2 � ν2 � . . .� ρt � νt � τ ′ � α, τ

so that 1/n0 ≤ f(ρ1) and 33/2ρ
1/6
i ≤ f(νi/4) for all 1 ≤ i ≤ t. We first prove the following

claim.

Claim. There is some 1 ≤ i < t and a partition U of V (G) such that U is a (ρi, νi, τ
′)-

robust component for each U ∈ U .

To see this, let U1 := {V (G)}. Note that V (G) is certainly a ρ1-component of G, and
|U1| = 1. Suppose, for some i with 1 ≤ i < t, we have inductively defined a partition Ui
of V (G) such that U is a ρi-component for each U ∈ Ui and 2|Ui| + |Wi| ≥ i + 1, where
Wi is the collection of all those U ∈ Ui which are ρi-close to bipartite. If each U ∈ Ui is a
(ρi, νi, τ

′)-robust component, then we are done by setting U := Ui. Otherwise, we obtain
Ui+1 from Ui as follows.

There is some U ∈ Ui which is not a (ρi, νi, τ
′)-robust component. If U ∈ Wi, then

apply Lemma 4.7 with ρi, νi, ρi+1, τ
′ playing the roles of ρ, ν, ρ′, τ to obtain a partition

U1, U2 of U such that U1, U2 are ρi+1-components. Let Ui+1 := (Ui \ {U}) ∪ {U1, U2}.
Lemma 4.1(v) implies that Wi \ {U} ⊆ Wi+1, where Wi+1 is the collection of all those
U ∈ Ui+1 which are ρi+1-close to bipartite. Thus |Ui+1| = |Ui|+ 1 and |Wi+1| ≥ |Wi| − 1.

So suppose next that U ∈ Ui \ Wi. Apply Lemma 4.6 with ρi, νi, ρi+1, τ
′ playing the

roles of ρ, ν, ρ′, τ . If (i) holds, then U has a partition U1, U2 such that U1, U2 are ρi+1-
components. As before, we let Ui+1 := (Ui \ {U}) ∪ {U1, U2}. So |Ui+1| = |Ui| + 1 and
|Wi+1| ≥ |Wi|. Otherwise, Lemma 4.6(ii) holds. Then U is ρi+1-close to bipartite. We let
Ui+1 := Ui. Then |Ui+1| = |Ui| and |Wi+1| ≥ |Wi|+ 1.

Note that in each case we have 2|Ui+1| + |Wi+1| ≥ i + 2. Moreover, Lemma 4.1(iii)
implies that each W ∈ Ui \ {U} is a ρi+1-component. Therefore each W ∈ Ui+1 is a
ρi+1-component.

It remains to show that this process must stop before we define Ut. Suppose not,
i.e. suppose we have defined Ut. Since each W ∈ Ut is a ρt-component, Lemma 4.1(i)
implies that |W | ≥ (α − √ρt)n for all W ∈ Ut. Moreover, |Ut| > t/3 since 3|Ut| ≥
2|Ut|+ |Wt| ≥ t+ 1. Altogether, this implies that

|V (G)| ≥ t

3
(α−√ρt)n ≥

2

α
(α−√ρt)n > n,

a contradiction. This completes the proof of the claim.

Set ρ′ := ρi, ν
′ := νi, ρ := 33/2ρ′1/6 and ν := ν ′/4. So

(4.12) ρ = 33/2ρ′1/6 ≤ f(ν ′/4) = f(ν) and 1/n0 ≤ f(ρ1) ≤ f(ρ)
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and every U ∈ U is a (ρ′, ν ′, τ ′)-robust component of G. So there exist k, ` ∈ N such that
U = {U1, . . . , Uk, Z1, . . . , Z`}, where Ui is a (ρ′, ν ′, τ ′)-robust expander component for all
1 ≤ i ≤ k, and Zj is a bipartite (ρ′, ν ′, τ ′)-robust expander component for all 1 ≤ j ≤ `.
Let m := k+ `. Note that for each 1 ≤ i ≤ k, we have |Ui| ≥ D−

√
ρ′n (by Lemma 4.1(i)

and since Ui is a ρ′-component). Moreover, for each 1 ≤ j ≤ `, |Zj | ≥ 2(D − 2
√
ρ′n) by

Lemma 4.1(iv). Thus

n =
∑

1≤i≤k
|Ui|+

∑
1≤j≤`

|Zj | ≥ (D − 2
√
ρ′n)(k + 2`)

and so

(4.13) k + 2` ≤
⌊

n

D − 2
√
ρ′n

⌋
≤
⌊
(1 + ρ′1/3)

n

D

⌋
.

In particular, 1/m ≥ α/2.
To achieve (D4), we apply Lemma 4.11 with ρ′ playing the role of ρ to U to obtain a

new partition V = {V1, . . . , Vk,W1, . . . ,W`} of V (G) satisfying (i)–(iv), so in particular

(4.14) |Ui4Vi|, |Zj4Wj | ≤ ρ′1/3n

for all 1 ≤ i ≤ k and all 1 ≤ j ≤ `. We claim that V satisfies (D1)–(D7).
Now (D1) certainly holds, (D4) follows from Lemma 4.11(iii) and (D7) follows from

Lemma 4.11(iv). To prove (D2), note that Vi is a ρ′1/3-component by Lemma 4.11(ii)
and |Vi| ≥ D/2 ≥ √ρn. Thus Vi is a ρ-component, i.e. (E1) holds. Now, by (4.14) and
Lemma 4.8 with ν ′, τ ′, Ui, Vi playing the roles of ν, τ, U, U ′, we have that G[Vi] is a robust
(ν ′/2, 2τ ′)-expander and thus also a robust (ν, τ)-expander. So (E2) holds, proving (D2).

To check (D3), recall that G[Zj ] is a bipartite (ρ′, ν ′, τ ′)-robust expander component.

Then (4.14) and Lemma 4.10(ii) applied with ρ′, ρ′1/3, ν ′, τ ′, Zj ,Wj playing the roles of

ρ, γ, ν, τ, U, U ′ imply that G[Wj ] is a bipartite (3ρ′1/3, ν ′/2, 2τ ′)-robust expander compo-

nent. Now for each 1 ≤ j ≤ `, apply Lemma 4.12 to Wj with 3ρ′1/3, ν ′/2, 2τ ′ playing the
roles of ρ, ν, τ to obtain a bipartition Aj , Bj of Wj satisfying (i) and (ii). Lemma 4.12(i)
implies that G[Wj ] is a bipartite (ρ, ν, τ)-robust expander component with bipartition
Aj , Bj . So (D3) holds. Lemma 4.12(ii) implies that (D5) holds. Finally, (D6) follows from
(4.13). �

5. Extending Theorem 3.1 to almost regular graphs

In this section, we prove an extension of Theorem 3.1 which states that every dense
almost regular graph has a robust partition. We first extend the definition of a robust
partition to graphs which may not be regular. Let k, `,D ∈ N and 0 < ρ ≤ ν ≤ τ < 1.
Given a graph G on n vertices, we say that V is a robust partition of G with parameters
ρ, ν, τ, k, ` if (D1)–(D7) hold with δ(G) playing the role of D. Note that, for D-regular
graphs, this coincides with the definition given in Section 3.

Theorem 5.1. For all α, τ > 0 and every non-decreasing function f : (0, 1)→ (0, 1), there
exist n0 ∈ N and γ > 0 such that the following holds. For all graphs G on n ≥ n0 vertices
with αn ≤ δ(G) ≤ ∆(G) ≤ δ(G) + γn, there exist ρ, ν with 1/n0, γ ≤ ρ ≤ ν ≤ τ ; ρ ≤ f(ν)
and 1/n0 ≤ f(ρ), and k, ` ∈ N such that G has a robust partition V with parameters
ρ, ν, τ, k, `.
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The proof proceeds by taking two copies of G and adding a small number of edges
between them to obtain a regular graph G′, whose degree is only slightly higher than ∆(G).
We apply Theorem 3.1 to obtain a robust partition V of G′. The construction of G′ implies
that every robust component in V lies entirely in one copy of G. So there is a partition of
V into two parts, one of which must be a robust partition of G.

In order to construct G′ from G, we need some preliminaries. We say that a non-
decreasing sequence (di)1≤i≤n of positive integers is bipartite graphic if there exists a
bipartite graph G with vertex classes A and B with |A| = |B| = n such that the ith
vertex of each of A and B has degree di. The following theorem of Alon, Ben-Shimon and
Krivelevich [1] gives a sufficient condition for a sequence to be bipartite graphic. Their
result is stated differently to the statement below, but the two forms are equivalent, as
observed in [8].

Theorem 5.2. Suppose that (di)1≤i≤n is a non-decreasing sequence of positive integers.
Then (di)1≤i≤n is bipartite graphic if nd1 ≥ (d1 + dn)2/4.

We also need the following result (Lemma 3.8 from [24]).

Lemma 5.3. Suppose that 0 < ν ≤ τ ≤ ε < 1 are such that ε ≥ 2ν/τ . Let G be a graph
on n vertices with minimum degree δ(G) ≥ (1/2+ε)n. Then G is a robust (ν, τ)-expander.

We are now able to deduce Theorem 5.1 from Theorem 3.1.

Proof that Theorem 3.1 implies Theorem 5.1. Define f ′ : (0, 1) → (0, 1) by f ′(x) :=
min{f(x)/4, αx/2} and let τ ′ := min{τ, α2/20}. Apply Theorem 3.1 with α, τ ′, f ′ playing
the roles of α, τ, f to obtain n0 ∈ N. Let γ := 1/4n0. Let G be a graph on n ≥ n0 vertices
with αn ≤ δ(G) ≤ ∆(G) ≤ δ(G) + γn. Let D := δ(G). Order the vertices v1, . . . , vn of G
in order of increasing degree.

Obtain a graphG′′ fromG as follows. We letW1 := {w1, . . . , wn} andW2 := {x1, . . . , xn}
be disjoint sets of vertices and let G′′ have vertex set W1∪W2. We add the edges wiwj and
xixj whenever vivj ∈ E(G). Choose a constant β such that γ = β(1−β) and γ ≤ β ≤ 2γ.

Let di := D + βn − dG(vn+1−i). Then (di)1≤i≤n is a non-decreasing sequence and
(β − γ)n ≤ d1 ≤ dn ≤ βn. Observe that if (di)1≤i≤n is bipartite graphic, then we can
add edges to G′′ between W1 and W2 to obtain a (D + βn)-regular graph G′. Since
(d1 + dn)2/4 ≤ β2n2 = (β − γ)n2 ≤ nd1, Theorem 5.2 implies that such a G′ exists. Note
that

(5.1) ∆(G′[W1,W2]) = dn ≤ βn.

Theorem 3.1 applied to G′ implies that there exist ρ′, ν with 1/n0 ≤ ρ′ ≤ ν ≤ τ ′; ρ′ ≤ f ′(ν)
and 1/n0 ≤ f ′(ρ′), and k′, `′ ∈ N such that G′ has a robust partition V with parameters
ρ′, ν, τ ′, k′, `′. Note that β ≤ 2γ = 1/2n0 ≤ ν/2.

Claim. Let U ∈ V be arbitrary. Then U is contained entirely within one of W1,W2.

To see this, let Ui := U ∩Wi for i = 1, 2. Assume, for a contradiction, that U1, U2 6= ∅.
Then

|Ui| ≥ δ(G′[Ui])
(D4),(5.1)

≥ D

k′ + `′
− βn

(D6)

≥ D

2(1 + ρ1/3)n/D
− βn ≥ (α2/4− β)n(5.2)

≥ α2n/5.
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In particular this implies that τ ′|U | ≤ |Ui| ≤ (1− τ ′)|U |. The fact that β ≤ ν/2 and (5.1)
imply that RNν,U (Ui) ⊆ Ui. Then U cannot be a robust expander component. So U is
a bipartite robust expander component, with bipartition A,B, say. Let Ai := A ∩ Ui for
i = 1, 2 and define Bi analogously. Similarly as in (5.2), using (D5) instead of (D4), one
can show that |Ai|, |Bi| ≥ (α2/8−β)n ≥ α2n/10. In particular, τ ′|A| ≤ |Ai| ≤ (1− τ ′)|A|.
Without loss of generality, suppose that |A1| − |B1| ≥ |A2| − |B2|. Then (C2) implies
that |A1| − |B1| ≥ −ρ′n and so |RNν,U (A1) ∩ B| ≤ |B1| ≤ |A1| + ρ′n < |A1| + ν|U |, a
contradiction. (Here we used the fact that |U | > αn/2 and ρ′ ≤ f ′(ν).) This completes
the proof of the claim.

So there is a partition V1,V2 of V such that U ⊆ Wi for all U ∈ Vi. For i = 1, 2, let
ki be the number of robust expander components and `i the number of bipartite robust
expander components in Vi. Let ρ := 4ρ′. We claim that, for at least one of i = 1, 2, we
have that Vi is a robust partition of G with parameters ρ, ν, τ ′, ki, `i. Suppose that, for
both i = 1, 2, we have ki + 2`i > b(1 + ρ1/3)n/Dc. Then

k′ + 2`′ ≥ 2

⌊
(1 + ρ1/3)n

D

⌋
+ 2 >

⌊
2(1 + ρ1/3)n

D

⌋
≥

⌊
2(1 + ρ′1/3)n

D + βn

⌋
,

contradicting (D6) for V. So without loss of generality, we have that V1 satisfies (D6). It
is easy to check that the remaining properties (D1)–(D5) and (D7) are also satisfied by V1.
Therefore V1 is a robust partition of G with parameters ρ, ν, τ ′, k1, `1 and hence also with
parameters ρ, ν, τ, k1, `1. �

6. How to obtain a long cycle given a robust partition

The main result of this section is Lemma 6.2 which implies that, given a suitable set P
of paths joining up the robust components of a robust partition, one can extend P into a
Hamilton cycle. Actually, in the proof of Theorem 1.4 we will need to consider the more
general notion of a weak robust subpartition, defined below.

6.1. Definitions and the main statement. Let k, ` ∈ N and 0 < ρ ≤ ν ≤ τ ≤ η < 1.
Given a graph G on n vertices, we say that U is a weak robust subpartition in G with
parameters ρ, ν, τ, η, k, ` if the following conditions hold.

(D1′) U = {U1, . . . , Uk, Z1, . . . , Z`} is a collection of disjoint subsets of V (G);
(D2′) for all 1 ≤ i ≤ k, G[Ui] is a (ρ, ν, τ)-robust expander component of G;
(D3′) for all 1 ≤ j ≤ `, there exists a partition Aj , Bj of Zj such that G[Zj ] is a bipartite

(ρ, ν, τ)-robust expander component with respect to Aj , Bj ;
(D4′) δ(G[X]) ≥ ηn for all X ∈ U ;
(D5′) for all 1 ≤ j ≤ `, we have δ(G[Aj , Bj ]) ≥ ηn/2.

A weak robust subpartition U is weaker than a robust partition in the sense that the
graph is not necessarily regular and U need not involve the entire graph, and we can make
small adjustments to the partition while still maintaining (D1′)–(D5′) with slightly worse
parameters. This is formalised by the following statement.

Proposition 6.1. Let k, `,D ∈ N and suppose that 0 < 1/n� ρ ≤ ν ≤ τ ≤ η ≤ α2/2 < 1.

(i) Suppose that G is a D-regular graph on n vertices where D ≥ αn. Let V be a robust
partition of G with parameters ρ, ν, τ, k, `. Then V is a weak robust subpartition
in G with parameters ρ, ν, τ, η, k, `.
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(ii) Suppose that H is a graph and U is a weak robust subpartition in H with parameters
ρ, ν, τ, η, k, `. Let U ′ ⊆ U be non-empty. Then U ′ is a weak robust subpartition in
H with parameters ρ, ν, τ, η, k′, `′ for some k′ ≤ k and `′ ≤ `.

Proof. We only prove (i) since (ii) is clear. Note that properties (D1′)–(D3′) are immediate.

Note (D6) implies that k + 2` ≤ b(1 + ρ1/3)/αc ≤ 2/α. So D/(k + `) ≥ α2n/2. Together
with (D4) and (D5) this shows that (D4′) and (D5′) hold. This completes the proof. �

For a path system P, we say that a vertex x is an endpoint of P if x is an endpoint of
some path in P. Define the internal vertices of P similarly. If every endpoint of a path
system P lies in some U ⊆ V (G), we say that P is U -anchored. When U is a collection
of disjoint subsets of V (G), we say that P is U-anchored if it is

⋃
U∈U U -anchored. Given

a path P in G, we say that P ′ is an extension of P if P ′ is a path which contains P as
a subpath. An Euler tour in a (multi)graph is a closed walk that visits every vertex and
uses each edge exactly once.

Given a graph G with U ⊆ V (G) and a path system P in G, we write EndP(U) and
IntP(U) for, respectively, the number of endpoints/internal vertices of P which lie in U .
Given disjoint sets A,B ⊆ V (G), we say that P is (A,B)-balanced if

• EndP(A) = EndP(B) > 0; and
• |A| − IntP(A) = |B| − IntP(B).

Suppose that G is a graph and U is a collection of disjoint subsets of V (G). Let P be
a U-anchored path system in G (so all endpoints of the paths in P lie in

⋃
U∈U U). We

define the reduced multigraph RU (P) of P with respect to U to be the multigraph with
vertex set U in which we add a distinct edge between U,U ′ ∈ U whenever P contains a
path with one endpoint in U and one endpoint in U ′. So RU (P) might contain loops.

Let k, ` ∈ N, let 0 < ρ ≤ ν ≤ τ ≤ η < 1 and let 0 < γ < 1. Suppose that G is a
graph on n vertices with a weak robust subpartition U = {U1, . . . , Uk, Z1, . . . , Z`} with
parameters ρ, ν, τ, η, k, `, so that the bipartition of Zj specified by (D3′) is Aj , Bj . We say
that P is a U-tour with parameter γ if

(T1) P is a U-anchored path system;
(T2) RU (P) has an Euler tour;
(T3) for all U ∈ U we have |V (P) ∩ U | ≤ γn;
(T4) for all 1 ≤ j ≤ `, P is (Aj , Bj)-balanced.

We will often think of RU (P) as a walk rather than a multigraph. So in particular,
we will often say that ‘RU (P) is an Euler tour’. The aim of this section is to prove the
following lemma, stating that every graph with a weak robust subpartition U and a U-tour
contains a cycle which covers every vertex within the components of U .

Lemma 6.2. Let k, `, n ∈ N and suppose that 0 < 1/n � ρ, γ � ν ≤ τ � η < 1.
Suppose that G is a graph on n vertices and that U is a weak robust subpartition in G with
parameters ρ, ν, τ, η, k, `. Suppose further that G contains a U-tour P with parameter γ.
Then there is a cycle in G which contains P and every vertex in

⋃
U∈U U .

Since by Proposition 6.1(i) every robust partition is also a weak robust subpartition,
Lemma 6.2 immediately implies the following result which will be used in the proof of
Theorem 1.2 while for the proof of Theorem 1.4 we will need Lemma 6.2 itself.

Corollary 6.3. Let k, `, n,D ∈ N and suppose that 0 < 1/n � ρ, γ � ν ≤ τ � α < 1.
Suppose that G is a D-regular graph on n vertices where D ≥ αn, with a robust partition
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V with parameters ρ, ν, τ, k, `. Suppose further that G contains an V-tour with parameter
γ. Then G contains a Hamilton cycle.

The following corollary of Lemma 6.2 will be used in [9].

Corollary 6.4. Let n ∈ N and suppose that 0 < 1/n� γ � η < 1/2. Suppose that G is
a graph and let A,B, V0 be a partition of V (G) with |A| = |B| = n. Let H be a spanning
subgraph of G[A,B] such that δ(H) ≥ (1/2 + η)n. Suppose further that G contains an
(A,B)-balanced path system P with |V (P) ∩ (A ∪ B)| ≤ γn and such that every vertex
in V0 lies in the interior of some path in P. Then G contains a Hamilton cycle C with
E(P) ⊆ E(C) and E(C) \ E(P) ⊆ E(H).

Proof. Let ν, τ be new constants such that γ � ν � τ � η. Let P ′ be the path system
obtained from P by iterating the following process: if uvw is a subpath in P with v ∈ V0,
then we replace uvw with an edge uw. So V (P ′) ⊆ A ∪ B. Let H ′ := H ∪

⋃
P∈P ′ P .

Let G′′ be the graph obtained from G \ V0 by deleting all edges in G[A,B] − H and let
G′ := G′′ ∪

⋃
P∈P ′ P . Note that H ′ is γ-close to bipartite (when viewed as a subgraph

of G′) and δ(H ′) ≥ (1/2 + η)n. We claim that H ′ is a bipartite robust (ν, τ)-expander
with bipartition A,B. To see this, it suffices to show that H has this property. Consider
any set S ⊆ A with τn ≤ |S| ≤ (1− τ)n. Suppose first that |S| ≥ n/2. Then every vertex
in B has at least ηn ≥ νn neighbours in S. So RNν,H(S) = B. Thus we may assume that
|S| ≤ n/2. Let N := RNν,H(S) ∩B. Then

(1/2 + η)n|S| ≤ eH(S,N) + eH(S,B \N) ≤ |S||N |+ νn2 ≤ |S||N |+ νn|S|/τ

and so |N | ≥ (1/2 + η − ν/τ)n ≥ (1 + η)n/2 ≥ |S| + νn, as required. Since V (H ′) =
V (G′) it follows that U = {V (G′)} is a weak robust subpartition in G′ with parameters
γ, ν, τ, 1/4, 0, 1. Moreover, P ′ is a U-tour with parameter γ. Lemma 6.2 with γ, 1/4 playing
the roles of ρ, η implies that there is a Hamilton cycle C ′ in G′ which contains P ′. C ′

corresponds to the required Hamilton cycle C in G. �

The remainder of this section is devoted to the proof of Lemma 6.2.

6.2. Spanning path systems in robust expanders. In this subsection, we prove Corol-
lary 6.9, which states that when p is not too large, every robust expander G is Hamilton
p-linked, i.e. given distinct vertices y1, y

′
1, . . . , yp, y

′
p, there exist p vertex-disjoint paths

joining yi to y′i for all i ≤ p such that together these paths cover all the vertices of G.
This, combined with a bipartite analogue in the next subsection, will be the main tool in
proving Lemma 6.2: the yi and y′i will be suitable endpoints of the paths in the U-tour P.

We now define an analogue of robust expansion for digraphs. Let 0 < ν ≤ τ < 1. Given
any digraph G on n vertices and S ⊆ V (G), the ν-robust outneighbourhood RN+

ν,G(S)
of S is the set of all those vertices of G which have at least νn inneighbours in S. G
is called a robust (ν, τ)-outexpander if |RN+

ν,G(S)| ≥ |S| + νn for all S ⊆ V (G) with

τn ≤ |S| ≤ (1− τ)n.
The next lemma is a directed analogue of Lemma 4.8. Its proof follows immediately

from the definition.

Lemma 6.5. Let 0 < ν � τ � 1. Suppose that G is a digraph and U ⊆ W ⊆ V (G)
are such that G[U ] is a robust (ν, τ)-outexpander and |U \W | ≤ ν|U |/2. Then G[W ] is a
robust (ν/2, 2τ)-outexpander.
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The next lemma shows that the diameter of a robust outexpander is small. Again, it
follows immediately from the definition of robust outexpansion.

Lemma 6.6. Let n ∈ N and 0 < 1/n� ν � τ � η ≤ 1. Suppose that G is a robust (ν, τ)-
outexpander on n vertices with δ0(G) ≥ ηn. Then, given any distinct vertices x, y ∈ V (G),
there exists a path P in G from x to y such that |V (P )| ≤ 1/ν.

We will need the following result of Kühn, Osthus and Treglown [25], which states
that a robust outexpander whose minimum degree is not too small contains a (directed)
Hamilton cycle.

Theorem 6.7 ([25]). Let n ∈ N and suppose that 0 < 1/n � ν ≤ τ � η < 1. Let G be
a robust (ν, τ)-outexpander on n vertices with δ0(G) ≥ ηn. Then G contains a Hamilton
cycle.

We say that a digraph G is p-ordered Hamilton if, given x1, . . . , xp ∈ V (G), G contains
a Hamilton cycle which traverses x1, . . . , xp in this order.

Corollary 6.8. Let n, p ∈ N and suppose that 0 < 1/n � ν � τ � η < 1 and p ≤ ν3n.
Let G be a robust (ν, τ)-outexpander on n vertices with δ0(G) ≥ ηn. Then G is p-ordered
Hamilton.

Proof. Let x1, . . . , xp ∈ V (G). We claim that we can find a path P in G joining x1, xp
which traverses x1, . . . , xp in this order and such that |V (P )| ≤ νn/2. To see this, suppose
for some i ≤ p − 1 we have found a path Pi joining x1, xi with |V (Pi)| ≤ 2i/ν which
traverses x1, . . . , xi in this order and such that xi+1, . . . , xp do not lie in Pi. Let Gi :=
G\((V (Pi)\{xi})∪{xi+2, . . . , xp}). Note that n−|V (Gi)| ≤ 2p/ν ≤ νn/2. So Lemma 6.5
implies that Gi is a robust (ν/2, 2τ)-outexpander. Apply Lemma 6.6 with Gi, xi, xi+1

playing the roles of G, x, y to obtain a path, which, when appended to Pi, gives a path
Pi+1 joining x1, xi+1 which traverses x1, . . . , xi+1 in this order such that xi+2, . . . , xp do
not lie in Pi+1 and |V (Pi+1)| ≤ |V (Pi)|+ 2/ν ≤ 2(i+ 1)/ν. Set P := Pp. This proves the
claim.

Let G′ be the graph obtained from G \ V (P ) by adding a new vertex z such that
N−G′(z) := N−G\V (P )(x1) and N+

G′(z) := N+
G\V (P )(xp). Then δ0(G′) ≥ δ0(G) − νn/2 ≥

η|G′|/2 and G′ is a robust (ν/2, 2τ)-outexpander. Therefore we can apply Theorem 6.7
to find a directed Hamilton cycle in G′. This corresponds to a Hamilton cycle in G which
traverses x1, . . . , xp in this order. �

The following corollary states that robust (out)expanders are Hamilton p-linked pro-
vided that p is not too large.

Corollary 6.9. Let n, p ∈ N and suppose that 0 < 1/n� ν � τ � η < 1 and let p ≤ ν4n.

(i) Let G be a robust (ν, τ)-outexpander on n vertices with δ0(G) ≥ ηn. Then G is
Hamilton p-linked.

(ii) Let H be a robust (ν, τ)-expander on n vertices with δ(H) ≥ ηn. Then H is
Hamilton p-linked.

Proof. To prove (i), let y1, . . . , yp, y
′
1, . . . , y

′
p ∈ V (G). Obtain G∗ from G as follows. For

each 1 ≤ i ≤ p (where indices are considered modulo p), replace the pair yi+1, y
′
i with a

new vertex zi such that N+
G∗(zi) := N+

G (yi+1) and N−G∗(zi) := N−G (y′i). Then it is easy to
see that G∗ is a robust (ν/2, 2τ)-outexpander. Corollary 6.8 implies that G∗ contains a
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Hamilton cycle which traverses z1, . . . , zp in this order. This corresponds to a collection
P1, . . . , Pp of vertex-disjoint paths such that Pi joins yi to y′i and all the Pi together cover
V (G), proving (i).

To prove (ii), let G be the digraph obtained from H by replacing each edge xy with
directed edges −→xy and −→yx. Then G is a robust (ν, τ)-outexpander with δ0(G) ≥ ηn. Now
(i) implies that G is Hamilton p-linked. For each xy ∈ E(H), any path system in G uses
at most one of −→xy,−→yx. So H is Hamilton p-linked. �

6.3. Spanning path systems in bipartite robust expanders. Given p ∈ N and a
bipartite graph G with vertex classes A,B, we say that G is (A,B)-Hamilton p-linked if,
given any Y := {y1, y′1, y2, y′2, . . . , yp, y′p} ⊆ V (G) with |Y ∩A| = |Y ∩B| = p, we can find
a set of vertex-disjoint paths joining yi to y′i in G such that together these paths cover all
the vertices of G. Note that if G is (A,B)-Hamilton p-linked then it is balanced. In this
subsection we show that, for p not too large, G is (A,B)-Hamilton p-linked when G is a
balanced bipartite robust expander.

Given a balanced bipartite graph G with vertex classes A,B which contains a perfect
matching M , we denote by G∗ the M -auxiliary digraph of G obtained from G as follows.
Let G∗ have vertex set B. For each v ∈ B, we let v′ be the unique vertex of A such that
vv′ ∈M . Then, for all x, v ∈ B, we let −→vx ∈ E(G∗) if and only if x ∈ NG(v′) \ {v}. Note
that the order of A and B matters here.

Lemma 6.10. Let n ∈ N and 0 < 1/n � ν � τ � η < 1. Let G be a balanced bipartite
graph with vertex classes A,B so that |A| = |B| = n and δ(G) ≥ ηn. Suppose further that
G is a bipartite robust (ν, τ)-expander (with bipartition A,B). Then

(i) G contains a perfect matching M ;
(ii) the M -auxiliary digraph G∗ of G is a robust (ν, τ)-outexpander with minimum

degree at least ηn/2.

Proof. Observe that (i) follows immediately from Hall’s Theorem. Write M := {xx′ : x ∈
B, x′ ∈ A}. To prove (ii), note that δ0(G∗) ≥ δ(G)− 1 ≥ ηn/2. Consider any S ⊆ B with
τn ≤ |S| ≤ (1 − τ)n. Let SA := {x′ : x ∈ S} and note that RN+

ν,G∗(S) ⊇ RNν,G(SA).
Thus

|RN+
ν,G∗(S)| ≥ |RNν,G(SA)| ≥ |SA|+ ν|V (G)| ≥ |S|+ ν|V (G∗)|,

and therefore G∗ is a robust (ν, τ)-expander, proving (ii). �

We now prove an analogue of Lemma 6.6 for bipartite robust expanders.

Lemma 6.11. Let n ∈ N and 0 < 1/n � ν � τ � η < 1. Suppose that G is a bipartite
graph on n vertices with vertex classes A,B, where ||A| − |B|| ≤ ν2n. Suppose further
that δ(G) ≥ ηn and G is a bipartite robust (ν, τ)-expander (with bipartition A,B). Then,
given any distinct vertices x, y ∈ V (G) there exists a path P between x and y in G such
that |V (P )| ≤ 4/ν.

Proof. Consider each u ∈ {x, y}. If u ∈ B, let u′ be a neighbour of u which lies in A. If
u ∈ A, let u′ := u. Make these choices so that x′, y′ are distinct. So {x′, y′} ⊆ A. Remove
at most ||A| − |B|| ≤ ν|A|/2 vertices from A ∪B to obtain A′ ⊆ A and B′ ⊆ B such that
|A′| = |B′| and {x′, y′} ⊆ A′. Lemma 4.9(i) implies that G′ := G[A′, B′] is a bipartite
robust (ν/2, 2τ)-expander and that δ(G′) ≥ ηn′/2 where n′ := |V (G′)|.
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Let Xi be the set of vertices v ∈ A′ of distance at most 2i to x′ in G′. Now Lemma 6.10(i)
implies that G′ contains a perfect matching M . So for all i ≥ 0 we have Xi+1 ⊇ {a ∈ A′ :
ab ∈M, b ∈ NG′(Xi)}. Thus |X1| ≥ ηn′/2 and whenever i ≥ 1 and |Xi| < (1− τ)n then

|Xi+1| ≥ |NG′(Xi)| ≥ |RNν/2,G′(Xi)| ≥ |Xi|+ νn′/2.

So certainly for i′ := b2/νc−4 we have that |Xi′ | ≥ (1−τ)n′. But since δ(G′) ≥ ηn′/2 ≥ τn′
we have that Xi′+1 = A′. In particular, this implies that there is a path of length at most
4/ν − 5 between x′ and y′ in G′ and hence a path P with |V (P )| ≤ 4/ν between x and y
in G. �

The following is a bipartite analogue of Corollary 6.9. To prove it, we iterate Lemma 6.11
to find short paths between a small number of pairs of vertices. Then the graph obtained
by deleting these paths is still a bipartite robust expander.

Lemma 6.12. Let n, p ∈ N, 0 < 1/n� ν � τ � η ≤ 1 and p ≤ ν4n. Suppose that G is
a bipartite graph vertex classes A,B, so that |A| = |B| = n. Suppose further that G is a
bipartite robust (ν, τ)-expander with δ(G) ≥ ηn. Then G is (A,B)-Hamilton p-linked.

Proof. Let Y := {y1, y′1, y2, y′2, . . . , yp, y′p} be a collection of distinct vertices in G such that
|Y ∩ A| = |Y ∩ B|. For each 1 ≤ i, j ≤ p, let Wi := {yi, y′i} and let W≥j :=

⋃
j≤i≤pWi.

Suppose, for some 0 ≤ ` ≤ p−2, we have already obtained vertex-disjoint paths R1, . . . , R`,
where for each 1 ≤ i ≤ `, Ri has endpoints yi, y

′
i and |V (Ri)| ≤ 8/ν. We obtain R`+1 as

follows. Let
G` := G \ (V (R1) ∪ . . . ∪ V (R`−1) ∪W≥`+1)

and let n` := |V (G`)|. Note that

|V (G) \ V (G`)| =
∑

1≤i≤`
|V (Ri)|+ |W≥`+1| ≤ 8p/ν ≤ ν2n.(6.1)

Let A` := A ∩ V (G`) and define B` analogously. Then Lemma 4.9(i) implies that G` is a
bipartite robust (ν/2, 2τ)-expander with bipartition A`, B`, and δ(G`) ≥ ηn`/4. Moreover
||A`| − |B`|| ≤ |V (G) \ V (G`)| ≤ ν2n ≤ ν2n`. Therefore we can apply Lemma 6.11 with
A`, B`, ν/2, 2τ, η/4 playing the roles of A,B, ν, τ, η to see that G` contains a path R`+1

between y`+1 and y′`+1 such that |V (R`+1)| ≤ 8/ν.
Therefore we can obtain vertex-disjoint paths R1, . . . , Rp−1 in G \ {yp, y′p} such that

|V (Ri)| ≤ 8/ν and Ri joins yi, y
′
i for all 1 ≤ i ≤ p − 1. To obtain Rp, we now consider

three cases depending on the classes in which yp, y
′
p lie. Let V ∗ :=

⋃
1≤i≤p−1 V (Ri).

Case 1. yp ∈ A and y′p ∈ B.

Using our assumption that |Y ∩ A| = |Y ∩ B|, it is easy to see that |V ∗ ∩ A| = |V ∗ ∩ B|.
Let G′ := G \

(
V ∗ ∪ {yp, y′p}

)
. Also let A′ := A ∩ V (G′) and define B′ analogously. Then

|A′| = |B′| =: n′. As above, G′ is a bipartite robust (ν/2, 2τ)-expander with respect
to A′, B′, and δ(G′) ≥ η(n′ + 1)/2. Therefore G′ contains a perfect matching M ′ by
Lemma 6.10(i). Let M ′′ := M ′ ∪ {ypy′p}. Then M ′′ is a perfect matching in the graph G−

obtained from G\V ∗ by adding the edge ypy
′
p if necessary. Note that |G−| = 2(n′+1) and

δ(G−) ≥ η(n′ + 1)/2. Let G′′ be the M ′′-auxiliary digraph of G−. Then Lemma 6.10(ii)
implies thatG′′ is a robust (ν/2, 2τ)-outexpander with minimum degree at least η(n′+1)/4.
By Theorem 6.7, G′′ contains a Hamilton cycle C. Then C corresponds to a Hamilton
path Rp in G \ V ∗ which joins yp and y′p. Thus R1, . . . , Rp are vertex-disjoint from each
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other, join yi to y′i, and together cover all the vertices of G. So G is (A,B)-Hamilton
p-linked.

Case 2. yp, y
′
p ∈ A.

So it is easy to see that |V ∗ ∩A| = |V ∗ ∩B| − 1. Choose a neighbour zp of y′p in B which
does not lie in V ∗. Now delete y′p from G and proceed as above with zp playing the role
of y′p.

Case 3. yp, y
′
p ∈ B.

This is analogous to Case 2. �

6.4. Proof of Lemma 6.2. We are now ready to prove Lemma 6.2. Given a robust
subpartition U in G and a U-tour P, we apply Corollary 6.9 within each robust expander
component U of U , with the endpoints of P which lie in U suitably ordered. Similarly,
we apply Lemma 6.12 within each bipartite robust expander component Z of U . In this
way, we obtain a set R of ‘joining paths’. Then together the paths in P ∪R form a cycle
containing every vertex of

⋃
U∈U U .

Proof of Lemma 6.2. Note that if ν ′ ≤ ν, then any (bipartite) robust (ν, τ)-expander is
also a (bipartite) robust (ν ′, τ)-expander. So without loss of generality, we may assume
that ν � τ . Write U := {U1, . . . , Uk, Z1, . . . , Z`} so that (D1′)–(D5′) are satisfied. Let
P be a U-tour with parameter γ, let q := |P| and R := RU (P). So for each path P ∈ P
there is a unique edge eP in R. Without loss of generality, eP1 . . . ePq is the Euler tour
guaranteed by (T2). This corresponds to an ordering P1, . . . , Pq of the paths in P. Direct
the edges of R so that eP1 . . . ePq is a directed tour. Direct the edges of (the paths in) P
correspondingly, so that for all 1 ≤ s ≤ q, if ePs has startpoint U and endpoint W , then Ps
is a directed path from some vertex x−s ∈ U to some vertex x+s ∈ W . We thus obtain an
ordering x+1 , x

−
2 , x

+
2 , . . . , x

−
q , x

+
q , x

−
1 of the endpoints of P. Note that for each 1 ≤ i ≤ q,

x+i , x
−
i+1 lie in the same X ∈ U , where the indices are considered modulo q.

Fix some U ∈ U . Let p := EndP(U)/2. Thus p ∈ N. Then there exists a subsequence
i1, . . . , ip of 1, . . . , q such that

K := (x+i1 , x
−
i1+1, x

+
i2
, x−i2+1, . . . , x

+
ip
, x−ip+1)

is the subsequence of ordered endpoints of P which lie in U (where x−q+1 := x−1 ). Let I be

the (unordered) collection of internal vertices of P which lie in U . Let U ′ := U \ I. Note
that each element of K lies in U ′. Now (D4′) implies that δ(G[U ]) ≥ ηn. Furthermore,
(T3) implies that EndP(U) + IntP(U) ≤ γn. So

(6.2) |U ′|
(T3)

≥ |U | − γn ≥ (η − γ)n ≥ ηn/2

and hence

p = EndP(U)/2 ≤ γn/2 ≤ γ|U ′|/η ≤ √γ|U ′|;(6.3)

and |I| = IntP(U) ≤ 2γn ≤ 4γ|U ′|/η ≤ ν|U ′|/5.(6.4)

Suppose first that U = Ui for some 1 ≤ i ≤ k. Then U is a (ρ, ν, τ)-robust expander
component. By (6.4), we may apply Lemma 4.8 with U,U \ I playing the roles of U,U ′ to
see that U ′ is a robust (ν/2, 2τ)-expander and δ(G[U ′]) ≥ ηn/2. By (6.3) and Corollary 6.9,
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G[U ′] is Hamilton p-linked. So there is an ordered collection RU of p vertex-disjoint paths
in G[U ′] spanning U ′ such that the jth path in RU joins x+ij and x−ij+1.

Suppose instead that U = Zi for some 1 ≤ i ≤ `. Then there exists a bipartition A,B
of U such that U is a bipartite (ρ, ν, τ)-robust expander component with bipartition A,B.
Let A′ := A \ I and B′ := B \ I. So A′, B′ is a bipartition of U ′. Recall from (T4) that P
is (A,B)-balanced. Thus |A′| = |B′| and EndP(A′) = EndP(B′) > 0.

Let n′ := |A′|. Note that (D5′) implies that δ(G[A,B]) ≥ ηn/2. By (B1) and (C2) we
have that ||A| − |B|| ≤ ρn and hence (6.2) implies that |A| ≥ 2|U ′|/5. Now (6.4) implies
that |I| ≤ ν|U ′|/5 ≤ ν|A|/2. So we may apply Lemma 4.9(i) to see that G[U ′] is a bipartite
robust (ν/2, 2τ)-expander with bipartition A′, B′, and that δ(G[A′, B′]) ≥ ηn′/4. By (6.3)
and Lemma 6.12, H is (A′, B′)-Hamilton p-linked. So there is an ordered collection RU
of p vertex-disjoint paths in H spanning U ′ such that the jth path in RU joins x+ij and

x−ij+1.

Proceed in this way for each U ∈ U and let R :=
⋃
U∈U RU . Then for each 1 ≤ i ≤ q,

there exists exactly one path Ri in R which joins x+i and x−i+1 (with indices modulo q).
Let

C := x−1 P1x
+
1 R1x

−
2 P2x

+
2 . . . x

−
p Ppx

+
p Rpx

−
1 .

Then C is a cycle in G which covers
⋃
U∈U U . �

7. The proof of Theorem 1.2

Our aim is to prove Theorem 1.2, i.e. that every sufficiently large 3-connected D-regular
graph G on n vertices with D ≥ (1/4 + ε)n contains a Hamilton cycle. By Theorem 3.1
and Proposition 3.2(i), G has a robust partition V such that (k, `) takes one of five values.
By Corollary 6.3, to find a Hamilton cycle it suffices to find a V-tour. We achieve this for
each case. In the first subsection we consider the case ` = 0 (so 1 ≤ k ≤ 3), i.e. when G is
a union of robust expander components. Then in Subsection 7.2 we prove some lemmas
which are useful for the case when ` ≥ 1. Finally in Subsections 7.3 and 7.4 we consider
the cases (k, `) = (0, 1), (1, 1) respectively.

7.1. Finding V-tours in a 3-connected graph with at most three robust expander
components. The main result of this section guarantees a V-tour in a 3-connected graph
G which has a robust partition V into at most three robust expander components.

Lemma 7.1. Let D,n ∈ N, let 0 < 1/n� ρ� ν � τ � α < 1 and let D ≥ αn. Suppose
that G is a D-regular 3-connected graph on n vertices and that V is a robust partition of G
with parameters ρ, ν, τ, k, 0 where k ≤ 3. Then G contains a V-tour with parameter 4/n.

We will use the following proposition which is an immediate consequence of Menger’s
Theorem.

Proposition 7.2. Let k ∈ N and let G be a k-connected graph. Suppose that A is a subset
of G with |A|, |A| ≥ k. Then there is a matching of size k between A and A.

Lemma 7.1 is an immediate corollary of the following lemma. To see this, note that
(T4) is vacuous here.

Lemma 7.3. Let G be a 3-connected graph and let V be a partition of V (G) into at most
three parts, where |V | ≥ 3 for each V ∈ V. Then G contains a path system P such that

(i) e(P) ≤ 4 and P ⊆
⋃
V ∈V G[V, V ];
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(ii) RV(P) is an Euler tour;
(iii) for each V ∈ V, if ci is the number of vertices in V with degree i in P (for i = 1, 2),

then c1 + 2c2 ∈ {2, 4} and c2 ≤ 1.

Proof. Suppose first that |V| = 1. Let P consist of a single arbitrary edge. So (i) and (iii)
are clear. Then RV(P) is a loop, so (ii) holds.

Suppose instead that |V| = 2 and write V := {V,W}. Then Proposition 7.2 implies
that G contains a matching P of size two between V and W . So (i) holds. In this case,
RV(P) consists of exactly two VW -edges, so (ii) holds. Moreover, for each V ∈ V we have
(c1, c2) = (2, 0), implying (iii).

Suppose finally that |V| = 3 and write V := {V1, V2, V3}. We write Mij for a matching

between Vi and Vj . Given a path system P in G, we write cji for the number of vertices
in Vj with degree i in P. Proposition 7.2 implies that there is a matching of size three
between V1 and V2 ∪ V3. Without loss of generality, choose M12 such that |M12| = 2. By
Proposition 7.2 there is a matching of size three between V3 and V1 ∪ V2. Therefore there
exist vertex-disjoint M13,M23 such that |M13|+ |M23| = 3. Throughout the remainder of
the proof, we will let u1, v1, w1, x1 be distinct vertices in V1 and we will label vertices in
other classes similarly.

Case 1. |M13| = 3.

If M13 contains two edges e, e′ that are vertex-disjoint from M12, then we let P have
edge-set {e, e′} ∪M12. So (i) holds. Note that RV(P) consists of precisely two V1V2-edges

and two V1V3-edges. Therefore (ii) holds. Moreover, (c11, c
1
2) = (4, 0) and (cj1, c

j
2) = (2, 0)

for j = 2, 3, implying (iii).
Otherwise, M13 contains exactly two edges that share endpoints with edges in M12.

Without loss of generality, let M13 := {u1u3, v1v3, w1w3} and M12 := {u1u2, v1v2}. In
this case, let P := {u1u2, v2v1v3, w1w3}. (i) is immediate, and RV(P) ∼= C3 so (ii) holds.

Moreover, (c11, c
1
2) = (2, 1) and (cj1, c

j
2) = (2, 0) for j = 2, 3, implying (iii).

Case 2. Without loss of generality, |M13| = 2 and |M23| = 1.

Let v2v3 be the edge in M23. Since |M12| = |M13| = 2 we can pick edges w1w2 ∈ M12

and x1x3 ∈ M13 so that w2 6= v2 and x1 6= w1. But M13 and M23 are vertex-disjoint, so
x3 6= v3. In this case, we let P := {w1w2, v2v3, x3x1}. (i) is immediate, and RV(P) ∼= C3

so (ii) holds. Moreover, (cj1, c
j
2) = (2, 0) for all V ∈ V, implying (iii). This completes the

proof of the case |V| = 3. �

7.2. Finding an (A,B)-balanced path system in a bipartite robust expander. In
Section 6 we showed that, given a robust partition V, ‘the balancing property’ (T4) was
sufficient to extend a V-tour into a Hamilton cycle. In this section we prove some lemmas
which will be useful in finding a path system which satisfies (T4). We begin by observing
the following crucial fact.

Proposition 7.4. Let G be a D-regular graph with vertex partition A, B, V . Then

(i) 2(e(A)− e(B)) + e(A, V )− e(B, V ) = (|A| − |B|)D.
In particular,

(ii) 2e(A) + e(A, V ) ≥ (|A| − |B|)D;
(iii) if V = ∅ then 2(e(A)− e(B)) = (|A| − |B|)D.
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Proof. It suffices to prove (i) since (ii) and (iii) are then immediate. We have that∑
x∈A

dB(x) = e(A,B) =
∑
y∈B

dA(y).

Moreover, by counting degrees,

2e(A) + e(A, V ) =
∑
x∈A

(D − dB(x)) = D|A| −
∑
x∈A

dB(x),

and similarly for B. So 2e(A)− 2e(B) + e(A, V )− e(B, V ) = D(|A| − |B|), as desired. �

The following proposition follows immediately from Vizing’s Theorem on edge-colourings.

Proposition 7.5. Let H be a graph with ∆(H) ≤ ∆. Then H contains a matching of
size de(H)/(∆ + 1)e.

Given a graph G, a collection U of disjoint subsets of V (G) and a U-anchored path
system P in G, we say that a path system P ′ is a U-extension of P if

• every edge which lies in a path of P ′ but not a path of P lies in
⋃
U∈U G[U ];

• for every P ∈ P there is a unique P ′ ∈ P ′ such that P ⊆ P ′;
• for every P ′ ∈ P ′ there is at most one P ∈ P such that P ⊆ P ′.

If U ⊆ V (G) we will write U -extension for {U}-extension. The next lemma shows that a
U-extension P ′ of P ‘behaves similarly’ to P in the reduced multigraph RU , and also that
RU is not affected by considering a slightly different partition.

Lemma 7.6. Let U be a collection of disjoint vertex-subsets of a graph G and let P be a
U-anchored path system in G.

(i) Suppose that P ′ is a U-extension of P. Then P ′ is a U-anchored path system.
(ii) Suppose that P ′ is an X -extension of P for some X ⊆ U . Then P ′ is a U-extension

of P.
(iii) Suppose that P ′ is a U-extension of P. Then RU (P ′) is an Euler tour if and only

if RU (P) is an Euler tour.
(iv) Suppose that U := {U1, . . . , Ut}, X := {X1, . . . , Xt}, Xi ⊆ Ui for all 1 ≤ i ≤ t,

and P is X -anchored. Then RX (P) ∼= RU (P).

Proof. Note that (i), (ii) and (iv) are immediate. To prove (iii), let R be the subset of
P ′ such that every R ∈ R contains some PR ∈ P. So |R| = |P|. Observe that PR has
endpoints in U,U ′ ∈ U if and only if R has endpoints in U,U ′. So RU (R) ∼= RU (P). Let
Q := P ′\R. Then every edge in a path in Q lies in

⋃
U∈U G[U ]. So RU (Q) consists entirely

of loops. Therefore RU (P ′) = RU (R) ∪ RU (Q) is an Euler tour if and only if RU (R) is,
i.e. if and only if RU (P) is. This proves (iii). �

Suppose that A,B ⊆ V (G) are disjoint. The following lemma gives a sufficient condition
which ensures that a path system P can be extended into an (A,B)-balanced path system
which does not cover too much of A ∪ B. Whenever we wish to find a balanced path
system we need then only find a collection of paths which satisfy this condition.

Lemma 7.7. Let n ∈ N and 0 < 1/n� ρ < 1 and suppose that G is a graph on n vertices.
Let U ⊆ V (G) have bipartition A,B where ||A| − |B|| ≤ ρn and δ(G[A,B]) > 9ρn. Let P
be a path system in G such that |V (P) ∩ U | ≤ ρn,

(7.1) 2eP(A)− 2eP(B) + eP(A,U)− eP(B,U) = 2(|A| − |B|)



THE ROBUST COMPONENT STRUCTURE OF DENSE REGULAR GRAPHS 27

and P has at least one endpoint in U . Then G contains a path system P ′ such that

(α) P ′ is a U -extension of P;
(β) P ′ is (A,B)-balanced;
(γ) |V (P ′) ∩ U | ≤ 9ρn.

Proof. Without loss of generality, suppose that |A| ≥ |B|. Let A0 ⊆ A and B0 ⊆ B be
minimal such that V (P) ∩ U ⊆ A0 ∪B0 and

(7.2) |A0| − |B0| = |A| − |B|.
Note that

(7.3) |A0|+ |B0| = |A| − |B|+ 2|B0| ≤ ||A| − |B||+ 2|V (P) ∩ U | ≤ 3ρn.

For each u ∈ A0, find a set Nu of 2− dP(u) neighbours of u in B \ B0. For each v ∈ B0,
find a set Nv of 2− dP(v) neighbours of v in A \A0. Choose these sets to be disjoint and
such that (Nu ∪Nv)∩ V (P) = ∅. This is possible since for each u ∈ A and v ∈ B we have
dB(u), dA(v) > 3(|A0| + |B0|). Obtain P ′ from P by adding the edges xx′ to (the paths
in) P for each x ∈ A0 ∪B0 and for each x′ ∈ Nx. It is clear that P ′ is a U -extension of P,
so (α) holds.

Note that the set of internal vertices of P ′ which lie in U is precisely A0 ∪ B0. Then
IntP ′(A) − IntP ′(B) = |A0| − |B0| = |A| − |B| by (7.2). So to show (β), it is enough to
check that EndP ′(A) = EndP ′(B) and that this value is non-zero. Since∑

u∈A
dP ′(u) = 2eP ′(A) + eP ′(A,B) + eP ′(A,U) = 2eP(A) + eP ′(A,B) + eP(A,U),

and similarly for B, we have that∑
u∈A

dP ′(u)−
∑
v∈B

dP ′(v) = 2eP(A)− 2eP(B) + eP(A,U)− eP(B,U)(7.4)

(7.1)
= 2(|A| − |B|).

By construction,
∑

u∈A dP ′(u) = EndP ′(A) + 2|A0|, and similarly for B. So, by (7.4),

(7.5) EndP ′(A)− EndP ′(B) = 2(|A| − |B|)− 2(|A0| − |B0|)
(7.2)
= 0.

Recall that P has at least one endpoint x lying in U . Then |Nx| = 1 and the vertex in Nx

is an endpoint of a path in P ′. So EndP ′(A) = EndP ′(B) is non-zero, proving (β).
Finally, note that every vertex in V (P ′)∩U which does not lie in A0∪B0 is a neighbour

of some x ∈ A0 ∪B0 in P ′. So (7.3) implies that

|V (P ′) ∩ U | ≤ |A0 ∪B0|+ |NP ′(A0 ∪B0)| ≤ 3(|A0|+ |B0|) ≤ 9ρn,

proving (γ). �

The next lemma is essentially an iteration of Lemma 7.7. We will use it to successively
extend a path system into one that is (A,B)-balanced for all appropriate A,B.

Lemma 7.8. Let n, k, ` ∈ N and 0 < 1/n� ρ� ν � τ � η < 1. Let G be a graph on n
vertices and suppose that U := {U1, . . . , Uk,W1, . . . ,W`} is a weak robust subpartition in
G with parameters ρ, ν, τ, η, k, `. For each 1 ≤ j ≤ `, let Aj , Bj be the bipartition of Wj

specified by (D3′). Let P be a U-anchored path system such that for each 1 ≤ j ≤ `,
(7.6) 2eP(Aj)− 2eP(Bj) + eP(Aj ,Wj)− eP(Bj ,Wj) = 2(|Aj | − |Bj |).
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Suppose further that |V (P)∩U | ≤ ρn for all U ∈ U , and that RU (P) is a non-empty Euler
tour. Then G contains a U-extension P ′ of P that is a U-tour with parameter 9ρ.

Proof. Let P0 := P. Suppose that for some 0 ≤ i < `, we have already defined a path
system Pi such that

(αi) Pi is a {W1, . . . ,Wi}-extension of P;
(βi) for all 1 ≤ j ≤ i, Pi is (Aj , Bj)-balanced;
(γi) for all 1 ≤ j ≤ i, |V (Pi) ∩Wj | ≤ 9ρn.

Now we obtain Pi+1 from Pi as follows. Note that (D3′) implies that (B1) and (C2) hold
and hence that ||Ai+1| − |Bi+1|| ≤ ρn. Moreover, by (D5′) we have that δ(G[Aj , Bj ]) ≥
ηn/2 > 9ρn. Also (αi) implies that |V (Pi)∩Wi+1| = |V (P)∩Wi+1| ≤ ρn and that (7.6) still
holds with i+ 1 and Pi playing the roles of j and P. Finally, RU (P) is a non-empty Euler
tour, so P contains at least one endpoint in Wi+1. Thus Pi contains at least one endpoint
in Wi+1 by (αi). Therefore we can apply Lemma 7.7 with Wi+1, Ai+1, Bi+1,Pi, ρ playing
the roles of U,A,B,P, ρ. We thus obtain a path system Pi+1 satisfying Lemma 7.7(α)–(γ).
Now (α) and (αi) imply that (αi+1) holds. We obtain (βi+1) and (γi+1) in a similar way.

Therefore we can obtain P ′ := P` that satisfies (α`)–(γ`). Now (α`) and Lemma 7.6(ii)
imply that P ′ is a U-extension of P. It remains to show that (T1)–(T4) hold for P ′ with
9ρ playing the role of γ. Indeed, (T1) follows from Lemma 7.6(i) and the fact that P ′ is
a U-extension of P. Since RU (P) is an Euler tour, Lemma 7.6(iii) implies that RU (P ′) is
an Euler tour, and hence (T2) holds. We have |V (P ′) ∩Wj | ≤ 9ρn for all 1 ≤ j ≤ ` by
(γ`). Moreover, by (α`) we have that |V (P ′) ∩ Uj | = |V (P) ∩ Uj | ≤ ρn for all 1 ≤ j ≤ k.
So (T3) holds. Finally, (T4) is immediate from (β`). �

7.3. Finding a V-tour in a regular bipartite robust expander. We now consider
the case when G has a robust partition with (k, `) = (0, 1), i.e. G is a regular bipartite
robust expander. By Corollary 6.3, in order to find a Hamilton cycle in G it suffices to
find a {V (G)}-tour with an appropriate parameter. This is guaranteed by the following
lemma.

Lemma 7.9. Let D,n ∈ N and let 0 < 1/n � ρ � ν � τ � α < 1. Let G be a
D-regular graph on n vertices where D ≥ αn. Suppose that G has a robust partition V
with parameters ρ, ν, τ, 0, 1. Then G contains a V-tour with parameter 18ρ.

Proof. Note (D3) implies that there exists a bipartition A,B of V (G) such that G is a
bipartite (ρ, ν, τ)-expander with bipartitionA,B. By (D5) we have that δ(G[A,B]) ≥ D/2.
Therefore

(7.7) ∆(G[A]),∆(G[B]) ≤ D/2.
Moreover, (B1) (which follows from (D3)) implies that G is ρ-close to bipartite with
bipartition A,B. So (C2) holds, i.e.

(7.8) ||A| − |B|| ≤ ρn.
Suppose first that |A| = |B|. Then let P consist of exactly one AB-edge. Note that RV(P)
is a loop and that P is (A,B)-balanced. All of (T1)–(T4) hold.

Let us now assume that |A| > |B| (the case where |B| > |A| is similar). Proposi-
tion 7.4(iii) implies that

(7.9) e(A) ≥ e(A)− e(B) = (|A| − |B|)D/2.
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Proposition 7.5 implies that G[A] contains a matching of size⌈
e(A)

∆(A) + 1

⌉
(7.7),(7.9)

≥
⌈

(|A| − |B|)D/2
D/2 + 1

⌉
= |A| − |B| −

⌊
|A| − |B|
D/2 + 1

⌋
(7.8)

≥ |A| − |B| − b2ρ/αc = |A| − |B|.

So we can choose a matching M of size |A| − |B| in G[A].
Now Proposition 6.1(i) implies that V is a weak robust subpartition in G with param-

eters ρ, ν, τ, α2/2, 0, 1. Certainly M is V-anchored and

2eM (A)− 2eM (B) + eM (A, V (G))− eM (B, V (G)) = 2eM (A) = 2(|A| − |B|).

We also have that |V (M)| = 2(|A| − |B|) ≤ 2ρn. Moreover, M is non-empty since
|A| − |B| > 0. Thus RV(M) is a non-empty collection of loops and hence a non-empty
Euler tour. Therefore we can apply Lemma 7.8 with V, 0, 1, V (G),A,B,M, 2ρ, α2/2 playing
the roles of U , k, `,Wj , Aj , Bj ,P, ρ, η to obtain a path system P which is a V-tour with
parameter 18ρ. �

7.4. Finding a V-tour when there is exactly one component of each type. We
would like to find a Hamilton cycle when G is the union of a robust expander component
V and a bipartite robust expander component W . By Corollary 6.3, it is sufficient to find
a V-tour for this robust partition V. This is guaranteed by the following lemma.

Lemma 7.10. Let n,D ∈ N, 0 < 1/n � ρ � ν � τ � α < 1 and let D ≥ αn. Suppose
that G is a 3-connected D-regular graph on n vertices and that V is a robust partition of
G with parameters ρ, ν, τ, 1, 1. Then G contains a V-tour with parameter 36ρ.

Let V,W be as above and let A,B be a bipartition of W such that W is a bipartite
robust expander with respect to A,B. Suppose that |A| ≥ |B|. To prove Lemma 7.10,
our aim is to find a path system P to which we can apply Lemma 7.8 and hence obtain a
V-tour. Roughly speaking, P will consist of the union of two matchings, MA in G[A] and
MA,V in G[A, V ] which together have the right size to ‘balance’ W .

Proof of Lemma 7.10. Let V := {V,W}, where V is a (ρ, ν, τ)-robust expander component
and W has bipartition A,B so that W is a bipartite (ρ, ν, τ)-robust expander component
with respect to A,B. So (B1) and (C2) imply that

(7.10) ||A| − |B|| ≤ ρn.

Moreover, (D4) implies that δ(G[V ]), δ(G[W ]) ≥ D/2 and therefore

(7.11) D/2 ≥ ∆(G[W,V ]) ≥ ∆(G[A, V ]).

By (D5) we have

(7.12) ∆(G[A]) ≤ D/2.

Claim 1. It suffices to find a path system P in G such that the following hold:

(i) 2eP(A)− 2eP(B) + eP(A, V )− eP(B, V ) = 2(|A| − |B|);
(ii) e(P) ≤ 2ρn;
(iii) P has at least one VW -path.
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To see this, note that Proposition 6.1(i) implies that V is a weak robust subpartition in
G with parameters ρ, ν, τ, α2/2, 1, 1. Clearly, P is a V-anchored path system. Observe
that (D5) implies that δ(G[A,B]) ≥ D/4. Let p be the number of VW -paths in P. Then
RV(P) is an Euler tour if and only if p is positive and even. By (iii) we have p > 0. Now
(i) implies that

eP(W,V ) = eP(A, V ) + eP(B, V ) = 2(|A| − |B|)− 2eP(A) + 2eP(B) + 2eP(B, V )

is even. Note that any P ∈ P contains an odd number of VW -edges if P is a VW -path, and
an even number otherwise. Therefore p is even and so RV(P) is a non-empty Euler tour.
Finally, for each X ∈ V we have |V (P)∩X| ≤ 2e(P) ≤ 4ρn by (ii). Therefore we can apply
Lemma 7.8 with V, 1, 1,W,A,B,P, 4ρ, α2/2 playing the roles of U , k, `,Wj , Aj , Bj ,P, ρ, η
to find a V-extension P ′ of P that is a V-tour with parameter 36ρ, proving the claim.

So it remains to find a path system P as in Claim 1. Suppose first that |A| = |B|. Since
G is 3-connected, Proposition 7.2 implies that G[V,W ] contains a matching of size three.
We only consider the case when G[A, V ] contains a matching MA,V of size two. (The case
when this holds for G[B, V ] is similar.) Now Proposition 7.4(i) implies that

2e(B) + e(B, V ) = 2e(A) + e(A, V ) ≥ 2.

If e(B) ≥ 1, let P := MA,V ∪ {e}, where e is an edge in G[B]. Otherwise, e(B) = 0 and
hence e(B, V ) ≥ 2. In this case we let P consist of two vertex-disjoint edges e ∈ G[A, V ]
and e′ ∈ G[B, V ]. In both cases, (i)–(iii) clearly hold for P and we are done.

So let us assume that |A| > |B|. (The case when |B| > |A| is similar.) Proposition 7.4(ii)
implies that

(7.13) 2e(A) + e(A, V ) ≥ (|A| − |B|)D.
Suppose first that e(A) < D/5. Then (7.13) implies that e(A, V ) ≥ (|A|−|B|)D−2D/5.

Now Proposition 7.5 implies that G[A, V ] contains a matching of size at least⌈
e(A, V )

∆(G[A, V ]) + 1

⌉
(7.11)

≥
⌈

(|A| − |B|)D − 2D/5

D/2 + 1

⌉
(7.14)

= 2(|A| − |B|)−
⌊

2(|A| − |B|) + 2D/5

D/2 + 1

⌋
(7.10)

≥ 2(|A| − |B|)−
⌊

D/2

D/2 + 1

⌋
= 2(|A| − |B|).

Let P be a matching of size 2(|A| − |B|) in G[A, V ]. Then P satisfies (i)–(iii) (indeed, (ii)
follows from (7.10)).

Therefore we can assume that e(A) ≥ D/5. Let

(7.15) ` := min

{⌈
e(A)

D/2 + 1

⌉
, |A| − |B|

}
.

Note that ` ≥ 1. Clearly G[A] contains a matching of size ` by Proposition 7.5 and (7.12).
We now consider two cases, depending on the value of `.

Case 1. ` = |A| − |B|.
Let M be a matching of size ` in G[A]. Since G is 3-connected, Proposition 7.2 implies
that G[V,W ] contains a matching of size three. Suppose first that G[A, V ] contains a
matching MA,V of size two. Write V (MA,V ) ∩ A := {u, u′}. If uu′ is an edge in M ,
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delete it to obtain M ′. Otherwise delete an arbitrary edge from M to obtain M ′. Let
P := M ′ ∪MA,V . Then P is a path system satisfying (i). Also (ii) follows from (7.10).
Moreover, u lies in a VW -path in P, so (iii) holds.

So suppose that G[A, V ] does not contain a matching of size two. Then G[B, V ] contains
a matching MB,V of size two. Moreover, there is at most one vertex in A ∪ V such that
every edge in G[A, V ] is incident to this vertex. Therefore (7.11) implies that e(A, V ) ≤
∆(G[A, V ]) ≤ D/2. So

e(A)− |M |
(7.13)

≥ (|A| − |B|)D/2−D/4− |M | ≥ D/4− 1 > 0,

where the penultimate inequality follows from the fact that |M | = |A| − |B| > 0. So we
can find an edge e in G[A] that is not contained in M . Let P := MB,V ∪M ∪ {e}. Then
P is a path system satisfying (i)–(iii). This completes the proof of Case 1.

Case 2. ` < |A| − |B| and so ` = de(A)/(D/2 + 1)e.
Claim 2. Suppose that G[A] contains no matching of size ` + 1. Then G[A] contains a
matching M− of size `− 1 and a path P := xyz which is vertex-disjoint from M−.

To see this, suppose first that ∆(G[A]) ≤ D/8 − 1. Then Proposition 7.5 implies that
G[A] contains a matching of size

(7.16)

⌈
e(A)

D/8

⌉
=

⌈
e(A)

D/3
+

5e(A)

D

⌉
≥
⌈
e(A)

D/3
+ 1

⌉
≥ `+ 1,

a contradiction. So ∆(G[A]) > D/8 − 1 > 2` by (7.10) and (7.15). Recall that G[A]
contains a matching M of size `. Since M must be maximal, there is some y ∈ V (M)
such that dA(y) > 2`. Let x ∈ A be a neighbour of y such that x /∈ V (M). Let z be the
neighbour of y in M . Let M− := M \ {yz} and P := xyz. This completes the proof of
Claim 2.

Proposition 7.5 implies that G[A, V ] contains a matching of size⌈
e(A, V )

∆(G[A, V ]) + 1

⌉
(7.11)

≥
⌈
e(A, V )

D/2 + 1

⌉
+ 2

⌈
e(A)

D/2 + 1

⌉
− 2`

≥
⌈

2e(A) + e(A, V )

D/2 + 1

⌉
− 2`

(7.13)

≥
⌈

(|A| − |B|)D
D/2 + 1

⌉
− 2` ≥ 2(|A| − |B| − `),

where the final inequality follows in a similar way to (7.14). So we can choose a matching
MA,V in G[A, V ] of size 2(|A| − |B| − `) > 0.

Let E be any collection of ` edges in G[A] and let H := E ∪MA,V . Then

(7.17) 2eH(A)− 2eH(B) + eH(A, V )− eH(B, V ) = 2|E|+ |MA,V | = 2(|A| − |B|).
Moreover,

(7.18) e(H) = |MA,V |+ |E| = 2(|A| − |B|)− `
(7.10)

≤ 2ρn.

Suppose that G[A] contains a matching M of size `+ 1. Then P+ := M ∪MA,V is a path
system. If P+ contains a VW -path then obtain P from P+ by deleting an arbitrary edge
of M . Otherwise there is an edge e in M which is incident to some edge in MA,V . Let
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P := P+ \ {e}. Then at least one endpoint of e is an endpoint of a VW -path in P. In
both cases, (iii) holds. Also (i) and (ii) hold by (7.17) and (7.18).

Therefore we may assume that G[A] contains no matching of size `+1. Let M−, P = xyz
be as guaranteed by Claim 2. Then M1 := M− ∪ {xy} and M2 := M− ∪ {yz} are both
matchings of size ` in G[A]. For i = 1, 2, let Pi := Mi∪MA,V . These are both path systems.
Now (7.17) and (7.18) imply that both of P1 and P2 satisfy (i) and (ii). If, for some i = 1, 2,
Pi also satisfies (iii) then we are done by setting P := Pi, so suppose not. Then for each
i = 1, 2 there exists M ′i ⊆Mi such that V (M ′i) = V (MA,V )∩A. In particular, this implies
that M ′1,M

′
2 ⊆ M−. Pick any edge e ∈ M ′1 and let P := P ∪ (M− \ {e}) ∪MA,V . Then

both endpoints of e are endpoints of a VW -path in P, so (7.17) and (7.18) imply that P
satisfies (i)–(iii). �

7.5. The proof of Theorem 1.2. As already indicated at the beginning of the section,
Theorem 1.2 now follows easily. Indeed, recall that we have a robust partition V with only
five possible values of (k, `). But Lemmas 7.1, 7.9 and 7.10 guarantee a V-tour in each of
these cases. Now Corollary 6.3 implies that G contains a Hamilton cycle.

Actually, we even prove the following stronger stability result of which Theorem 1.2 is
an immediate consequence: if the degree of G is close to n/4 and G is not Hamiltonian,
then G is either close to the union of four cliques, or two complete bipartite graphs, or
the first extremal example discussed in Subsection 1.2.

Theorem 7.11. For every ε, τ > 0 with 2τ1/3 ≤ ε and every non-decreasing function
g : (0, 1) → (0, 1), there exists n0 ∈ N such that the following holds. For all 3-connected
D-regular graphs G on n ≥ n0 vertices where D ≥ (1/5 + ε)n, at least one of the following
holds:

(i) G has a Hamilton cycle;
(ii) D < (1/4 + ε)n and there exist ρ, ν with 1/n0 ≤ ρ ≤ ν ≤ τ ; 1/n0 ≤ g(ρ);

ρ ≤ g(ν), and (k, `) ∈ {(4, 0), (2, 1), (0, 2)} such that G has a robust partition V
with parameters ρ, ν, τ, k, `.

Proof. Let α := 1/5 + ε. Choose a non-decreasing function f : (0, 1) → (0, 1) with
f(x) ≤ min{x, g(x)} for all x ∈ (0, 1) such that the requirements of Proposition 3.2
(applied with r := 5), Corollary 6.3 and Lemmas 7.1, 7.9 and 7.10 (each applied with τ ′

playing the role of τ) are satisfied whenever n, ρ, γ, ν, τ ′ satisfy

1/n ≤ f(ρ), f(γ); ρ ≤ f(ν), ε3/8; γ ≤ f(ν); ν ≤ f(τ ′); τ ′ ≤ f(ε), f(1/5), τ(7.19)

(and so τ ′ ≤ f(α)). Choose τ ′, τ ′′ such that 0 < τ ′ ≤ f(ε), f(1/5), τ and let τ ′′ := f(τ ′).
Apply Theorem 3.1 with f/36, α, τ ′′ playing the roles of f, α, τ to obtain an integer n0.
Let G be a 3-connected D-regular graph on n ≥ n0 vertices where D ≥ αn. Theorem 3.1
now guarantees ρ, ν, k, ` with 1/n0 ≤ ρ ≤ ν ≤ τ ′′, 1/n0 ≤ f(ρ) and 36ρ ≤ f(ν) such that
G has a robust partition V with parameters ρ, ν, τ ′′, k, ` (and thus also a robust partition
with parameters ρ, ν, τ ′, k, `).

Let γ := 36ρ. Note that n, ρ, γ, ν, τ ′ satisfy (7.19). So we can apply Proposition 3.2(ii)
with τ ′, 5 playing the roles of τ, r to see that (k, `) is equal to (a) (k, 0) for 1 ≤ k ≤ 3;
(b) (0, 1); (c) (1, 1); or (d) (4, 0), (2, 1), (0, 2). Apply Lemmas 7.1, 7.9 and 7.10 (with τ ′

playing the role of τ) in the cases (a), (b), (c) respectively to obtain a V-tour of G with
parameter 36ρ = γ. Then Corollary 6.3 (with τ ′ playing the role of τ) implies that G
contains a Hamilton cycle so we are in case (i). If instead (d) holds, Proposition 3.2(i)
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implies that D < (1/4 + ε)n. Since f ≤ g and V is a robust partition with parameters
ρ, ν, τ, k, ` (as τ ′ ≤ τ) we are in case (ii). �

Proof of Theorem 1.2. Let ε > 0. Choose a positive constant τ such that 2τ1/3 ≤ ε.
Apply Theorem 7.11 (with g(x) = x, say) to obtain an integer n0. Let G be a 3-connected
D-regular graph on n ≥ n0 vertices with D ≥ (1/4 + ε)n. Then Theorem 7.11 implies
that G has a Hamilton cycle. �

8. The proofs of Theorems 1.4 and 1.5

We first show that Theorem 1.4 is asymptotically best possible.

Proposition 8.1. Let t, r ∈ N be such that r ≥ 2. Then there are infinitely many n ∈ N for
which there exists a t-connected D-regular graph G on n vertices with D := (n−t)/(r−1)−1
and circumference c(G) ≤ tn/(r − 1) + t.

One can easily modify the construction to obtain a t-connected D-regular graph G with
the same bound on c(G) for smaller values of D (e.g. D = n/r).

Proof. We may suppose that t ≤ r − 1. Pick any k ∈ N with k ≥ 2t. Let

n := (r − 1)(2k(r − 1) + 1) + t and D :=
n− t
r − 1

− 1 = 2k(r − 1).

Construct a graph G on n vertices as follows. Let X,U1, . . . , Ur−1 be a partition of V (G),
where |X| = t and the |Ui| = D+1. Add all edges within the Ui. So G[Ui] is D-regular. Let
Mi be a matching in G[Ui] with |V (Mi)| = tD/(r−1). Note that Mi exists since tD/(r−1)
is even, and at most D since t ≤ r − 1. Add exactly one edge from each y ∈ V (Mi) to X
so that each x ∈ X receives exactly D/(r − 1) edges from V (Mi). Remove Mi from G.

Therefore G is t-connected (with vertex cut-set X) and D-regular. But any cycle in G
traverses at most t of the Ui, so

c(G) ≤ t|Ui|+ |X| ≤ tn/(r − 1) + |X| = tn/(r − 1) + t,

as required. �

The first part of the following proposition shows that the bound on the circumference
in Theorem 1.5 is close to best possible. The second part of the proposition is a bipartite
analogue of the extremal example in Figure 1(i). The proofs may be found in [30].
Proposition 8.2.

(i) Let t, r ∈ N be such that r ≥ 4 is even and t ≥ 2. Then there are infinitely many
n ∈ N for which there exists a t-connected D-regular bipartite graph G on n vertices
with D := (n− 2)/(r − 2) and circumference c(G) ≤ 2tn/(r − 2) + t;

(ii) For every t ∈ N with t ≥ 2, there are infinitely many D ∈ N such that there exists
a bipartite graph on 8D + 2 vertices which is D-regular and t-connected but does
not contain a Hamilton cycle.

One can easily modify the construction to obtain a t-connected D-regular graph G with
the same bound on c(G) for smaller values of D.

The proof of Theorem 1.4 uses robust partitions as the main tool (Theorem 3.1). We
show that, in a t-connected graph G with a robust partition, we can find a cycle that
contains every vertex in the t largest robust components of G (or at least almost all
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the vertices in the case of bipartite robust components). When G has degree slightly
larger than n/r, its robust partition contains at most r − 1 components. So the t largest
components together contain at least tn/(r − 1) vertices, as required.

We let C1 denote a loop and C2 a double edge. The following result shows that, given
any t-connected graph G and any collection U of t disjoint subsets of V (G), we can find
a path system P such that RU (P) ∼= Ct.

Proposition 8.3. Let t ∈ N, let G be a t-connected graph and let U := {U1, . . . , Ut} be
a collection of disjoint vertex-subsets of G with |Ui| ≥ 2t for each 1 ≤ i ≤ t. Then there
exists a U-anchored path system P in G such that RU (P) ∼= Ct.

Proof. For each i, let Ui := {U1, . . . , Ui}. Let P be a non-trivial path in G with both
endpoints in U1 and let P1 := {P}. Thus RU1(P) ∼= C1. Now suppose, for some i < t,
we have obtained a Ui-anchored path system Pi in G such that RUi(Pi) ∼= Ci. Without
loss of generality, we may assume that this cycle is U1U2 . . . Ui. So Pi consists of i paths
P1, . . . , Pi where Pj has endpoints xj ∈ Uj , yj+1 ∈ Uj+1 (with indices modulo i).

Suppose that there is some path Pj ∈ Pi with |V (Pj)∩Ui+1| ≥ 2. Let u, v ∈ V (Pj)∩Ui+1

be distinct such that u is closer than v to xj on Pj . Let Pi+1 be the path system obtained
from Pi be replacing Pj with the paths xjPju, vPjyj+1.

So we may assume that |V (Pi) ∩ Ui+1| =
∑

1≤j≤i |V (Pj) ∩ Ui+1| ≤ i. Let U ′i+1 :=

Ui+1 \ V (Pi). Note that |U ′i+1| ≥ 2t − i > t. By Menger’s Theorem, there exists a path
system R consisting of i+1 paths which join V (Pi) to U ′i+1 and have no internal vertices in
V (Pi). By the pigeonhole principle, there exist j ≤ i and distinct paths xRy, x′R′y′ ∈ R
such that x, x′ ∈ V (Pj). Without loss of generality, x is closer to xj on Pj than x′. Obtain
Pi+1 from Pi by replacing Pj with xjPjxRy, y′R′x′Pjyj+1.

In both cases, Pi+1 is a Ui+1-anchored path system, and

RUi+1(Pi+1) = U1 . . . UjUi+1Uj+1 . . . Ui

is a cycle with vertex set Ui+1. The path system Pt obtained in this way is as required in
the proposition. �

Now we show that, if RU (P) is an Euler tour, we can discard suitable subpaths of each
P ∈ P to ensure that |V (P) ∩ U | is small for each U ∈ U .

Proposition 8.4. Let U be a collection of disjoint non-empty vertex-subsets of a graph
G and let P be a U-anchored path system in G containing t paths such that RU (P) is an
Euler tour. Then there exists a U-anchored path system P ′ in G such that RU (P ′) is an
Euler tour, and for each U ∈ U we have that |V (P ′) ∩ U | ≤ 2t.

Proof. Let s := |U|. Clearly, the proposition holds if s = 1. So we may assume that s ≥ 2
and that no P ∈ P has both endpoints in the same X ∈ U (otherwise we could remove P
from P). Fix a path P ∈ P with endpoints u ∈ U, v ∈ V where U, V ∈ U are distinct. We
will define a sequence of path systems R` with E(R`) ⊆ E(P ) as follows. Let R0 := {P}.
Suppose, for some 0 ≤ ` < s, we have already defined a path system R` such that

(α`) R` is U-anchored;
(β`) if ` ≥ 1 then E(R`) ⊆ E(R`−1);
(γ`) E(RU (R`)) forms a walk from U to V ;
(δ`) for at least ` of the X in U , |X ∩ V (R`)| ≤ 2.
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Now we obtain R`+1 from R` as follows. We are done if there are at least `+1 sets X in
U such that |X ∩ V (R`)| ≤ 2, so suppose not. Let W ∈ U be such that |W ∩ V (R`)| ≥ 3.
By (γ`), there exists an integer p ≥ 1 such that RU (R`) equals the walk U1U2 . . . Up+1

from U1 := U to Up+1 := V . So R` consists of p paths R1, . . . , Rp such that Rj has
endpoints xj ∈ Uj and yj+1 ∈ Uj+1. Choose j ≤ j′ such that W ∩ V (Rj) 6= ∅ 6=
W ∩ V (Rj′) and j′ − j is maximal with this property. Let w ∈ W be the vertex on Rj
which is closest to xj and let w′ ∈ W be the vertex on Rj′ which is closest to yj′+1. Let
R`+1 := {R1, . . . , Rj−1, xjRjw,w

′Rj′yj′+1, Rj′+1, . . . , Rp}. Certainly R`+1 satisfies (β`+1)
and (δ`+1) from the construction. (α`+1) follows from (α`). Since w,w′ lie in the same set
in U , (γ`+1) holds by (γ`).

Therefore we can obtain PP := Rs that satisfies (αs)–(δs). We can obtain PP in-
dependently for each P ∈ P. Since the P are vertex-disjoint and (βs) implies that
E(PP ) ⊆ E(P ), it follows that P ′ :=

⋃
P∈P PP is a path system. Moreover P ′ is cer-

tainly U-anchored by (αs). We write R := RU (P) and R′ := RU (P ′). Note (γs) implies
that one can obtain R′ from R by replacing each edge UV of R with a walk joining U, V .
Since R is an Euler tour we therefore have that R′ is an Euler tour. Moreover, (δs) implies
that for each X ∈ U we have |V (P ′) ∩X| =

∑
P∈P |V (PP ) ∩X| ≤ 2t as required. �

In the following proposition, we show that, given a weak robust subpartition U in a
t-connected graph G, we can adjust U slightly so that G contains a path system P which
is a U-tour. For this, we simply apply Propositions 8.3 and 8.4 to obtain a suitable U-
anchored path system and remove a small number of vertices from each bipartite robust
component.

Proposition 8.5. Let t, n ∈ N and let 0 < 1/n� ρ� ν � τ � η, 1/t ≤ 1. Suppose that
G is a regular t-connected graph on n vertices. Let U be a weak robust subpartition in G
with parameters ρ, ν, τ, η, k, ` where k + ` ≤ t. Then

(i) G has a weak robust subpartition X with parameters 6ρ, ν/2, 2τ, η/2, k, `;
(ii) |

⋃
X∈X X| ≥ |

⋃
U∈U U | − 2ρ`n;

(iii) G contains an X -tour with parameter 54ρ.

Proof. Write U = {U1, . . . , Uk, Z1, . . . , Z`} satisfying (D1′)–(D5′). Apply Proposition 8.3
to U with t′ := k+` playing the role of t to obtain a U-anchored path system P∗ such that
RU (P∗) ∼= Ct′ . Since P∗ contains at most t paths, we may apply Proposition 8.4 to P∗ to
obtain a U-anchored path system P such that RU (P) is an Euler tour and |V (P)∩U | ≤ 2t
for all U ∈ U .

Consider any 1 ≤ j ≤ `. Let Aj , Bj be the bipartition of Zj guaranteed by (D3′). So
Zj is a bipartite (ρ, ν, τ)-robust expander component with respect to Aj , Bj . Moreover,

2eP(Aj) + eP(Aj , Zj) ≤
∑
x∈Zj

dP(Zj) ≤ 2|V (P) ∩ Zj | ≤ 4t.

A similar inequality holds for Bj . Now ||Aj | − |Bj || ≤ ρn by (D3′), (B1) and (C2).
Therefore we can remove at most ρn+4t ≤ 2ρn vertices from Zj \V (P) to obtain A′j ⊆ Aj ,
B′j ⊆ Bj and Z ′j := A′j ∪B′j such that

(8.1) 2eP(A′j)− 2eP(B′j) + eP(A′j , Z
′
j)− eP(B′j , Z

′
j) = 2(|A′j | − |B′j |).

To see this, it suffices to check that eP(A′j , Z
′
j) − eP(B′j , Z

′
j) (and thus the left-hand side

of (8.1)) is even. To verify the latter note that, modulo two, eP(Z ′j , Z
′
j) ≡ EndP(Z ′j) =
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dRU (P)(Z
′
j). So

eP(A′j , Z
′
j)− eP(B′j , Z

′
j) = eP(Z ′j , Z

′
j)− 2eP(B′j , Z

′
j) ≡ dRU (P)(Z

′
j)− 2eP(B′j , Z

′
j) ≡ 0

where the final congruence follows since RU (P) is an Euler tour. Therefore (8.1) can be
satisfied.

Let X := {U1, . . . , Uk, Z
′
1, . . . , Z

′
`}. Clearly (ii) holds. To prove (i), first note that for

each 1 ≤ j ≤ `, we have |A′j4Aj |+|B′j4Bj | = |Zj\Z ′j | ≤ 2ρn. Then Lemma 4.10(i) implies

that G[Z ′j ] is a bipartite (6ρ, ν/2, 2τ)-robust expander component of G with bipartition

A′j , B
′
j . So (D3′) holds. The remaining properties (D1′), (D2′), (D4′) and (D5′) are clear.

Finally, by (8.1) and the properties of P stated above, we can apply Lemma 7.8 with
X ,P, 6ρ, ν/2, 2τ, η/2, k, ` playing the roles of U ,P, ρ, ν, τ, η, k, ` to obtain an X -extension
P ′ of P in G that is an X -tour with parameter 54ρ. This proves (iii). �

We are now able to prove Theorem 1.4.

Proof of Theorem 1.4. Let α := 1/r + ε and η := 1/2r2 ≤ α2/2. Choose a non-decreasing
function f : (0, 1) → (0, 1) with f(x) ≤ x for all x ∈ (0, 1) such that the requirements
of Propositions 3.2, 6.1 and 8.5 as well as Lemma 6.2 are satisfied whenever n, ρ, γ, ν, τ
satisfy the following:

(8.2) 1/n ≤ f(ρ); ρ ≤ f(ν), ε3/8; ν ≤ f(τ); τ ≤ f(η), f(1/t), f(1/r);

as well as 1/n ≤ f(γ) and γ ≤ f(ν). Choose τ, τ ′ so that

(8.3) 0 < τ ′ ≤ τ ≤ 1

2r2
,
ε

2t
,
ε3

8
,
f(1/t)

2
,
f(η/2)

2
, f(1/r) and τ ′ ≤ f(τ).

Choose a non-decreasing function f ′ : (0, 1) → (0, 1) such that 54f ′(x) ≤ f(x/2) for
all x ∈ (0, 1). Apply Theorem 3.1 with f ′, α, τ ′ playing the roles of f, α, τ to obtain an
integer n0. Let G be a t-connected D-regular graph on n ≥ n0 vertices where D ≥ αn.
Theorem 3.1 now guarantees ρ, ν, k′, `′ with

(8.4) 1/n0 ≤ ρ ≤ ν ≤ τ ′, 1/n0 ≤ f ′(ρ) and ρ ≤ f ′(ν)

such that G has a robust partition V with parameters ρ, ν, τ ′, k′, `′ (and thus also with
parameters ρ, ν, τ, k′, `′). Note that (8.3) and (8.4) together imply that (8.2) holds. More-
over,

(8.5) 2ρ ≤ 1/r2 and 2ρt ≤ ε.

Claim. There are integers k, ` with k+ ` ≤ t such that G has a weak robust subpartition
U with parameters ρ, ν, τ, η, k, ` where

(8.6)
∑
U∈U
|U | ≥ min

{
t

r − 1
+

`

r2
, 1

}
n.

To see this, recall that V is a robust partition in G with parameters ρ, ν, τ, k′, `′. Let
m := k′ + `′. Suppose first that m ≤ t. Since by Proposition 6.1(i), V is a weak robust
subpartition in G with parameters ρ, ν, τ, η, k′, `′ we can take U := V (and so k = k′ and
` = `′). Therefore we may assume that t ≤ m−1. Order the members of V as X1, . . . , Xm

so that |X1| ≥ . . . ≥ |Xm|. Let U := {X1, . . . , Xt}. Now by Proposition 6.1(i) and (ii)
there exist integers k, ` so that k + ` = t and U is a weak robust subpartition in G with
parameters ρ, ν, τ, η, k, `.
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By averaging, we have that
∑

U∈U |U | ≥ tn/m. Note also that m + ` ≤ m + `′ =
k′ + 2`′ ≤ r − 1 where the last inequality follows from Proposition 3.2. Therefore∑

U∈U
|U | ≥ tn

m
≥ tn

r − 1− `
=

tn

r − 1

(
1 +

`

r − 1− `

)
≥ tn

r − 1
+
`n

r2
,

proving the claim.

Apply Proposition 8.5 to G,U to obtain a weak robust subpartition X with parame-
ters 6ρ, ν/2, 2τ, η/2, k, ` in G and an X -anchored path system P such that

∑
X∈X |X| ≥∑

U∈U |U |−2ρ`n and P is an X -tour with parameter γ := 54ρ. Now (8.3) and (8.4) imply
that

1/n ≤ f(6ρ), f(γ); 6ρ, γ ≤ f(ν/2); ν/2 ≤ f(2τ); 2τ ≤ f(η/2).(8.7)

Then Lemma 6.2 with X ,P, 6ρ, γ, ν/2, 2τ, η/2 playing the roles of U ,P, ρ, γ, ν, τ, η implies
that there is a cycle C in G which contains every vertex in

⋃
X∈X X. So

|V (C)| ≥
∑
U∈U
|U | − 2ρ`n

(8.6)

≥ min

{
t

r − 1
+

`

r2
− 2ρ`, 1− 2ρ`

}
n

(8.5)

≥ min

{
t

r − 1
, 1− ε

}
n,

as required. �

Proof of Theorem 1.5 (Sketch). The proof is almost the same as that of Theorem 1.4.
We proceed similarly as we did there to obtain a robust partition V with parameters
ρ, ν, τ ′, k′, `′. Using that G is bipartite, it is easy to check that k′ = 0. Thus `′ ≤
b(r−1)/2c = (r−2)/2 by Proposition 3.2. Instead of the claim in the proof of Theorem 1.4,
we now show that there exists an integer ` ≤ t such that G has a weak robust subpartition
U with parameters ρ, ν, τ, η, 0, ` where

∑
U∈U |U | ≥ min {2tn/(r − 2), n} . (Using that `′ ≤

(r − 2)/2, this follows as in the claim.) The remainder of the proof is now similar to that
of Theorem 1.4. �
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[20] D. Kühn, R. Mycroft and D. Osthus, An approximate version of Sumner’s universal tournament

conjecture, J. Combin. Theory B 101 (2011), 415–447.
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