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Abstract

Nash-Williams proved that the infinite trees are well-quasi-ordered (in-
deed, better-quasi-ordered) under the topological minor relation. We com-
bine ideas of several authors into a more accessible and essentially self-
contained short proof.

1 Introduction and terminology

A fundamental result of Nash-Williams [5] states that the infinite trees are
well-quasi-ordered under the topological minor relation. To prove this, he in-
troduced the stronger concept of better-quasi-ordered sets, and showed that the
infinite trees are even better-quasi-ordered. In this paper we give an essentially
self-contained proof of this theorem. In general, the proof follows the lines of
the original one. Nash-Williams’s definition of a better-quasi-ordering is purely
combinatorial; however, we use an equivalent topological concept, which is due
to Simpson [8]. We remark that Laver [2] generalized Nash-Williams’s result to
a certain class of order theoretic trees. Thomas [9] extended Nash-Williams’s
result by proving that every class of infinite graphs with linked tree decompo-
sitions of bounded width is well-quasi-ordered under the minor relation.

We write [n] for the set {1, . . . , n}. We denote by C the class of all cardinals,
and by O that of all ordinals. We denote the domain of a function f by Df .

For an infinite set X ⊆ N we define X(ω) to be the set of all infinite subsets of
X. We often identify an element s ∈ X(ω) with the strictly ascending sequence
whose elements are those of s; and conversely. Thus, if we write s = (s1, s2, . . . )
for an element of X(ω), we mean that s1 < s2 < . . . . The Ellentuck topology on
X(ω) is defined by taking as basic open neighbourhoods of an element s ∈ X(ω)

all sets of the form {t ∈ s(ω) | u ⊆ t}, where u is a finite initial segment of s.
Thus the Ellentuck topology is a refinement of the Tychonov (product) topol-
ogy. Given a function f : X(ω) → D, where D is some topological space, we say
that f is Ellentuck-continuous, if f is continuous when we impose the Ellentuck
topology on X(ω). In particular, if D is discrete, then f is Ellentuck-continuous
if and only if for every s ∈ X(ω) there exists a finite initial segment u of s such
that f(s) = f(t) for all infinite subsequences t of s beginning with u.
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We will repeatedly make use of the following theorem of Ellentuck, which
says that Ellentuck-open sets are Ramsey (for a proof see e.g. [1, §20]). Apart
from this, our presentation is self-contained.

Theorem 1 Let X ∈ N(ω). For every Ellentuck-open set A ⊆ X(ω) there exists
B ∈ X(ω) such that either B(ω) ⊆ A or B(ω) ∩A = ∅.

A reflexive and transitive relation is called a quasi-ordering. A quasi-ordered
set Q,≤ is well-quasi-ordered (wqo), if for every infinite sequence q1, q2, . . . in
Q there are indices i < j such that qi ≤ qj . In what follows Q will always
denote a quasi-ordered set, and we also view Q as a discrete topological space.
Q is better-quasi-ordered (bqo) if for every X ∈ N(ω) and for every Ellentuck-
continuous function f : X(ω) → Q there exists an s ∈ X(ω) such that f(s) ≤
f(s\{min s}). We remark that a result of Mathias [3] implies that one obtains an
equivalent definition by replacing Ellentuck-continuity by Tychonov-continuity,
or by requiring Borel measurability. A Q-array is an Ellentuck-continuous
function f : X(ω) → Q, for some X ∈ N(ω). If there is no s ∈ X(ω) such that
f(s) ≤ f(s\{min s}), then f is a bad Q-array. Thus Q is bqo if and only if
there is no bad Q-array.

All trees considered in this paper will have a root. For two trees T and U
with roots t and u, respectively, we call an injective mapping ϕ : V (T )→ V (U)
an embedding of T into U , if ϕ can be extended to an isomorphism between
a subdivision of T and the smallest subtree U ′ of U containing all vertices
in ϕ(V (T )), and furthermore, the path between ϕ(t) and u in U contains no
vertex of U ′ other than ϕ(t). We say that T is a rooted topological minor of U ,
abbreviated by T 4 U , if there is an embedding of T into U . This defines a
quasi-ordering on the class of all trees.

Given two vertices x and y of a tree T , we say that x is above y if y lies
on the path from x to the root of T . If x and y are adjacent and x is above
y, we call y the predecessor of x and x the successor of y. The branch above
x, abbreviated by br(x), is the subtree of T spanned by all vertices above x
(including x itself). For the root of br(x) we choose x.

2 Better-quasi-ordering infinite trees

Lemma 1 Every bqo set Q is wqo.

Proof. Let q1, q2, . . . be any infinite sequence in Q. Define a function f : N(ω) →
Q by f(s) := qmin s. Then f is Ellentuck-continuous, and thus a Q-array. Hence,
since Q is bqo, there exists an s ∈ N(ω) such that f(s) ≤ f(s\{min s}). But
this means that qs1 ≤ qs2 , where s = (s1, s2, . . . ). Thus Q is wqo. �

If Q is a quasi-ordered set, then we may quasi-order the elements of the
power set of Q by saying that A ≤ B if for all a ∈ A there exists b ∈ B such
that a ≤ b in Q. We denote the power set of Q with this quasi-ordering by
S(Q). The following lemma implies that if Q is bqo then so is S(Q).
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Lemma 2 If f is a bad S(Q)-array, then there exists a bad Q-array g such
that Dg = Df and g(s) ∈ f(s) for all s ∈ Dg.

Proof. Let s ∈ Df . Since f(s) 6≤ f(s\{min s}) there exists an xs ∈ f(s) such
that xs 6≤ y for all y ∈ f(s\{min s}). We can choose xs such that it depends
only on the pair f(s), f(s\{min s}) and not on s itself, i.e. if f(s) = f(t) and
f(s\{min s}) = f(t\{min t}), then xs = xt. We now define a function g :
Df → Q by setting g(s) := xs. Then the Ellentuck-continuity of f and the fact
that xs depends only on the pair f(s), f(s\{min s}) imply that g is Ellentuck-
continuous, and thus a Q-array. It is also bad, since g(s) ≤ g(s\{min s}) would
contradict the choice of xs. �

Given two quasi-ordered sets Q and Q′, we define a quasi-ordering on Q×Q′
by saying that (q1, q

′
1) ≤ (q2, q

′
2) if q1 ≤ q2 and q′1 ≤ q′2.

Lemma 3 If f = (f1, f2) is a bad C ×Q-array, then there exists a bad Q-array
g such that Dg ⊆ Df and g(s) = f2(s) for all s ∈ Dg.

Proof. Let A := {s ∈ Df | f1(s) ≤ f1(s\{min s})}. Then the Ellentuck-
continuity of f implies that A is Ellentuck-open. Hence by Theorem 1, there
exists a B ∈ Df such that either B(ω) ⊆ A or B(ω) ∩ A = ∅. But the
latter cannot hold, since then for s = (s1, s2, . . . ) ∈ B(ω) we would have
f1(s1, s2, . . . ) > f1(s2, s3, . . . ) > f1(s3, s4, . . . ) > . . . , contradicting the fact
that C is well-ordered. Thus B(ω) ⊆ A, and so g : B(ω) → Q defined by
g(s) := f2(s) must be a bad Q-array, as required. �

Let Seq(Q) be the set of all transfinite sequences with elements in Q. For
a transfinite sequence F : α → Q we define length(F ) to be α. If β < α, we
write F |β for the restriction of F to β. Given F,G ∈ Seq(Q), we call a mapping
ϕ : length(F )→ length(G) an embedding of F into G if ϕ is strictly increasing
and F (α) ≤ G(ϕ(α)) for all α < length(F ). We impose a quasi-ordering on
Seq(Q) by saying that F ≤ G if there exists an embedding from F into G.

The following lemma implies that if a set Q is bqo then so is Seq(Q), which is
also a result due to Nash-Williams [4]. In the proof we present here, we closely
follow Prömel and Voigt [6].

Lemma 4 If f is a bad Seq(Q)-array, then there exists a bad Q-array g such
that Dg ⊆ Df and g(s) ∈ f(s) for all s ∈ Dg.

Proof. For sequences F,G ∈ Seq(Q) we write F ≤∗ G if F is an initial segment
of G, and F <∗ G if F is a proper initial segment of G. If h and h′ are
Seq(Q)-arrays, we write h ≤∗ h′ if Dh ⊆ Dh′ and h(s) ≤∗ h′(s) for all s ∈ Dh.
Furthermore, we write h <∗ h′ if h ≤∗ h′ and there exists an s ∈ Dh such that
h(s) <∗ h′(s). We will first prove the following claim.

There exists a minimal bad Seq(Q)-array h such that h ≤∗ f . (∗)

We may assume that f itself is not minimal. Put f0 := f and X(ω)
0 := Df0. For

a Seq(Q)-array g and s ∈ Dg we define

kg,s := min{k | k ∈ s such that g(s) = g(t) for all t ∈ s(ω) with s∩[k] = t∩[k]}.
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Thus kg,s is the smallest integer k ∈ s such that g is constant on the set of all
t ∈ s(ω) that begin with the initial segment s ∩ [k] of s. (Note that kg,s exists,
since g is Ellentuck-continuous.) We now choose a bad Seq(Q)-array f ′1 <

∗ f0

such that
min{kf ′1,s | s ∈ Df ′1 with f ′1(s) <∗ f0(s)} =: k1

is minimal. Choose an element s1 ∈ Df ′1 such that f ′1(s1) <∗ f0(s1) and kf ′1,s1 =
k1. Define a function f1 : (s1 ∪ (X0 ∩ [k1]))(ω) → Seq(Q) by

f1(s) :=

{
f ′1(s) if s ∈ s(ω)

1 ;
f0(s) otherwise.

It is easily checked that f1 is a bad Seq(Q)-array and f1 <
∗ f0. If f1 is not

minimal, we continue in this fashion to construct f ′2, f2, s2 and k2. Thus we may
assume that we have constructed infinite sequences f ′1, f

′
2, . . . and f1, f2, . . . and

s1, s2, . . . and k1, k2, . . . . Then ki+1 ≥ ki for all i ≥ 1, since f ′i+1 was a candidate
for the choice of f ′i . Moreover, the sequence (ki) is unbounded. Indeed, suppose
that there is an i such that ki = kj for all j ≥ i. Then there exists an infinite
sequence i < j1 < j2 < . . . such that sj1 ∩ [ki] = sj` ∩ [ki] for all ` ≥ 1. This
yields sj`+1

⊆ sj` for all ` ≥ 1. Hence the definition of kf ′j` ,sj`
implies that

fj`(sj`) = f ′j`(sj`) = f ′j`(sj`+1
) = fj`(sj`+1

).

By the choice of sj`+1
it follows that

fj`+1
(sj`+1

) = f ′j`+1
(sj`+1

) <∗ fj`(sj`+1
) = fj`(sj`).

Thus length(fj1(sj1)), length(fj2(sj2)), . . . is an infinite strictly descending chain
of ordinals, a contradiction.

Let X :=
⋂
i≥1Xi, where X(ω)

i := Dfi. Since X contains every ki, the un-
boundedness of the sequence (ki) implies that X is infinite. Also, note that
for all s ∈ X(ω) there exists an integer i = i(s) such that fi(s) = fj(s) for all
j ≥ i. (Otherwise there would be an infinite strictly descending chain of ordi-
nals, since fj+1(s) ≤∗ fj(s).) Define a function h′ : X(ω) → Seq(Q) by putting
h′(s) := fi(s)(s).

We will now find an Ellentuck-continuous restriction of h′ that will do for h
in (∗). Let A be the set of all s ∈ X(ω) such that h′ is Ellentuck-continuous
in s. Thus A is Ellentuck-open. By Theorem 1 there exists a B ∈ X(ω) such
that either B(ω) ⊆ A or B(ω) ∩ A = ∅. Suppose first that the latter holds, and
let t1 ∈ B(ω). Since fi(t1) is Ellentuck-continuous, there is a basic Ellentuck-
neighbourhood N1 of t1 on which fi(t1) is constant. Since h′ is not Ellentuck-
continuous in t1, there exists an t2 ∈ N1 such that h′(t2) 6= h′(t1), and thus from
the definition of h′ it follows that h′(t2) <∗ fi(t1)(t2) = fi(t1)(t1) = h′(t1). But t2
is a subsequence of t1 (since it lies in a basic Ellentuck-neighbourhood of t1), and
so t2 ∈ B(ω). Continuing in this fashion we obtain an infinite sequence t1, t2, . . .
such that h′(t1) >∗ h′(t2) >∗ . . . , i.e. length(h′(t1)), length(h′(t2)), . . . is an
infinite strictly descending chain of ordinals, a contradiction. Thus B(ω) ⊆ A,
and hence the restriction h of h′ on B(ω) is Ellentuck-continuous.
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The definition of h′ implies that h is a bad Seq(Q)-array and h ≤∗ f (in
fact, h ≤∗ fi for all i ≥ 0). Suppose that h is not minimal, and let ϕ be a bad
Seq(Q)-array such that ϕ <∗ h. Let

k := min{kϕ,s | s ∈ Dϕ and ϕ(s) <∗ h(s)}.

Since the sequence (ki) is unbounded, there is an i with ki > k, contradicting
the fact that ϕ was a candidate for the choice of f ′i . This shows that h is also
minimal, and thus h is as required in (∗).

We now use (∗) to complete the proof of the lemma. For all s ∈ Dh define

ψ(s) := sup{α ∈ O | h(s)|α ≤ h(s\{min s})}.

Then ψ(s) < length(h(s)), since h is a bad Seq(Q)-array; and the Ellentuck-
continuity of h implies that of ψ. Moreover, it is straightforward to show that

h(s)|ψ(s) ≤ h(s\{min s}),

but
h(s)|ψ(s)+1 6≤ h(s\{min s}).

Let
C := {s ∈ Dh | h(s)|ψ(s) ≤ h(s\{min s})|ψ(s\{min s})}.

Since both h and ψ are Ellentuck-continuous, C is Ellentuck-open. Thus by
Theorem 1 there exists an D ∈ Dh such that either D(ω) ⊆ C or D(ω) ∩C = ∅.
If the latter holds, then χ : D(ω) → Seq(Q) defined by χ(s) := h(s)|ψ(s) would
be a bad Seq(Q)-array with χ <∗ h, contradicting the choice of h.

Thus D(ω) ⊆ C. We now define g : D(ω) → Q by putting g(s) := h(s)(ψ(s)),
the value of h(s) at ψ(s). Then g is Ellentuck-continuous, since h and ψ are.
Moreover, Dg ⊆ Df and g(s) ∈ f(s) for all s ∈ Dg. If there were an s ∈ Dg
with g(s) ≤ g(s\{min s}), then we could define an embedding of h(s)|ψ(s)+1 into
h(s\{min s}) by first embedding h(s)|ψ(s) into h(s\{min s})|ψ(s\{min s}) (this is
possible since s ∈ D(ω) ⊆ C), and secondly, by sending h(s)(ψ(s)) = g(s) to
h(s\{min s})(ψ(s\{min s})) = g(s\{min s}). This contradicts the definition of
ψ. Thus g is a bad Seq(Q)-array as required. �

If Q is a quasi-ordered set, we may quasi-order the elements of the power set
of Q by saying that A ≤ B if there is an injective function f : A→ B such that
a ≤ f(a) in Q for all a ∈ A. Let S](Q) denote the power set of Q with this
quasi-ordering. Lemma 4 implies the following assertion.

Corollary 5 If f is a bad S](Q)-array, then there exists a bad Q-array g such
that Dg ⊆ Df and g(s) ∈ f(s) for all s ∈ Dg.

An example of Rado [7] shows that there are wqo sets Q such that S(Q) (and
thus also S](Q) and Seq(Q)) are not wqo. This lack of closure properties under
certain infinite operations is the reason why the stronger concept of bqo was
introduced.
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Denote the class of all trees by R, and recall that the elements of R are
quasi-ordered by the rooted topological minor relation. Let R0 be the sub-
class containing all trees T with the property that there is no infinite sequence
x1, x2, . . . of vertices in T such that xi+1 is above xi and br(xi) 64br(xi+1) for
all i ≥ 1. Given a tree T , let S(T ) be the set of all its vertices x for which
T 64 br(x). If x ∈ S(T ), we call br(x) a strict branch of T . For a vertex x ∈ T
we denote the set of its successors by succ(x), and let

Γ(x) := ( |{succ(x)\S(T )}| , {br(y) | y ∈ succ(x) ∩ S(T )} ).

We view Γ(x) as an element of the quasi-ordered set C × S](R).

Lemma 6 Suppose that T and U are trees such that for every vertex x ∈ T
there exists a vertex y ∈ U with Γ(x) ≤ Γ(y). Then T 4 U .

Proof. For n = 0, 1, . . . , let Wn denote the set of all vertices of T which have
distance at most n from the root of T . We shall inductively define an embedding
ϕ of T into U such that, at stage n, we have defined ϕ on a set Vn ⊆ V (T )
satisfying the following conditions:

(i) Wn ⊆ Vn, and if x ∈ Vn then the predecessor of x in T lies in Vn. If
x ∈ Vn\Wn, then V (br(x)) ⊆ Vn.

(ii) Suppose that x ∈ Wn+1\Vn, and let z be the predecessor of x. Then
x /∈ S(T ) and there exists a vertex vnx ∈ succ(ϕ(z))\S(U) such that no
vertex of br(vnx) lies in ϕ(Vn). Furthermore, the vertices vnx are distinct
for distinct x ∈Wn+1\Vn.

Let x0 be the root of T . Then by the assumptions of the lemma, there is a
vertex y0 ∈ U such that Γ(x0) ≤ Γ(y0). Thus for all x ∈ succ(x0), there is a
vertex v0

x ∈ succ(y0) such that, firstly, the vertices v0
x are distinct for distinct

x, secondly, if x /∈ S(T ), then v0
x /∈ S(U), and thirdly, if x ∈ S(T ), then

br(x) 4 br(v0
x). Put ϕ(x0) := y0, and extend ϕ by embedding br(x) into br(v0

x)
for all x ∈ succ(x0) ∩ S(T ). Setting

V0 := {x0} ∪
⋃
{V (br(x)) | x ∈ succ(x0) ∩ S(T )}

starts the induction. Suppose that n > 0 and conditions (i) and (ii) hold for
n − 1. If Wn ⊆ Vn−1, then Vn−1 = V (T ) by (i), and we are done. Thus let
us assume that Wn 6⊆ Vn−1, and let x be any vertex in Wn\Vn−1. By the
assumption of the lemma there is a vertex y ∈ U such that Γ(x) ≤ Γ(y). Let
vn−1
x be as in condition (ii). Then U 4 br(vn−1

x ), since vn−1
x /∈ S(U). Let y′ be

the image of y in br(vn−1
x ) under this embedding. The fact that Γ(x) ≤ Γ(y) now

implies that for all a ∈ succ(x) there exists a vertex vna ∈ succ(y′) satisfying the
following three conditions. Firstly, the vna are distinct for distinct a. Secondly,
if a /∈ S(T ) then vna /∈ S(U), and thirdly, if a ∈ S(T ), then br(a) 4 br(vna ).
Put ϕ(x) := y′ and extend ϕ further by embedding br(a) into br(vna ) for all
a ∈ succ(x) ∩ S(T ). Proceed similarly for every x ∈Wn\Vn−1. Then, setting

Vn := Vn−1 ∪Wn ∪
⋃
{V (br(a)) | a ∈ succ(x) ∩ S(T ) for some x ∈Wn\Vn−1}

completes the induction step. �
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Lemma 7 If f is a bad R0-array, then there exists a bad R0-array g such that
Dg ⊆ Df and g(s) is a strict branch of f(s) for all s ∈ Dg.

Proof. For a tree T ∈ R0 we define Σ(T ) := {Γ(x) | x ∈ T} and think of it as
an element of the quasi-ordered set S(C × S](R0)). Lemma 6 implies that for
all T,U ∈ R0,

Σ(T ) ≤ Σ(U) ⇒ T 4 U.

Hence Σ◦f is a bad S(C×S](R0))-array. By Lemma 2, there is a bad C×S](R0)-
array ϕ such that Dϕ = DΣ ◦ f = Df and ϕ(s) ∈ Σ ◦ f(s) for all s ∈ Dϕ. Now
Lemma 3 implies that there is a bad S](R0)-array ψ such that Dψ ⊆ Dϕ and
ψ(s) = ϕ2(s) for all s ∈ Dψ. Finally, by Corollary 5, there is a bad R0-array
g such that Dg ⊆ Dψ and g(s) ∈ ψ(s) for all s ∈ Dg. Clearly, Dg ⊆ Df .
Furthermore, for all s ∈ Dg, g(s) is an element of the second component of an
element of Σ ◦ f(s), and thus a strict branch of f(s), as required. �

If h and h′ are R0-arrays, we write h ≤′ h′ if Dh ⊆ Dh′, and if h(s) is a
branch of h′(s) for all s ∈ Dh. Furthermore, we write h <′ h′ if h ≤′ h′ and
there exists an s ∈ Dh such that h(s) is a strict branch of h′(s).

Lemma 8 If f is a bad R0-array, then there exists a minimal bad R0-array h
such that h ≤′ f .

We omit the proof, since it is an easy modification of the proof of assertion (∗) in
the proof of Lemma 4. Indeed, the only difference is the following. In Lemma 4
we repeatedly made use of the fact that we could not have an infinite sequence
F1, F2, . . . in Seq(Q) such that Fi+1 is a proper initial segment of Fi for all
i ≥ 1, since length(F1), length(F2), . . . would then have been an infinite strictly
descending chain of ordinals. In the proof of Lemma 8 an infinite sequence
F1, F2, . . . in R0 such that Fi+1 is a strict branch of Fi for all i ≥ 1 would
contradict the definition of R0.

Lemmas 7 and 8 immediately imply the following result.

Corollary 9 R0 is bqo.

Given a tree T , let F(T ) := {x ∈ T | br(x) ∈ R0} and I(T ) := V (T )\F (T ). For
a vertex x ∈ T define

∆(x) := ( |succ(x) ∩ I(T )| , {br(z) | z ∈ succ(x) ∩ F(T )} ).

We view ∆(x) as an element of C × S](R0).

Lemma 10 Suppose that T is a tree and x0, y0 ∈ I(T ) are such that

∀x ∈ br(x0) ∩ I(T ) ∀y ∈ br(y0) ∩ I(T ) ∃z ∈ br(y) : ∆(x) ≤ ∆(z).

Then br(x0) 4 br(y0).

Proof. The proof is very similar to that of Lemma 6. For n = 0, 1, . . . , let Wn

denote the set of all vertices of br(x0) which have distance at most n from x0.
We shall inductively define an embedding ϕ of br(x0) into br(y0) such that, at
stage n, we have defined ϕ on a set Vn ⊆ V (br(x0)) satisfying the following
conditions:
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(i) Wn ⊆ Vn, and if x ∈ Vn then the predecessor of x in br(x0) lies in Vn. If
x ∈ Vn\Wn, then V (br(x)) ⊆ Vn.

(ii) Suppose that x ∈ Wn+1\Vn, and let y be the predecessor of x. Then
x ∈ I(T ), and there exists a vertex vnx ∈ succ(ϕ(y)) ∩ I(U) such that no
vertex of br(vnx) lies in ϕ(Vn). Furthermore, the vertices vnx are distinct
for distinct x ∈Wn+1\Vn.

By the assumptions of the lemma, there is a vertex z0 ∈ br(y0) such that
∆(x0) ≤ ∆(z0). Thus for all x ∈ succ(x0) there is a vertex v0

x ∈ succ(z0) such
that, firstly, the vertices v0

x are distinct for distinct x, secondly, if x ∈ I(T ) then
v0
x ∈ I(T ), and thirdly, if x ∈ F(T ), then br(x) 4 br(v0

x). Put ϕ(x0) := z0, and
extend ϕ by embedding br(x) into br(v0

x) for all x ∈ succ(x0) ∩ F(T ). Setting

V0 := {x0} ∪
⋃
{V (br(x)) | x ∈ succ(x0) ∩ F(T )}

starts the induction. Suppose that n > 0 and conditions (i) and (ii) hold for
n− 1. If Wn ⊆ Vn−1, then Vn−1 = V (br(x0)) by (i), and we are done. Thus we
may assume that Wn 6⊆ Vn−1. Let x be any vertex in Wn\Vn−1, and let vn−1

x

be as in condition (ii). Then by the assumption of the lemma there is a vertex
z ∈ br(vn−1

x ) such that ∆(x) ≤ ∆(z). Thus for all a ∈ succ(x) there exists a
vertex vna ∈ succ(z) such that, firstly, the vna are distinct for distinct a, secondly,
if a ∈ I(T ) then vna ∈ I(T ), and thirdly, if a ∈ F(T ), then br(a) 4 br(vna ).
Put ϕ(x) := z, and extend ϕ further by embedding br(a) into br(vna ) for all
a ∈ succ(x) ∩ F(T ). Proceed similarly for every x ∈Wn\Vn−1. Then, setting

Vn := Vn−1 ∪Wn ∪
⋃
{V (br(a)) | a ∈ succ(x) ∩ F(T ) for some x ∈Wn\Vn−1}

completes the induction step. �

Theorem 11 The infinite trees are bqo under the rooted topological minor re-
lation.

Proof. By Corollary 9 it suffices to show that every tree lies in R0. Suppose
not, and let T be a tree that does not lie in R0. Let x0 be the root of T .
Since T /∈ R0, there is a vertex y1 ∈ br(x0) ∩ I(T ) such that br(x0) 64 br(y1).
Then Lemma 10 implies that there exist vertices z1 ∈ br(x0) ∩ I(T ) and x1 ∈
br(y1) ∩ I(T ) such that ∆(z1) 6≤ ∆(z) for all z ∈ br(x1). Since x1 ∈ I(T ), there
is a vertex y2 ∈ br(x1) ∩ I(T ) such that br(x1) 64 br(y2). Again, Lemma 10
implies that there exist vertices z2 ∈ br(x1) ∩ I(T ) and x2 ∈ br(y2) ∩ I(T ) such
that ∆(z2) 6≤ ∆(z) for all z ∈ br(x2). Continuing in this fashion, we obtain
an infinite sequence z1, z2, . . . such that ∆(zi) 6≤ ∆(zj) in C × S](R0) for all
1 ≤ i < j. But since R0 is bqo by Corollary 9, C × S](R0) is bqo by Lemma 3
and Corollary 5, and thus it is wqo by Lemma 1, a contradiction. �
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