On well-quasi-ordering infinite trees —
Nash-Williams’s theorem revisited

Daniela Kiithn

Mathematisches Seminar der Universitdt Hamburg,
Bundesstrafie 55, 20146 Hamburg, Germany

Abstract

Nash-Williams proved that the infinite trees are well-quasi-ordered (in-
deed, better-quasi-ordered) under the topological minor relation. We com-
bine ideas of several authors into a more accessible and essentially self-
contained short proof.

1 Introduction and terminology

A fundamental result of Nash-Williams [5] states that the infinite trees are
well-quasi-ordered under the topological minor relation. To prove this, he in-
troduced the stronger concept of better-quasi-ordered sets, and showed that the
infinite trees are even better-quasi-ordered. In this paper we give an essentially
self-contained proof of this theorem. In general, the proof follows the lines of
the original one. Nash-Williams’s definition of a better-quasi-ordering is purely
combinatorial; however, we use an equivalent topological concept, which is due
to Simpson [8]. We remark that Laver [2] generalized Nash-Williams’s result to
a certain class of order theoretic trees. Thomas [9] extended Nash-Williams’s
result by proving that every class of infinite graphs with linked tree decompo-
sitions of bounded width is well-quasi-ordered under the minor relation.

We write [n] for the set {1,...,n}. We denote by C the class of all cardinals,
and by O that of all ordinals. We denote the domain of a function f by Df.

For an infinite set X C N we define X (@) to be the set of all infinite subsets of
X. We often identify an element s € X ) with the strictly ascending sequence
whose elements are those of s; and conversely. Thus, if we write s = (s1, s2,...)
for an element of X, we mean that s; < sy < .... The Ellentuck topology on
X (@) is defined by taking as basic open neighbourhoods of an element s € X )
all sets of the form {t € s&) | u C t}, where u is a finite initial segment of s.
Thus the Ellentuck topology is a refinement of the Tychonov (product) topol-
ogy. Given a function f: X — D, where D is some topological space, we say
that f is Fllentuck-continuous, if f is continuous when we impose the Ellentuck
topology on X @) In particular, if D is discrete, then f is Ellentuck-continuous
if and only if for every s € X ) there exists a finite initial segment v of s such
that f(s) = f(t) for all infinite subsequences t of s beginning with w.



We will repeatedly make use of the following theorem of Ellentuck, which
says that Ellentuck-open sets are Ramsey (for a proof see e.g. [1, §20]). Apart
from this, our presentation is self-contained.

Theorem 1 Let X € N For every Ellentuck-open set A C X @) there exists
B e X such that either B&) C A or BWI N A =10.

A reflexive and transitive relation is called a quasi-ordering. A quasi-ordered
set @, < is well-quasi-ordered (wqo), if for every infinite sequence g1, ¢z, ... in
@ there are indices 7 < j such that ¢; < ¢j. In what follows @ will always
denote a quasi-ordered set, and we also view () as a discrete topological space.
Q is better-quasi-ordered (bgo) if for every X € N« and for every Ellentuck-
continuous function f : X — @ there exists an s € X“) such that f(s) <
f(s\{min s}). We remark that a result of Mathias [3] implies that one obtains an
equivalent definition by replacing Ellentuck-continuity by Tychonov-continuity,
or by requiring Borel measurability. A Q-array is an Ellentuck-continuous
function f : X©@ — @, for some X € N®_ If there is no s € X such that
f(s) < f(s\{mins}), then f is a bad Q-array. Thus @ is bqo if and only if
there is no bad Q-array.

All trees considered in this paper will have a root. For two trees T and U
with roots ¢ and u, respectively, we call an injective mapping ¢ : V(T') — V(U)
an embedding of T into U, if ¢ can be extended to an isomorphism between
a subdivision of T and the smallest subtree U’ of U containing all vertices
in p(V(T)), and furthermore, the path between ¢(t) and w in U contains no
vertex of U’ other than ((t). We say that T is a rooted topological minor of U,
abbreviated by T' < U, if there is an embedding of T into U. This defines a
quasi-ordering on the class of all trees.

Given two vertices x and y of a tree T, we say that x is above y if y lies
on the path from x to the root of T. If x and y are adjacent and x is above
y, we call y the predecessor of x and x the successor of y. The branch above
x, abbreviated by br(z), is the subtree of T' spanned by all vertices above z
(including x itself). For the root of br(x) we choose x.

2 Better-quasi-ordering infinite trees
Lemma 1 FEwvery bqo set QQ is wqo.

Proof. Let q1,qo, . .. be any infinite sequence in Q. Define a function f : N“) —
Q by f(8) := ¢mins- Then f is Ellentuck-continuous, and thus a Q-array. Hence,
since Q is bqo, there exists an s € N“) such that f(s) < f(s\{mins}). But
this means that ¢s, < gs,, where s = (s1, s2,...). Thus @ is wqo. O

If Q is a quasi-ordered set, then we may quasi-order the elements of the
power set of () by saying that A < B if for all a € A there exists b € B such
that ¢ < b in Q. We denote the power set of () with this quasi-ordering by
S(Q). The following lemma implies that if @ is bqo then so is S(Q).



Lemma 2 If f is a bad S(Q)-array, then there exists a bad Q-array g such
that Dg = Df and g(s) € f(s) for all s € Dg.

Proof. Let s € Df. Since f(s) £ f(s\{mins}) there exists an x5 € f(s) such
that ;s £ y for all y € f(s\{mins}). We can choose x5 such that it depends
only on the pair f(s), f(s\{mins}) and not on s itself, i.e. if f(s) = f(¢t) and
f(s\{mins}) = f(t\{mint}), then s = x;. We now define a function g :
Df — @ by setting g(s) := xs. Then the Ellentuck-continuity of f and the fact
that zs depends only on the pair f(s), f(s\{mins}) imply that g is Ellentuck-
continuous, and thus a Q-array. It is also bad, since g(s) < g(s\{mins}) would
contradict the choice of xg. O

Given two quasi-ordered sets @ and ), we define a quasi-ordering on Q x @)’
by saying that (q1,¢;) < (g2,45) if g1 < g2 and ¢] < ¢5.
Lemma 3 If f = (f1, f2) is a bad C x Q-array, then there erists a bad Q-array
g such that Dg C Df and g(s) = fa(s) for all s € Dg.

Proof. Let A := {s € Df | fi(s) < fi(s\{mins})}. Then the Ellentuck-
continuity of f implies that A is Ellentuck-open. Hence by Theorem 1, there
exists a B € Df such that either B®) C A or B® N A = (. But the

latter cannot hold, since then for s = (s1,s2,...) € B® we would have
fi(si,82,...) > fi(s2,s3,...) > fi(s3,84,...) > ..., contradicting the fact
that C is well-ordered. Thus B®) C A, and so ¢ : B“) — @ defined by
g(s) := fa(s) must be a bad Q-array, as required. O

Let Seq(Q) be the set of all transfinite sequences with elements in @. For
a transfinite sequence F' : @ — @ we define length(F') to be a. If f < a, we
write F'|g for the restriction of F' to 8. Given F, G € Seq(Q), we call a mapping
¢ : length(F') — length(G) an embedding of F into G if ¢ is strictly increasing
and F(a) < G(e(a)) for all a < length(F). We impose a quasi-ordering on
Seq(Q) by saying that F' < G if there exists an embedding from F' into G.

The following lemma implies that if a set @ is bqo then so is Seq(Q), which is
also a result due to Nash-Williams [4]. In the proof we present here, we closely
follow Prémel and Voigt [6].

Lemma 4 If f is a bad Seq(Q)-array, then there exists a bad Q-array g such
that Dg C Df and g(s) € f(s) for all s € Dg.

Proof. For sequences F, G € Seq(Q) we write F' <* G if F is an initial segment
of G, and F <* G if F is a proper initial segment of G. If h and h' are
Seq(Q)-arrays, we write h <* b’ if Dh C DR/ and h(s) <* h'(s) for all s € Dh.
Furthermore, we write h <* h' if h <* h/ and there exists an s € Dh such that
h(s) <* h'(s). We will first prove the following claim.

There exists a minimal bad Seq(Q)-array h such that h <* f. (%)

We may assume that f itself is not minimal. Put fy := f and Xéw) := D fy. For
a Seq(Q)-array g and s € Dg we define

kgs := min{k | k € s such that g(s) = g(t) for all t € s) with sn[k] = tN[k]}.
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Thus kg4 s is the smallest integer k € s such that g is constant on the set of all
t € 5() that begin with the initial segment s N [k] of s. (Note that k, ¢ exists,
since g is Ellentuck-continuous.) We now choose a bad Seq(Q)-array f] <* fo
such that

min{ky, ; | s € Dff with fi(s) <* fo(s)} =
is minimal. Choose an element s; € D f] such that f](s1) < (31) and kg o, =
k1. Define a function f; : (s1 U (Xo N [k1]))@) — Seq(Q) by

fi(s) = {fi(s) if s € s\

fo(s) otherwise.

It is easily checked that f; is a bad Seq(Q)-array and f; <* fo. If f1 is not
minimal, we continue in this fashion to construct f3, f2, s2 and ks. Thus we may
assume that we have constructed infinite sequences f1, f5,... and fi, fa,... and
$1,59,... and k1, ka,.... Then k; 11 > k; for all ¢ > 1, since H—l was a candidate
for the choice of f/. Moreover, the sequence (k;) is unbounded. Indeed, suppose
that there is an 7 such that k; = k; for all j > 4. Then there exists an infinite
sequence i < ji < j2 < ... such that s; N [k;] = s;, N [k;] for all £ > 1. This
yields s, 1 C s, for all £ > 1. Hence the definition of k 11,0554 implies that

fjé(sjé) = fg/‘g(sjz) = fgl‘g(sjéﬂ) = fjé(sjéJrl)'

By the choice of s;,, it follows that

fje+1(3j£+1) = f]/‘g+1(sje+1) <* fj£(8j2+1) = sz(sjz)‘

Thus length(f}, (s5,)), length(fj,(s4,)), - .. is an infinite strictly descending chain
of ordinals, a contradiction.

Let X :=(),5; Xi, where Xi(w) := Df;. Since X contains every k;, the un-
boundedness of the sequence (k;) implies that X is infinite. Also, note that
for all s € X(“) there exists an integer i = i(s) such that f;(s) = f;(s) for all
j > i. (Otherwise there would be an infinite strictly descending chain of ordi-
nals, since f;41(s) <* fj(s).) Define a function 2’ : X — Seq(Q) by putting
W(s):= fi(s)(s)‘

We will now find an Ellentuck-continuous restriction of A’ that will do for h
in (). Let A be the set of all s € X®) such that &' is Ellentuck-continuous
in s. Thus A is Ellentuck-open. By Theorem 1 there exists a B € X®) such
that either B&) C A or B&) N A = (. Suppose first that the latter holds, and
let t; € B®. Since fi(t) is Ellentuck-continuous, there is a basic Ellentuck-
neighbourhood Ny of ¢; on which f;,) is constant. Since A’ is not Ellentuck-
continuous in t1, there exists an to € Ny such that h'(t2) # h'(t1), and thus from
the definition of A" it follows that h'(t2) <* fis,)(t2) = fi,)(t1) = W' (t1). But t2
is a subsequence of ¢; (since it lies in a basic Ellentuck-neighbourhood of ¢;), and
soty € B (@), Continuing in this fashion we obtain an infinite sequence ¢, to, . . .
such that A/(t1) >* h/(t2) >* ..., i.e. length(h/(¢1)), length(h/(t2)),... is an
infinite strictly descending chain of ordinals, a contradiction. Thus B®) C A,
and hence the restriction h of ' on B“) is Ellentuck-continuous.



The definition of A’ implies that h is a bad Seq(Q)-array and h <* f (in
fact, h <* f; for all i« > 0). Suppose that h is not minimal, and let ¢ be a bad
Seq(Q)-array such that ¢ <* h. Let

k :=min{k, s | s € Dy and ¢(s) <* h(s)}.

Since the sequence (k;) is unbounded, there is an ¢ with k; > k, contradicting
the fact that ¢ was a candidate for the choice of f/. This shows that h is also
minimal, and thus h is as required in ().

We now use (%) to complete the proof of the lemma. For all s € Dh define
P(s) :=sup{a € O | h(s)|a < h(s\{mins})}.

Then ¢(s) < length(h(s)), since h is a bad Seq(Q)-array; and the Ellentuck-
continuity of A implies that of ¥. Moreover, it is straightforward to show that

h(s)ly(s) < h(s\{mins}),

but
h(8)ly(s)+1 £ h(s\{mins}).
Let
C = {s € Dh | h(s)]y(s) < h(s\{min s})|y(s\ fmins}) }-

Since both h and % are Ellentuck-continuous, C' is Ellentuck-open. Thus by
Theorem 1 there exists an D € Dh such that either D) C Cor D@ NC =0.
If the latter holds, then y : D) — Seq(Q) defined by x(s) := h(8)|y(s) would
be a bad Seq(Q)-array with y <* h, contradicting the choice of h.

Thus D@ C C. We now define g : D) — @ by putting g(s) := h(s)(z(s)),
the value of h(s) at 1(s). Then g is Ellentuck-continuous, since h and v are.
Moreover, Dg C Df and g(s) € f(s) for all s € Dg. If there were an s € Dg
with g(s) < g(s\{mins}), then we could define an embedding of h(s)]y(s)+1 into
h(s\{mins}) by first embedding h(s)|y(s) into A(s\{min s})|y(s\ {mins}) (this is
possible since s € D) C (), and secondly, by sending h(s)(¢(s)) = g(s) to
h(s\{min s})()(s\{mins})) = g(s\{min s}). This contradicts the definition of
1. Thus g is a bad Seq(Q)-array as required. O

If @ is a quasi-ordered set, we may quasi-order the elements of the power set
of @@ by saying that A < B if there is an injective function f : A — B such that
a < f(a) in Q for all a € A. Let S*(Q) denote the power set of Q with this
quasi-ordering. Lemma 4 implies the following assertion.

Corollary 5 If f is a bad S*(Q)-array, then there exists a bad Q-array g such
that Dg C Df and g(s) € f(s) for all s € Dg.

An example of Rado [7] shows that there are wqo sets @) such that S(Q) (and
thus also S*(Q) and Seq(Q)) are not wqo. This lack of closure properties under
certain infinite operations is the reason why the stronger concept of bqo was
introduced.



Denote the class of all trees by R, and recall that the elements of R are
quasi-ordered by the rooted topological minor relation. Let Ry be the sub-
class containing all trees T with the property that there is no infinite sequence
Z1,x2,... of vertices in T such that x;1 is above x; and br(x;) Zbr(x;y1) for
all i > 1. Given a tree T, let S(T') be the set of all its vertices x for which
T £ br(x). If x € S(T), we call br(x) a strict branch of T. For a vertex x € T
we denote the set of its successors by succ(zx), and let

I(z) = (Hsucc(@\S(T)}, {br(y) |y € succ(z) N S(T)}).
We view I'(x) as an element of the quasi-ordered set C x S*(R).

Lemma 6 Suppose that T and U are trees such that for every vertex x € T
there exists a vertex y € U with T'(x) <T'(y). Then T < U.

Proof. For n =0,1,..., let W,, denote the set of all vertices of T" which have
distance at most n from the root of T'. We shall inductively define an embedding
¢ of T into U such that, at stage n, we have defined ¢ on a set V;, C V(T
satisfying the following conditions:

(i) Wy, C V,,, and if x € V,, then the predecessor of x in T lies in V,,. If
x € Vy)\W,,, then V(br(z)) C V.

(ii) Suppose that = € Wy11\V,, and let z be the predecessor of x. Then
x ¢ S(T') and there exists a vertex v’ € succ(p(2))\S(U) such that no
vertex of br(v?) lies in ¢(V;,). Furthermore, the vertices v} are distinct
for distinct & € Wy41\Va.

Let xg be the root of T. Then by the assumptions of the lemma, there is a
vertex yo € U such that I'(xg) < I'(yp). Thus for all z € succ(xp), there is a
vertex v) € succ(yp) such that, firstly, the vertices v0 are distinct for distinct
x, secondly, if # ¢ S(T), then v0 ¢ S(U), and thirdly, if x € S(T), then
br(z) < br(v?). Put p(xg) := yo, and extend ¢ by embedding br(z) into br(v?)
for all z € succ(xg) NS(T). Setting

Vo = {zo} U | J{V(br(x)) | = € suce(w) NS(T)}

starts the induction. Suppose that n > 0 and conditions (i) and (ii) hold for
n—1. If W, C V,_q, then V,,_y = V(T) by (i), and we are done. Thus let
us assume that W,, Z V,_;, and let = be any vertex in W,\V,_1. By the
assumption of the lemma there is a vertex y € U such that I'(x) < I'(y). Let
v"~! be as in condition (ii). Then U < br(v?~1), since v2~1 ¢ S(U). Let 3 be
the image of y in br(v?~!) under this embedding. The fact that I'(x) < I'(y) now
implies that for all a € succ(x) there exists a vertex v € succ(y’) satisfying the
following three conditions. Firstly, the v are distinct for distinct a. Secondly,
if a ¢ S(T) then v? ¢ S(U), and thirdly, if a € S(T), then br(a) < br(v?).
Put ¢(x) := ¢y’ and extend ¢ further by embedding br(a) into br(v) for all
a € succ(x) N S(T'). Proceed similarly for every x € W,\V,,_1. Then, setting

Vi i= VoUW, U U{V(br(a)) |a € succ(z) N S(T') for some xz € W,\V,,_1}

completes the induction step. O



Lemma 7 If f is a bad Ro-array, then there exists a bad Ro-array g such that
Dg C Df and g(s) is a strict branch of f(s) for all s € Dg.

Proof. For a tree T € Ry we define X(T) := {I'(z) | « € T} and think of it as
an element of the quasi-ordered set S(C x S¥(Rp)). Lemma 6 implies that for
all T, U € Ry,

S(T) < S(U) = T<U.

Hence Yo f is a bad S(CxS*(Ry))-array. By Lemma 2, there is a bad C x S*(Rg)-
array o such that Do = DX o f =Df and ¢(s) € X o f(s) for all s € Dy. Now
Lemma 3 implies that there is a bad Su(Ro)-array 1 such that Dy C Dy and
P(s) = pa(s) for all s € Dip. Finally, by Corollary 5, there is a bad Rg-array
g such that Dg C Dt and g(s) € ¥(s) for all s € Dg. Clearly, Dg C Df.
Furthermore, for all s € Dg, g(s) is an element of the second component of an
element of ¥ o f(s), and thus a strict branch of f(s), as required. O

If h and b/ are Rp-arrays, we write b <" b’ if Dh C DA/, and if h(s) is a
branch of A/(s) for all s € Dh. Furthermore, we write h <’ b’ if h <’ b/ and
there exists an s € Dh such that h(s) is a strict branch of A/(s).

Lemma 8 If f is a bad Rg-array, then there exists a minimal bad Rg-array h
such that h <’ f.

We omit the proof, since it is an easy modification of the proof of assertion (x) in
the proof of Lemma 4. Indeed, the only difference is the following. In Lemma 4
we repeatedly made use of the fact that we could not have an infinite sequence
Fi, F5,... in Seq(Q) such that Fj;; is a proper initial segment of F; for all
i > 1, since length(F}), length(F»), ... would then have been an infinite strictly
descending chain of ordinals. In the proof of Lemma 8 an infinite sequence
Fy, Fs, ... in Rg such that F;yq is a strict branch of F; for all ¢ > 1 would
contradict the definition of Ry.
Lemmas 7 and 8 immediately imply the following result.

Corollary 9 Rg is bgo.

Given a tree T, let F(T") :={z € T'| br(x) € Ro} and I(T) := V(T)\F(T'). For
a vertex € T' define

A(z) = (|succ(z) NI(T)|, {br(z)|z € succ(z) NF(T)}).
We view A(z) as an element of C x S*(Ry).
Lemma 10 Suppose that T is a tree and xo,yo € I(T) are such that
Va € br(zo) N I(T) Yy € br(yo) N I(T) Iz € br(y) : A(z) < A(z2).
Then br(zg) < br(yo).-

Proof. The proof is very similar to that of Lemma 6. For n =0,1,..., let W,
denote the set of all vertices of br(xzg) which have distance at most n from x.
We shall inductively define an embedding ¢ of br(xg) into br(yp) such that, at
stage n, we have defined ¢ on a set V,, C V(br(z)) satistying the following
conditions:



(i) W, C 'V, and if € V,, then the predecessor of x in br(zg) lies in V. If
x € V,\W,, then V(br(z)) C V.

(ii) Suppose that x € Wy41\Vy, and let y be the predecessor of x. Then
x € I(T'), and there exists a vertex v} € succ(p(y)) NI(U) such that no
vertex of br(v?) lies in ¢(V},). Furthermore, the vertices v} are distinct
for distinct € Wy41\Va.

By the assumptions of the lemma, there is a vertex zg € br(yp) such that
A(xg) < A(zp). Thus for all z € succ(xg) there is a vertex v) € succ(zg) such
that, firstly, the vertices v2 are distinct for distinct , secondly, if z € I(T') then
v0 € I(T), and thirdly, if z € F(T), then br(z) < br(v2). Put ¢(xo) := 20, and

extend ¢ by embedding br(x) into br(vQ) for all z € succ(zg) N F(T). Setting

= {zo} U U{V br(z)) | « € succ(xo) NF(T)}

starts the induction. Suppose that n > 0 and conditions (i) and (ii) hold for
n—1. If W,, C V4, then V,,_1 = V(br(z¢)) by (i), and we are done. Thus we
may assume that W,, € V,,_;. Let = be any vertex in W,,\V,,_1, and let v;“l
be as in condition (ii). Then by the assumption of the lemma there is a vertex
z € br(v?1) such that A(z) < A(z). Thus for all a € succ(x) there exists a
vertex v}l € succ(z) such that, firstly, the v} are distinct for distinct a, secondly,
if a € I(T) then v? € I(T), and thirdly, if a € F(T), then br(a) < br(v}).
Put ¢(x) := z, and extend ¢ further by embedding br(a) into br(v}}) for all
a € succ(x) NF(T). Proceed similarly for every x € W, \V,,_1. Then, setting

Vo == VoUW, U U{V(br(a)) |a € succ(z) NF(T') for some z € Wp\V,_1}

completes the induction step. [l

Theorem 11 The infinite trees are bqo under the rooted topological minor re-
lation.

Proof. By Corollary 9 it suffices to show that every tree lies in Ry. Suppose
not, and let T be a tree that does not lie in Rg. Let xy be the root of T.
Since T ¢ Ry, there is a vertex y; € br(zg) N I(T") such that br(zg) £ br(y;).
Then Lemma 10 implies that there exist vertices z; € br(zo) NI(T) and x; €
br(y1) NI(T) such that A(z1) £ A(z) for all z € br(x;). Since z; € I(T'), there
is a vertex yo € br(z1) NI(T) such that br(z;) # br(ys). Again, Lemma 10
implies that there exist vertices z3 € br(z1) NI(T") and z2 € br(yz) NI(T") such
that A(z2) € A(z) for all z € br(z2). Continuing in this fashion, we obtain
an infinite sequence z1, zo,... such that A(z;) £ A(z;) in C x S¥(Ry) for all
1 <i < j. But since Ryg is bqo by Corollary 9, C x S*(Rg) is bqo by Lemma 3
and Corollary 5, and thus it is wqo by Lemma 1, a contradiction. ]
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