Forcing unbalanced complete bipartite minors

Daniela Kühn Deryk Osthus

Abstract

Myers conjectured that for every integer s there exists a positive constant C such that for all integers t every graph of average degree at least Ct contains a $K_{s,t}$ minor. We prove the following stronger result: for every $0 < \varepsilon < 10^{-16}$ there exists a number $t_0 = t_0(\varepsilon)$ such that for all integers $t \ge t_0$ and $s \le \varepsilon^6 t / \log t$ every graph of average degree at least $(1 + \varepsilon)t$ contains a $K_{s,t}$ minor. The bounds are essentially best possible. We also show that for fixed s every graph as above even contains $K_s + \overline{K}_t$ as a minor.

1 Introduction

Let d(s) be the smallest number such that every graph of average degree greater than d(s) contains the complete graph K_s as minor. The existence of d(s) was first proved by Mader [4]. Kostochka [3] and Thomason [10] independently showed that the order of magnitude of d(s) is $s\sqrt{\log s}$. Later, Thomason [11] was able to prove that $d(s) = (\alpha + o(1))s\sqrt{\log s}$, where $\alpha = 0.638...$ is an explicit constant. Here the lower bound on d(s) is provided by random graphs. In fact, Myers [6] proved that all extremal graphs are essentially disjoint unions of pseudo-random graphs.

Recently, Myers and Thomason [8] extended the results of [11] from complete minors to H minors for arbitrary dense (and large) graphs H. The extremal function has the same form as d(s), except that $\alpha \leq 0.638...$ is now an explicit parameter depending on H and s is replaced by the order of H. They raised the question of what happens for sparse graphs H. One partial result in this direction was obtained by Myers [7]: he showed that every graph of average degree at least t + 1 contains a $K_{2,t}$ minor. This is best possible as he observed that for all positive ε there are infinitely many graphs of average degree at least $t + 1 - \varepsilon$ which do not contain a $K_{2,t}$ minor. (These examples also show that random graphs are not extremal in this case.) More generally, Myers [7] conjectured that for fixed s the extremal function for a $K_{s,t}$ minor is linear in t:

Conjecture 1 (Myers) Given $s \in \mathbb{N}$, there exists a positive constant C such that for all $t \in \mathbb{N}$ every graph of average degree at least Ct contains a $K_{s,t}$ minor.

Here we prove the following strengthened version of this conjecture. (It implies that asymptotically the influence of the number of edges on the extremal function is negligible.)

Theorem 2 For every $0 < \varepsilon < 10^{-16}$ there exists a number $t_0 = t_0(\varepsilon)$ such that for all integers $t \ge t_0$ and $s \le \varepsilon^6 t / \log t$ every graph of average degree at least $(1 + \varepsilon)t$ contains a $K_{s,t}$ minor.

Theorem 2 is essentially best possible in two ways. Firstly, the complete graph K_{s+t-1} shows that up to the error term εt the bound on the average degree cannot be reduced. Secondly, as we will see in Proposition 9 (applied with $\alpha := 1/3$), the result breaks down if we try to set $s \ge 18t/\log t$. Moreover, Proposition 9 also implies that if $t/\log t = o(s)$ then even a linear average degree (as in Conjecture 1) no longer suffices to force a $K_{s,t}$ minor.

The case where s = ct for some constant $0 < c \le 1$ is covered by the results of Myers and Thomason [8]. The extremal function in this case is $(\alpha \frac{2\sqrt{c}}{1+c} + o(1))r\sqrt{\log r}$ where $\alpha = 0.638...$ again and r = s + t.

For fixed s, we obtain the following strengthening of Theorem 2:

Theorem 3 For every $\varepsilon > 0$ and every integer s there exists a number $t_0 = t_0(\varepsilon, s)$ such that for all integers $t \ge t_0$ every graph of average degree at least $(1 + \varepsilon)t$ contains $K_s + \overline{K}_t$ as a minor.

This note is organized as follows. We first prove Theorem 2 for graphs whose connectivity is linear in their order (Lemma 8). We then use ideas of Thomason [11] to extend the result to arbitrary graphs. The proof of Theorem 3 is almost the same as that of Theorem 2 and so we only sketch it.

2 Notation and tools

We write e(G) for the number of edges of a graph G, |G| for its order and d(G) := 2e(G)/|G| for its average degree. We denote the degree of a vertex $x \in G$ by $d_G(x)$ and the set of its neighbours by $N_G(x)$. If $P = x_1 \dots x_\ell$ is a path and $1 \leq i \leq j \leq \ell$, we write $x_i P x_j$ for its subpath $x_i \dots x_j$.

We say that a graph H is a *minor* of G if for every vertex $h \in H$ there is set $C_h \subseteq V(G)$ such that all the C_h are disjoint, each $G[C_h]$ is connected and G contains a C_h - $C_{h'}$ edge whenever hh' is an edge in H. C_h is called the *branch* set corresponding to h.

We will use the following result of Mader [5].

Theorem 4 Every graph G contains a $\lceil d(G)/4 \rceil$ -connected subgraph.

Given $k \in \mathbb{N}$, we say that a graph G is k-linked if $|G| \geq 2k$ and for every 2k distinct vertices x_1, \ldots, x_k and y_1, \ldots, y_k of G there exist disjoint paths P_1, \ldots, P_k such that P_i joins x_i to y_i . Jung as well as Larman and Mani independently proved that every sufficiently highly connected graph is k-linked. Later, Bollobás and Thomason [2] showed that a connectivity linear in k suffices. Simplifying the argument in [2], Thomas and Wollan [9] recently obtained an even better bound:

Theorem 5 Every 16k-connected graph is k-linked.

Similarly as in [11], given positive numbers d and k, we shall consider the class $\mathcal{G}_{d,k}$ of graphs defined by

$$\mathcal{G}_{d,k} := \{G : |G| \ge d, \ e(G) > d|G| - kd\}.$$

We say that a graph G is minor-minimal in $\mathcal{G}_{d,k}$ if G belongs to $\mathcal{G}_{d,k}$ but no proper minor of G does. The following lemma states some properties of the minor-minimal elements of $\mathcal{G}_{d,k}$. The proof is simple, its counterpart for digraphs can be found in [11, Section 2]. (The first property follows by counting the number of edges of the complete graph on $|(2 - \varepsilon)d|$ vertices.)

Lemma 6 Given $0 < \varepsilon < 1/2$, $d \ge 2/\varepsilon$ and $1/d \le k \le \varepsilon d/2$, every minorminimal graph in $\mathcal{G}_{d,k}$ satisfies the following properties:

- (i) $|G| \ge (2-\varepsilon)d$,
- (ii) $e(G) \le d|G| kd + 1$,
- (iii) every edge of G lies in more than d-1 triangles,
- (iv) G is $\lceil k \rceil$ -connected.

We will also use the following easy fact, see [11, Lemma 4.2] for a proof.

Lemma 7 Suppose that x and y are distinct vertices of a k-connected graph G. Then G contains at least $k^2/4|G|$ internally disjoint x-y paths of length at most 2|G|/k.

3 Proof of theorems

The strategy of the proof of Theorem 2 is as follows. It is easily seen that to prove Theorem 2 for all graphs of average degree at least $(1 + \varepsilon)t =: d$, it suffices to consider only those graphs G which are minor-minimal in the class $\mathcal{G}_{d/2,k}$ for some suitable k. In particular, together with Lemma 6 this implies that we only have to deal with k-connected graphs. If d (and so also k) is linear in the order of G, then a simple probabilistic argument gives us the desired $K_{s,t}$ minor (Lemma 8). In the other case we use that by Lemma 6 each vertex of Gtogether with its neighbourhood induces a dense subgraph of G. We apply this to find 10 disjoint $K_{10s, \lceil d/9 \rceil}$ minors which we combine to a $K_{s,t}$ minor.

Lemma 8 For all $0 < \varepsilon, c < 1$ there exists a number $k_0 = k_0(\varepsilon, c)$ such that for each integer $k \ge k_0$ every k-connected graph G whose order n satisfies $k \ge cn$ contains a $K_{s,t}$ minor where $t := \lceil (1-\varepsilon)n \rceil$ and $s := \lceil c^4 \varepsilon n/(32 \log n) \rceil$. Moreover, the branch sets corresponding to the vertices in the vertex class of the $K_{s,t}$ of size t can be chosen to be singletons whereas all the other branch sets can be chosen to have size at most $8 \log n/c^2$. **Proof.** Throughout the proof we assume that k (and thus also n) is sufficiently large compared with both ε and c for our estimates to hold. Put $a := \lfloor 4 \log s/c \rfloor$. Successively choose as vertices of G uniformly at random without repetitions. Let C_1 be the set of the first a of these vertices, let C_2 be the set of the next a vertices and so on up to C_s . Let C be the union of all the C_i . Given $i \leq s$, we call a vertex $x \in G - C$ good for i if x has at least one neighbour in C_i . Moreover, we say that x is good if it is good for every $i \leq s$. Thus

$$\mathbb{P}(x \text{ is not good for } i) \le \left(1 - \frac{d_G(x) - as}{n}\right)^a \le e^{-a(k-as)/n} \le e^{-ac/2}$$

and so x is not good with probability at most $se^{-ac/2} < \varepsilon/2$. Therefore the expected number of good vertices outside C is at least $(1 - \varepsilon/2)|G - C|$. Hence there exists an outcome C_1, \ldots, C_s for which at least $(1 - \varepsilon/2)|G - C|$ vertices in G - C are good.

We now extend all these C_i to disjoint connected subgraphs of G as follows. Let us start with C_1 . Fix a vertex $x_1 \in C_1$. For each $x \in C_1 \setminus \{x_1\}$ in turn we apply Lemma 7 to find an x- x_1 path of length at most $2n/k \leq 2/c$ which is internally disjoint from all the paths chosen previously and which avoids $C_2 \cup \cdots \cup C_s$. Since Lemma 7 guarantees at least $k^2/4n \geq as \cdot 2/c$ short paths between a given pair of vertices, we are able to extend each C_i in turn to a connected subgraph in this fashion. Denote the graphs thus obtained from C_1, \ldots, C_s by G_1, \ldots, G_s . Thus all the G_i are disjoint.

Note that at most 2as/c good vertices lie in some G_i . Thus at least $(1 - \varepsilon/2)|G-C|-2as/c \ge (1-\varepsilon)n$ good vertices avoid all the G_i . Hence G contains a $K_{s,t}$ minor as required. (The good vertices avoiding all the G_i correspond to the vertices of the $K_{s,t}$ in the vertex class of size t. The branch sets corresponding to the vertices of the $K_{s,t}$ in the vertex class of size s are the vertex sets of G_1, \ldots, G_s .)

Proof of Theorem 2. Let $d := (1 + \varepsilon)t$ and $s := \lfloor \varepsilon^6 d / \log d \rfloor$. Throughout the proof we assume that t (and thus also d) is sufficiently large compared with ε for our estimates to hold. We have to show that every graph of average degree at least d contains a $K_{s,t}$ minor. Put $k := \lfloor \varepsilon d/4 \rfloor$. Since $\mathcal{G}_{d/2,k}$ contains all graphs of average degree at least d, it suffices to show that every graph Gwhich is minor-minimal in $\mathcal{G}_{d/2,k}$ contains a $K_{s,t}$ minor. Let n := |G|. As is easily seen, (i) and (iv) of Lemma 6 together with Lemma 8 imply that we may assume that $d \leq n/600$. (Lemma 8 is applied with $c := \varepsilon/2400$ and with ε replaced by $\varepsilon/3$.) Let X be the set of all those vertices of G whose degree is at most 2d. Since by Lemma 6 (ii) the average degree of G is at most d, it follows that $|X| \geq n/2$. Let us first prove the following claim.

Either G contains a $K_{s,t}$ minor or G contains 10 disjoint $\lceil 3d/25 \rceil$ connected subgraphs G_1, \ldots, G_{10} such that $3d/25 \le |G_i| \le 3d$ for each $i \le 10$.

Choose a vertex $x_1 \in X$ and let G'_1 denote the subgraph of G induced by x_1 and its neighbourhood. Then $|G'_1| = d_G(x_1) + 1 \leq 2d + 1$. Since by Lemma 6 (iii)

each edge between x_1 and $N_G(x_1)$ lies in at least d/2 - 1 triangles, it follows that the minimum degree of G'_1 is at least d/2 - 1. Thus Theorem 4 implies that G'_1 contains a $\lceil 3d/25 \rceil$ -connected subgraph. Take G_1 to be this subgraph. Put $X_1 := X \setminus V(G_1)$ and let X'_1 be the set of all those vertices in X_1 which have at least d/500 neighbours in G_1 .

Suppose first that $|X'_1| \ge |X|/10$. In this case we will find a $K_{s,t}$ minor in G. Since the argument is similar to the proof of Lemma 8, we only sketch it. Set $a := \lfloor 10^4 \log s \rfloor$. This time, we choose the *a*-element sets C_1, \ldots, C_s randomly inside $V(G_1)$. Since every vertex in X'_1 has at least d/500 neighbours in G_1 , the probability that the neighbourhood of a given vertex $x \in X'_1$ avoids some C_i is at most $se^{-a/(3\cdot 10^3)} < \varepsilon$. So the expected number of such bad vertices in X'_1 is at most $\varepsilon |X'_1|$. Thus for some choice of C_1, \ldots, C_s there are at least $(1-\varepsilon)|X'_1| \ge (1-\varepsilon)n/20 \ge t$ vertices in X'_1 which have a neighbour in each C_i . Since the connectivity of G_1 is linear in its order, we may again apply Lemma 7 to make the C_i into disjoint connected subgraphs of G_1 by adding suitable short paths from G_1 . This shows that G contains a $K_{s,t}$ minor.

Thus we may assume that at least $|X_1| - |X|/10 \ge 9|X|/10 - 3d > 0$ vertices in X_1 have at most d/500 neighbours in G_1 . Choose such a vertex x_2 . Let G'_2 be the subgraph of G induced by x_2 and all its neighbours outside G_1 . Since by Lemma 6 (iii) every edge of G lies in at least d/2 - 1 triangles, it follows that the minimum degree of G'_2 is at least d/2 - 1 - d/500 > 12d/25. Again, we take G_2 to be a $\lfloor 3d/25 \rfloor$ -connected subgraph of G'_2 obtained by Theorem 4.

We now put $X_2 := X_1 \setminus (X'_1 \cup V(G_2))$ and define X'_2 to be the set of all those vertices in X_2 which have at least d/500 neighbours in G_2 . If $|X'_2| \ge |X|/10$, then as before, we can find a $K_{s,t}$ minor in G. If $|X'_2| \le |X|/10$ we define G_3 in a similar way as G_2 . Continuing in this fashion proves the claim. (Note that when choosing x_{10} we still have $|X_9| - |X|/10 \ge |X|/10 - 9 \cdot 3d > 0$ vertices at our disposal since $n \ge 600d$.)

Apply Lemma 8 with c := 1/25 to each G_i to find a $K_{10s,\lceil d/9\rceil}$ minor. Let $C_1^i, \ldots, C_s^i, D_1^i, \ldots, D_{9s}^i$ denote the branch sets corresponding to the vertices of the $K_{10s,\lceil d/9\rceil}$ in the vertex class of size 10s. By Lemma 8 we may assume that all the C_j^i and all the D_j^i have size at most $8 \cdot 25^2 \log |G_i| \le 10^5 \log d$ and that all the branch sets corresponding to the remaining vertices of the $K_{10s,\lceil d/9\rceil}$ are singletons. Let $T^i \subseteq V(G_i)$ denote the union of all these singletons. Let C be the union of all the C_j^i , let D be the union of all the D_j^i and let T be the union of all the T^i .

We will now use these 10 $K_{10s,\lceil d/9\rceil}$ minors to form a $K_{s,t}$ minor in G. Recall that by Lemma 6 (iv) the graph G is $\lceil \varepsilon d/4 \rceil$ -connected and so by Theorem 5 it is $\lfloor \varepsilon d/64 \rfloor$ -linked. Thus there exists a set \mathcal{P} of 9s disjoint paths in G such that for all $i \leq 9$ and all $j \leq s$ the set C_j^i is joined to C_j^{i+1} by one of these paths and such that no path from \mathcal{P} contains an inner vertex in $C \cup D$. (To see this, use that $\varepsilon d/64 \geq 100s \cdot 10^5 \log d \geq |C \cup D|$.)

The paths in \mathcal{P} can meet T in many vertices. But we can reroute them such that every new path contains at most two vertices from each T^i . For every path $P \in \mathcal{P}$ in turn we will do this as follows. If P meets T^1 in more than 2 vertices, let t and t' denote the first and the last vertex from T^1 on P. Choose some set D_j^1 and replace the subpath tPt' by some path between t and t' whose interior lies entirely in $G[D_j^1]$. (This is possible since $G[D_j^1]$ is connected and since both t and t' have a neighbour in D_j^1 .) Proceed similarly if the path thus obtained still meets some other T^i . Then continue with the next path from \mathcal{P} . (The sets D_j^i used for the rerouting are chosen to be distinct for different paths.) Note that the paths thus obtained are still disjoint since D was avoided by all the paths in \mathcal{P} .

We now have found our $K_{s,t}$ minor. Each vertex lying in the vertex class of size s of the $K_{s,t}$ corresponds to a set consisting of $C_j^1 \cup \cdots \cup C_j^{10}$ together with the (rerouted) paths joining these sets. For the remaining vertices of the $K_{s,t}$ we can take all the vertices in T which are avoided by the (rerouted) paths. There are at least t such vertices since these paths contain at most $20 \cdot 9s$ vertices from T and $|T| - 180s \ge 10d/9 - 180s \ge t$.

Proof of Theorem 3 (Sketch). Without loss of generality we may assume that $\varepsilon < 10^{-16}$. The proof of Theorem 3 is almost the same as that of Theorem 2. The only difference is that now we also apply Lemma 7 to find $\binom{s}{2}$ short paths connecting all the pairs of the C_i . This can be done at the point where we extend the C_i 's to connected subgraphs.

The following proposition shows that the bound on s in Theorem 2 is essentially best possible. Its proof is an adaption of a well-known argument of Bollobás, Catlin and Erdős [1].

Proposition 9 There exists an integer n_0 such that for each integer $n \ge n_0$ and each number $\alpha > 0$ there is a graph G of order n and with average degree at least n/2 which does not have a $K_{s,t}$ minor with $s := \lceil 2n/\alpha \log n \rceil$ and $t := \lceil \alpha n \rceil$.

Proof. Let p := 1 - 1/e. Throughout the proof we assume that n is sufficiently large for our estimates to hold. Consider a random graph G_p of order n which is obtained by including each edge with probability p independently from all other edges. We will show that with positive probability G_p is as required in the proposition. Clearly, with probability > 3/4 the average degree of G_p is at least n/2. Hence it suffices to show that with probability at most 1/2 the graph G_p will have the property that its vertex set $V(G_p)$ can be partitioned into disjoint sets S_1, \ldots, S_s and T_1, \ldots, T_t such that G_p contains an edge between every pair S_i, T_j $(1 \le i \le s, 1 \le j \le t)$. Call such a partition of $V(G_p)$ admissible. Thus we have to show that the probability that G_p has an admissible partition is $\le 1/2$. Let us first estimate the probability that a given partition \mathcal{P} is admissible:

$$\mathbb{P}(\mathcal{P} \text{ is admissible}) = \prod_{i,j} \left(1 - (1-p)^{|S_i||T_j|} \right) \le \exp\left(-\sum_{i,j} (1-p)^{|S_i||T_j|} \right)$$
$$\le \exp\left(-st \prod_{i,j} (1-p)^{|S_i||T_j|(st)^{-1}} \right) \le \exp\left(-st(1-p)^{n^2(st)^{-1}} \right)$$
$$\le \exp\left(-\frac{2n^2}{\log n} \cdot n^{-\frac{1}{2}} \right) \le \exp(-n^{\frac{4}{3}}).$$

(The first expression in the second line follows since the arithmetric mean is at least as large as the geometric mean.) Since the number of possible partitions is at most n^n , it follows that the probability that G_p has an admissible partition is at most $n^n \cdot e^{-n^{4/3}} < 1/2$, as required.

References

- B. Bollobás, P.A. Catlin and P. Erdős, Hadwiger's conjecture is true for almost every graph, *European J. Combin.* 1 (1980), 195–199.
- [2] B. Bollobás and A. Thomason, Highly linked graphs, Combinatorica 16 (1996), 313–320.
- [3] A. V. Kostochka, A lower bound for the Hadwiger number of graphs by the average degree, *Combinatorica* 4 (1984), 307–316.
- [4] W. Mader, Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Math. Annalen 174 (1967), 265–268.
- [5] W. Mader, Existenz n-fach zusammenhängender Teilgraphen in Graphen genügend großer Kantendichte, Abh. Math. Sem. Univ. Hamburg 37 (1972), 86–97.
- [6] J.S. Myers, Graphs without large complete minors are quasi-random, Combin. Probab. Comput. 11 (2002), 571–585.
- [7] J.S. Myers, The extremal function for unbalanced bipartite minors, *Discrete Math.*, to appear.
- [8] J.S. Myers and A. Thomason, The extremal function for noncomplete minors, preprint 2002.
- [9] R. Thomas and P. Wollan, An improved linear edge bound for graph linkages, preprint 2003.
- [10] A. Thomason, An extremal function for contractions of graphs, Math. Proc. Cambridge Philos. Soc. 95 (1984), 261–265.

[11] A. Thomason, The extremal function for complete minors, J. Combin. Theory B 81 (2001), 318–338.

Daniela Kühn Mathematisches Seminar Universität Hamburg Bundesstraße 55 D - 20146 Hamburg Germany *E-mail address*: kuehn@math.uni-hamburg.de

Deryk Osthus Institut für Informatik Humboldt-Universität zu Berlin Unter den Linden 6 D - 10099 Berlin Germany *E-mail address*: osthus@informatik.hu-berlin.de