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Daniela Kühn Deryk Osthus

Abstract

Myers conjectured that for every integer s there exists a positive constant
C such that for all integers t every graph of average degree at least Ct
contains a Ks,t minor. We prove the following stronger result: for every
0 < ε < 10−16 there exists a number t0 = t0(ε) such that for all integers
t ≥ t0 and s ≤ ε6t/ log t every graph of average degree at least (1 + ε)t
contains a Ks,t minor. The bounds are essentially best possible. We also
show that for fixed s every graph as above even contains Ks + Kt as a
minor.

1 Introduction

Let d(s) be the smallest number such that every graph of average degree greater
than d(s) contains the complete graph Ks as minor. The existence of d(s) was
first proved by Mader [4]. Kostochka [3] and Thomason [10] independently
showed that the order of magnitude of d(s) is s

√
log s. Later, Thomason [11]

was able to prove that d(s) = (α + o(1))s
√

log s, where α = 0.638 . . . is an
explicit constant. Here the lower bound on d(s) is provided by random graphs.
In fact, Myers [6] proved that all extremal graphs are essentially disjoint unions
of pseudo-random graphs.

Recently, Myers and Thomason [8] extended the results of [11] from complete
minors to H minors for arbitrary dense (and large) graphs H. The extremal
function has the same form as d(s), except that α ≤ 0.638 . . . is now an explicit
parameter depending on H and s is replaced by the order of H. They raised
the question of what happens for sparse graphs H. One partial result in this
direction was obtained by Myers [7]: he showed that every graph of average
degree at least t + 1 contains a K2,t minor. This is best possible as he observed
that for all positive ε there are infinitely many graphs of average degree at
least t + 1 − ε which do not contain a K2,t minor. (These examples also show
that random graphs are not extremal in this case.) More generally, Myers [7]
conjectured that for fixed s the extremal function for a Ks,t minor is linear in t:

Conjecture 1 (Myers) Given s ∈ N, there exists a positive constant C such
that for all t ∈ N every graph of average degree at least Ct contains a Ks,t

minor.

Here we prove the following strengthened version of this conjecture. (It
implies that asymptotically the influence of the number of edges on the extremal
function is negligible.)
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Theorem 2 For every 0 < ε < 10−16 there exists a number t0 = t0(ε) such
that for all integers t ≥ t0 and s ≤ ε6t/ log t every graph of average degree at
least (1 + ε)t contains a Ks,t minor.

Theorem 2 is essentially best possible in two ways. Firstly, the complete graph
Ks+t−1 shows that up to the error term εt the bound on the average degree
cannot be reduced. Secondly, as we will see in Proposition 9 (applied with
α := 1/3), the result breaks down if we try to set s ≥ 18t/ log t. Moreover,
Proposition 9 also implies that if t/ log t = o(s) then even a linear average
degree (as in Conjecture 1) no longer suffices to force a Ks,t minor.

The case where s = ct for some constant 0 < c ≤ 1 is covered by the results
of Myers and Thomason [8]. The extremal function in this case is (α2

√
c

1+c +
o(1))r

√
log r where α = 0.638 . . . again and r = s + t.

For fixed s, we obtain the following strengthening of Theorem 2:

Theorem 3 For every ε > 0 and every integer s there exists a number t0 =
t0(ε, s) such that for all integers t ≥ t0 every graph of average degree at least
(1 + ε)t contains Ks + Kt as a minor.

This note is organized as follows. We first prove Theorem 2 for graphs
whose connectivity is linear in their order (Lemma 8). We then use ideas of
Thomason [11] to extend the result to arbitrary graphs. The proof of Theorem 3
is almost the same as that of Theorem 2 and so we only sketch it.

2 Notation and tools

We write e(G) for the number of edges of a graph G, |G| for its order and
d(G) := 2e(G)/|G| for its average degree. We denote the degree of a vertex
x ∈ G by dG(x) and the set of its neighbours by NG(x). If P = x1 . . . x` is a
path and 1 ≤ i ≤ j ≤ `, we write xiPxj for its subpath xi . . . xj .

We say that a graph H is a minor of G if for every vertex h ∈ H there is set
Ch ⊆ V (G) such that all the Ch are disjoint, each G[Ch] is connected and G
contains a Ch-Ch′ edge whenever hh′ is an edge in H. Ch is called the branch
set corresponding to h.

We will use the following result of Mader [5].

Theorem 4 Every graph G contains a dd(G)/4e-connected subgraph.

Given k ∈ N, we say that a graph G is k-linked if |G| ≥ 2k and for every
2k distinct vertices x1, . . . , xk and y1, . . . , yk of G there exist disjoint paths
P1, . . . , Pk such that Pi joins xi to yi. Jung as well as Larman and Mani
independently proved that every sufficiently highly connected graph is k-linked.
Later, Bollobás and Thomason [2] showed that a connectivity linear in k suffices.
Simplifying the argument in [2], Thomas and Wollan [9] recently obtained an
even better bound:

Theorem 5 Every 16k-connected graph is k-linked.
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Similarly as in [11], given positive numbers d and k, we shall consider the
class Gd,k of graphs defined by

Gd,k := {G : |G| ≥ d, e(G) > d|G| − kd}.

We say that a graph G is minor-minimal in Gd,k if G belongs to Gd,k but
no proper minor of G does. The following lemma states some properties of
the minor-minimal elements of Gd,k. The proof is simple, its counterpart for
digraphs can be found in [11, Section 2]. (The first property follows by counting
the number of edges of the complete graph on b(2− ε)dc vertices.)

Lemma 6 Given 0 < ε < 1/2, d ≥ 2/ε and 1/d ≤ k ≤ εd/2, every minor-
minimal graph in Gd,k satisfies the following properties:

(i) |G| ≥ (2− ε)d,

(ii) e(G) ≤ d|G| − kd + 1,

(iii) every edge of G lies in more than d− 1 triangles,

(iv) G is dke-connected.

We will also use the following easy fact, see [11, Lemma 4.2] for a proof.

Lemma 7 Suppose that x and y are distinct vertices of a k-connected graph
G. Then G contains at least k2/4|G| internally disjoint x-y paths of length at
most 2|G|/k.

3 Proof of theorems

The strategy of the proof of Theorem 2 is as follows. It is easily seen that
to prove Theorem 2 for all graphs of average degree at least (1 + ε)t =: d, it
suffices to consider only those graphs G which are minor-minimal in the class
Gd/2,k for some suitable k. In particular, together with Lemma 6 this implies
that we only have to deal with k-connected graphs. If d (and so also k) is linear
in the order of G, then a simple probabilistic argument gives us the desired Ks,t

minor (Lemma 8). In the other case we use that by Lemma 6 each vertex of G
together with its neighbourhood induces a dense subgraph of G. We apply this
to find 10 disjoint K10s,dd/9e minors which we combine to a Ks,t minor.

Lemma 8 For all 0 < ε, c < 1 there exists a number k0 = k0(ε, c) such that
for each integer k ≥ k0 every k-connected graph G whose order n satisfies
k ≥ cn contains a Ks,t minor where t := d(1− ε)ne and s := dc4εn/(32 log n)e.
Moreover, the branch sets corresponding to the vertices in the vertex class of
the Ks,t of size t can be chosen to be singletons whereas all the other branch
sets can be chosen to have size at most 8 log n/c2.
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Proof. Throughout the proof we assume that k (and thus also n) is sufficiently
large compared with both ε and c for our estimates to hold. Put a := b4 log s/cc.
Successively choose as vertices of G uniformly at random without repetitions.
Let C1 be the set of the first a of these vertices, let C2 be the set of the next
a vertices and so on up to Cs. Let C be the union of all the Ci. Given i ≤ s,
we call a vertex x ∈ G − C good for i if x has at least one neighbour in Ci.
Moreover, we say that x is good if it is good for every i ≤ s. Thus

P(x is not good for i) ≤
(

1− dG(x)− as

n

)a

≤ e−a(k−as)/n ≤ e−ac/2

and so x is not good with probability at most se−ac/2 < ε/2. Therefore the
expected number of good vertices outside C is at least (1− ε/2)|G−C|. Hence
there exists an outcome C1, . . . , Cs for which at least (1− ε/2)|G−C| vertices
in G− C are good.

We now extend all these Ci to disjoint connected subgraphs of G as follows.
Let us start with C1. Fix a vertex x1 ∈ C1. For each x ∈ C1 \ {x1} in turn
we apply Lemma 7 to find an x-x1 path of length at most 2n/k ≤ 2/c which
is internally disjoint from all the paths chosen previously and which avoids
C2 ∪ · · · ∪ Cs. Since Lemma 7 guarantees at least k2/4n ≥ as · 2/c short paths
between a given pair of vertices, we are able to extend each Ci in turn to a
connected subgraph in this fashion. Denote the graphs thus obtained from
C1, . . . , Cs by G1, . . . , Gs. Thus all the Gi are disjoint.

Note that at most 2as/c good vertices lie in some Gi. Thus at least (1 −
ε/2)|G−C|−2as/c ≥ (1−ε)n good vertices avoid all the Gi. Hence G contains a
Ks,t minor as required. (The good vertices avoiding all the Gi correspond to the
vertices of the Ks,t in the vertex class of size t. The branch sets corresponding
to the vertices of the Ks,t in the vertex class of size s are the vertex sets of
G1, . . . , Gs.) �

Proof of Theorem 2. Let d := (1 + ε)t and s := bε6d/ log dc. Throughout
the proof we assume that t (and thus also d) is sufficiently large compared
with ε for our estimates to hold. We have to show that every graph of average
degree at least d contains a Ks,t minor. Put k := dεd/4e. Since Gd/2,k contains
all graphs of average degree at least d, it suffices to show that every graph G
which is minor-minimal in Gd/2,k contains a Ks,t minor. Let n := |G|. As is
easily seen, (i) and (iv) of Lemma 6 together with Lemma 8 imply that we may
assume that d ≤ n/600. (Lemma 8 is applied with c := ε/2400 and with ε
replaced by ε/3.) Let X be the set of all those vertices of G whose degree is at
most 2d. Since by Lemma 6 (ii) the average degree of G is at most d, it follows
that |X| ≥ n/2. Let us first prove the following claim.

Either G contains a Ks,t minor or G contains 10 disjoint d3d/25e-
connected subgraphs G1, . . . , G10 such that 3d/25 ≤ |Gi| ≤ 3d for each
i ≤ 10.

Choose a vertex x1 ∈ X and let G′
1 denote the subgraph of G induced by x1 and

its neighbourhood. Then |G′
1| = dG(x1) + 1 ≤ 2d + 1. Since by Lemma 6 (iii)
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each edge between x1 and NG(x1) lies in at least d/2 − 1 triangles, it follows
that the minimum degree of G′

1 is at least d/2 − 1. Thus Theorem 4 implies
that G′

1 contains a d3d/25e-connected subgraph. Take G1 to be this subgraph.
Put X1 := X \ V (G1) and let X ′

1 be the set of all those vertices in X1 which
have at least d/500 neighbours in G1.

Suppose first that |X ′
1| ≥ |X|/10. In this case we will find a Ks,t minor in G.

Since the argument is similar to the proof of Lemma 8, we only sketch it. Set
a := b104 log sc. This time, we choose the a-element sets C1, . . . , Cs randomly
inside V (G1). Since every vertex in X ′

1 has at least d/500 neighbours in G1,
the probability that the neighbourhood of a given vertex x ∈ X ′

1 avoids some
Ci is at most se−a/(3·103) < ε. So the expected number of such bad vertices
in X ′

1 is at most ε|X ′
1|. Thus for some choice of C1, . . . , Cs there are at least

(1− ε)|X ′
1| ≥ (1− ε)n/20 ≥ t vertices in X ′

1 which have a neighbour in each Ci.
Since the connectivity of G1 is linear in its order, we may again apply Lemma 7
to make the Ci into disjoint connected subgraphs of G1 by adding suitable short
paths from G1. This shows that G contains a Ks,t minor.

Thus we may assume that at least |X1|− |X|/10 ≥ 9|X|/10−3d > 0 vertices
in X1 have at most d/500 neighbours in G1. Choose such a vertex x2. Let G′

2

be the subgraph of G induced by x2 and all its neighbours outside G1. Since
by Lemma 6 (iii) every edge of G lies in at least d/2 − 1 triangles, it follows
that the minimum degree of G′

2 is at least d/2 − 1 − d/500 > 12d/25. Again,
we take G2 to be a d3d/25e-connected subgraph of G′

2 obtained by Theorem 4.
We now put X2 := X1 \ (X ′

1∪V (G2)) and define X ′
2 to be the set of all those

vertices in X2 which have at least d/500 neighbours in G2. If |X ′
2| ≥ |X|/10,

then as before, we can find a Ks,t minor in G. If |X ′
2| ≤ |X|/10 we define G3

in a similar way as G2. Continuing in this fashion proves the claim. (Note that
when choosing x10 we still have |X9| − |X|/10 ≥ |X|/10− 9 · 3d > 0 vertices at
our disposal since n ≥ 600d.)

Apply Lemma 8 with c := 1/25 to each Gi to find a K10s,dd/9e minor. Let
Ci

1, . . . , C
i
s, D

i
1, . . . , D

i
9s denote the branch sets corresponding to the vertices of

the K10s,dd/9e in the vertex class of size 10s. By Lemma 8 we may assume that
all the Ci

j and all the Di
j have size at most 8 · 252 log |Gi| ≤ 105 log d and that

all the branch sets corresponding to the remaining vertices of the K10s,dd/9e are
singletons. Let T i ⊆ V (Gi) denote the union of all these singletons. Let C be
the union of all the Ci

j , let D be the union of all the Di
j and let T be the union

of all the T i.
We will now use these 10 K10s,dd/9e minors to form a Ks,t minor in G. Recall

that by Lemma 6 (iv) the graph G is dεd/4e-connected and so by Theorem 5 it
is bεd/64c-linked. Thus there exists a set P of 9s disjoint paths in G such that
for all i ≤ 9 and all j ≤ s the set Ci

j is joined to Ci+1
j by one of these paths

and such that no path from P contains an inner vertex in C ∪D. (To see this,
use that εd/64 ≥ 100s · 105 log d ≥ |C ∪D|.)

The paths in P can meet T in many vertices. But we can reroute them such
that every new path contains at most two vertices from each T i. For every path
P ∈ P in turn we will do this as follows. If P meets T 1 in more than 2 vertices,
let t and t′ denote the first and the last vertex from T 1 on P . Choose some set
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D1
j and replace the subpath tP t′ by some path between t and t′ whose interior

lies entirely in G[D1
j ]. (This is possible since G[D1

j ] is connected and since both
t and t′ have a neighbour in D1

j .) Proceed similarly if the path thus obtained
still meets some other T i. Then continue with the next path from P. (The sets
Di

j used for the rerouting are chosen to be distinct for different paths.) Note
that the paths thus obtained are still disjoint since D was avoided by all the
paths in P.

We now have found our Ks,t minor. Each vertex lying in the vertex class of
size s of the Ks,t corresponds to a set consisting of C1

j ∪ · · · ∪C10
j together with

the (rerouted) paths joining these sets. For the remaining vertices of the Ks,t we
can take all the vertices in T which are avoided by the (rerouted) paths. There
are at least t such vertices since these paths contain at most 20 · 9s vertices
from T and |T | − 180s ≥ 10d/9− 180s ≥ t. �

Proof of Theorem 3 (Sketch). Without loss of generality we may assume
that ε < 10−16. The proof of Theorem 3 is almost the same as that of Theo-
rem 2. The only difference is that now we also apply Lemma 7 to find

(
s
2

)
short

paths connecting all the pairs of the Ci. This can be done at the point where
we extend the Ci’s to connected subgraphs. �

The following proposition shows that the bound on s in Theorem 2 is es-
sentially best possible. Its proof is an adaption of a well-known argument of
Bollobás, Catlin and Erdős [1].

Proposition 9 There exists an integer n0 such that for each integer n ≥ n0

and each number α > 0 there is a graph G of order n and with average degree
at least n/2 which does not have a Ks,t minor with s := d2n/α log ne and
t := dαne.

Proof. Let p := 1−1/e. Throughout the proof we assume that n is sufficiently
large for our estimates to hold. Consider a random graph Gp of order n which
is obtained by including each edge with probability p independently from all
other edges. We will show that with positive probability Gp is as required in the
proposition. Clearly, with probability > 3/4 the average degree of Gp is at least
n/2. Hence it suffices to show that with probability at most 1/2 the graph Gp

will have the property that its vertex set V (Gp) can be partitioned into disjoint
sets S1, . . . , Ss and T1, . . . , Tt such that Gp contains an edge between every pair
Si, Tj (1 ≤ i ≤ s, 1 ≤ j ≤ t). Call such a partition of V (Gp) admissible. Thus we
have to show that the probability that Gp has an admissible partition is ≤ 1/2.
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Let us first estimate the probability that a given partition P is admissible:

P(P is admissible) =
∏
i,j

(
1− (1− p)|Si||Tj |

)
≤ exp

−
∑
i,j

(1− p)|Si||Tj |


≤ exp

−st
∏
i,j

(1− p)|Si||Tj |(st)−1

 ≤ exp
(
−st(1− p)n2(st)−1

)
≤ exp

(
− 2n2

log n
· n− 1

2

)
≤ exp(−n

4
3 ).

(The first expression in the second line follows since the arithmetric mean is at
least as large as the geometric mean.) Since the number of possible partitions is
at most nn, it follows that the probability that Gp has an admissible partition
is at most nn · e−n4/3

< 1/2, as required. �

References

[1] B. Bollobás, P.A. Catlin and P. Erdős, Hadwiger’s conjecture is true for
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