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ABSTRACT. In 1973 Bermond, Germa, Heydemann and Sotteau conjectured

that if n divides (Z), then the complete k-uniform hypergraph on n vertices

has a decomposition into Hamilton Berge cycles. Here a Berge cycle consists of
an alternating sequence vi,e1,v2,...,Un, ey of distinct vertices v; and distinct
edges e; so that each e; contains v; and v;4+1. So the divisibility condition is
clearly necessary. In this note, we prove that the conjecture holds whenever
k > 4 and n > 30. Our argument is based on the Kruskal-Katona theorem. The
case when k = 3 was already solved by Verrall, building on results of Bermond.

1. INTRODUCTION

A classical result of Walecki [12] states that the complete graph K,, on n vertices
has a Hamilton decomposition if and only if n is odd. (A Hamilton decomposition
of a graph G is a set of edge-disjoint Hamilton cycles containing all edges of G.)
Analogues of this result were proved for complete digraphs by Tillson [14] and
more recently for (large) tournaments in [9]. Clearly, it is also natural to ask for
a hypergraph generalisation of Walecki’s theorem.

There are several notions of a hypergraph cycle, the earliest one is due to
Berge: A Berge cycle consists of an alternating sequence vi,e1,va, ..., U, €y Of
distinct vertices v; and distinct edges e; so that each e; contains v; and v;41.
(Here v,41 := v; and the edges e; are also allowed to contain vertices outside
{vi,...,u,}.) A Berge cycle is a Hamilton (Berge) cycle of a hypergraph G if
{v1,...,v,} is the vertex set of G and each e; is an edge of G. So a Hamilton
Berge cycle has n edges.

Let K,(Lk) denote the complete k-uniform hypergraph on n vertices. Clearly, a

necessary condition for the existence of a decomposition of Kr(bk) into Hamilton
Berge cycles is that n divides (}). Bermond, Germa, Heydemann and Sotteau [5]
conjectured that this condition is also sufficient. For k = 3, this conjecture follows
by combining the results of Bermond [4] and Verrall [16].

We show that as long as n is not too small, the conjecture holds for £ > 4 as

well.

Date: April 29, 2014.

The research leading to these results was partially supported by the European Research Coun-
cil under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant
Agreements no. 258345 (D. Kiihn) and 306349 (D. Osthus).

1



2 DANIELA KUHN AND DERYK OSTHUS

Theorem 1. Suppose that 4 < k < n, that n > 30 and that n divides (Z) Then

the complete k-uniform hypergraph Ky(Lk) on n vertices has a decomposition into
Hamilton Berge cycles.

Recently, Petecki [13] considered a restricted type of decomposition into Hamil-
ton Berge cycles and determined those n for which Kflk) has such a restricted
decomposition.

Walecki’s theorem has a natural extension to the case when n is even: in this
case, one can show that K,, — M has a Hamilton decomposition, whenever M is a

perfect matching. Similarly, the results of Bermond [4] and Verrall [16] together

imply that for all n, either KT(LB’) or K,({g’) — M have a decomposition into Hamilton
Berge cycles.

We prove an analogue of this for £ > 4. Note that Theorem 2 immediately
implies Theorem 1.

Theorem 2. Let k,n € N be such that 3 < k < n.

(i) Suppose that k > 5 andn > 20 or that k = 4 and n > 30. Let M be any set
consisting of less than n edges of K such that n divides |E(K,(1k)) \ M|.

Then Kék) — M has a decomposition into Hamilton Berge cycles.
(ii) Suppose that k = 3 and n > 100. If (g) s not divisible by n, let M be

any perfect matching in K,(f’), otherwise let M := (). Then K}(LS) — M has
a decomposition into Hamilton Berge cycles.

Note that if k£ is a prime and (Z) is not divisible by n, then k£ divides n and so
in this case one can take the set M in (i) to be a union of perfect matchings. Also
note that (ii) follows from the results of [4, 16]. However, our proof is far simpler,
so we also include it in our argument.

Another popular notion of a hypergraph cycle is the following: a k-uniform
hypergraph C' is an ¢-cycle if there exists a cyclic ordering of the vertices of C
such that every edge of C' consists of k consecutive vertices and such that every pair
of consecutive edges (in the natural ordering of the edges) intersects in precisely
¢ vertices. If £ = k — 1, then C is called a tight cycle and if £ = 1, then C is called
a loose cycle. We conjecture an analogue of Theorem 1 for Hamilton ¢-cycles.

Conjecture 3. For all k,¢ € N with { < k there exists an integer ng such that
the following holds for all n > ngy. Suppose that k — ¢ divides n and that n/(k —¢)

divides (Z) Then K}(lk) has a decomposition into Hamilton £-cycles.

To see that the divisibility conditions are necessary, note that every Hamilton
l-cycle contains exactly n/(k — ¢) edges. Moreover, it is also worth noting the
following: consider the number N := % (Z) of cycles we require in the decompo-
sition. The divisibility conditions ensure that N is not only an integer but also a
multiple of f := (k —¢)/h, where h is the highest common factor of k and ¢. This
is relevant as one can construct a regular hypergraph from the edge-disjoint union

of ¢ edge-disjoint Hamilton ¢-cycles if and only if ¢ is a multiple of f.
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The ‘tight’ case £ = k —1 of Conjecture 3 was already formulated by Bailey and
Stevens [1]. In fact, if n and k are coprime, the case ¢ = k—1 already corresponds to
a conjecture made independently by Baranyai [3] and Katona on so-called ‘wreath
decompositions’. A k-partite analogue of the ‘tight’ case of Conjecture 3 was
recently proved by Schroeder [15].

Conjecture 3 is known to hold ‘approximately’ (with some additional divisibility
conditions on n), i.e. one can find a set of edge-disjoint Hamilton ¢-cycles which
together cover almost all the edges of Kq(zk). This is a very special case of results
in [2, 6, 7] which guarantee approximate decompositions of quasi-random uniform
hypergraphs into Hamilton ¢-cycles (again, the proofs need n to satisfy additional
divisibility constraints).

2. PROOF OF THEOREM 2

Before we can prove Theorem 2 we need to introduce some notation. Given
integers 0 < k < n, we will write [n]*) for the set consisting of all k-element
subsets of [n] := {1,...,n}. The colezicographic order on [n]*) is the order in
which A < B if and only if the largest element of (AU B) \ (AN B) lies in B
(for all distinct A, B € [n](*®)). The lezicographic order on [n]*) is the order in
which A < B if and only if the smallest element of (AU B) \ (AN B) lies in A.
Given ¢ € N with ¢ < k and a set S C [n](k), the £th lower shadow of S is the set
9, (S) consisting of all those t € [n]*=*) for which there exists s € S with ¢ C s.
Similarly, given ¢ € N with k+/£ < n and a set S C [n]¥), the £th upper shadow of
S is the set 9, (S) consisting of all those ¢ € [n]**+) for which there exists s € S
with s Ct. Given s € R and k € N, we write (Z) = w We need the
following consequence of the Kruskal-Katona theorem [8, 10].

Lemma 4.

(i) Let k,n € N be such that 3 < k <n. Given a nonempty S C [n]*), define
s €R by S| = (). Then |0;_,(S) = (5)-

(ii) Suppose that S" C [n]® and let ¢,d € NU {0} be such that ¢ < n, d <
n—(c+1) and |S'| = en— (Cgl) +d. Ifn > 100 and c < 8 then |0 (S")| >
c("3°) + 2dn/5.

(i) ﬁ;f El)w@ and |S'] < n =1 then [0 ($")] > || ("1517) + () (n —

Proof. The Kruskal-Katona theorem states that the size of the lower shadow of
a set S C [n]® is minimized if S is an initial segment of [n]*) in the colexico-
graphic order. (i) is a special case of a weaker (quantitative) version of this due
to Lovész [11]. In order to prove (ii) and (iii), note that whenever A, B € [n]|®*)
then A < B in the colexicographic order if and only if [n] \ A < [n] \ B in the
lexicographic order on [n](*) with the order of the ground set reversed. Thus,
by considering complements, it follows from the Kruskal-Katona theorem that the
size of the upper shadow of a set S’ C [n](®) is minimized if S is an initial segment
of [n]*®) in the lexicographic order. This immediately implies (iii). Moreover, if
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S, ¢ and d are as in (ii), then

Mﬁsﬂz<";1>+<"g2>+”.+(n;c>+dm_c_2y_CD

n—c 2
c( 5 >+5dn,

as required. O

v

We will also use the following result of Tillson [14] on Hamilton decompositions
of complete digraphs. (The complete digraph DK, on n vertices has a directed
edge xy between every ordered pair z # y of vertices. So |[E(DK,)| =n(n—1).)

Theorem 5. The complete digraph DK,, on n vertices has a Hamilton decompo-
sition if and only if n # 4, 6.

We are now ready to prove Theorem 2. The strategy of the proof is as follows.
Suppose for simplicity that £ := (})/(n(n—1)) is an integer. (So in particular, the
set M in Theorem 2 is empty.) Define an auxiliary bipartite graph G with vertex
classes A and B of size (Z) as follows. Let A= F (Kr(lk)). Let B consist of the edges
of ¢ copies D1, ..., Dy of the complete digraph DK, on n vertices. G contains an
edge between z € A and zy € B if and only if {z,y} C 2. It is easy to see that if
G has a perfect matching F', then K,(Lk) has a decomposition into Hamilton Berge
cycles. Indeed, for each i € [¢], choose a Hamilton decomposition Hil, ey HZ."_1
of D; (which exists by Theorem 5). Then for all i € [¢] and j € [n — 1], the set
of all those edges of K,(Lk) which are mapped via F' to the edges of HZJ forms a
Hamilton Berge cycle, and all these cycles are edge-disjoint, as required. To prove
the existence of the perfect matching F', we use the Kruskal-Katona theorem to
show that G satisfies Hall’s condition.

Proof of Theorem 2. The first part of the proof for (i) and (ii) is identical.
So let M be as in (i),(ii). (For (ii) note that if (3) is not divisible by n, then 3
divides n and n divides (3) — %.) Let

f:{@*ﬂmJ (=M=t —1)

n(n —1) n '
Note that m < n—1 and m € NU{0} since n divides (}) —|M|. Define an auxiliary
(balanced) bipartite graph G with vertex classes A, and B of size (}) — |M|

as follows. Let A := E(Ky(Lk)) and A, == A\ M. Let Di,...,Dy be copies
of the complete digraph DK, on n vertices. For each i € [(] let B;, B/ be a
partition of E(D;) such that for every pair xy,yx of opposite directed edges,
B; contains precisely one of xy,yx. Apply Theorem 5 to find m edge-disjoint
Hamilton cycles Hy,...,Hy,, in DK,. We view the sets Bi,...,By, B{,..., B,
and FE(Hy),...,E(Hpy) as being pairwise disjoint and let B denote the union of
these sets. So |B| = |A«|. Our auxiliary bipartite graph G contains an edge
between z € A, and zy € B if and only if {z,y} C z.
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We claim that G contains a perfect matching F'. Before we prove this claim,
let us show how it implies Theorem 2. For each i € [¢], apply Theorem 5 to
obtain a Hamilton decomposition H},..., H Z."*l of D;. For each i € [{] and each
Jj € [n—1] let Ag C A be the neighbourhood of E(HZJ) in F. Note that each
Ag is the edge set of a Hamilton Berge cycle of K7(1k:) — M. Similarly, for each
i’ € [m] the neighbourhood Ay of E(H;) in F' is the edge set of a Hamilton Berge

cycle of KT(Lk) — M. Since all the sets Ag and A; are pairwise disjoint, this gives a

decomposition of K,(lk) — M into Hamilton Berge cycles.

Thus it remains to show that G satisfies Hall’s condition. So consider any
nonempty set S C A, and define s,a € R with £ < s <nand 0 < a <1 by
S| =a(}) = (;)- Define b by |[Ng(S) N Bi| = b(}). Note that |[Ng(S)NBi| > (5)
by Lemma 4(i). But

K (g)k(Z)z s(s—1)--(s—k+1))? (2)2 -
@~ (g)k(2)22<n(n1)...(nk+1)> =1,

and so b > a?/*. Thus

ING(S)] = 20|NG(S) N By > 26a®/* (;’) — o2/*(|B| = |E(Hy) U--- U E(H,)))

> a?* (JA,| = n(n —2)).

Let
(i) = A +n(n—2)
g - n
()
So if
(1) a1—2/k2 < ’A*| o n(n_ 2) —_ 1 _g,

W @
then [Ng(S)| > |S|. We now distinguish three cases.
Casel.4<k<n-3

Since

Ad=2nn-1) < 4= ((7) = 140) ~2n00-2) = a-20) () < @02 (7).

in this case (1) implies that |[Ng(S)| > |S| if |S| < |A«| — 2n(n — 1). So suppose
that |S| > |A«| — 2n(n — 1). Note that if £ > 5 then every b € B satisfies

n— 2 n—2\n—5n—206 n—k+1
N, > — M| > —
| G(b)|_<k—2> | ’—< 3 )k—2k—3 4 "

-2 16 —2n—-3
2<n )—nann n —n>2n(n—-1)
3 6 n n

since n > k + 3 and n > 20. Hence N¢(S) = B.
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# 0. Thus S; :=S"NB;y # 0

So we may assume that k = 4 and S’ := B\ Ng(5)
| <A\ S| < 2n(n —1). First

and 2¢ < |S'| < (204 2)|S7]. Note that |[Ng(S7)
suppose |S7]| > 7. Then
, n—_ 7, 9
[Na(SDI > 7( 7, ") +21(n —8) = | M| > 5(n® — 170+ 72) + 20n — 168
> 2n% > 2n(n — 1)

by Lemma 4(iii) and our assumption that n > 30. So we may assume that |S]| < 6.
Apply Lemma 4(iii) again to see that

6(n—T7)(n—28)
- (n —-2)(n—3)+24

n—17 (n 7)
VeI 210 ("5 ) - M1 2 5281 - S| n

20+ 2
> 2|8 —n > |9

(Here we use that n > 30 implies |S’| > 2¢ > 2(n — 2)(n — 3)/24 — 4 > n and
6(n —7)(n — 8) > 2(n? + 150) > 2((n — 2)(n — 3)/24).) Thus |Ng(S)| > |5, as
required.

Case 2. k=3

Since

Ad=ntn-1) <142 ((7) = 1) -3ni-2 = a-30)(} ) < 0-0°(}),

in this case (1) implies that |Ng(S)| > |S] if |S| < |A«| — 3n(n — 1). So suppose
that |S| > |As] —3n(n—1) and that S’ := B\ Ng(S) # (. Thus S} :=S'"NB; # 0
and |S'] < (20+42)]S7] < ((n—2)/3+2)|5]]. Let ¢,d € NU{0} be such that ¢ < n,
d<n—(c+1)and |S]| = cn—(cgl)+d. Note that |[Ng(S7)| < |AL\ S| < 3n(n—1).
Thus ¢ < 8 since otherwise

el z (" %) - zs(" ) <5 > 2(5) 23—

by Lemma 4(ii) and our assumption that n > 100. (Here we use that ("58) =

(5)=2n=9 > (7)(1 — -2%).) Let M(S}) denote the set of all those edges e € M

n n—

for which there is a pair zy € S] with {z,y} C e. Thus M(S}) = 0; (S]) N M.
Recall that M is a matching in the case when k& = 3. Thus |[M(S])| < |S]|. In
particular |[M(S7)| < d if ¢ = 0. Apply Lemma 4(ii) again to see that

n—-c 2
INa(S)] 2 V(DI 2 " ) + Zdn— [31(5))
4e (n 2 n/3 ifc>1
> ¢ Zdn - =
—5<2>+5" {d ife=0

11 -2
> (en+d)- o5 ”3 zys{y(”

+2> > |9,
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where we use that n > 100. (To see the fourth inequality, note that if ¢ > 1 then
%(g) 5> %(3) - 207” = %n(”g_m, whereas if ¢ = 0 then QdT" —d > %l%.) Thus
|ING(S)| > |S|, as required.

Case 3. n—2<k<n-1

If Kk =n—1 then KT(«Lk) itself is a Hamilton Berge cycle, so there is nothing to
show. So suppose that k& = n — 2. In this case, it helps to be more careful with
the choice of the Hamilton cycles Hy,..., Hy,: instead of applying Theorem 5
to find m edge-disjoint Hamilton cycles Hy,..., H,, in DK,,, we proceed slightly
differently. Note first that £ = 0. Suppose that n is odd. Then M = () and
m = (n—1)/2. If n is even, then |M| = n/2 and m = n/2 — 1. In both cases
we can choose Hi, ..., H,, to be m edge-disjoint Hamilton cycles of K,. Then a
perfect matching in our auxiliary graph G still corresponds to a decomposition of

Kg{) — M into Hamilton Berge cycles. Also, in both cases E(Hp)U---U E(Hy,)
contains all but at most n/2 distinct elements of [n]?). Note that

n

2

@ (") -5-0G) (52 )= (6) (1-22) =3

since n > 20. Consider any b € B. Then

n—2 n—2 2 2
> — e — >
el > (32 5) = ("5 %) - =

Now consider any a € A,. Then

INo(a)| > (’;) _ne (”;2> g 3(’;) > 2|p.

So Hall’s condition is satisfied and so G has a perfect matching, as required. O

IV

The lower bounds on n have been chosen so as to streamline the calculations,
and could be improved by more careful calculations.
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