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ABSTRACT. Chvétal, Rodl, Szemerédi and Trotter [1] proved that the Ramsey numbers of
graphs of bounded maximum degree are linear in their order. We prove that the same holds
for 3-uniform hypergraphs. The main new tool which we prove and use is an embedding
lemma for 3-uniform hypergraphs of bounded maximum degree into suitable 3-uniform
‘pseudo-random’ hypergraphs.
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1. INTRODUCTION

1.1. Ramsey numbers. The Ramsey number R(H) of a graph H is defined to be the
smallest N € N such that in every colouring of the edges of the complete graph on N vertices
with two colours one can find a monochromatic copy of H. In general, the best upper bound
on R(H) is exponential in |H|. However, if H is sparse, then one can sometimes improve
considerably on this. A central result in this area was proved by Chvatal, Rodl, Szemerédi
and Trotter [1]. They showed that for every A there exists a constant C' = C'(A) such that
all graphs H with maximum degree at most A satisfy R(H) < C|H|.

Here we prove an analogue of this result for 3-uniform hypergraphs .72 of bounded max-
imum degree. Thus we now consider hyperedges (each consisting of 3 vertices) instead of
edges. The degree of a vertex x in 7 is defined to be the number of hyperedges which
contain z. The mazimum degree A(7°) and the Ramsey number R(7) of a 3-uniform
hypergraph .7 are then defined in the obvious way.

Theorem 1. For every A € N there ezists a constant C = C(A) such that all 3-uniform
hypergraphs € of mazximum degree at most A satisfy R() < C|H#|.

Theorem 1 was also proved independently by Nagle, Olsen, R6dl and Schacht [16]. Kos-
tochka and Rodl [14] had previously shown that Ramsey numbers of k-uniform hypergraphs
of bounded maximum degree are ‘almost linear’ in their orders. More precisely, they showed
that for all &, A,k > 0 there is a constant C such that R(#) < C|22|**¢ if 5 is k-uniform
and has maximum degree at most A. In a sequel [3] to this paper, we generalised The-
orem 1 to k-uniform hypergraphs of bounded degree for arbitrary k. This was also done
independently by Ishigami [12]. Another related result is that of Haxell et al. [9, 10], who
asymptotically determined the Ramsey numbers of 3-uniform tight and loose cycles. For
general 3-uniform hypergraphs the best upper bound is still due to Erdés and Rado [5],

which implies that every 3-uniform hypergraph .7 satisfies R(7#) < 9271,

1.2. Embedding graphs and hypergraphs. The proof in [1] which shows that graphs
of bounded maximum degree have linear Ramsey numbers proceeds as follows: Given a
red/blue colouring of the edges of the complete graph on N vertices, we consider the red
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subgraph G and apply Szemerédi’s regularity lemma to it to obtain a vertex partition of G
into a bounded number of clusters such that almost all of the bipartite subgraphs induced
by the clusters are ‘pseudo-random’. We now define a reduced graph R whose vertices are
the clusters and any two of them are connected by an edge if the corresponding bipartite
subgraph of G is ‘pseudo-random’. Since R is very dense, by Turdan’s theorem it contains a
large clique K. We now define an edge-colouring of K by colouring an edge red if the density
of the corresponding bipartite subgraph of G is large, and blue otherwise. An application
of Ramsey’s theorem now gives a monochromatic clique of order k := A(H) + 1 in K.
Without loss of generality, assume it is red. This corresponds to a large complete k-partite
subgraph G’ of G where all the bipartite subgraphs induced by the vertex classes are ‘pseudo-
random’. Since the chromatic number of the desired graph H is at most k, one can use the
‘pseudo-randomness’ of G’ to find a copy of H in G'. The tool which enables the final step
is often called the ‘embedding lemma’ or ‘key lemma’ (see e.g. [13]).

In our proof of Theorem 1, we adopt a similar strategy. Instead of Szemerédi’s regularity
lemma, we will use the regularity lemma for 3-uniform hypergraphs due to Frankl and
Rodl [6]. However, this has the problem that the ‘pseudo-random’ hypergraph into which
we aim to embed our given 3-uniform hypergraph .7 of bounded maximum degree could be
very sparse and not as ‘pseudo-random’ as one would like it to be. This means that the proof
of the corresponding embedding lemma is considerably more difficult and rather different
from that of the graph version, while the adaption of the other steps is comparatively easy.
Thus we view the embedding lemma (Lemma 2) as the main result of this paper and also
believe that it will have other applications besides Theorem 1. Its precise formulation needs
some preparation, so we defer its statement to Section 2.

The strategy for the k-uniform case in [3] is similar to the one used here, but several
additional problems arise.

1.3. Organization of the paper. In Section 2 we state the embedding lemma (Lemma 2).
Our proof proceeds by induction on the order of the hypergraph we aim to embed. This
argument yields a significantly stronger result (Lemma 3).

In Section 3 we state several results which are important in the proof of the induction step
for Lemma 3. In particular, we will need a variant of the counting lemma, which implies
that for any 3-uniform hypergraph .77 of bounded size every suitable ‘pseudo-random’ hyper-
graph ¢ contains roughly as many copies of J# as one would expect in a random hypergraph.
We will also need an extension lemma, which states that for any 3-uniform hypergraph .7’
of bounded size, any induced subhypergraph .2# C .’ and any suitable ‘pseudo-random’
hypergraph ¢, almost all copies of 7 in ¢ can be extended to approximately the same
number of copies of .7’ as one would expect if 4 were a random hypergraph. In Section 5
we derive our variant of the counting lemma from that of Nagle, Rodl and Schacht [19]. In
Section 6 we will deduce the extension lemma from the counting lemma (which corresponds
to the case when ¢ is empty).

Before this, in Section 4 we use the extension lemma to prove the strengthened version of
the embedding lemma mentioned before (Lemma 3). Finally, we use the embedding lemma
together with the regularity lemma for 3-uniform hypergraphs due to Frankl and Rodl [6]
to prove Theorem 1.

2. THE EMBEDDING LEMMA

Before we can state the embedding lemma, we first have to introduce some notation.
Given a bipartite graph GG with vertex classes A and B, we denote the number of edges of G
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by e(A, B). The density of G is defined to be

_e(A,B)
dg(A,B) : AlB|
We will also use d(A, B) instead of dg(A, B) if this is unambiguous. Given 0 < §,d < 1, we
say that G is (d,0)-regular if for all sets X C A and Y C B with | X| > 0| A| and |Y| > 4|B]|
we have (1 —0)d < d(X,Y) < (1+6)d.
Given ¢ > 0, we also say that G is d-reqular if for any X C A and Y C B which satisfy
|.X| > d|Al, |Y| > 6|B|, we have

d(X,Y) — d(A, B)| < 6.

It can easily be seen that this definition of regularity is roughly equivalent to (d, §)-regularity.
We say that a k-partite graph P is (d,d)-regular if each of the (’;) bipartite subgraphs
forming P is (d, §)-regular or empty.

Given a 3-uniform hypergraph ¢, we denote by |%4| the number of its vertices and by E(¥)
the set of its hyperedges. We write e(¥) := |E(¥)|. We say that vertices =,y € ¢ are
neighbours if x and y lie in a common hyperedge of ¢.

In order to state the embedding lemma we will now say what we mean by a ‘pseudo-
random’ hypergraph, i.e. we will formally define regularity of 3-uniform hypergraphs. Sup-
pose we are given a 3-partite graph P with vertex classes V;, Vj, Vi, where the three bipartite
graphs forming P are denoted by P, Pi¥ and P*. We will often refer to such a 3-partite
graph as a triad. We write T'(P) for the set of all triangles contained in P and let ¢(P)
denote the number of these triangles. Given a 3-partite 3-uniform hypergraph ¢ with the
same vertex classes, we define the density of P with respect to 4 by

O R e

In other words, dy(P) denotes the proportion of all those triangles in P which are hyperedges
of 4. More generally, suppose that we are given an r-tuple Q= (Q(1),...,Q(r)) of subtriads
of P, where Q(s) — QU(s) U Q™ (s) U Q¥(s), and Qii(s) C P, QI¥(s) C Pi¥, Qi%(s) C Pi*
for all s € [r], where [r] denotes {1,...,7}. Put

t(Q) =

U T(Q(S))|-

s=1
The density of Q with respect to 9 is defined to be
dg(Q) = {'E@) NUi, T(@Q()|/4(@) if (@) >0,

0 otherwise.

Note that in this definition, the sets T'(Q(s)) of triangles need not necessarily be disjoint.
We say that a triad P is (ds,ds,7)-reqular with respect to ¢ if for every r-tuple Q =

(Q(1),...,Q(r)) of subtriads of P with
t(Q) > 65 - t(P)
we have )
ld3 — dg(Q)] < .

We say that P is (d3,r)-regular with respect to ¢ if it is (d, 03, r)-regular for some d. More
generally, if £k > 3, P is a k-partite graph and ¢ is a k-partite 3-uniform hypergraph with
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the same vertex classes, we say that P is (ds,d3,7)-reqular with respect to ¢ if each of the
triads P’ induced by P is either (ds, d3,7)-regular with respect to ¢ or satisfies dy(P’) = 0.

If 2 and ¥ are k-partite 3-uniform hypergraphs with vertex classes Xi,..., X} and
V1,..., Vi respectively, and if P is a k-partite graph with vertex classes Vi,..., V), we say
that (¢, P) respects the partition of A if, for all i < j < ¢, whenever J# contains a hyperedge
with vertices in X;, X;, Xy, the hypergraph ¢ contains a hyperedge with vertices in V;, V;, V;
which also forms a triangle in P.

Note that if (¢, P) respects the partition of 2 and P is (ds, d3,7)-regular with respect
to & then the triad P[V;,V},V,] induced by V; U V; UV, is (ds, d3,r)-regular whenever ¢
contains a hyperedge with vertices in X;, X;, X,. Thus if P is also graph-regular, J# has
bounded maximum degree, d3 < ds and |X;| < |V| for all 4, then one might hope that
this regularity can be used to find an embedding of 77 in ¢ (where the vertices in X; are
represented by vertices in V;).

Lemma 2 (Embedding lemma). Let A, k,r,ng be positive integers and let ¢, ds, ds, 02,93 be
positive constants such that

1/ng < 1/r < §y € min{ds,ds} < 03 < ds, 1/A,1/k  and ¢ <K da,ds, 1/A1/k.

Then the following holds for all integers n > ng. Suppose that F is a k-partite 3-uniform
hypergraph of mazximum degree at most A with vertex classes X1, ..., Xy such that | X;| < cn
foralli=1,...,k. Suppose that 4 is a k-partite hypergraph with vertex classes Vq,..., V4,
which all have size n. Suppose that P is a (dg,d2)-reqular k-partite graph with vertex classes
Vi,..., Vi which is (ds,d3,r)-reqular with respect to &4, and (¢4, P) respects the partition
of . Then 9 contains a copy of €.

Here we write 0 < a7 < a9 < a3 to mean that we can choose the constants aq, as, as
from right to left. More precisely, there are increasing functions f and g such that, given
a3, whenever we choose some as < f(a3) and a3 < g(asz), all calculations needed in the
proof of Lemma 2 are valid. In order to simplify the exposition, we will not determine these
functions explicitly. Hierarchies with more constants are defined in the obvious way.

The strategy of our proof of Lemma 2 is to proceed by induction on [.7|. So for any
vertex h of S, let 7%, denote the hypergraph obtained from .7 by removing h. Let v, w
be any vertices of 7 forming a hyperedge with h. In the induction step, we only want to
consider copies of 74, in ¢4 for which vw is an edge of P (otherwise there is clearly no chance
of using the regularity of ¢ to extend this copy of J#, to one of 7). This motivates the
following definition. A complex 7€ consists of vertices, edges and hyperedges such that the
set of edges is a subset of the set of unordered pairs of vertices and the set of hyperedges
is a subset, of the set of unordered triples of vertices. Moreover, each pair of vertices of J#
lying in a common hyperedge has to form an edge of 7. Thus we can make every 3-uniform
hypergraph 7 into a complex by adding an edge between every pair of vertices that lies in
a common hyperedge of . We will often denote this complex by 7 again.

Instead of Lemma 2, we will prove an embedding lemma for complexes. In order to state
it, we need to introduce some more notation. Given a complex S, we let V() denote
the set of its vertices, we write Fo(7) for the set of its edges and E3(7) for the set of its
hyperedges. Note that each hyperedge of a complex 7 forms a triangle in the underlying
graph (whose vertex set is V() and whose set of edges is Eo(.)). We set || .= |V ()|,
and e; () = |E;(A)| for i = 2,3. We say that a complex % is k-partite if its underlying
graph is k-partite. The degree of a vertex x in a complex 7 is the maximum of the degree
of z in the underlying graph and its degree in the underlying hypergraph (whose vertex set
is V(.#) and whose set of hyperedges is F3(.7)). The mazimum degree of 7 is then defined
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in the obvious way. We say that vertices x and y are neighbours in 7 if they are neighbours
in the underlying graph. Subcomplexes of 7 and subcomplexes induced by some vertex
set X C V() are defined in the natural way. Also, the symbol K Igg) will denote either the
complete complex or the complete 3-uniform hypergraph on k vertices. It will be clear from

the context which of the two is intended. Note that the complete complex ng) is just a

vertex and K2(3) consists of two vertices joined by an edge.

Given k-partite complexes .77 and ¢ with vertex classes X1,..., X, and Vq,..., Vi, we
say that & respects the partition of J if it satisfies the following two properties. First, for
all 7 < j < /£, the complex ¢ contains a hyperedge with vertices in V;, V;, V, whenever J#
contains a hyperedge with vertices in X;, X;, X,. Second, for all i < j, the complex ¥
contains an edge between V; and V; whenever 7 contains an edge between X; and X;.

We say that a k-partite complex ¢ is (ds, 03, da, 02, 7)-regular if its underlying graph P is
(da, 02)-regular and P is (ds, 93, 7)-regular with respect to the underlying hypergraph of 4.

Suppose that we have k-partite complexes ¢ and ¢ with vertex classes X1, ..., X and
Vi,..., Vi respectively. A labelled partition-respecting copy of 7€ in € is a labelled subcom-
plex of ¢ which is isomorphic to # such that the corresponding isomorphism maps X; to
a subset of V;. This definition naturally extends to labelled partition-respecting copies of
subcomplexes .7 of 7 in 4. Given any subcomplex .7 of 7, we write |.7”|4 for the
number of labelled partition-respecting copies of ' in ¥.

Instead of Lemma 2 we will prove the following result, which implies it immediately.

Lemma 3 (Embedding lemma for complexes). Let A, k,r,ng be positive integers and let
¢, a, do,ds, 02,03 be positive constants such that

I/ng < 1/r < d < min{dz,do} <93 K a < d3, 1/A,1/k  and ¢ < «,ds.

Then the following holds for all integers n > ng. Suppose that F€ is a k-partite complex

of mazimum degree at most A with vertex classes Xi,..., Xy such that | X;| < cn for all
i=1,...,k. Suppose also that ¥4 is a k-partite (ds,d3,da, 02, 1)-reqular complex with vertex
classes Vi,..., Vi, all of size n, which respects the partition of €. Then for every vertex

h € V() we have that
Ay > (1 - a)ndgz(%)—62(%)6133(%)—63(%)|%|g’

where 76, denotes the induced subcomplex of € obtained by removing h. In particular, 4

ex () e3(H
)n)'jﬂd;( )d33( )

contains at least ((1 — « labelled partition-respecting copies of .

Note that we would expect almost nd?(%)762(%)@3(%)763(%)L%”hkg labelled partition-
respecting copies of 7 if ¥4 were a random complex. As indicated above, we will prove
Lemma 3 by induction on |#|. In the induction step, it will be extremely useful to assume
the existence of the expected number of copies of any proper subcomplex 7’ of 57 in ¢
and not just the existence of one such copy.

3. TooLs

In our proof of Lemma 3 we will use the so-called counting lemma.

Lemma 4 (Counting lemma). Let k,r,t,ng be positive integers and let [3,ds, ds, d2, 93 be
positive constants such that

1/’rlo <K 1/7“ K 0y K min{ég,dg} <3 < B.ds, 1//€, 1/t.
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Then the following holds for all integers n > ng. Suppose that € is a k-partite complex on
t vertices with vertex classes X1, ..., Xy. Suppose also that ¥ is a k-partite (ds, d3,d2, 62,7)-
reqular complex with vertex classes Vi,...,Vy, all of size n, which respects the partition
of 7. Then ¢ contains

ex () ,e3(H
(] 3)nt l22( ) 133( )
labelled pm'tition—frespecting copies of JE.

The lower bound in Lemma 4 for K 23)’8 was proved by Nagle and Rédl [17] (a short
proof was given later in [18]). Nagle, R6dl and Schacht [19] generalized this lower bound
to arbitrary k-uniform complexes (Lemma 7 in Section 5). In a slightly different setup, this
was also proved independently by Gowers [7]. The upper bound in Lemma 4 can easily be

(

derived from the lower bound. This was done for K k3>’s in [17]. In Section 5 we show how
one can derive Lemma 4 from Lemma 7.

Note that Lemma 3 is a generalization of the lower bound in Lemma 4. As a special
case, Lemma 4 includes the counting lemma for graphs, which is an easy consequence of the
definition of graph regularity.

The following result is another strengthening of Lemma 4. We will need it in the proof
of Lemma 3. Given complexes 2 C ' such that 7 is induced, it states that ¢ not
only contains about the expected number of copies of 7, but also that almost all copies
of # in 4 are extendible to about the expected number of copies of ##’. The special case
when 2 is a hyperedge was proved earlier by Haxell, Nagle and Rodl [11].

Lemma 5 (Extension lemma). Let k,r,t,t',ng be positive integers, where t < t', and let
B, ds,ds, 2,03 be positive constants such that

1/TLO < 1/7" IR min{53,d2} <43 < B3,ds, 1/k, 1/tl.

Then the following holds for all integers m > ng. Suppose that ' is a k-partite complex
on t' wertices with vertex classes X1,..., Xy and let € be an induced subcomplex of '
on t vertices. Suppose also that 4 is a k-partite (ds, 93, da, d2,1)-reqular complex with vertex
classes Vi,..., Vi, all of size m, which respects the partition of 7'. Then all but at most
B | labelled partition-respecting copies of A in Y are extendible to

(1+ ﬁ)nt’—tdgz(ﬁf’)—w(f)dgs(ff')—ea(%”)
labelled partition-respecting copies of F' in 4.

Lemmas 4 and 5 differ from Lemma 3 in that the positions of ¢ and ¢ in the hierarchy
mean we can only look at complexes 7, 7" of bounded size. In particular, in the proof of
Lemma 3 we will apply these lemmas to complexes whose order is some function of A and
so does not depend on n. Lemma 5 will be proved in Section 6.

4. PROOF OF THE EMBEDDING LEMMA

We first outline the proof a graph version of the embedding lemma, before going on to
prove the hypergraph version. The graph version is not necessary for the arguments in the
rest of the paper; it is included only to give the reader an introduction to the ideas used in
the more complicated hypergraph version.

In both cases, whenever we refer to a particular copy of a certain subgraph or subcom-
plex .7 of 2 in 4, we mean that this copy is labelled and partition-respecting without
mentioning it explicitly. We usually denote such a copy by H' (i.e. by the corresponding
italic letter).
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4.1. The graph case. We use much of the same notation as in the hypergraph case. So
now . will be a graph which we wish to embed in a graph ¢. For any subgraph J#’ of J#,
the number of labelled partition-respecting copies of 7’ in ¢ is denoted by |#”|«.

Claim 6. Let A, k,ng be positive integers and let ¢, a, dg, do be positive constants such that
0<1l/np<dh <a<l/A1/k and c,02 < a,dy

Then the following holds for all integers n > ng. Suppose that € is a k-partite graph
of mazimum degree A(H) < A with vertex classes X1,..., Xy such that |X;| < cn for
all i = 1,...,k. Suppose that 4 is a k-partite (ds,d2)-reqular graph with vertex classes
Vi, ..., Vi, all of size n, which respects the partition of . Then for every vertex h € V (),
we have that

12y > (1 — a)nds”) W |y,

where 76, denotes the induced subgraph of € obtained by removing h. In particular, ¢

contains at least ((1 — a)n)'jf'd;(%) labelled partition-respecting copies of H .

Proof. We prove the claim by induction on |.7#|. We will assume that the component
of ## which contains h has size at least A%, (If it does not, a simple application of the
counting lemma, as in the hypergraph case, proves the claim.) This covers the base case of
the induction. It also ensures that the second neighbourhood of 7 is nonempty, which will
be important later on.

Now let .47, be the graph induced by the neighbours of h. Let % be the graph induced
by h and its neighbours, and let %ﬁ: be the graph obtained from .5 by removing h and
its neighbours. Note that a copy of % in ¢4 can be obtained (in a unique way) by fixing
a copy of .44, extending it to a copy of 7%, and also extending it to a copy of %, where
the vertex chosen for h avoids those chosen for e%‘jj. The latter condition will not affect any
calculations significantly, so for this sketch we will ignore it.

Fix a new constant ¢} such that dy < 0, < a. We call a copy of 4}, in & typical if it

extends to (1 + 5§)dg(h)n copies of . We denote the set of all typical copies of .43, by Typ.
An application of the extension lemma for graphs shows that all but at most 05|43 |¢ copies
of .3, are typical.

Given a copy Ny of A3, we denote by |Nj — 4|y the number of copies of 7%, in ¢
which extend Ny, and |Nj, — HB|y is defined similarly. Then

NpeTyp
> (1-ap)dy"'n > Ny — Ay
NreTyp

H)—e( G
= (1= 8)dy” W | Ay = Y |Nu— Al
Np¢Typ
So it remains to show that the sum in the last line is negligible. We can do this since
there are at most d5|.4}|« atypical copies of 4}, each extending to at most |,%’jj|g copies of
,. By applying the induction hypothesis |.43| times, we can also relate |%j|g to |, |g
by

(AR —eél. T
|7 |g > (1 — Oé)"/h'dz(%) (%)M%”%Tlg-
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Moreover, by the counting lemma for graphs, |A3|y < 2d§('/‘/’l)n|ﬂh|. Thus the number of
copies of 7%, which come from atypical copies of .43 is at most

Y
(1 — @)l =D
24,

(1- a)%d;(%)e(%j)e(%)' il < \/72| Wl

S| Mg A g < 205d5 W )

where the last inequality follows since |43, < A and e(74,) — e(f%’g) —e(M) < A2 as well
as 05, < da,1/A. Combining all the calculations proves the claim. O

4.2. The hypergraph case. In the hypergraph case, there will be additional problems
because the number of atypical copies of .45, may be 3|44 |¢, and it is not necessarily the
case that d3 < da, so the approximation at the end of the proof in Section 4.1 will not
generalise. Thus more care will be needed.

We fix new constants 3 and 5 such that

5y < 0y < dg,ds, 1/A
and
¢, 0,03 < B < a.
As mentioned earlier, we will prove Lemma 3 by induction on |[.7|. We first show that we
may assume that the component %} of 7 containing h satisfies |¢7]| > A®. So suppose this

is not the case and let 65 := 5 — ¢1. Every copy of J# can be obtained by first choosing
a copy Co of 65 and then choosing a copy C7 of 1 which is disjoint from Cy. Thus

A5
1) |y =) G-, > Y G-o” U=p €1le > (1 - 3P)|%1|y|C2le.
> 78 >
C2CY CrCY

Here we applied the counting lemma (Lemma 4) in ¢ — C3 and in ¢ to obtain the first
inequality. On the other hand, for ¢, := 2 — h we have

(1- ﬁ)dSZ(%)*m(‘ﬁfh)dgs(%)fe:;(cgl,h)n

(2) [l < |€1 — hlg|%2ly < :
where the second inequality follows from the application of the counting lemma to 4 and
¢1 — h. Combining (1) and (2) gives the result claimed above. Note that in particular, this
deals with the start of the induction. So we may assume that || > A® and that Lemma 3
holds for all complexes with fewer than || vertices. Also, the above assumption on ¢}
together with the fact that . has maximum degree A implies that the set of all those
vertices of .7 which (in the underlying graph) have distance at least 4 to h is nonempty.
This will be convenient later on.

For induced subcomplexes " C #' C # and a copy H” of 7" in ¢4, we denote by
|H" — #'|4 the number of copies of #” in ¢ which extend H”. We set

(AT AT o= d e gp A mes ) |,

Thus " — 2| is roughly the expected number of ways a copy of 7#” in ¢ could be
extended to a copy of ' if 4 were a random complex.

Given the vertex h € S as in Lemma 3, we write .4}, for the subcomplex of J# induced by
all the neighbours of h in 7. We write £ for the subcomplex of 7 induced by V(43 )U{h}.
We call a copy Ny, of A7, in & typical if Nj can be extended to at least (1 — 3)|.-4;, — A|
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copies of #. If we knew that every copy of A3 in ¢ were typical, then the induction step
would follow immediately since this would imply that |5#|¢ is roughly

>INy = Hlg|Ny — Blg > (1=B)[ M — Bl Y Ny — Sy = (1=B)| M, — B Ay
NrC¥9 Np,C¥

Indeed, this would hold since each copy of 7 in 4 can be obtained by first choosing a
copy Ny, of A4, then extending N, to some copy of 74, and then extending N to a copy
of #. However, the extension lemma (Lemma 5) only implies that almost all copies of .47,
are typical, which makes things more complicated. So let Typ denote the set of all typical
copies of A7, in ¢4 and Atyp the set of all other copies. Lemma 5 implies that

(3) |Typ| = (1 = B)|-Mlg-

We now define an analogous set where we refer to the underlying graph P of ¢ instead of ¢4
itself. More precisely, we call a copy N, of A3, useful if the following holds: Let x1,...,xy
be any distinct vertices of Ny, and let ], ..., 2} be the corresponding vertices in .43. If a
vertex class X; contains a common neighbour of z/,..., 2}, then in the underlying graph P
the common neighbourhood of @1, ...,z in V; has size (1+ d2)d5n. We denote by Usef the
set of all these copies of 4,

We will now show that almost all copies of A3 in & are useful. First recall that since ¢
respects the partition of 7, the bipartite graphs P[V;, V;] are (da, 62)-regular whenever ¢
contains an edge between X; and X;. Together with the fact that |43 < A this shows at
most 2A2285ynl| of the |47, |-tuples of vertices in ¢ do not satisfy the above neighbourhood
condition in some of the relevant vertex classes V;. Indeed, to see this first note that the
graph regularity implies that each vertex class contains at most 2don vertices having degree
# (1 £ 92)d2| Al in any given sufficiently large subset A of V;. Thus the number of /-tuples
Z1,...,x¢ of vertices in 4 whose common neighbourhood in V; has size # (1 + 52)£d€n is at
most 205on. Given 27, ... , Ty, there are at most A choices for V;. The bound now follows
since there are at most 22 choices for {z},...,2,}.

On the other hand, Lemma 4 implies that |.A4,]¢ > %(dgdg)Aan/h'. Altogether this shows
that

(4) |Usef| > | M|y — 28%286,n1 "0 > (1 — 8)| A7)

Recall that each copy of 47 in ¢4 can be obtained by first choosing a copy N}, of A}, then
extending N, to some copy Hj of 77, and then extending Ny, to a copy of ZA. In the final
step we have to choose a vertex x € ¢ which can play the role of h. If N}, is typical then
there are at least (1 — )47, — | possible choices for . However, we have to make sure
that = does not already lie in Hy. The latter condition excludes at most cn < 3|47, — H|
of the possible choices for . So altogether we have that

(#ly > (1=28)[ M — B] > |Ny— Hily
Np€eTyp
= (=28 M= Bl| Y INu— Hlg— D |Nw— Hly
Np,C¥9 NpEAtyp
B) > (=28)M— B ||y~ >,  INn—Hlg— Y, |Nu— Hly

NpeAtypnUsef Np ¢ Usef
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Hh

F1GURE 1. The hypergraph 7

So our aim now is to prove that each of the last two sums in (5) contributes no more than
a small proportion of |7, |¢. More precisely, we will show that

(6) Y. INe— iyt Y Ny Hily < 5 Al
NpeAtypnUsef Np, ¢ Usef

Since < « this then proves the induction step. To prove (6), we bound both sums
separately. In both cases, we bound | N}, — 7|4 in terms of its average value

1 | A\
|Ny, — H|g = .
A N%g:g A

Our upper bound for the first sum in (6) will follow easily from the next claim.

Claim 1. FEwvery useful copy Ny of N, in 9 satisfies

12 |3ﬁl‘g
N;, — 6
[ h|g_d§A3 EAY

To prove this claim, we fix any useful copy N}, of A4;,. We let 4, be the subcomplex of 7
induced by the vertices which have distance 2 to the vertex set of .45 in the underlying
graph. Recall that our assumption at the beginning of the proof of the lemma implies that

©* is nonempty. Moreover, |4;*] < A% < A3, Let F' C J# be the subcomplex of #
that is induced by V(A7) U V(A4;*) and all the vertices in the first neighbourhood of .43,
in 4, (see Figure 1). So h & V(F'). Let .Z denote the underlying graph of .#’. Given

a copy Ny of A* in &4, we denote by |Nj,, N Eif Z |y the number of ways the underlying
graphs of Nj, and N can be extended into a copy of .# (within the graph P). Similarly, we
set

(7) | Mg My Do | o= TR A

Thus | A}, A} Bz | is roughly the expected number of ways the underlying graphs of
disjoint copies of .45, and .4} can be extended into a copy of the graph .7, if ¥ were a
random complex.

We define a copy N, of A" to be useful with respect to Ny, if it is disjoint from IV}, and if
the following holds. Let z1,...,2¢ and y1,...,ye be any distinct vertices of N;, and N} re-
spectively. Let «,..., 2} and ¥}, ...,y}. denote the corresponding vertices in .43, and .A4;*. If
a vertex class X; of # contains a common neighbour of 2, ..., 2}, 41, ..., yp in F —V (MU
A;¥) then in the underlying graph P the common neighbourhood of x1,...,zs,y1,..., ye-



3-UNIFORM HYPERGRAPHS OF BOUNDED DEGREE HAVE LINEAR RAMSEY NUMBERS 11

in V; has size (14£32)+"d5H n. We denote the set of all such copies of N in 4 by Usef™ (N},).
Using the fact that N}, is useful, similarly as in (4) one can show that

(8) |Usef*(Nn)| = (1 = 65)[A7"|s-

(Note that the condition that a useful copy of .4;* has to be disjoint from NN}, does not
affect the calculation significantly.) Moreover, since all the bipartite subgraphs forming P
are (dg, 62)-regular or empty, we see that every N; € Usef™ (V) satisfies

9) INw, Ni B Zly <21t5,.07 £ 7).

Indeed, let .#* := F — V(A U A*) and let wy,...,w, denote the vertices of .#*. Let
N'(w;) be the neighbourhood of w; in V(43 U 4;*) in the graph .. Let W; denote the set
of candidates for w; inside the vertex class of ¥ which we aim to embed w; into. Thus W;
consists of all those vertices in that class which are joined to all the vertices in N;, U N;* cor-
responding to N’(w;). The usefulness of Nj, and N;* implies that [W;| = ((14382)dg)!V (@iln.
In particular, the subgraph of P induced by the W;’s is still regular. So the counting lemma
for graphs implies that the number of copies of .#* induced by the W;’s is at most

7 1 (1)
gdzv I Wil < 27 2 27,
i=1
as required.
Let 72" denote the subcomplex of 77 obtained by deleting h as well as all the vertices in
F' — AF. Then any copy of 74, extending Nj, can be obtained by first choosing a copy N
of A}*, then extending this copy to a copy Hj of 7%, and then extending the pair N, Ny

into a copy of .#’ (which avoids H;). Clearly, there are at most |Np, N Lz | ways to
choose an extension of Nj, N into a copy of .Z#’. (Using the latter bound means that we
are disregarding any hyperedges of 4, in E3(.#')\ E3(A,U.4;*). This is the reason for the
error term involving ds in the statement of Claim 1.) Thus

(10) > INu Ny D FlIN; - Ay + Y. Nk N B Fly|N; — Ay
N €Usef* (Np,) N} @Usef* (Ny,)

The first sum in (10) can be bounded by

()
x P * * « P * *
Z |Nh7Nh_>y|g|Nh_)’%z ly < 2|JVh7'/Vh = F Z ‘NhH%Lk?
N €Usef* (Ny) N €Usef* (Ny)

(11) <20, M D F g

To bound the second sum in (10), let 74 := 7 — A;*. Note that our assumption at the
start of the proof that |41| > A® implies that A is nonempty. Then clearly

(12) N = A |y < |76l

We shall estimate |77 |y in relation to |7"|g. Let s :== |A*| = || — |7 and suppose
that wi, ..., w, are the vertices in J&" — 7 = A;*. Foralli =1,...,s, we let .4 be the
subcomplex induced by the neighbourhood of w; in 4" — {wit1,...,ws}. Let &, be the
subcomplex of .7 induced by w; and the vertices in .4#;’. Then our induction hypothesis



12 OLIVER COOLEY, NIKOLAOS FOUNTOULAKIS, DANIELA KUHN AND DERYK OSTHUS

implies that

|7 |—| |
g > (=)W T 17— 2| 16le
=1
(13) — (1 = a)n)Wh 1A g Do) gea A=l e

(In fact, one reason for our choice of the induction hypothesis is that it allows us to relate
|76 to |7y as in (13).) But our assumption on the maximum degree of .7 implies that
ei (A7) — ei(H]) < AlAF| < At for i = 2,3. So

% ]_ *|_ U 4
|, | > §n|%| 7l (dyd3)™ | ) |y

as o < 1/A. Since |47 — || = |4;7| the last inequality together with (8), (12) and the
fact that 0, < do,ds,1/A imply that

N " . . 205 | M,
) XN = il <A < D e < )t
Ny ¢Uset™ (Np,) (d d

In the final inequality, we also used the crude bound |.4;*|¢ < n% 1. We can now bound
the second sum in (10) by

S NN B FING - Ay < alTHAERRT ST N

Ny ¢Usef* (Ny) N ¢Usef* (Ny)
(14) Sl Z =] = A7
YA P AL
| A A = T
)
(15) < |ty S F|A g

Indeed, to see the last inequality recall that 6, < da,1/A. Inequalities (10), (11) and (15)
together now imply that

« P *
(16) [Nn = Sy < 3| M, M = TN g
Similarly as in (13) one can use the induction hypothesis to show that

|«%ﬂh|g > ((1 _ ) )|%‘jl| |%*|d62(9fh) e2(H )d€3(%ph) e3 (4, |°%0h |
1 a! *| .eo(. —eal. €3 - —e3(-
> §n|‘/ | =47 |d2z(%”h) z(%’;)dgs(f"ﬁ) 3(A,) BN

Observe that e;(6,) — e;() = e;(F') — ei(A;*) for i = 2,3. Moreover, the counting

lemma for graphs implies that |4},|¢ < 2n|”/’1‘d62( M), Together with (7) and (16) this shows
that

62T =ea( M) L - s~ |4

AT 12|74 |y
|Nw — Hly < =2 ; : ; S < — :
n\y!|,|j;|d32(§ )—ea (A )dggj(ng )—es(A¥) [ A% dgs(d‘ )—ea (A} )‘%|g

But e3(F') — e3(M*) < ALF — ¥ < A(A + A?%) < 2A3. This completes the proof of
Claim 1.

In order to give an upper bound on the second sum in (6) we will need the following claim.
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Claim 2. FEvery copy Ny, of N}, satisfies
2 |y
(d2d3) 2" | Al

|Np, — |y <

Let .77, := 9, — A},. Then, very crudely,
(17) \Np — Hlg < |7, |y

But similarly as in (13) we have that
I R
> Sl R R
>

2 ,A2 _
§|%\gd§ d5"| A5, |y
In the final line we used the fact that |74, — J¢ | = |A;,] < A. Together with (17) this
implies Claim 2.

Claims 1 and 2 now immediately imply (6). Indeed, using (3) and (4) and the facts that
0y < dg,d3, 1/A and 8, < f < d3,1/A we see that

1243 2(%
S INn= Hlet+ D Ny — Hly < 7+ 3
d2A (d d )A

NpeAtypnUsef Ny ¢Usef 3 203

) Haly < B2,

as required. This completes the proof of Lemma 3.

5. PROOF OF LEMMA 4

In this section, we indicate how Lemma 4 follows easily from the version of the counting
lemma proved in [19] (Lemma 7 below). Full details can be found in [2]. Several related
versions of the counting lemma can be found in [22]. In order to state Lemma 7, we need
the following definition. Given a complex .7 with vertices z1,..., T, a complex ¥ is called
(ds, 03, da, 02,7, 7 )-regular if & is t-partite with vertex classes Vi,...,V; and satisfies the
following properties:

e Let P denote the underlying graph of &. For every edge z;z; € F2(€) the bipartite
graph P[V;, V;] is (d2, d2)-regular.
e For every hyperedge e = zpxiz; € E3(H) there exists d. > d3 such that the
triad P[V4, V3, V;] is (de,d3,7)-regular with respect to the underlying hypergraph
of 4.
In this case, we say that a labelled copy H of J# in ¥ is partition-respecting if for all i € [t]
the vertex of H corresponding to x; is contained in Vj.

Lemma 7. Let t,r,ng be positive integers and let 3, do, ds, d2, 3 be positive constants such
that

1/np < 1/r < 69 < min{ds,da} < d3 < B,ds,1/t.
Then the following holds for all integers n > ng. Suppose that € is a complex with ver-

tices x1,...,x¢. Suppose also that 9 is a (ds,d3,da,d2,1,.7)-reqular complex with vertex
classes V1,..., Vi, all of size n. Then 4 contains at least
(1— B)ntd2 H d,
e€E3()

labelled partition-respecting copies of €.
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Note that the difference to Lemma 4 is that Lemma 7 only gives a lower bound and
every vertex of J is to be embedded into a different vertex class of 4. On the other hand,
Lemma 7 allows for different ‘hypergraph densities’ between the clusters. (Actually, the
proof below would permit this in Lemma 4 as well, see [2].)

To derive Lemma 4, first assume that each of the vertex classes X; of 7 contains exactly
one vertex (i.e. we want to embed every vertex of . into a different vertex class of ¢).
In this case we only have to deduce the upper bound in Lemma 4 from the lower bound
in Lemma 7. As the (simple) proof of this is quite similar to the proof for the complete
case in [17], we just describe the main idea here. So consider any 2 C F3(7). Now we
construct a complex ¥y from ¢ as follows. For any triple hij € 2, we delete all hyperedges
from ¥[V},,V;,V;] and add as hyperedges all those triangles contained in the underlying
graph induced by V;,, V; and V; which did not form a hyperedge in 4[V},, V;, Vj]. (Thus 95
may be viewed as a ‘partial’ complement of ¢.) Now let |.7#?)|4 denote the number of
labelled partition-respecting copies of the underlying graph of J# in (the underlying graph
of) ¢. Then it is easy to see that

Yoo | Hy, =1y
DCE3 ()

(This is where we need to assume that we are considering the special case when every vertex
of A is embedded into a different vertex class of ¢.) We can use the (easy) counting lemma
for graphs to estimate |7 (2)|g. Moreover, note that we are aiming for an upper bound
on the summand where & is empty. But we can obtain this since we can apply Lemma 7
to all the remaining summands. (This is where we need that Lemma 7 allows for different
‘hypergraph densities’.) A simple calculation gives the desired result.

So it remains to deduce the general case in Lemma 4 from the special case when each
of the vertex classes X; of .7 contains exactly one vertex. To achieve this, consider the
following construction. Let ¢ be the complex obtained from ¢ by taking |X;| copies of ¢4
and identifying them in V(%) \ V1. In other words, we blow up V; into | X7 | copies, i.e. V] is
replaced by classes V3; with 1 < i < |X;|. Now let % be the hypergraph obtained from ¢ by
taking | Xs| copies of 4 and identifying them in V(%) \ V5. We continue in this way to obtain
an |.7¢|-partite hypergraph ¢* := % (so we have blown up each V; into | X;| copies). Now
view ./ as a | |-partite complex .7 with vertex classes Xj;, each consisting of a single
vertex, where 1 < j < k and 1 < i < |X;|. Note that every labelled partition-respecting
copy of A in ¥ yields a distinct labelled partition-respecting copy of J* in ¢* (where in
the latter case, X;; is mapped to Vj;). So |#|g < |7*|4«. On the other hand, if a labelled
partition-respecting copy of .7#* in ¢* does not correspond to a labelled partition-respecting
copy of A in ¢4 then this means that this copy of /#* uses (at least) two ‘twin’ vertices
in ¢* which correspond to the same vertex in 4. There are at most |7 |n possibilities for
choosing the first twin vertex, at most |.7’| possibilities for the second twin vertex and at
most nl71-2 possibilities for the remaining vertices. Thus ||y > |A#* |y« — | |?nl7 11,
We can now obtain the desired upper and lower bound on || from the bounds on |77 |¢«
which we already know. (Note that these bounds imply that the ‘error term’ |.#|2nl71-1 is
negligible compared to |.77*|g«.)

6. PROOF OF LEMMA 5

Throughout this section, whenever we refer to copies of .7 or .7’ in 4 we mean that
these copies will be labelled and partition-respecting without mentioning this explicitly. As
in Section 4 we denote such copies by H and H' respectively. Thus, given any copy H of .77,
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we have to estimate the number of extensions of H into copies of .’ in 4. Recall that we
denote the number of all these extensions by |H — #”|¢. Also, as in Section 4 we write

m — nt’—td?(%) ea(H )deg(%”) 63(%’)'

We will argue similarly as in the proof of Corollary 14 in [20] or the proof of Lemma 6.6
in [8]. Namely, we use the following fact that can be deduced from the Cauchy-Schwartz
inequality (see also Lemma 6.5 in [8)):

Fact 8. For any 8 > 0 there exists 6 > 0, such that for any collection of non-negative real
numbers x1,...,TN satisfying

N
(18) Zzlf (1£0)AN and ) a7 = (1£0)A’N
=1

for some A >0, all except at most BN of the x;’s lie in the interval (1 + 3)A
In our case, the collection {z;}Y; will be {|H — #"|g}ycy (so N := |#|y) and we set
= | — .

Given f as in Lemma 5, we let 6 = §(3) be as in Fact 8. We may assume that the hierarchy
of constants in Lemma 5 was chosen such that §3 < J. To prove Lemma 5 it suffices to show
that

(19) Y |H = Ay = (1+0)Al#)g,
HCY

and

(20) N H = Ay = (1+£6)A% Ay
HCY

The counting lemma (Lemma 4) implies that
|2y = (1+5/8)n" d5? g
and
(21) |# )y = (1+6/8)ntd2 ") g ).
It follows that
Yo H = ANy = |y = (1 +6)A|A ]y,
HCY
as required in (19).

To show (20) we have to estimate Y, |H — 2'|2. Thus consider any copy H of 7
in &. Then |H — |2 corresponds to the number of pairs (H/, H}) of copies of ' in 4
extending H. Now let .’ denote the complex which is obtained from two disjoint copies
of 7" by identifying them in V(). Then the copies of A" in 4 which extend H correspond
bijectively to those pairs (H{, Hj) which meet precisely in H and are disjoint otherwise.!

On the other hand, at most (# — t)?n?#'=H=1 of the pairs (H}, H}) meet in some vertex
outside H. Thus

(22) Z|H_>%,|E¢<Z<|H_>%/|‘¢+( £)2n2 - ><|¢%”’|<¢+( £)2p2t —t-1
HCY HCY

1Again, we only consider the partition-respecting copies of A in 9, ie. if a vertex & € 7' corresponds
to a vertex x € ¢’ which lies in X;, then Z has to be embedded into V;.
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and clearly also

(23) Z \H — A% > ||y
HCY

But the counting lemma implies that

A\ = (14 §/8)n2 ~tg2e2)=e200) e )=l ) E) (1 L 5/9) 42| g,

In particular, (' — t)2n2'~t=1 < §|.57" |4 /8 < 6 A%|.5 | /2. Together with (22) and (23) this
implies (20) and completes the proof of Lemma 5. Note that the proof above also allows for
different ‘hypergraph densities’ between the clusters in Lemma 4, but we have not included
this to avoid making the statement more technical.

7. THE REGULARITY LEMMA FOR 3-UNIFORM HYPERGRAPHS

7.1. The Regularity Lemma — definitions and statement. The main purpose of this
section is to introduce the regularity lemma for 3-uniform hypergraphs due to Frankl and
R6dl [6]. As in the proof of the graph analogue of Theorem 1 we shall make use of it in
order to obtain the necessary regular complex ¢ to which we then apply the embedding
lemma (see Section 8 for the details). Before we can state it, we will collect the necessary
definitions.

Definition 9 ((¢,t,e1,e9)-partition). Let V be a set. An (¢,t,e1,e9)-partition &2 of V is a
partition into Vg, Vi,...,V; together with families (ng)f;’io (1 <i<j<t) of edge-disjoint
bipartite graphs such that
(i) Wil =--- = Vil = [[V|/t] =: m,
(i) £;; < ¢ for all pairs 1 <i < j <t,
(iii) Uiio Py is the complete bipartite graph with vertex classes V; and V; (for all pairs
1<i<j<i),
(iv) all but at most &1 (;)n2 edges of the complete t-partite graph K[Vi,...,V;| with
vertex classes Vi,...,V; lie in some eo-regular graph Py, -
(v) for all but at most &1 (3) pairs V;,V; (1 <i < j <t) we have e(Py’) < e1n? and

|dpéj (V“VJ) - 1/€| < e
for all a = 1,...,0;.

Definition 10 ((d3,r)-regular (¢,t,e1, e2)-partition). Suppose that ¢ is a 3-uniform hyper-
graph and that Vp,Vi,...,V; is an (4,t,e1,e9)-partition of the vertex set V(%) of 4. Set
n:=|Vi| = --- = |V|. Recall that a triad is a 3-partite graph of the form P = P UngUPvik
and that t(P) denotes the number of triangles in P. We say that the partition Vg, Vi,...,V;
is (03, 7)-reqular if
Z t(P) < 53|g‘37
irregular

where )
to 9.

irregular denotes the sum over all triads P which are not (Js, r)-regular with respect

We can now state the regularity lemma for 3-uniform hypergraphs which was proved by
Frankl and Rédl [6].
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Theorem 11 (Regularity lemma for 3-uniform hypergraphs). For all 3 and €1 with 0 <
€1 < 25§, for all ty, by € N and for all integer-valued functions r = r(t,£) and all decreasing
functions eo(€) with 0 < eo(€) < 1/¢, there exist integers Ty, Lo and Ny such that the vertex
set of any 3-uniform hypergraph 4 of order |4| > Ny admits a (33, 7)-reqular (¢,t,e1,e2(¢))-
partition for some t and ¢ satisfying to <t < Ty and by < < L.

The elements Vi, ..., V; of the (¢,t,e1,22(¢))-partition given by Theorem 11 are called clus-
ters. Vg is the exceptional set.

7.2. Definition of the reduced hypergraph. When we apply the graph regularity lemma
to a graph G, we often consider the so called reduced graph, whose vertices are the clusters
V; and whose edges correspond to those pairs of clusters which induce an e-regular bipartite
graph. Analogously, we will now define a 3-uniform reduced hypergraph.

In the proof of Theorem 1 in the next section, we will fix positive constants satisfying the
following hierarchy:

(24) e1,1/to, 1/0y < 03 < e3 < 1/A

where ¢y,ty € N and we choose these constants successively from right to left as explained
earlier. Next, for all ¢ > ¢y and all ¢ > to we define functions r(¢,¢) and eo(¢) satisfying the
following properties:

1
V4 —.0 .
) <L el K 7’ 3, €1

Suppose that with this choice of constants we have applied the regularity lemma to a 3-
uniform hypergraph ¢. In particular, this gives an integer . We then define constants ds
and J9 by
(26) do:=1/¢ and 09 :=/ea.
In order to define the reduced hypergraph corresponding to the partition of V(%) obtained
from the regularity lemma, we need the following definitions.
Definition 12 (good pair V;Vj). We call a pair V;V; (1 < i < j <t) of clusters good if it
satisfies the following two properties:

o e(Py) < en?and |dpi; (Vi Vj)—da| < es forall @ = 1,..., £;;. (This means that V;V;

does not belong to the at most &1 (t

2 -
e at most £3¢/6 of the bipartite graphs Py (1 < o < ¢;;) are not (da, d2)-regular.

(25)

) exceptional pairs described in Definition 9(v).)

Later on, we will use the fact that the first condition in Definition 12 implies that ¢;; > £/2
since do = 1/¢. An observation from [15] states that almost all pairs of clusters are good,
but we will not make use of this explicitly.

Definition 13 (good triple V;V;Vy). We call a triple V;V;V}, (1 <i < j <k <t) of clusters
good if both of the following hold:
e cach of the pairs V;V;, V;V}, and V;V}, is good,
e at most 303 of the triads induced by V;, Vj, Vi, are not (d3,7)-regular with respect
to ¢4.

The next proposition, which follows immediately from Proposition 5.12 in [15], states that
only a small fraction of the triples V;V;V}, are not good.

Proposition 14. At most 4063 (é) /e3 triples V;V;V, of clusters are not good.
We are now ready to define the reduced hypergraph Z.
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Definition 15 (Reduced hypergraph). The vertices of the reduced hypergraph % are all the
clusters V1, ..., V;. The hyperedges of % are precisely the good triples V;V;V;.

Thus, like ¢, also Z is a 3-uniform hypergraph.

8. PROOF OF THEOREM 1

In this section, we put together all the previous tools to prove Theorem 1. We will also
make use of the following well-known result (see e.g. [4]).

Lemma 16. For all k € N there exists a constant ¢y = co(k) < 1 such that if Z is a 3-
uniform hypergraph on t > k vertices, and if e(#) > co(é), then % contains a copy of K,g?’).

We will also use the existence of hypergraph Ramsey numbers, without needing any
explicit upper bounds. Roughly speaking, the proof of Theorem 1 proceeds as follows.

Consider any red/blue colouring of the hyperedges of Kr(,f), where m is a sufficiently large
integer (but m will be linear in |.7#’|). We apply the hypergraph regularity lemma to the

red subhypergraph ¢,..4 to obtain the reduced hypergraph &, and show that & satisfies the
conditions of Lemma 16 with k := R(KéSA) 4+1)- Thus Z will contain a copy of K IES). This
copy corresponds to k clusters such that for each triple of these clusters almost all the triads
are regular with respect to the red hypergraph ¢,.4. We will then show that between each
pair V;, V; of these clusters one can choose one of the bipartite graphs Py’ in such a way that
any triad Pj;; consisting of the chosen bipartite graphs is regular with respect to ¢,..q. Let P
denote the k-partite graph formed by all the chosen bipartite graphs. We then consider the
following red /blue colouring of K ,£3). We colour the hyperedge hij with red if the triad P;;
has density at least 1/2 with respect to %,.4 and blue otherwise. Since k = R(K2(3A> 41) we
can find a monochromatic KQ(SA) 41+ it is red then we can apply the embedding lemma to
the corresponding (2A + 1)-partite subhypergraph of %4 and the corresponding (2A + 1)-
partite subgraph P’ of P to find a red copy of . This can be done since the chromatic
number of .7 is at most 2A + 1 as A(#) < A. If our monochromatic copy of K2(3A)+1 is
blue then we can apply the embedding lemma to the (2A + 1)-partite subhypergraph of the

blue hypergraph %, C Kr,(,?) and P’.

Proof of Theorem 1. Let m € N be large enough for all subsequent calculations to
hold. We will check later that we can choose m to be linear in |.7#|. Consider any red/blue-

colouring of the hyperedges of Kg’ ). Let %,cq be the red and % be the blue subhypergraph

on V(K,({Z’)). We may assume without loss of generality that e(%,eq) > €(%ue). We apply
the hypergraph regularity lemma to %,.q with parameters

3
to > R(KSN,,) = k

as well as £y, d3,e1 and functions 7(t,¢) and eo(¢) satisfying the hierarchies in (24) and (25).

Thus we obtain a set of clusters Vi,...,V;, each of size n say, together with a parti-
tion (Pé])ifi o of the complete bipartite graph between clusters V; and V; (for all 1 <i < j <
t). We define dy and 62 as in (26) and let #Z denote the reduced hypergraph. Proposition 14
implies that % has at least (1 — &) (;) hyperedges, where ¢ := 4003 /3. Thus (24) implies
that e(#Z) > (1 — E)("?') > co(lf’)'), where ¢q is as defined in Lemma 16. Since |Z| >ty > k,
this means that we can apply Lemma 16 to &% to obtain a copy of K ,ig) in Z. Without loss
of generality we may assume that the vertices of this copy are the clusters V7,..., V.
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As indicated before, our next aim is to show that for each of the (’2“) pairs V;V; (with
1 < i < j < k) one can choose one of the bipartite graphs Py in such a way that each of
them is (da,d2)-regular and such that each of the (’;) triads formed by the chosen bipartite
graphs is (J3,7)-regular with respect to %,.4. We will denote the chosen bipartite graph
between V; and V; by F;; and the triad between Vj,, V; and V; by P,;.

To see that such graphs Pj; exist, consider selecting (for each pair 4,j) one of the ¢;;
bipartite graphs Py’ with 1 < o < ¢;; uniformly at random. By Definition 12, the probability
that Pj; is not (dg, d2)-regular is at most (e3¢/6)/¢;; < e3/3. So the probability that all of
the selected bipartite graphs are (da, d2)-regular is at least

k\ es (29) 1
2 1— (225 2
(27) (2)3 73

Similarly, Definition 13 implies that the probability that the triad Py;; is not (d3, r)-regular
is at most sgﬁg/ﬂhi&jﬂhj < 8e3. So the probability that all of the selected P,;; are (d3,7)-

regular is at least 1 — (’;)883 > 1/2. Together with (27), this shows that there is some choice
of bipartite graphs P;; which has the required properties.
We now use the densities of the corresponding triads Pj;; to define a red/blue-colouring

of the K ,g?’) which we found in #: if dy__,(Pri;) > 1/2, then we colour the hyperedge V,,V;V;
red, otherwise we colour it blue. Since k = R(Kéi) +1), we find a monochromatic copy K of

Ké?’A) 41 inour K, 1&3)' We now greedily assign the vertices of .7 to the clusters that form the
vertex set of K, in such a way that if three vertices of .77 form a hyperedge, then they are
assigned to different clusters. (We may think of this as a (2A + 1)-vertex-colouring of J#.)
We now need to show that with this assignment we can apply the embedding lemma, to find
a monochromatic copy of 7 in K,(,s’).

Assume first that K is red. We already have bipartite graphs P;; between the clusters in
V(K) which are (d2, d2)-regular and form triads Py;; which are (d3,r)-regular with respect
t0 9,q. The only technical problem is that these triads do not all have the same density
with respect to 9.4, which was one of the conditions in the embedding lemma. We do
know, however, that in each case we have dy _,(Phi;) > 1/2. So we choose a hypergraph

" d © “req such that all the graph triads are (1/2, 303, r)-regular with respect to ¢/_,. It
is easy to see that such a ¥/ , exists: for each triple V;V;V; that is a hyperedge of K,
consider a random subset of the hyperedges of ¥,.q induced by V;,Vj, V}, such that B;; has
density (1 £ d3)/2 with respect to this subset. This observation is formalized for instance
in Proposition 22 of [21], which one can apply directly to obtain the above bounds on the
regularity of ¢/ ,. (Alternatively, it is easy to see that the proof of Lemma 3 generalizes to
different ‘hypergraph densities’.) We then apply the embedding lemma (Lemma 2) to find
a copy of J# in ¢/, ,, and therefore also in 4.4.

On the other hand, if K is blue, we will aim to find a copy of . in %,,.. We certainly
still have a set of bipartite graphs all of which are (dg, d2)-regular, but we now also need to

prove that all triads are regular with respect to %yue. So suppose Q = (Q(1),...,Q(r)) is

an r-tuple of subtriads of one of these triads Py;;, satisfying t(Q) > d3t(Fh;j). Let d be such
that Py;; is (d, 03, 7)-regular with respect to %,..4. Then

(1= d) - dg,,. (@) = |d— (1 - dg,,.(@)| = |d - dg,,,(Q)| < 6.

Thus P;; is (1 — d, 03, 7)-regular with respect to %y (note that 63 < 1/2 <1 —d). By the
same method as in the previous case, we can apply the embedding lemma to obtain a copy
of 7 in gblue'
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It remains to estimate how large we needed m to be in order for all of our calculations to
be valid. When we apply the embedding lemma, we know we can find any subgraph ¢ of
maximum degree at most A with || < cn, where n is the size of a cluster and c is a constant
chosen to satisfy the conditions of the embedding lemma. Since n = |m/t| > m/2T), this
means that it suffices to start with an m satisfying m > 274|.7|/c. In order to be able to
apply the embedding lemma we need that ¢ < do,ds = 1/2,1/A. We obtain ds = 1/¢ from
the regularity lemma, given constants ds, €1, o, fo, an integer-valued function r = r(¢,¢) and
a decreasing function e2(¢), all satisfying the hierarchies (24) and (25). In all cases, we can
view the constants we require purely as functions of A. Thus c is implicitly a function solely
of A. This is also the case for Ty and Nj.

Finally, in order to be able to apply the regularity lemma to %,..q4 we needed to assume
that m > Ny, and in order to be able to apply the embedding lemma we needed to assume
that n > ng (for which it is sufficient to assume that m > 2Tyng). Altogether, this shows
that we can take the constant C' in Theorem 1 to be max{2Ty/c, No, 2Tono}- O
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