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Abstract. The Erdős-Faber-Lovász conjecture (posed in 1972) states that the chromatic index of any

linear hypergraph on n vertices is at most n. In this paper, we prove this conjecture for every large n. We
also provide stability versions of this result, which confirm a prediction of Kahn.

1. Introduction

Graph and hypergraph colouring problems are central to combinatorics, with applications and connections
to many other areas, such as geometry, algorithm design, and information theory. As one illustrative
example, the fundamental Ajtai-Komlós-Pintz-Spencer-Szemerédi (AKPSS) theorem [2] shows that locally
sparse uniform hypergraphs have large independent sets. This was initially designed to disprove the famous
Heilbronn conjecture in combinatorial geometry but has found numerous further applications e.g., in coding
theory. The AKPSS theorem was later strengthened by Frieze and Mubayi [18] to show that linear k-uniform
hypergraphs with k ≥ 3 have small chromatic number. Here a hypergraph H is linear if every two distinct
edges of H intersect in at most one vertex.

1.1. The Erdős-Faber-Lovász conjecture. In 1972, Erdős, Faber, and Lovász conjectured (see [15]) the
following equivalent statements. Let n ∈ N.

(i) If A1, . . . , An are sets of size n such that every pair of them shares at most one element, then the
elements of

⋃n
i=1Ai can be coloured by n colours so that all colours appear in each Ai.

(ii) If G is a graph that is the union of n cliques, each having at most n vertices, such that every pair
of cliques shares at most one vertex, then the chromatic number of G is at most n.

(iii) If H is a linear hypergraph with n vertices, then the chromatic index of H is at most n.
Here the chromatic index χ′(H) of a hypergraph H is the smallest number of colours needed to colour

the edges of H so that any two edges that share a vertex have different colours. The formulation (iii) is the
one that we will consider throughout the paper. For simplicity, we will refer to this conjecture as the EFL
conjecture.

Erdős considered this to be ‘one of his three most favorite combinatorial problems’ (see e.g., [29]). The
simplicity and elegance of its formulation initially led the authors to believe it to be easily solved (see e.g.,
the discussion in [10] and [15]). It was initially designed as a simple test case for a more general theory
of hypergraph colourings. However, as the difficulty became apparent Erdős offered successively increasing
rewards for a proof of the conjecture, which eventually reached $500.

Previous progress towards the conjecture includes the following results. Seymour [42] proved that every
n-vertex linear hypergraph H has a matching of size at least e(H)/n, where e(H) is the number of edges in
H. (Note that this immediately follows from the validity of the EFL conjecture, but it is already difficult
to prove.) Kahn and Seymour [30] proved that every n-vertex linear hypergraph has fractional chromatic
index at most n. Chang and Lawler [9] showed that every n-vertex linear hypergraph has chromatic index at
most d3n/2− 2e. Finally, a breakthrough of Kahn [25] yielded an approximate version of the conjecture, by
showing that every n-vertex linear hypergraph has chromatic index at most n+ o(n). (His surveys [27, 29]
discuss many related results and open problems.)

1.2. Main results. In this paper we prove the EFL conjecture for every large n.

Theorem 1.1. For every sufficiently large n, every linear hypergraph H on n vertices has chromatic index
at most n.

There are three constructions for which Theorem 1.1 is known to be tight: a complete graph Kn for any
odd integer n (and minor modifications thereof), a finite projective plane of order k on n = k2 +k+1 points,
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and a degenerate plane {{1, 2}, . . . , {1, n}, {2, . . . , n}}. Note that the first example has bounded edge size
(two), while the other two examples have unbounded edge size as n tends to infinity.

Kahn’s proof [25] is based on a powerful method known as the Rödl nibble. Roughly speaking, this
method builds a large matching using an iterative probabilistic procedure. It was originally developed
by Rödl [40] to prove the Erdős–Hanani conjecture [14] on combinatorial designs. Another famous result
based on this method is the Pippenger–Spencer theorem [39], which implies that the chromatic index of any
uniform hypergraph H of maximum degree D and codegree o(D) is D+o(D). (Note that this in turn implies
that the EFL conjecture holds for all large r-uniform linear hypergraphs of bounded uniformity r ≥ 3.) In
a seminal paper, Kahn [28] later developed the approach further to show that the same bound D + o(D)
even holds for the list chromatic index (an intermediate result in this direction, which also strengthens the
Pippenger–Spencer theorem, was the main ingredient of his proof in [25]). The best bound on the o(D)
error term for the list chromatic index of such hypergraphs was obtained by Molloy and Reed [37], and for
the chromatic index, the best bound was proved in [31]. Our proof will also rely on certain properties of
the Rödl nibble.

In addition, our proof makes use of powerful colouring results for locally sparse graphs (Theorems 6.4
and 6.6). This line of research goes back to Ajtai, Komlós, and Szemerédi [3] who (independently of
Rödl [40]) developed a very similar semi-random nibble approach to give an upper bound O(k2/ log k)
on the Ramsey number R(3, k) by finding large independent sets in triangle-free graphs (the matching
lower bound R(3, k) = Ω(k2/ log k) was later established by Kim [33], also using a semi-random approach).
Inspired by an earlier result of Kim [32], the above Ramsey bound by Ajtai, Komlós and Szemerédi was
subsequently strengthened by a highly influential result of Johansson [24], who showed that triangle-free
graphs of maximum degree ∆ have chromatic number O(∆/ log ∆). The result of Frieze and Mubayi [18]
mentioned at the start of Section 1 is one of several analogues and generalizations of Johansson’s Theorem.
It also turns out that the condition of being triangle-free can be relaxed (in various ways) to being ‘locally
sparse’ [1, 4, 12, 44]. We will be able to apply such results to suitable parts of the line graph of our given
linear hypergraph H.

One step in our proof involves what may be considered a ‘vertex absorption’ argument; here certain
vertices not covered by a matching produced by the Rödl nibble are ‘absorbed’ into the matching to form
a colour class. (Vertex) absorption as a systematic approach was introduced by Rödl, Ruciński, and Sze-
merédi [41] to find spanning structures in hypergraphs (with precursors including [16, 34]). Absorption
ideas were first used for edge decomposition problems in [35] to solve Kelly’s conjecture on tournament
decompositions. We will make use of an application of the main result of [35] to the overfull subgraph
conjecture (which was derived in [20]).

Kahn [27] predicted that the bound in the EFL conjecture can be improved if H is far from being one of
the extremal examples mentioned above. We confirm his prediction by proving a ‘linear’ and a ‘sublinear’
stability result as follows.

Theorem 1.2 (linear stability). For every δ > 0, there exist n0, σ > 0 such that the following holds. For
any n ≥ n0, if H is an n-vertex linear hypergraph with maximum degree at most (1 − δ)n such that the
number of edges of size (1 ± δ)

√
n in H is at most (1 − 3δ)n, then the chromatic index of H is at most

(1− σ)n.

Theorem 1.3 (sublinear stability). For every ε > 0, there exist n0, η > 0 such that the following holds.
For any n ≥ n0, if H is an n-vertex linear hypergraph with maximum degree at most ηn and no edge e ∈ H
such that η

√
n < |e| <

√
n/η, then the chromatic index of H is at most εn.

1.3. Related results and open problems. Formulation (ii) of the EFL conjecture can be viewed as a
statement implying that a local restriction on the local density of a graph has a strong influence on its
global structure. A famous example where this is not the case is the construction by Erdős of graphs of
high girth and high chromatic number. Another well known instance where this fails is a bipartite version
of the EFL conjecture due to Alon, Saks, and Seymour (see Kahn [26]); they conjectured that if a graph
G can be decomposed into k edge-disjoint bipartite graphs, then the chromatic number of G is at most
k + 1. This conjecture was a generalisation of the Graham–Pollak theorem [21] on edge decompositions of
complete graphs into bipartite graphs, which has applications to communication complexity. However, this
conjecture was disproved by Huang and Sudakov [22] in a strong form, i.e., it is not even close to being true.

A natural generalization of the EFL conjecture was suggested by Berge [6] and Füredi [19]; if H is a linear
hypergraph with vertex set V , then the chromatic index of H is at most maxv∈V |

⋃
e3v e|. This would be

a direct generalization of Vizing’s theorem on the chromatic index of graphs. Finally, another beautiful
question leading on from Theorem 1.1 is whether it can be extended to list colourings.
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2. Overview

In this section, we provide an overview of the proof of Theorem 1.1.

2.1. Colouring linear hypergraphs with bounded edge sizes. Here, we discuss the proof of Theo-
rem 1.1 in the special case when all edges of H have bounded size. In this subsection, we fix constants
satisfying the hierarchy

0 < 1/n0 � ξ � 1/r � γ � ε� ρ� 1,

we let n ≥ n0, and we let H be an n-vertex linear hypergraph such that every e ∈ H satisfies 2 ≤ |e| ≤ r.
We first describe the ideas which already lead to the near-optimal bound χ′(H) ≤ n+ 1.

Let G be the graph with V (G) := V (H) and E(G) := {e ∈ H : |e| = 2}. The first step of the proof
is to include every edge of G in a ‘reservoir’ R independently with probability 1/2 that we will use for
‘absorption’. With high probability, each v ∈ V (H) satisfies dR(v) = dG(v)/2± ξn. Since H is linear, this
easily implies that ∆(H\R) ≤ (1/2 + ξ)n. So by the Pippenger-Spencer theorem [39], we obtain the nearly
optimal bound χ′(H \ R) ≤ (1/2 + γ)n. Now using R as a ‘vertex-absorber’, we would like to extend the
colour classes of H\R to cover as many vertices of U as possible, where U := {u ∈ V (H) : dG(u) ≥ (1−ε)n}.
This would allow us to control the maximum degree in the hypergraph consisting of uncoloured edges, so
that it can then be coloured with few colours. To that end, we need the following important definition.

Definition 2.1 (Perfect and nearly-perfect coverage). Let H be a linear multi-hypergraph, let N be a set
of edge-disjoint matchings in H, and let S ⊆ U ⊆ V (H).

• We say N has perfect coverage of U if each N ∈ N covers U .
• We say N has nearly-perfect coverage of U with defects in S if

(i) each u ∈ U is covered by at least |N | − 1 matchings in N and
(ii) each N ∈ N covers all but at most one vertex in U such that U \ V (N) ⊆ S.

We will construct some H′ ⊆ H and a proper edge-colouring ψ : H′ → C such that H′ ⊇ H \ R,
|C| = (1/2 + γ)n and the set of colour classes {ψ−1(c) : c ∈ C} has nearly-perfect coverage of U (with
defects in U). Crucially, this means that H \ H′ is a graph and satisfies ∆(H \ H′) ≤ n − |C|. (Indeed,
every vertex u ∈ U satisfies dH(u) ≤ n − 1 and is covered by all but at most one of the colour classes
of ψ, and every vertex v /∈ U satisfies dH\H′(v) ≤ dR(v) ≤ ((1 − ε)/2 + ξ)n < n − |C|.) Therefore,
Vizing’s theorem [43] implies that χ′(H \ H′) ≤ ∆(H \ H′) + 1 ≤ n − |C| + 1, so altogether we have
χ′(H) ≤ χ′(H′) + χ′(H \H′) ≤ n+ 1, as claimed.

To construct H′ and ψ we iteratively apply the Rödl nibble to (the leftover of) H \ R to successively
construct large matchings Ni which are then removed from H \R and form part of the colour classes of ψ.
(The Rödl nibble is applied implicitly via Corollary 4.3, which guarantees a large matching in a suitable
hypergraph.) Crucially, each matching Ni exhibits pseudorandom properties, which allow us to use some
edges of R to extend Ni into a matching Mi (which will form a colour class of ψ) with nearly-perfect coverage
of U , as desired. (This is why we apply the Rödl nibble in our proof rather than the Pippenger-Spencer
theorem.) Thus, R acts as a ‘vertex-absorber’ for U \V (Ni) and the final edge decomposition of the unused
edges of R into matchings is achieved by Vizing’s theorem. (Actually, this only works if H \ R is nearly
regular, which is not necessarily the case. Thus, we first embed H\R in a suitable nearly regular hypergraph
H∗ and prove that the respective matchings in H∗ have nearly-perfect coverage of U , which suffices for our
purposes.)

Let us now discuss how to improve the bound χ′(H) ≤ n + 1 to χ′(H) ≤ n. Let S := {u ∈ U : dG(u) <
n− 1}, and note that if {ψ−1(c) : c ∈ C} has either perfect coverage of U , or nearly-perfect coverage of U
with defects in S, then ∆(H \ H′) ≤ n − 1 − |C|. In this case, we may use the same argument as before
with Vizing’s theorem to obtain χ′(H) ≤ n. However, it is not always possible to find such a colouring. For
example, if H is a complete graph Kn for odd n (which is one of the extremal examples for Theorem 1.1),
then U = V (H) and S = ∅, so it is not possible for even a single colour class to have nearly-perfect
coverage of U with defects in S. However, we can adapt the above nibble-absorption-Vizing approach to
work whenever H is not ‘close’ to Kn in the following sense.

Definition 2.2 ((ρ, ε)-full). Let H be an n-vertex linear hypergraph, and let G be the graph with V (G) :=
V (H) and E(G) := {e ∈ H : |e| = 2}. For ε, ρ ∈ (0, 1), H is (ρ, ε)-full if

• |{u ∈ V (H) : dG(u) ≥ (1− ε)n}| ≥ (1− 10ε)n, and
• |{v ∈ V (H) : dG(v) = n− 1}| ≥ (ρ− 15ε)n.

As mentioned above, when H is not (ρ, ε)-full we can adapt the nibble-absorption-Vizing approach to
show that χ′(H) ≤ n (with a reservoir of density ρ rather than 1/2). IfH is (ρ, ε)-full then we will ensure that
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the leftover H\H′ ⊆ R is a quasirandom almost regular graph (which involves a more careful choice of R –
again it will have density close to ρ rather than 1/2 but now it consists of a ‘random’ part and a ‘regularising’
part). This allows us to apply a result [20] on the overfull subgraph conjecture (see Corollary 9.6) which
implies that χ′(H \ H′) ≤ ∆(H \ H′). (The result in [20] is obtained as a straightforward consequence
of the result in [35] that robustly expanding regular graphs have a Hamilton decomposition, and thus, a
1-factorisation if they have even order.)

2.2. Colouring linear hypergraphs where all edges are large. Now we discuss how to prove Theo-
rems 1.1 and 1.2 when all edges of H have size at least some large constant. In this step it is often very
useful to consider the line graph L(H) of H and use the fact that χ(L(H)) = χ′(H). In this subsection, we
fix constants satisfying the hierarchy

0 < 1/n0 � 1/r � σ � δ,

we let n ≥ n0, and we let H be an n-vertex linear hypergraph such that every e ∈ H satisfies |e| > r.
Now we sketch a proof that χ′(H) ≤ n for such H. If H is a finite projective plane of order k, where
k2 + k + 1 = n, then the line graph L(H) is a clique Kn. Thus, χ′(H) = χ(L(H)) = n, so the bound
χ′(H) ≤ n is best possible. Thus, we refer to the case where H has approximately n edges of size (1± δ)

√
n

as the ‘FPP-extremal’ case. We also sketch how to prove the improved bound χ′(H) ≤ (1− σ)n if H is not
in the FPP-extremal case. As we discuss in the next subsection, we will need this result in the proof of
Theorem 1.1.

Consider an ordering � of the edges e1, e2, . . . , em of H according to their size, i.e., ei � ej if |ei| > |ej |
for every i, j ∈ [m]. For an edge e ∈ H, let d�H(e) denote the number of edges in H which intersect e
and precede e in �. Clearly, a greedy colouring following this size-monotone ordering achieves a bound of
χ′(H) ≤ maxi d

�
H(ei) + 1 (this bound was also used in [9, 25]). Moreover, it is easy to see that if this greedy

colouring algorithm fails to produce a colouring with at most (1 − σ)n colours, i.e., if an edge e satisfies

d�H(e) ≥ (1− σ)n, then almost all of the corresponding edges that intersect e and precede e must have size
close to |e|.

Surprisingly, if one allows some flexibility in the ordering (in particular, if we allow it to be size-monotone

only up to some edge e∗ such that d�H(e∗) ≥ (1 − σ)n while every edge f with e∗ � f satisfies d�H(f) <
(1−σ)n), then one can show much more: Either we can modify the ordering to reduce the number of edges
which come before e∗, or there is a set W ⊆ H (where e∗ is the last edge of W ) such that

(W1) |e∗| ≈ |e| for every e ∈W , and
(W2) the edges of W cover almost all pairs of vertices of H.
If |e∗| ≤ (1 − δ)

√
n, then one can show that L(W ) induces a ‘locally sparse’ graph (as H is linear).

Moreover, (W1) implies that the maximum degree of L(W ) is not too large, and thus one can show that
χ(L(W )) is much smaller than (1 − σ)n (leaving enough room to colour the edges preceding W with a
new set of colours). This together with (W2) allows us to extend the colouring of W to all of H using a
suitable modification of the above greedy colouring procedure for the remaining edges in H to obtain that
χ′(H) ≤ (1− σ)n, as desired.

If |e∗| ≥ (1 − δ)
√
n, then we first colour the edges of size at least (1 − δ)

√
n (in particular, the edges of

W ) as follows. Let H′ ⊆ H be the hypergraph consisting of these edges. If e(H′) ≤ n, then, of course, we
may colour the edges of H′ with different colours. Otherwise, if t := e(H′)− n > 0, the main idea is to find
a matching of size t in the complement of L(H′) (where L(H′) will be close to being a clique of order not
much more than n). By assigning the same colour to the edges of H′ that are adjacent in this matching,
we obtain χ′(H′) = χ(L(H′)) ≤ n. Now we extend the colouring to all of H using a suitable modification
of the above greedy colouring procedure again to obtain that χ′(H) ≤ n, as desired.

2.3. Combining colourings of the large and small edges. We now describe how one can prove Theorem
1.1 by building on the ideas described in Sections 2.1 and 2.2. In this subsection and throughout the rest
of the paper we work with constants satisfying the following hierarchy:

(2.1) 0 < 1/n0 � 1/r0 � ξ � 1/r1 � β � κ� γ1 � ε1 � ρ1 � σ � δ � γ2 � ρ2 � ε2 � 1.

Some of these constants are used to characterize the edges of a hypergraph by their size, as follows.

Definition 2.3 (Edge sizes). Let H be an n-vertex linear hypergraph with n ≥ n0.
• Let Hsmall := {e ∈ H : |e| ≤ r1}. An edge e ∈ H is small if e ∈ Hsmall.
• Let Hmed := {e ∈ H : r1 < |e| ≤ r0}. An edge e ∈ H is medium if e ∈ Hmed.
• Let Hlarge := {e ∈ H : |e| > r0}. An edge e ∈ H is large if e ∈ Hlarge.
• Let Hex := {e ∈ H : |e| = (1± δ)

√
n}. An edge e ∈ H is FPP-extremal if e ∈ Hex.
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1 r1 r0 (1− δ)
√
n (1 + δ)

√
n βn/4 n

small medium large

FPP-extremal huge

Figure 1. Types of edges based on their size

• Let Hhuge := {e ∈ H : |e| ≥ βn/4}. An edge e ∈ H is huge if e ∈ Hhuge.

Note that Hsmall,Hmed,Hlarge form a partition of the edges of H (see Figure 1). Also note that if H is
an n-vertex linear hypergraph and 1/n� α < 1, then

(2.2) |{e ∈ H : |e| ≥ αn}| ≤ 2/α.

In the proof of Theorem 1.1, given an n-vertex linear hypergraph H with n ≥ n0 (where we assume
H has no singleton edges), we first find a proper edge-colouring ψ1 : Hmed ∪ Hlarge → C1 as discussed in
Section 2.2, and then we extend it to a proper n-edge-colouring ofHsmall by adapting the argument presented
in Section 2.1. The proof proceeds slightly differently depending on whether we are in the FPP-extremal
case. As discussed in the previous subsection, in the non-FPP-extremal case, χ′(Hmed ∪Hlarge) ≤ (1− σ)n,
so we may assume |C1| = (1− σ)n. In this case, we let γ := γ1, ε := ε1, and ρ := ρ1; in the FPP-extremal
case, we let γ := γ2, ρ := ρ2, and ε := ε2. We define G and U as in Section 2.1, and we define a suitable
‘defect’ set S ⊆ U (whose choice now depends on the structure of H). In order to extend the colouring ψ1

of Hmed∪Hlarge to H, we need it to satisfy a few additional properties, which are provided by Theorem 6.1.
Roughly, we need that

(1) each colour class of ψ1 covers at most βn vertices, with exceptions for colour classes containing huge
or medium edges, and

(2) at most γn colours are assigned by ψ1 to colour medium edges.
We choose a ‘reservoir’ R from E(G); how we choose it depends on whether we are in the FPP-extremal

case. In the non-FPP-extremal case, we choose it as described in Section 2.1, and in the FPP-extremal case,
we include every edge of G incident to a vertex of U to be in R independently with probability ρ.

Let Chm ⊆ C1 be the set of colours assigned to a huge or medium edge by ψ1. Note that e(Hhuge) ≤ 8/β

by (2.2), so consequently, by (2), |Chm| ≤ 3γn/2. For each c ∈ Chm, we use Lemma 7.11 to extend ψ−1
1 (c)

(in the sense of Section 2.1) using edges of R, so that {ψ−1
1 (c) : c ∈ Chm} has nearly perfect coverage of U

with defects in S. There is possibly an exceptional colour class, which we call difficult (see Definition 7.10),
that we need to consider in this step. This situation arises if H is close to being a degenerate plane. If
H is the degenerate plane, then there is a huge edge e of size n − 1, and U consists of a single vertex of
degree n − 1. Even though H is not (ρ, ε)-full, if c is assigned to the edge e, it is clearly impossible to
extend ψ−1(c) to have perfect coverage of U , which would be necessary in order to finish the colouring with
Vizing’s theorem in the final step. However, if there is a difficult colour class that we cannot absorb, then
we show that we can colour H directly (see Lemma 7.12).

We now construct some H′ with Hsmall \R ⊆ H′ ⊆ Hsmall and a proper edge-colouring ψ2 : H′ → C2 such
that ψ2 is compatible with ψ1, |C2| is slightly larger than (1−ρ+γ)n, C2∩Chm = ∅, and {ψ−1

1 (c)∪ψ−1
2 (c) :

c ∈ Chm ∪ C2} has nearly-perfect coverage of U with defects in S. (Actually, as in Section 2.1 we obtain
this coverage property only for a suitable auxiliary hypergraph H∗ ⊇ H′, but we again ignore this here for
simplicity.) In the non-FPP-extremal case, since ρ = ρ1 � σ, this means we can reserve a set Cfinal of
colours (of size close to ρn) which are used neither by ψ1 nor by ψ2. Then in the final step of the proof, we
can colour the leftover graph Hsmall \ H′ ⊆ R (with colours from Cfinal) as described in Section 2.1. In the
FPP-extremal case, we may have |C1| = n, so we need to find a proper edge-colouring of Hsmall \ H′ using
colours from C1 \C2 while avoiding conflicts with ψ1. But in this case most pairs of vertices are contained in
an edge of Hex, which implies that |U | is small. Moreover, every edge of the leftover graph Hsmall \H′ ⊆ R
is incident to a vertex of U . These two properties allow us to colour the leftover graph Hsmall \ H′ with
∆(Hsmall \ H′) colours while using (1) and (2) to avoid conflicts with ψ1, as desired.

We conclude by discussing how to construct H′ and ψ2. Using the colours in C2, we colour all of the
edges of Hsmall \ R and some of the remaining uncoloured (by ψ1) edges of R based on the nibble and the
absorption strategy outlined in Section 2.1. For this, the following properties are crucial (which follow from
(1) and the definition of Hmed respectively).
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(a) ψ−1
1 (c) covers at most βn vertices for each c ∈ C2, and

(b) every vertex v ∈ V (H) is contained in at most n/(r0 − 1) edges that are assigned a colour in C2 by
ψ1 (since for any c ∈ C2, either ψ−1

1 (c) is empty or all the edges in ψ−1
1 (c) are large). Thus, each

edge in Hsmall still has slightly more than (1− ρ)n colours available in C2 that do not conflict with
ψ1 (since any edge of Hsmall intersects at most r1n/(r0 − 1) large edges and r1/(r0 − 1)� γ).

We will use (a) and (b) to show that the effect of the previously coloured edges (by ψ1) on the Rödl
nibble argument is negligible, i.e., we can adapt the arguments of Section 2.1, so that the colouring ψ2 of
H′ is compatible with ψ1.

2.4. Organisation of the paper. In Section 3, we introduce some notation that we use throughout the
paper, and in Section 4 we collect some tools that we use in the proof. In Section 5 we prove Theorem 1.1
for hypergraphs where every edge has size at least (1−δ)

√
n, and in Section 6, we prove Theorem 6.1, which

we use to colour the large and medium edges of our hypergraph. In Section 6, we also prove Theorems 1.2
and 1.3. (In particular, Theorems 1.2 and 1.3 do not rely on the subsequent sections.) In Section 7, we
prove several lemmas that we use for vertex absorption, and in Section 8, we show how to combine the
results of Section 7 with hypergraph matching results (based on the Rödl nibble) to colour the small edges
of our hypergraph not in the reservoir. In Section 9, we prove Lemma 9.2 and introduce Corollary 9.6, both
of which are used in the final step of the proof to colour the uncoloured reservoir edges. In Section 10 we
show how we select the reservoir edges, and finally in Section 11, we prove Theorem 1.1.

3. Notation

For n ∈ N, we write [n] := {k ∈ N : 1 ≤ k ≤ n}. We write c = a ± b if a − b ≤ c ≤ a + b. We use the
‘�’ notation to state our results. Whenever we write a hierarchy of constants, they have to be chosen from
right to left. More precisely, if we claim that a result holds whenever 0 < a� b ≤ 1, then this means that
there exists a non-decreasing function f : (0, 1] 7→ (0, 1] such that the result holds for all 0 < a, b ≤ 1 with
a ≤ f(b). We will not calculate these functions explicitly. Hierarchies with more constants are defined in a
similar way.

A hypergraph H is an ordered pair H = (V (H), E(H)) where V (H) is called the vertex set and E(H) ⊆
2V (H) is called the edge set. If E(H) is a multiset, we refer to H as a multi-hypergraph. Throughout the
paper we usually write H instead of E(H). We say that a (multi-)hypergraph H is r-uniform if for every
e ∈ E(H) we have |e| = r. In particular, 2-uniform hypergraphs are simply called graphs.

Given any multi-hypergraph H, let v(H) denote the number of vertices in H and let e(H) denote the
number of edges in H. Let H(i) := {e ∈ H : |e| = i}. Throughout the paper, we usually denote H(2) by G.
For any subset S ⊆ V (H), let H|S be the multi-hypergraph with the vertex set V (H|S) := S and edge set
H|S := {e ∩ S : e ∈ H and e ∩ S 6= ∅}. For any vertex v ∈ V (H), let EH(v) := {e ∈ H : v ∈ e}. We define
the degree of v by dH(v) := |EH(v)|. More generally, for any given multiset R ⊆ H, let ER(v) denote the
multiset of edges incident to v in R, and dR(v) := |ER(v)|. We denote the minimum and maximum degrees
of the vertices in H by δ(H) and ∆(H), respectively. Let V (d)(H) := {v ∈ H : dH(v) = d}. Moreover, if

d ∈ N, then let V
(d)
+ (H) := {v ∈ H : dH(v) ≥ d} and if x ∈ (0, 1), then let V

(x)
+ (H) := {v ∈ H : dH(v) ≥ xn},

where n := v(H). For any edge e ∈ H, the set NH(e) denotes the multiset of edges f ∈ E(H) \ {e} that
intersect e. The subscript H from NH(e) may be omitted if it is clear from the context. If H′ ⊆ H and
e ∈ H, then we denote NH(e) ∩H′ by NH′(e), even if e /∈ H′.

The line graph L(H) of a (multi-)hypergraph H = (V (H), E(H)) is the graph whose vertex set is E(H),
where two vertices in L(H) are adjacent if the corresponding edges in E(H) have a non-empty intersection.
A matching M in H is a subset of pairwise disjoint edges of H. We often regard M as a hypergraph with
V (M) :=

⋃
e∈M e. For any vertex u ∈ V (H), we say u is covered by a matching M if u ∈ e for some e ∈M .

For any X ⊆ V (H), we say that a matching M covers X if M covers every vertex in X. For any integer
k ≥ 0 and a (multi-)hypergraph H, a map φ : H → [k] is a proper edge-colouring of H if φ(e) 6= φ(f) for
any pair of distinct edges e, f ∈ H such that e ∩ f 6= ∅. For any integer i and a proper edge-colouring
φ : H → [k], let φ−1(i) be the set of edges e ∈ H with φ(e) = i. (Note that φ−1(i) is a matching, for any i.)

A (multi-)hypergraph H is linear if for any distinct e, f ∈ H, |e∩f | ≤ 1. A linear hypergraph may contain
singleton edges (but no edge is repeated). A linear multi-hypergraph may contain multiple singleton edges
incident to the same vertex but any edge of size at least two cannot be repeated (as that would contradict
linearity). Given any linear multi-hypergraph H on n vertices, and any W ⊆ H, the normalised volume of

W is defined as volH(W ) :=
∑
e∈W

(|e|
2

)
/
(
n
2

)
. We sometimes omit the subscript and write vol(W ) instead

of volH(W ) when it is clear from the context. Note that since H is linear, volH(W ) ≤ 1 for any W ⊆ H.



7

Given any graph G, for any subset of vertices V ′ ⊆ V (G), we denote the subgraph of G induced by V ′

as G[V ′] := (V ′, E′), where E′ := {e ∈ E(G) : e ⊆ V ′}. We write G− V ′ := G[V \ V ′]. If V ′ = {v}, then we
simply write G− v instead of G− {v}. For any disjoint pair of subsets S, T ⊆ V (G), let EG(S, T ) := {st ∈
E(G) : s ∈ S, t ∈ T}, and let eG(S, T ) := |EG(S, T )|. Let G := (V (G), E(G)) denote the complement of a
graph G. For any non-negative integer functions g, f : V (G) → Z, a subset F ⊆ E(G) is a (g, f)-factor in
G if g(w) ≤ dF (w) ≤ f(w) for each w ∈ V (G).

4. Preliminaries

We often use the following weighted version of Chernoff’s inequality.

Theorem 4.1 (Weighted Chernoff’s inequality [11]). Let c1, . . . , cm > 0 be real numbers, let X1, . . . , Xm

be independent random variables taking values 0 or 1, let X :=
∑m
i=1 ciXi and let C := maxi∈[m] ci. Then,

P(|X − E(X)| ≥ t) ≤ 2e
−t2

2C(E[X]+t/3) .

4.1. Pseudorandom hypergraph matchings. Now we state a special case of a recent result of Ehard,
Glock, and Joos [13] that provides a matching covering almost all vertices of every set in a given collection
of sets. This result will be used in the proof of Lemma 8.1. A similar result, but with weaker bounds, was
proved earlier by Alon and Yuster [5]. The proof in [13] is derived via an averaging argument from a result
on the chromatic index of hypergraphs by Molloy and Reed [37], which in turn relies on the Rödl nibble.

Theorem 4.2 (Ehard, Glock, and Joos [13]). Let r ≥ 2 be an integer, and let ε := 1/(1500r2). There
exists ∆0 such that the following holds for all ∆ ≥ ∆0. Let H be an r-uniform linear hypergraph with

∆(H) ≤ ∆ and e(H) ≤ exp(∆ε2). Let F∗ be a set of subsets of V (H) such that |F∗| ≤ exp(∆ε2) and∑
v∈S dH(v) ≥ ∆26/25 for any S ∈ F∗. Then, there exists a matching M0 in H such that for any S ∈ F∗,

we have |S ∩ V (M0)| = (1±∆−ε
2

)
∑
v∈S dH(v)/∆.

We remark that Theorem 4.2 is a direct application of [13, Theorem 1.2] by setting δ := 1/30 and the
weight functions wS(e) := |S∩e| for S ∈ F∗, where wS(H) ≥ maxe∈H wS(e)∆1+δ follows by the assumption∑
v∈S dH(v) ≥ ∆26/25, since wS(H) =

∑
v∈S dH(v) and wS(e) ≤ r for any e ∈ H.

Our vertex absorption arguments will actually require that the number of uncovered vertices in S is small
but not too small. So we need the following ‘sparsified’ version of Theorem 4.2, which allows us to have
better control on the number of uncovered vertices. To deduce Corollary 4.3 from Theorem 4.2, one simply
applies Theorem 4.2 to obtain a matching M0 (in H) and then we randomly remove each edge of M0 with
probability γ to obtain a matching M which satisfies the assertion of Corollary 4.3 with positive probability.
We remark that one could also derive Corollary 4.3 via a direct application of the Rödl nibble (see [31] for
a proof of a stronger result based on stronger assumptions).

Corollary 4.3. Let 0 < 1/n0 � 1/r, κ, γ < 1. For any integer n ≥ n0, let H be an r-uniform linear
n-vertex hypergraph such that every vertex has degree (1±κ)D, where D ≥ n1/100. Let F be a set of subsets
of V (H) such that |F| ≤ n2 logn. Then there exists a matching M of H such that for any S ∈ F with
|S| ≥ D1/20, we have |S \ V (M)| = (γ ± 4κ)|S|.

4.2. Embedding lemma. The following lemma allows us to embed any linear hypergraph H with maxi-
mum degree D into an almost regular, uniform, linear hypergraph Hunif with maximum degree D, satisfying
some additional properties.

Lemma 4.4. Let 0 < 1/N0, 1/D0, 1/C0 � 1/r ≤ 1/3, where r ∈ N. Let N ≥ N0, let C ≥ C0, let D ≥ D0,
and let H be an N -vertex linear multi-hypergraph with ∆(H) ≤ D. If every e ∈ H satisfies |e| ≤ r, then
there exists an r-uniform linear hypergraph Hunif such that the following hold.
(4.4.1) H ⊆ Hunif |V (H) and Hunif |V (H) \ H only contains singleton edges.
(4.4.2) For any v ∈ V (Hunif), D − C ≤ dHunif

(v) ≤ D. Moreover, if dH(v) ≥ D − C for v ∈ V (H), then
dHunif

(v) = dH(v).
(4.4.3) v(Hunif) ≤ r(r − 1)2D3N .

The proof of Lemma 4.4 is a straightforward modification of the proof of [31, Lemma 8.1]. Here we briefly
sketch the proof. First, let H∗ be an r-uniform linear hypergraph obtained from H by adding r − |e| new
vertices to each e ∈ H. Let T := (r − 1)2D2. For every (sufficiently large) integer d ≤ D, by considering
Steiner systems, one can easily construct a simple T -vertex r-uniform hypergraph Hd such that every vertex
of Hd has degree between d− cr and d for some constant cr depending on r. We define our desired multi-
hypergraph Hunif by taking the union of T vertex-disjoint copies of H∗, where the first copy is identified with
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H∗. Then, for each v ∈ V (H∗) with dH∗(v) < D − C, let v1, . . . , vT be the T clone vertices of v ∈ V (H∗)
in Hunif , and extend Hunif by making Hunif [{v1, . . . , vT }] induce a copy of HD−dH∗ (v), which implies that

D − cr ≤ dHunif
(vi) ≤ D for 1 ≤ i ≤ T .

4.3. Some colouring results. We use Vizing’s theorem [43] in the final step of our proof when H is not
(ρ, ε)-full in the non-FPP-extremal case. We also use the following stronger form in Lemma 7.12.

Theorem 4.5 (Vizing [43]). Every graph G with ∆(G) ≤ D satisfies χ′(G) ≤ D + 1. Moreover, if G
contains at most two vertices of degree D, then χ′(G) ≤ D.

The following theorem is used as one of the ingredients to prove Theorems 1.2 and 1.3 in Section 6, as
well as in Section 8 to colour a small ‘leftover’ part in Lemma 8.3.

Theorem 4.6 (Kahn [28]). Let 0 < 1/D0 � α, 1/r < 1, and let D ≥ D0. Let H be a linear hypergraph
such that ∆(H) ≤ D, and every e ∈ H satisfies |e| ≤ r. Let C be a set with |C| ≥ (1 + α)D, and for each
e ∈ H, let C(e) ⊆ C and |C(e)| ≤ αD/2. Then there exists a proper edge-colouring φ : H → C such that
φ(e) /∈ C(e) for each e ∈ H.

Theorem 4.6 immediately follows from [28, Theorem 1.1] by defining a list S(e) := C \ C(e) of available
colours for each e ∈ H.

5. Colouring FPP-extremal and larger edges

In this section we prove Theorem 1.1 when all edges are FPP-extremal or larger, as follows.

Lemma 5.1. Let 0 < 1/n0 � δ � 1, and let n ≥ n0. If H is an n-vertex linear hypergraph where every
e ∈ H satisfies |e| ≥ (1 − δ)

√
n, then H has a proper edge-colouring with n colours, where each colour is

assigned to at most two edges.

First we need the following simple observations. For a hypergraph H, recall that L(H) denotes the line

graph of H and L(H) denotes its complement.

Observation 5.2. Let H be an n-vertex linear hypergraph. If there is a matching N in L(H) of size
e(H)− n, then H has a proper edge-colouring with n colours, where each colour is assigned to at most two
edges. �

A pair {e, f} ⊆ H in an n-vertex hypergraph H is useful if e 6= f , e ∩ f 6= ∅, and |N(e) ∩N(f)| ≤ n.

Proposition 5.3. Let H be an n-vertex linear hypergraph, and let t := e(H) − n. If e1, . . . , e2t ∈ H are
distinct pairwise intersecting edges such that {e2i−1, e2i} is a useful pair for each i ∈ [t], then H has a proper
edge-colouring with n colours, where each colour is assigned to at most two edges.

Proof. We may assume that e(H) > n. We will show that there exists a matching N in L(H) of size t.
For i ∈ [t], suppose we have chosen distinct edges z1, . . . , zi−1 ∈ H \ {e1, . . . , e2t} where zj is non-

adjacent to at least one of e2j−1 or e2j in L(H) for 1 ≤ j ≤ i − 1. We claim that one can choose
zi ∈ H \ {e1, . . . , e2t} distinct from z1, . . . , zi−1 such that zi is non-adjacent to either e2i−1 or e2i in L(H).
Indeed, since |N(e2i−1) ∩ N(e2i)| ≤ n, letting S := H \ (N(e2i−1) ∩ N(e2i)), we have |S| ≥ e(H) − n and
every e ∈ S is non-adjacent to at least one of e2i−1 or e2i. Since i− 1 ≤ e(H)− n− 1 we can choose zi ∈ S
distinct from z1, . . . , zi−1. Moreover, since S ∩ {e1, . . . , e2t} = ∅, we have zi ∈ H \ {e1, . . . , e2t}, as desired.

Let z1, z2, . . . , zt ∈ H \ {e1, . . . , e2t} be chosen using the above procedure. Then since zj is non-adjacent

to either e2j−1 or e2j for each j ∈ [t], we have a matching N in L(H) of size t = e(H) − n. Now applying
Observation 5.2, the proof is complete. �

Proposition 5.4. Let H be an n-vertex linear hypergraph, and let {A,B} be a partition of H such that
|A| + |B| − n ≤ |A|/4. If for every distinct intersecting e, f ∈ A, the pair {e, f} is useful, then H has a
proper edge-colouring with n colours, where each colour is assigned to at most two edges.

Proof. We may assume that |A| + |B| ≥ n + 1. Let N be a matching of maximum size in L(H). If
|N | ≥ e(H)− n = |A|+ |B| − n, then by Observation 5.2, we have a proper colouring of H with the desired
properties. Thus we may assume that |N | ≤ |A|+ |B| − n. Then we have

|A \ V (N)| − 2(|A|+ |B| − n) ≥ |A| − 4(|A|+ |B| − n) ≥ 0

since we assumed |A| + |B| − n ≤ |A|/4. By the maximality of N , all pairs e, f ∈ A \ V (N) are adjacent.
Thus we may choose 2t := 2(|A|+ |B| −n) distinct a1, . . . , a2t ∈ A \V (N) which are pairwise adjacent such
that |N(a2i−1) ∩N(a2i)| ≤ n holds for each i ∈ [t]. Thus we can apply Proposition 5.3 to {a1, . . . , a2t} to
complete the proof. �
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Proposition 5.5. Let 0 < 1/n0 � δ � 1, and let n ≥ n0 satisfy k2 + k + 1 ≥ n ≥ (k − 1)2 + k + 1 where
n, k ∈ N. Let H be an n-vertex linear hypergraph where every e ∈ H satisfies |e| ≥ (1 − δ)

√
n, and let

e, f ∈ H be distinct intersecting edges of size at most k. Let w ∈ e ∩ f , and let m be the number edges of
size at most k − 1 containing w. If at least one of e or f has size at most k − 1, or if m ≤ 1/(3δ), then
{e, f} is a useful pair.

Proof. If at least one of e or f has size at most k − 1, then

|N(e) ∩N(f)| ≤ (|e| − 1)(|f | − 1) + d(w)− 2 ≤ (k − 1)(k − 2) +
n− 1

(1− δ)
√
n− 1

≤ (k2 − k + 2)− 2k + (1 + 2δ)
√
n ≤ n,

as desired.
Now we may assume |e| = |f | = k and m ≤ 1/(3δ) ≤ 1−2/(k−1)

2δ . Let us consider the number of vertices
in V (H) \ (e ∪ f) sharing an edge with w. By the definition of m and the linearity of H, we have

m((1− δ)
√
n− 1) + (d(w)− 2−m)(k − 1) ≤ n− |e ∪ f | = n− 2k + 1 ≤ k(k − 1) + 2,

which implies

(5.1) d(w)− 2 ≤ k(k − 1) + 2

k − 1
+m

(
1− (1− δ)

√
n− 1

k − 1

)
≤ k(k − 1) + 2

k − 1
+ 2δm.

Thus,

|N(e) ∩N(f)| ≤ (|e| − 1)(|f | − 1) + d(w)− 2
(5.1)

≤ k2 − k + 1 +
2

k − 1
+ 2δm ≤ n,

so {e, f} is a useful pair, as desired. �

Now we prove Lemma 5.1.

Proof of Lemma 5.1. First of all, we may assume that e(H) > n. Let k be a positive integer such that

(5.2) k2 − k + 2 = (k − 1)2 + k + 1 ≤ n ≤ k2 + k + 1,

let A− := {e ∈ H : |e| ≤ k − 1}, let A+ := {e ∈ H : |e| = k}, let A := A− ∪ A+, and let B := {e ∈ H :
|e| ≥ k + 1}. Note that

volH(B) ≥ |B| k(k + 1)

n(n− 1)

(5.2)

≥ |B|
n
.

Since |e| ≥ (1− δ)
√
n for all e ∈ H, we have

volH(A) ≥ |A|
(

(1− δ)
√
n

2

)(
n

2

)−1

≥ |A|1− 2δ

n
.(5.3)

Combining the above two inequalities with volH(A) + volH(B) ≤ 1, we have

|A|+ |B| − n ≤ 2δ|A|.(5.4)

If |A−| ≤ 300, then by Proposition 5.5, for any distinct intersecting e, f ∈ A, we have that {e, f} is
useful. Moreover, (5.4) implies that |A| + |B| − n ≤ |A|/4. Thus we can apply Proposition 5.4 to obtain
a proper edge-colouring of H with the desired properties, proving the lemma in this case. Hence, we may
assume that

(5.5) |A−| > 300.

Note that

volH(A+ ∪B) ≥ |B| k(k + 1)

n(n− 1)
+ |A+| k(k − 1)

n(n− 1)

(5.2)

≥ |B|
n

+
|A+|
n

(
1− 3√

n

)
.

Similarly as in (5.3), we have volH(A−) ≥ |A−|(1 − 2δ)/n. Combining the previous two inequalities with
the fact that volH(A+ ∪B) + volH(A−) ≤ 1, we obtain

e(H)− n = |A−|+ |A+ ∪B| − n ≤ 3|A+|√
n

+ 2δ|A−|.(5.6)

Thus if |A+| ≤
√
n|A−|/15, then we have |A−| + |A+ ∪ B| − n ≤ |A−|/4. Using this inequality and

Proposition 5.5, we can apply Proposition 5.4 with A− and A+∪B playing the roles of A and B, respectively,
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to obtain an edge-colouring of H with the desired properties, proving the lemma in this case. Thus we can
assume that

(5.7) |A+| >
√
n|A−|
15

(5.5)

≥ 20
√
n.

Now let t := e(H)−n, let L := L(H) be the line graph of H, and let N be a maximal matching in L. We
assume |N | < t, as otherwise by Observation 5.2, we obtain the desired proper edge-colouring of H, proving
the lemma. Combining this inequality with (5.6) and (5.7), we have

(5.8) |N | < t ≤ 3|A+|√
n

+ 2δ|A−| < 5|A+|√
n
.

Most of the remainder of the proof is devoted to the following claim.

Claim 1. There are 2t distinct e1, . . . , e2t ∈ A+ such that
(i) e1, . . . , e2t are pairwise intersecting and

(ii) {e2i−1, e2i} is useful for i ∈ [t].

Proof of claim: Since N is maximal, H \ V (N) is a clique in L. We choose e1, . . . , e2t in A+ \ V (N), which
will ensure that (i) holds.

For each x ∈ V (H), let Ax := {e ∈ A− : x ∈ e}, and let Vbad := {x ∈ V (H) : |Ax| ≥ (4δ)−1}.
Thus, if e, f ∈ H are distinct and intersecting such that w /∈ Vbad where w ∈ e ∩ f , then {e, f} is useful by
Proposition 5.5. We choose e1, . . . , e2t such that w ∈ e2i−1∩e2i satisfies w /∈ Vbad, which will ensure that (ii)
holds. Let P := {(w, e) : w ∈ Vbad and w ∈ e ∈ A−}, and note that |Vbad| · (4δ)−1 ≤ |P| ≤ (k − 1)|A−| ≤
2
√
n|A−|. Thus,

(5.9) |Vbad| ≤ 8δ|A−|
√
n.

Now let A∗ := {e ∈ A+ : |e∩Vbad| ≥
√
δn}, and note that |A∗|

√
δn ≤ |Vbad|n−1

k−1

(5.9)

≤ 16δn|A−|. Therefore

(5.10) |A∗| ≤ 16
√
δn|A−|

(5.7)

≤ |A+|
20

.

Thus

(5.11) |A+ \ (A∗ ∪ V (N))| ≥ |A+| − |A∗| − |V (N)|
(5.8),(5.10)

≥ 9|A+|
10

(5.7)

≥ 18
√
n.

Now we iterate the following procedure for i ∈ [t′], where t′ := d|A+|/4e. Suppose we have chosen distinct
e1, . . . , e2(i−1) ∈ A+ \ (A∗ ∪ V (N)) such that {e2j−1, e2j} is useful for each j ∈ [i − 1]. Consider the set

Si := A+ \
(
A∗ ∪ V (N) ∪ {e1, . . . , e2(i−1)}

)
, which has size

(5.12) |Si| ≥ |A+ \ (A∗ ∪ V (N))| − 2(t′ − 1)
(5.11)

≥ 9|A+|
10

− |A
+|

2

(5.7)

≥ 5
√
n.

We first show that there exists a useful pair {e2i−1, e2i} ⊆ Si. For any e ∈ Si, we have |e ∩ Vbad| ≤
√
δn

since Si ⊆ A+ \A∗. Therefore, letting Pi := {(w, e) : e ∈ Si, w ∈ e \ Vbad}, we have

1

|V (H) \ Vbad|
∑

w∈V (H)\Vbad

dSi(w) =
|Pi|

|V (H) \ Vbad|
≥ |Pi|

n
=

1

n

∑
e∈Si

|e \ Vbad|

≥ |Si|(k −
√
δn)

n

(5.12),(5.2)

≥ 5
√
n ·
√
n/2

n
> 2.

Thus there exists a vertex w ∈ V (H) \ Vbad with dSi
(w) ≥ 2, which implies that there is a useful pair

{e2i−1, e2i} ⊆ Si such that w ∈ e2i−1 ∩ e2i.
The above procedure constructs a useful pair {e2i−1, e2i} ⊆ A+\(A∗∪V (N)) for each i ∈ [t′]. Recall that

since N is maximal, the elements of A+ \ V (N) are pairwise intersecting. Since t′ ≥ |A+|/4 > t = e(H)− n
by (5.8), e1, . . . , e2t satisfy (i) and (ii), as claimed. �

Now by combining Claim 1 and Proposition 5.3, there is a proper edge-colouring of H with n colours
such that each colour is assigned to at most two edges, which completes the proof of Lemma 5.1. �
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6. Colouring large and medium edges

The main result of this section is the following, which we use in the proof of Theorem 1.1 to colour large
and medium edges.

Theorem 6.1. Let 0 < 1/n0 � 1/r0 � 1/r1, β � γ1 � σ � δ � γ2 � 1, and let n ≥ n0. If H is an
n-vertex linear hypergraph where every e ∈ H satisfies |e| > r1, then at least one of the following holds:

(6.1:a) There exists a proper edge-colouring of H using at most (1− σ)n colours such that
(i) every colour assigned to a huge edge is assigned to no other edge,

(ii) every medium edge is assigned a colour from a set Cmed of size at most γ1n such that for every
c ∈ Cmed, at most γ1n vertices are incident to an edge coloured c, and

(iii) for every colour c /∈ Cmed not assigned to a huge edge, at most βn vertices are incident to an
edge coloured c.

(6.1:b) There exists a set of FPP-extremal edges of volume at least 1− δ and a proper edge-colouring of H
using at most n colours such that
(i) for every colour c assigned to a huge edge, at most δn vertices are incident to an edge coloured

c,
(ii) every medium edge is assigned a colour from a set Cmed of size at most γ2n such that for every

c ∈ Cmed, at most γ1n vertices are incident to an edge coloured c, and
(iii) for every colour c /∈ Cmed not assigned to a huge edge, at most βn vertices are incident to an

edge coloured c.

Note that every linear hypergraph H satisfies volH(H) ≤ 1, so in (6.1:b), the FPP-extremal edges contain
almost all of the pairs of vertices.

We now prove Theorem 1.2 by combining Theorem 4.6 and Theorem 6.1.

Proof of Theorem 1.2. Without loss of generality, we may assume that δ is sufficiently small. Let 0 <
1/n0 � 1/r0 � 1/r1, β � γ � σ � δ � 1, and recall Hsmall, Hmed, Hlarge, and Hex were defined in
Definition 2.3. By assumption, e(Hex) ≤ (1− 3δ)n, so

volH(Hex) ≤ (1− 3δ)n ·
(

(1 + δ)
√
n

2

)(
n

2

)−1

≤ (1− 3δ)(1 + δ)2n

n− 1
< 1− δ.

Hence, applying Theorem 6.1 withHmed∪Hlarge, γ, σ, and δ playing the roles ofH, γ1, σ, and δ, respectively,
we obtain a proper edge-colouring φ′ : Hmed ∪ Hlarge → [(1 − σ)n] and Cmed ⊆ [(1 − σ)n] such that every
e ∈ Hmed satisfies φ′(e) ∈ Cmed and |Cmed| ≤ γn.

For every e ∈ Hsmall, let C(e) := {φ′(f) : f ∈ Hlarge , e ∩ f 6= ∅}. Note that for each vertex w ∈ V (H),

there are at most 2r−1
0 n edges of Hlarge incident to w. Therefore, for every e ∈ Hsmall, there are at most

2r1r
−1
0 n edges f ∈ Hlarge such that e ∩ f 6= ∅. Hence, |C(e)| ≤ βn. So applying Theorem 4.6 with Hsmall,

3β, r1, b(1 − δ)nc, [(1 − σ)n] \ Cmed playing the roles of H, α, r, D, C, respectively, we obtain a proper
edge-colouring φ′′ : Hsmall → [(1− σ)n] \ Cmed such that for every e ∈ Hsmall, φ

′′(e) 6∈ C(e), which implies
that φ′′(e) 6= φ′(f) for every f ∈ Hlarge with e ∩ f 6= ∅. Hence φ := φ′ ∪ φ′′ : H → [(1 − σ)n] is a proper
edge-colouring, as desired. �

6.1. Reordering. If � is a linear ordering of the edges of a hypergraph H, for each e ∈ H, we define
N�H(e) := {f ∈ NH(e) : f � e} and d�H(e) := |N�H(e)|. We omit the subscript H when it is clear from the
context. For each e ∈ H, we also let H�e := {f ∈ H : f � e}. The main result of this subsection is the
following key lemma, which we use to find the ordering of the edges of H mentioned in Section 2.2.

Lemma 6.2 (Reordering lemma). Let 0 < 1/r1 � τ, 1/K where τ < 1 and K ≥ 1. If H is an n-vertex
linear hypergraph where every e ∈ H satisfies |e| ≥ r1, then there exists a linear ordering � of the edges of
H such that at least one of the following holds.

(6.2:a) Every e ∈ H satisfies d�(e) ≤ (1− τ)n.
(6.2:b) There is a set W ⊆ H such that

(W1) maxe∈W |e| ≤ (1 + 3τ1/4K4) mine∈W |e| and

(W2) volH(W ) ≥ (1−τ−7τ1/4/K)2

1+3τ1/4K4 .

Moreover, if e∗ is the last edge of W , then
(O1) for all f ∈ H such that e∗ � f and f 6= e∗, we have d�(f) ≤ (1− τ)n and
(O2) for all e, f ∈ H such that f � e � e∗, we have |f | ≥ |e|.
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Proposition 6.3. Let α1, α2, τ ≥ 0. Let H be an n-vertex linear hypergraph where every e ∈ H satisfies
|e| ≥ 1 + α2. Let e ∈ H, let r := |e|, let m1 := |{f ∈ N(e) : |f | ≥ (1 + α1)r}|, and let m2 := |{f ∈ N(e) :
(1 + α1)r > |f | ≥ r/(1 + α2)}|. If r > 1 + α2, then

(i) (1 + α1)m1 +
m2

1 + α2
≤ n+

(1 + α2)n

r − 1− α2
.

Moreover, if m1 +m2 ≥ (1− τ)n and α1 > 0, then

(ii) m1 ≤
(
τ +

(1 + α2)(1 + α2r)

r − 1− α2

)
n

α1
.

If � is an ordering of the edges of an n-vertex linear hypergraph H satisfying e � f if |e| > |f |, then
Proposition 6.3(i) with α1, α2, τ = 0 implies that every e ∈ H with |e| ≥ 2 satisfies d�(e) ≤ (1+1/(|e|−1))n.
This well-known fact immediately implies that every linear n-vertex hypergraph H satisfies χ′(H) ≤ 2n+ 1,
and if all of its edges have size at least r1 ≥ 2, then χ′(H) ≤ (1 + 1/(r1 − 1))n+ 1.

Proof of Proposition 6.3. There are exactly r(n − r) pairs of vertices {u, v} of H where u /∈ e and v ∈ e.
Thus, since H is linear,

∑
f∈N(e)(|f | − 1) ≤ r(n− r). In particular,∑

f∈N(e):|f |≥(1+α1)r

((1 + α1)r − 1) +
∑

f∈N(e):(1+α1)r>|f |≥r/(1+α2)

(r/(1 + α2)− 1) ≤ r(n− r).

Dividing both sides of this inequality by r and rearranging terms, we obtain

(6.1) (1 + α1)m1 +m2/(1 + α2) ≤ n− r + (m1 +m2)/r.

Similarly, we have

(6.2) m1 +m2 ≤
r(n− r)

r/(1 + α2)− 1
≤ (1 + α2)rn

r − 1− α2
.

Substituting this inequality in the right side of (6.1), we obtain (i), as desired.
Now suppose additionally m1 +m2 ≥ (1− τ)n and α1 > 0. By combining the former inequality with (i),

we obtain α1m1 ≤ τn+ n(1 + α2)/(r − 1− α2) + (1− 1/(1 + α2))m2. Since 1− 1/(1 + α2) ≤ α2, we have
α1m1 ≤ τn + n(1 + α2)/(r − 1 − α2) + α2m2, and by combining this inequality with the bound on m2

from (6.2), we obtain (ii), as desired. �

Proof of Lemma 6.2. We consider an ordering � of the edges of H satisfying (O1) and (O2) for some e∗ ∈ H
such that e(H�e∗) is minimum. Note that such an ordering exists – in particular, any ordering where f � e
whenever |f | ≥ |e| satisfies (O1) and (O2) for e∗, where e∗ is the last edge in the ordering.

If e(H�e∗) = 1, then � satisfies (6.2:a), as desired, so we assume we do not have this case. Now we have
d�(e∗) > (1 − τ)n, or else the predecessor of e∗ also satisfies (O1) and (O2), contradicting the choice of
e(H�e∗) to be minimum.

Let r := |e∗|, and let W := {f � e∗ : |f | ≤ (1 + 3τ1/4K4)r}. We claim that W satisfies (6.2:b). By the
choice of �, every e ∈ N�(e∗) satisfies

(6.3) |N(e) ∩H�e
∗
| > (1− τ)n,

or else we can make e the successor of e∗. Let X := {e ∈ N�(e∗) : |e| ≤ (1 + K
√
τ)r}. By (O2), we may

apply Proposition 6.3(ii) with K
√
τ and 0 playing the roles of α1 and α2, respectively, to obtain

(6.4) |X| ≥ (1− τ)n− |N�(e∗) \X| ≥
(

1− τ − τ + 2/r

K
√
τ

)
n ≥

(
1− τ − 2

√
τ

K

)
n.

Consider e ∈ X. Note that by (O2) and the definition of W , every f ∈ H�e∗ \ W satisfies |f | ≥
(1 + 3τ1/4K4)r ≥ (1 + K3τ1/4)|e|. We now aim to apply Proposition 6.3(ii) to e with K3τ1/4 and K

√
τ

playing the roles of α1 and α2, respectively. Let m1 and m2 be defined as in Proposition 6.3. Then
|(N(e) ∩ H�e∗) \W )| ≤ m1. Moreover, since e ∈ X, (6.3) implies that m1 +m2 ≥ (1− τ)n. Thus, we can
apply Proposition 6.3 to deduce that for every e ∈ X we have

(6.5) |(N(e) ∩H�e
∗
) \W | ≤

(
τ +

1 +K
√
τ +K

√
τ |e|+K2τ |e|

|e|/2

)
n

K3τ1/4
≤ 6K2

√
τ

K3τ1/4
n =

6τ1/4

K
n.

(In the second inequality, we used that |e| ≥ r by (O2).)
Now we use these inequalities to lower bound the size of W . First we claim that every e ∈ X satisfies

(6.6) |N(e) ∩ (W \N(e∗))| ≥ (1− τ − 7τ1/4/K)n− (1 +K
√
τ)r2.
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To that end, we bound |N(e) ∩ N�(e∗)|, as follows. Let N1 := {f ∈ N(e) ∩ N�(e∗) : f ∩ e∗ = e ∩ e∗}
and N2 := (N(e) ∩N�(e∗)) \N1. Since H is linear and every edge in N�(e∗) has size at least r, we have
|N1| ≤ n/(r − 1) and |N2| ≤ (|e| − 1)(|e∗| − 1) ≤ (1 +K

√
τ)r2. Thus,

(6.7) |N(e) ∩N�(e∗)| ≤ n

r − 1
+ (1 +K

√
τ)r2.

On the other hand, since W ⊆ H�e∗ , |N(e) ∩ (W \N(e∗))| = |(N(e) ∩H�e∗) ∩ (W \N(e∗))|. Moreover,
we have

|(N(e) ∩H�e
∗
) ∩ (W \N(e∗))| ≥ |N(e) ∩H�e

∗
| − |(N(e) ∩H�e

∗
) \W | − |N(e) ∩N�(e∗)|.

Combining this inequality with (6.3), (6.5), (6.7), one can see that (6.6) follows, as claimed.
For every f ∈W \N(e∗), we also have

(6.8) |N(f) ∩X| ≤ |N(f) ∩N(e∗)| ≤ |f ||e∗| ≤ (1 + 3τ1/4K4)r2.

Since
∑
e∈X |N(e)∩ (W \N(e∗))| = |{(e, f) : e ∈ X, f ∈W \N(e∗), e ∈ N(f)}| =

∑
f∈W\N(e∗) |N(f)∩X|,

by combining (6.6) and (6.8), we have

|W \N(e∗)| ≥ |X|
(

(1− τ − 7τ1/4/K)n

(1 + 3τ1/4K4)r2
− 1 +K

√
τ

1 + 3τ1/4K4

)
,

and since X ⊆ N(e∗) ∩W , this inequality implies

|W | ≥ |X|
(

(1− τ − 7τ1/4/K)n

(1 + 3τ1/4K4)r2
+ 1− 1 +K

√
τ

1 + 3τ1/4K4

)
≥
(

1− τ − 2
√
τ

K

)(
1− τ − 7τ1/4/K

1 + 3τ1/4K4

)
n2

r2
,

where the second inequality follows from (6.4) and the fact that 1 ≥ 1+K
√
τ

1+3τ1/4K4 . Thus, volH(W ) ≥

|W |
(
r
2

)
/
(
n
2

)
≥ |W | r

2

n2 (1 − 1/r) ≥ (1−τ−7τ1/4/K)2

1+3τ1/4K4 , so W satisfies (6.2:b), as claimed, and moreover, � satis-

fies (O1) and (O2), as required. �

6.2. Colouring locally sparse graphs. To prove Theorem 6.1 we use the following theorem [38, Theo-
rem 10.5], which has been improved in [8, 7, 23].

Theorem 6.4 (Molloy and Reed [38]). Let 0 < 1/∆� ζ ≤ 1. Let G be a graph with ∆(G) ≤ ∆. If every

v ∈ V (G) satisfies e(G[N(v)]) ≤ (1− ζ)
(

∆
2

)
, then χ(G) ≤ (1− ζ/e6)∆.

Corollary 6.5. Let 0 < 1/n0, 1/r � α � ζ < 1, let n ≥ n0, and suppose r ≤ (1 − ζ)
√
n. If H is an

n-vertex linear hypergraph such that every e ∈ H satisfies |e| ∈ [r, (1 + α)r], then χ′(H) ≤ (1− ζ/500)n.

Proof. Let ∆ := (1 + α)r(n − r)/(r − 1), and let L := L(H). For every edge e ∈ H, there are at most
(1 + α)r(n− r) pairs of vertices {u, v} of H where u /∈ e and v ∈ e. Thus, since H is linear and every edge
has size at least r, we have ∆(L) ≤ ∆. Similarly, if e, f ∈ H share a vertex, then |NL(e)∩NL(f)| ≤ n/(r−
1)+(1+α)2r2 ≤ (1−5ζ/6)n. Thus, every v ∈ V (L) satisfies e(L[N(v)]) ≤ ∆(1−5ζ/6)n/2 ≤ (1−5ζ/6)

(
∆
2

)
.

Therefore by Theorem 6.4, χ′(H) = χ(L) ≤ (1− 5ζ/(6e6))∆ ≤ (1− ζ/500)n, as desired. �

In the proof of Theorem 1.3, we use the following theorem, which has been further improved in [1, 4, 12,
44].

Theorem 6.6 (Alon, Krivelevich, and Sudakov [4]). Let 0 < ζ, 1/K6.6 � 1. Let G be a graph with
∆(G) ≤ ∆. If every v ∈ V (G) satisfies e(G[N(v)]) ≤ ζ∆2, then χ(G) ≤ K6.6∆/ log(1/ζ).

We need the following corollary of Theorem 6.6. The proof is nearly identical to the proof of Corollary 6.5,
with Theorem 6.4 replaced by Theorem 6.6, so we omit it.

Corollary 6.7. Let 0 < 1/n0 � η � α, ε < 1, and let n ≥ n0. If H is an n-vertex linear hypergraph such
that every e ∈ H satisfies 1/η ≤ |e| ≤ η

√
n and mine∈H |e| ≥ αmaxe∈H |e|, then χ′(H) ≤ εn.

We remark that the proof of Corollary 6.7 is also similar to that of [17, Theorem 1.1], where a similar
statement was proved for uniform regular linear hypergraphs (which implies that the EFL conjecture holds
for all r-uniform regular linear n-vertex hypergraphs satisfying c ≤ r ≤

√
n/c for some constant c > 0).
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6.3. Proof of Theorems 1.3 and 6.1. Let φ be a proper edge-colouring of an n-vertex hypergraph H.
For α ∈ (0, 1), we say φ is α-bounded if every colour c satisfies at least one of the following: c is assigned to
at most one e ∈ H, or φ−1(c) covers at most αn vertices of H.

Proposition 6.8. Let α > 0, and let H be an n-vertex linear hypergraph where every e ∈ H satisfies
|e| ≥ r + 1.

(i) If M1, . . . ,Mt are pairwise edge-disjoint matchings in H that each cover at least αn vertices, then
t ≤ n/(αr).

(ii) There is an α-bounded proper edge-colouring of H using at most χ′(H) + 2n/(α2r) colours.

Proof. Since H is linear, we have 1 ≥ volH

(⋃t
i=1Mi

)
=
∑t
i=1 volH(Mi). Moreover, for each i ∈ [t],

volH(Mi) ≥ αn
r+1

(
r+1

2

)/(
n
2

)
≥ αr/n. Combining these inequalities, we have t ≤ n/(αr), as desired for (i).

Now let φ be a proper edge-colouring ofH using a set C of χ′(H) colours. For each c ∈ C, letMc := φ−1(c),
and let C ′ := {c ∈ C : |V (Mc)| > αn}. By (i), we have |C ′| ≤ n/(αr). For each c ∈ C ′, there is a partition
of Mc into a set Mc of pairwise disjoint matchings such that every M ∈ Mc covers at least αn/2 vertices
and satisfies at least one of the following: |M | = 1, or M covers at most αn vertices of H. Note that
|Mc| ≤ 2/α. Now for each c ∈ C ′, we choose a distinct set of |Mc| colours Cc disjoint from C, and we
define a proper edge-colouring φ′ of H as follows. For each c ∈ C \C ′ and e ∈Mc, we let φ′(e) := φ(e). For
each c ∈ C ′ and e ∈ Mc, we let φ′(e) ∈ Cc such that for every M ∈ Mc, every edge of M is assigned the
same colour. By the choice of Mc, every colour is either assigned to at most one e ∈ H by φ′, or there are
at most αn vertices of H that are incident to an edge assigned that colour, so φ′ is α-bounded, as desired.
Moreover, by the bounds on |Mc| and |C ′|, the colouring φ′ uses at most |C|+ 2|C ′|/α ≤ χ′(H) + 2n/(α2r)
colours, as desired for (ii). �

Proposition 6.9. Let 0 < 1/n0 � 1/r � α1, α2 < 1, and let n ≥ n0. Let � be a linear ordering of the
edges of an n-vertex linear hypergraph H where every e ∈ H satisfies |e| ≥ r. If C is a list-assignment for
the line graph of H such that every e ∈ H satisfies |C(e)| ≥ d�(e)+α1n, then there is an α2-bounded proper
edge-colouring φ of H such that φ(e) ∈ C(e) for every e ∈ H.

Proof. Let Hbig := {e ∈ H : |e| ≥ α2n/2}, and note that e(Hbig) ≤ 4/α2 by (2.2). By possibly reordering �
and replacing α1 with α1/2, we may assume without loss of generality that every e ∈ Hbig satisfies e � f
for f ∈ H \ Hbig.

Choose an edge e∗ ∈ H and an α2-bounded proper edge-colouring φ of H�e∗ satisfying φ(e) ∈ C(e) for
every e ∈ H�e∗ such that e(H�e∗) is maximum. Note that such a choice indeed exists, for example when e∗

is the first edge in �. We claim that e∗ is the last edge of H in �, in which case φ is the desired colouring.
Suppose to the contrary, and let f be the successor of e∗. We have f /∈ Hbig, or else assigning f a colour in
C(f) \ {φ(e) : e � f} would yield an α2-bounded colouring of H�f , contradicting the choice of e∗.

Now let C1 :=
⋃
e∈N�(f) φ(e), and let C2 be the set of colours c for which there are at least α2n/2

vertices of H incident to an edge assigned the colour c. If there is a colour c ∈ C(f) \ (C1 ∪ C2), then
assigning φ(f) := c would yield an α2-bounded colouring of H�f , contradicting the choice of e∗. Therefore
|C1| + |C2| ≥ |C(f)|, and since |C1| ≤ d�(f), we have |C2| ≥ α1n/2. However, by Proposition 6.8(i),
|C2| ≤ 2n/(α2(r − 1)) < α1n/2, a contradiction. �

Before we prove Theorem 6.1, we prove Theorem 1.3 using Theorem 4.6, Lemma 6.2, Corollary 6.7, and
Proposition 6.9. The proof of Theorem 6.1 uses similar ideas, with Corollary 6.5 instead of Corollary 6.7.

Proof of Theorem 1.3. We may assume that ε � 1. Choose n0, η to satisfy 0 < 1/n0, η � ε. First we
decompose H into three spanning subhypergraphs, as follows. Let H1 := {e ∈ H : 1/η < |e| < η

√
n}, let

H2 := {e ∈ H : |e| ≤ 1/η}, and let H3 := {e ∈ H : |e| ≥
√
n/η}. Since ∆(H) ≤ ηn, by Theorem 4.6 applied

to H2 with ηn, 1/2, and 1/η playing the roles of D, α, and r, respectively, we have χ′(H2) ≤ 3ηn/2 ≤ εn/4.
Since H is linear and volH(H3) ≤ 1, we have e(H3) ≤ 2ηn, and thus, χ′(H3) ≤ 2ηn ≤ εn/4. Therefore it
suffices to show that χ′(H1) ≤ εn/2.

Without loss of generality, let us assume H1 6= ∅. Let Hleft
0 := H1, and for every positive integer i, define

spanning subhypergraphs Hleft
i ,Hgood

i ,Wi of Hleft
i−1 as follows. If Hleft

i−1 = ∅, then let Hleft
i ,Hgood

i ,Wi := ∅.

Otherwise, apply Lemma 6.2 to Hleft
i−1 with 1 − ε/6 and ε−2 playing the roles of τ and K, respectively, to

obtain an ordering �i. If �i satisfies (6.2:a), then let Hgood
i := Hleft

i−1, and let Hleft
i ,Wi := ∅. Otherwise, let

Wi be the set W obtained from (6.2:b), let e∗i be the edge of Wi which comes last in �i, let Hgood
i := Hleft

i−1 \
(Hleft

i−1)�e
∗
i , let f∗i be the edge of Wi which comes first in �i, and let Hleft

i := Hleft
i−1 \ {e ∈ Hleft

i−1 : f∗i �i e}.
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By (O2), we may assume without loss of generality that every e ∈ Hleft
i−1 satisfying f∗i �i e �i e∗i is in Wi.

By the choices of τ and K, if �i and Wi satisfy (6.2:b), then
(Wi1) maxe∈Wi |e| ≤ ε−10|e∗i | and
(Wi2) volH(Wi) ≥ ε20.

For any i ≥ 1, note that the sets W1, . . . ,Wi are pairwise disjoint. Moreover, if Wi = ∅ then Hleft
i = ∅,

and if Wi 6= ∅ then W1, . . . ,Wi−1 are also nonempty. Thus, we have
∑
i volH(Wi) ≤ 1, and if Wi 6= ∅ then

i ≤ ε−20 by (Wi2), so there is some integer k ≥ 1 such that Wk = ∅, and k ≤ ε−20 + 1. Hence,

(6.9) H1 is partitioned into W1, . . . ,Wk−1 and Hgood
1 , . . . ,Hgood

k ,

where W1, . . . ,Wk−1 are nonempty, and Hgood
1 , . . . ,Hgood

k could be empty.

Combine �1, . . . ,�k to obtain an ordering � of H1 where if f ∈ Hgood
i ∪ Wi, then e � f for every

e ∈ (Hleft
i−1)�if . Let Hgood :=

⋃k
i=1H

good
i , and note that by (6.2:a) and (O1),

(6.10) if e ∈ Hgood, then d�H1
(e) ≤ εn/6.

By (Wi1), and since every e ∈ H1 satisfies 1/η < |e| < η
√
n, for each i ∈ [k−1] we can apply Corollary 6.7

to Wi with η, ε10, and ε/(6k) playing the roles of η, α, and ε, respectively, to obtain a proper edge-colouring
φi : Wi → Ci, where |Ci| ≤ εn/(6k). By (6.10), we can apply Proposition 6.9 to Hgood with 1/η, ε/6, and
1/2 playing the roles of r, α1, and α2, respectively, to obtain a proper edge-colouring φ′ : Hgood → C ′,
where |C ′| ≤ εn/3. We may assume without loss of generality that C ′, C1, . . . , Ck−1 are pairwise disjoint.

Therefore by (6.9), we can combine φ′, φ1, . . . , φk−1 to obtain a proper edge-colouring φ : H1 → C ′∪
⋃k−1
i=1 Ci.

Since |C ′|+
∑k−1
i=1 |C ′i| ≤ εn/2, we have χ′(H1) ≤ εn/2, as desired. �

Proposition 6.10. Let 0 < 1/n0 � 1/r0 � 1/r1 � γ < 1, and let n ≥ n0. If H is an n-vertex linear
hypergraph where every e ∈ H satisfies r1 ≤ |e| ≤ r0, then there is a γ-bounded proper edge-colouring of H
using at most γn colours.

Proof. By Proposition 6.8(ii) applied with γ and r1 − 1 playing the roles of α and r, respectively, there is
a γ-bounded proper edge-colouring φ of H using at most χ′(H) + 2n/(γ2(r1 − 1)) ≤ χ′(H) + γn/2 colours.
Since H is linear and every e ∈ H satisfies |e| ≥ r1, we have ∆(H) ≤ n/(r1 − 1). Thus, by Theorem 4.6,
χ′(H) ≤ 2n/r1 ≤ γn/2, so φ uses at most γn colours, as desired. �

Proof of Theorem 6.1. Recall that Hmed = {e ∈ H : r1 < |e| ≤ r0}, Hlarge = {e ∈ H : |e| > r0}, and
Hhuge = {e ∈ H : |e| ≥ βn/4}. Let H′ := H \ Hhuge. By Proposition 6.10, there is a γ1-bounded proper
edge-colouring φmed of Hmed using a set Cmed of at most γ1n colours. We use φmed in all cases when we
prove (6.1:a), and we define Cmed differently when we prove (6.1:b) (see Case 2.2 below).

Now we apply Lemma 6.2 several times and combine the resulting orderings to obtain an ordering � of
H. We also define several subhypergraphs of H, which we assume are all spanning. First, apply Lemma 6.2
to H′ with 1 − γ2/3, and γ−2

2 playing the roles of τ and K, respectively, to obtain an ordering �1. We

define e∗1, W1, and Hgood
1 , as follows. If �1 satisfies (6.2:a), then let e∗1 be the first edge of H′, let W1 := ∅,

and let Hgood
1 := H′. Otherwise, let W1 be the set W obtained from (6.2:b), let e∗1 be the last edge of W1,

and let Hgood
1 := H′ \ (H′)�1e

∗
1 . In both cases, let Hleft

1 := H′ \ Hgood
1 , and let r2 := |e∗1|. By the choices of

τ and K, and since δ � γ2 � 1, if �1 and W1 satisfy (6.2:b), then
(W11) maxe∈W1

|e| ≤ r2/γ
10
2 and

(W12) volH(W1) ≥ γ20
2 > δ.

If Hleft
1 = ∅, then let e∗2 := e∗1 and W2,Hgood

2 := ∅. If Hleft
1 6= ∅, we apply Lemma 6.2 to Hleft

1 with
3σ and 1 playing the roles of τ and K, respectively, to obtain an ordering �2, and we define e∗2, W2, and

Hgood
2 , as follows. If �2 satisfies (6.2:a), then let e∗2 be the first edge of Hleft

1 in �2, let W2 := ∅, and let

Hgood
2 := Hleft

1 . Otherwise, let W2 be the set W obtained from (6.2:b), let e∗2 be the last edge of W2 in �2,

and let Hgood
2 := Hleft

1 \ (Hleft
1 )�2e

∗
2 . In all cases, let Hleft

2 := (Hleft
1 ∪ Hhuge) \ Hgood

2 , and let r3 := |e∗2|. By
the choices of τ and K, and since σ � δ � 1, if �2 and W2 satisfy (6.2:b), then
(W21) maxe∈W2

|e| ≤ (1 + 4σ1/4)r3 and
(W22) volH(W2) ≥ (1− σ1/5)3 ≥ 1− δ3.

Finally, if W2 6= ∅, then let f∗ be the edge of W2 which comes first in �2, and let H3 := Hleft
2 \ {e ∈

Hleft
1 : f∗ �2 e}. Otherwise, let H3 := Hhuge. Thus in both cases, Hhuge ⊆ H3. Apply Lemma 6.2 with
H3, 1− 1/2000, and 20002 playing the roles of H, τ , and K, respectively, to obtain an ordering �3. Since
W2 ∩ H3 = ∅, we have volH(W2) + volH(H3) ≤ 1. Thus, �3 satisfies (6.2:a), because (6.2:b) would imply
there is a set W ′ ⊆ H3 disjoint from W2 with volH(W ′) ≥ δ, contradicting (W22).
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f∗

≤ (1 + 4σ1/4)r3

e∗2

r3

e∗1

r2 r1H3 Hgood
1

W2

Hhuge

Hleft
2

Hgood
2

Figure 2. Combining three applications of the Reordering Lemma in the proof of Theorem 6.1:
the ordering � is increasing from left to right. (Hhuge ⊆ H3, but Hhuge need not form an initial
segment.)

By (O2) of Lemma 6.2, we may assume without loss of generality that every e ∈ Hleft
1 satisfying f∗ �2

e �2 e
∗
2 is in W2, so

(6.11) H is partitioned into Hleft
2 , Hgood

2 , and Hgood
1 , and Hleft

2 is partitioned into H3 and W2.

Combine �1, �2, and �3 to obtain an ordering � of H where

• if f ∈ Hgood
1 , then e � f for every e ∈ Hhuge ∪ (H′)�1f ,

• if f ∈ Hgood
2 ∪W2, then e � f for every e ∈ Hhuge ∪ (Hleft

1 )�2f , and

• if f ∈ H3, then e � f for every e ∈ H�3f
3 .

See Figure 2. Note the following.
(a) Hhuge ⊆ H3, and e(Hhuge) ≤ 8/β by (2.2).

(b) If e ∈ Hgood
1 , then d�H(e) ≤ γ2n/2.

(c) If e ∈ Hgood
2 , then d�H(e) ≤ (1− 2σ)n and d�2

Hleft
1

(e) ≤ (1− 3σ)n.

(d) If e ∈ H3, then d�H(e) ≤ n/2000.
(e) If e ∈ Hleft

1 , then |e| ≥ r2 = |e∗1|.
(f) If e ∈ Hleft

2 , then |e| ≥ r3 = |e∗2|.
We consider two cases: �2 satisfies (6.2:a), or both �1 and �2 satisfy (6.2:b). Note that if �1 satis-

fies (6.2:a), then �2 vacuously satisfies (6.2:a) (that is, the former case applies).
Case 1: �2 satisfies (6.2:a).

In this case, we prove (6.1:a). If �2 satisfies (6.2:a), then H3 ∪ Hgood
2 ∪ Hgood

1 = H by (6.11), so every

e ∈ H satisfies d�H(e) ≤ (1 − 2σ)n by (b), (c), and (d). Thus, by Proposition 6.9 applied to Hlarge with
r0, σ/2, and β/5 playing the roles of r, α1, and α2, respectively, we obtain a β/5-bounded proper edge-
colouring φlarge of Hlarge using colours from a set Clarge of size at most (1− 3σ/2)n disjoint from Cmed. We
combine φlarge and φmed to obtain a proper edge-colouring φ of H satisfying (6.1:a), as follows. For each
e ∈ Hlarge, let φ(e) := φlarge(e), and for each e ∈ Hmed, let φ(e) := φmed(e). Since Clarge ∩ Cmed = ∅ and
|Clarge ∪ Cmed| ≤ (1− σ)n, the colouring φ is proper and uses at most (1− σ)n colours, as required. Since
φlarge is β/5-bounded, φ satisfies (i) and (iii), and since φmed is γ1-bounded, φ satisfies (ii), as desired.
Case 2: Both �1 and �2 satisfy (6.2:b).

We assume

(6.12) r3 ≤
√
n/(1− 4σ),

as otherwise volH(Hleft
2 ) ≤ 1 and (f) would imply e(Hleft

2 ) ≤ (1 − 3σ)n. Together with (c), this fact would
imply that �2 satisfies (6.2:a).

We now consider two additional cases: r3 < (1 − δ)
√
n, and r3 ≥ (1 − δ)

√
n. In the former case, we

prove (6.1:a), and in the latter case we prove (6.1:b).
Case 2.1: r3 < (1− δ)

√
n.

Let ζ := 1− r3/
√
n. Since r3 < (1− δ)

√
n, we have ζ > δ. First we show how to colour W2 \Hmed in the

following claim.

Claim 1. There is a β/5-bounded proper edge-colouring φ′ of W2 \ Hmed using at most (1 − ζ/1000)n
colours.

Proof of claim: By (W21), we can apply Corollary 6.5 with r3 and 4σ1/4 playing the roles of r and α,
respectively, so χ′(W2 \ Hmed) ≤ (1 − ζ/500)n. Thus, the claim follows from Proposition 6.8(ii) with β/5
and r0 playing the roles of α and r, respectively, since ζ > δ and 2n/((β/5)2r0) ≤ δ2n ≤ ζn/1000. �
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We will colour H3 \Hmed with a set of colours disjoint from those that we assign to W2 \Hmed using the
following claim.

Claim 2. There is a β/5-bounded proper edge-colouring φ′′ of H3 \ Hmed using at most (ζ/1000 − 2σ)n
colours.

Proof of claim: Let k := e(H3 \ Hmed). If k ≤ (ζ/1000 − 2σ)n, then we can simply assign each edge of
H3 \ Hmed a distinct colour and the claim holds, so we assume k > (ζ/1000 − 2σ)n. Since ζ > δ, we have
k > 2δ2n. By (f), every edge of H3 has size at least r3, so we have volH(H3 \ Hmed) ≥ k(r3 − 1)2/n2. On
the other hand, by (W22), and since H3 ∩W2 = ∅ by (6.11), we have volH(H3) ≤ δ3. Thus, 2δ2n < k ≤
δ3n2/(r3 − 1)2, so r3 < δ1/4

√
n.

Therefore, ζ > 1000/1001. Now by (d) and Proposition 6.9 applied with H3 \Hmed, �3, r0, 1/6000, and
β/5 playing the roles of H, �, r, α1, and α2, respectively, we obtain a β/5-bounded proper edge-colouring
of H3 \ Hmed using a set of at most n/1500 ≤ (ζ/1000− 2σ)n colours, as desired. �

We may assume that φ′ and φ′′ use disjoint sets of colours. By Claims 1 and 2, we can combine φ′ and φ′′

to obtain a β/5-bounded proper edge-colouring φ1 of Hleft
2 \Hmed using a set C1 of at most (1−2σ)n colours.

We may assume that C1∩Cmed = ∅. Let C2 be a set of (1−3σ/2)n−|C1| colours disjoint from C1 and Cmed,
and let Chuge ⊆ C1 where c ∈ Chuge if φ1(f) = c for some f ∈ Hhuge. By (a), |(C1∪C2)\Chuge| ≥ (1−7σ/4)n.
We extend φ1 to a β/5-bounded proper edge-colouring of Hlarge using the following claim.

Claim 3. There is a β/5-bounded proper edge-colouring φ2 of (Hgood
2 ∪ Hgood

1 ) \ Hmed such that every

e ∈ (Hgood
2 ∪Hgood

1 ) \ Hmed satisfies
• φ2(e) ∈ (C1 ∪ C2) \ Chuge and
• φ2(e) 6= φ1(f) for every f ∈ NHleft

2 \Hmed
(e).

Proof of claim: We apply Proposition 6.9 to (Hgood
2 ∪ Hgood

1 ) \ Hmed, as follows. We let r0, σ/4 and β/5

play the roles of r, α1 and α2, respectively, and we define the list-assignment for L((Hgood
2 ∪ Hgood

1 ) \
Hmed) as C(e) := ((C1 ∪ C2) \ Chuge) \

⋃
f∈NHleft

2 \Hmed
(e) φ1(f). Since every e ∈ Hgood

2 ∪ Hgood
1 satisfies

|NHleft
2

(e)|+ d�
Hgood

2 ∪Hgood
1

(e) = d�H(e) ≤ (1− 2σ)n by (b) and (c), we have |C(e)| ≥ (1− 7σ/4)n− |NHleft
2
| ≥

d�
Hgood

2 ∪Hgood
1

(e) + σn/4 as required. Therefore by Proposition 6.9, there is a β/5-bounded proper edge-

colouring φ2 of (Hgood
2 ∪ Hgood

1 ) \ Hmed such that φ2(e) ∈ C(e) for every e ∈ (Hgood
2 ∪ Hgood

1 ) \ Hmed, and
the choice of C(e) ensures that φ2 satisfies the claim. �

Now we combine φ1, φ2, and φmed to obtain a proper edge-colouring φ, and we show that φ satisfies (6.1:a).
Indeed, by (6.11), every edge of H is assigned a colour by φ, and since |C1|+ |C2|+ |Cmed| ≤ (1− 3σ/2) +
γ1n ≤ (1 − σ)n, the colouring φ uses at most (1 − σ)n colours, as required. Since φ2(e) /∈ Chuge for each

e ∈ (Hgood
2 ∪ Hgood

1 ) \ Hmed, since (a) holds, and since φ′′ is β/5-bounded, φ satisfies (i). Since φ1 and φ2

are β/5-bounded, φ satisfies (iii), and since φmed is γ1-bounded, φ satisfies (ii), as desired.
Case 2.2: r3 ≥ (1− δ)

√
n.

By (f) and Lemma 5.1, there is a proper edge-colouring φ1 of Hleft
2 using a set C of at most n colours

such that every colour is assigned to at most two edges. By (W21), (W22), and (6.12), there are no edges of
size at least δn/2 in H. Hence, φ1 satisfies (i) of (6.1:b), and φ1|Hleft

2 \Hhuge
is β/2-bounded. Let Chuge ⊆ C

where c ∈ Chuge if φ1(f) ∈ H for some f ∈ Hhuge, and let Cmed ⊆ C \Chuge have size γ2n (such a set exists
by (a)).

By (W12) and (W22), W1 ∩W2 6= ∅, so by (f), there is an edge e ∈ W1 such that |e| ≥ r3. Therefore

by (W11), r2 ≥ γ10
2 r3. Also, r3 ≥ (1− δ)

√
n ≥ 2r0/γ

10
2 , so r2 ≥ 2r0. Thus, by (e), we have Hmed ⊆ Hgood

1 .

We use the following two claims to colour Hgood
2 and Hgood

1 . The proofs are similar to the proof of
Claim 3, so we omit them.

Claim 4. There is a β/5-bounded proper edge-colouring φ2 of Hgood
2 such that every e ∈ Hgood

2 satisfies
• φ2(e) ∈ C \ Chuge and
• φ2(e) 6= φ1(f) for every f ∈ NHleft

2
(e). �

Claim 5. There is a γ1/2-bounded proper edge-colouring φ3 of Hgood
1 such that every e ∈ Hgood

1 satisfies
• φ3(e) ∈ Cmed and
• φ3(e) 6= φ1(f) for every f ∈ NHleft

2
(e) and φ3(e) 6= φ2(f) for every f ∈ ∩NHgood

2
(e). �
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Now we combine φ1, φ2, and φ3 to obtain a proper edge-colouring φ, and we show that φ satisfies (6.1:b).
Indeed, since |C| ≤ n, the colouring φ uses at most n colours, as required. Since r3 ≥ (1 − δ)

√
n,

by (f), (W21), and (6.12), the edges in W2 are FPP-extremal, and by (W22), volH(W2) ≥ 1 − δ, as re-

quired. Since φi(e) /∈ Chuge for each e ∈ Hgood
4−i for i ∈ {2, 3} and (a) holds, and since φ1 satisfies (i)

of (6.1:b), φ satisfies (i). Since φ1|Hleft
2 \Hhuge

is β/2-bounded and φ2 is β/5-bounded, φ satisfies (iii), and

since moreover, Cmed ∩ Chuge = ∅, Hmed ⊆ Hgood
1 , and φ3 is γ1/2-bounded, φ satisfies (ii), as desired. �

7. Vertex absorption to extend colour classes

In this section, we will define properties that that we need our absorbers to satisfy in order to carry
out the vertex absorption step outlined in Section 2.1 (These absorbers will form part of the reservoirs R,
which will be constructed in Section 10.) We also formalise various properties that allow a matching to be
extended using vertex absorption.

7.1. Quasirandom properties for absorption.

Definition 7.1 (Typicality and upper regularity). Let γ, ρ, ξ ∈ (0, 1), let G be an n-vertex graph, let V be
a set of subsets of V (G), and let R ⊆ E(G). We say R is

• (ρ, γ,G)-typical with respect to V if for every X ∈ V, every vertex v ∈ V (G) satisfies |NR(v)∩X| =
ρ|NG(v) ∩X| ± γn and |NR(v) \X| = ρ|NG(v) \X| ± γn, and

• upper (ρ, ξ,G)-regular if for every pair of disjoint sets S, T ⊆ V (G) with |S|, |T | ≥ ξn, we have
|EG(S, T ) ∩R| ≤ ρeG(S, T ) + ξ|S||T |.

We also say a graph H is upper (ρ, ξ)-regular if E(H) is upper (ρ, ξ,Kv(H))-regular.

Note that if H is a subgraph of G such that ξv(G) < v(H), and E(H) is upper (ρ, ξ,G)-regular, then H
is upper (ρ, ξv(G)/v(H))-regular.

Definition 7.2 (Absorbers). Let ξ, γ, ρ, ε ∈ (0, 1). Let H be a linear multi-hypergraph, let G := H(2), let

G′ be the spanning subgraph of G consisting of those edges with at least one vertex in V
(1−ε)
+ (G), and let V

be a set of subsets of V (H). We say Rabs is a (ρ, γ, ξ, ε)-absorber for V if it satisfies the following properties:
(i) Rabs ⊆ E(G′),
(ii) Rabs is (ρ, γ,G′)-typical with respect to V, and
(iii) Rabs is upper (ρ, ξ,G′)-regular.

Observation 7.3 (Robustness of absorbers). Let ξ, γ, ρ, ε ∈ (0, 1). Let H be a linear multi-hypergraph, and
let V be a set of subsets of V (H). The following hold.

• A (ρ, γ, ξ, ε)-absorber for V is also a (ρ, γ′, ξ, ε)-absorber for V, if γ < γ′ < 1.
• For any (ρ, γ, ξ, ε)-absorber R for V, if R′ ⊆ R and ∆(R−R′) ≤ αn, then R′ is also a (ρ, γ+α, ξ, ε)-

absorber for V.

Definition 7.4 (Pseudorandom matchings). Let n ∈ N, γ, κ ∈ (0, 1), and let H be an n-vertex multi-
hypergraph. For a family F of subsets of V (H), a matching M in H is (γ, κ)-pseudorandom with respect
to F if every S ∈ F satisfies |S \ V (M)| = γ|S| ± κn.

Definition 7.5 (Absorbable matchings). Let ξ, κ, γ, ρ, ε ∈ (0, 1). Let H be an n-vertex linear multi-

hypergraph, let G := H(2), let U := V
(1−ε)
+ (G), and let S ⊆ U . Let R ⊆ E(G), and let M be a matching in

H. We say (H,M,R, S) is (ρ, ε, γ, κ, ξ)-absorbable if
(AB1) R is a (ρ, 10γ, ξ, ε)-absorber for some V such that U, V (H) ∈ V,
(AB2) M ⊆ H \R, and
(AB3) at least one of the following holds:

(i) M is (γ, κ)-pseudorandom with respect to F(R) ∪ {U, S}, where F(R) := {NR(u) ∩ U : u ∈
U} ∪ {NR(u) \ U : u ∈ U},

(ii) v(M) ≤ γn, or
(iii) |V (M) ∩ U | ≤ εn and U ∪ V (M), U \ V (M) ∈ V.

We say (H,M,R, S) is
• (ρ, ε, γ, κ, ξ)-absorbable by pseudorandomness of M if (i) holds,
• (ρ, ε, γ, κ, ξ)-absorbable by smallness of M if (ii) holds, and
• (ρ, ε, γ, κ, ξ)-absorbable by typicality of R if (iii) holds.

We simply say (H,M,R, S) is absorbable if it is (ρ, ε, γ, κ, ξ)-absorbable and ρ, ε, γ, κ, and ξ are clear
from the context.



19

If H is an n-vertex linear hypergraph and φ : Hmed ∪Hlarge → C is obtained from Theorem 6.1, then we
will choose an absorber R such that for each c ∈ C, (H, φ−1(c), R, S) is absorbable by smallness of φ−1(c) if
c ∈ Cmed and by typicality of R if φ assigns c to a huge edge. For essentially every other c ∈ C, we will find
a matching Mc ⊇ φ−1(c) in Section 8 such that (H,Mc, R, S) is absorbable by pseudorandomness of Mc.

In Sections 7.2 and 7.3, we will show that if (H,M,R, S) is absorbable, then we can extend M to cover
all but at most one vertex of U using the edges of R.

7.2. Absorption for pseudorandom matchings. We will use the following two lemmas (depending on
whether |U | is small or not) to extend matchings N for which (H, N,R, S) is absorbable by pseudorandom-
ness of N .

Lemma 7.6. Let 0 < 1/n0 � ξ � κ � γ � ρ, ε � 1, let n ≥ n0 and let k ≤ κn. Let H be an n-vertex

linear multi-hypergraph, let G := H(2), let R ⊆ E(G), and let U := V
(1−ε)
+ (G). Let N := {N1, . . . , Nk} be

a set of edge-disjoint matchings in H such that (H, Ni, R,∅) is absorbable by pseudorandomness of Ni for
each i ∈ [k].

If |U | ≤ n/100, then there is a set of edge-disjoint matchings N ′ := {N ′1, . . . , N ′k} in H such that for all
i ∈ [k],

• N ′i ⊇ Ni and N ′i \Ni ⊆ R, and
• N ′ has perfect coverage of U .

Lemma 7.7. Let 0 < 1/n0 � ξ � κ � γ � ρ, ε � 1, let n ≥ n0 and let k ≤ κn. Let H be an n-vertex

linear multi-hypergraph, let G := H(2), let R ⊆ E(G), let U := V
(1−ε)
+ (G), and let S ⊆ U satisfy |S| ≥ γn if

|U | > (1− 2ε)n. Let N := {N1, . . . , Nk} be a set of edge-disjoint matchings in H such that (H, Ni, R, S) is
absorbable by pseudorandomness of Ni for each i ∈ [k].

If |U | ≥ n/100, then there is a set of edge-disjoint matchings N ′ := {N ′1, . . . , N ′k} in H such that for all
i ∈ [k],

• N ′i ⊇ Ni and N ′i \Ni ⊆ R, and
• if |U | ≤ (1− 2ε)n, then N ′ has perfect coverage of U . Otherwise, N ′ has nearly-perfect coverage of
U with defects in S.

To prove the above lemmas we will need the following simple observations, which follow easily from Hall’s
theorem.

Observation 7.8. Let 0 < ξ � ρ ≤ 1. If H is an upper (ρ, ξ)-regular bipartite graph with bipartition (A,B)
such that v(H) ≤ ρ|A|/ξ and every v ∈ A satisfies dH(v) ≥ 2ρ|A|, then H has a matching covering A.

Observation 7.9. Let 0 < 1/m � ξ � ρ ≤ 1. If G is an m-vertex, upper (ρ, ξ)-regular graph such that
every v ∈ V (G) satisfies dG(v) ≥ 3ρm/4, and m is even, then G has a perfect matching.

Proof of Lemma 7.6. For each i ∈ [k], let Hi be the bipartite graph consisting of edges in R with the
bipartition (Ai, Bi), where Ai := U \ V (Ni) and Bi := (V (H) \ U) \ V (Ni).

We claim that there exist pairwise edge-disjoint matchings Nabs
i in Hi covering Ai for each i ∈ [k]. We

find these matchings one-by-one using Observation 7.8, if |Ai| ≥ ξn/ρ. Otherwise, we find them greedily.
To this end, we assume that for some ` ≤ k, we have found such matchings Nabs

i for i ∈ [` − 1], and we
show that there exists such a matching Nabs

` , which proves the claim. Let H ′` := H` \
⋃
i∈[`−1]N

abs
i .

We first show that every vertex u ∈ A` satisfies dH′`(u) ≥ 2ρ|A`|. Since |U | ≤ n/100 and R is a

(ρ, 10γ, ξ, ε)-absorber for {V (H), U} by (AB1), every u ∈ A` satisfies

(7.1) |NR(u) \ U | ≥ (ρ(99/100− ε)− 10γ)n ≥ 98ρn/100.

Note that each Ni is (γ, κ)-pseudorandom with respect to F := F(R)∪{U} by (AB3)(i). Together with (7.1),
this implies that every u ∈ A` satisfies dH`

(u) ≥ γ|NR(u) \ U | − κn ≥ 97γρn/100. Since ` ≤ k ≤ κn, we
have

(7.2) dH′`(u) ≥ dH`
(u)− κn ≥ 96γρn/100.

Since Ni is (γ, κ)-pseudorandom with respect to F 3 U and |U | ≤ n/100, we also have

(7.3) |A`| ≤ γ|U |+ κn ≤ γn/50.

Combining (7.2) and (7.3), we have dH′`(u) ≥ 2ρ|A`|, as desired.

Note that the graph H∗` := (V (H), E(H ′`)) is upper (ρ, ξ)-regular since H∗` ⊆ R, and H∗` is bipartite
with the bipartition (A`, V (H) \ A`) where dH∗` (u) ≥ 2ρ|A`|, for every u ∈ A`. Therefore, if |A`| ≥ ξn/ρ,
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then Observation 7.8 implies that H∗` has a matching Nabs
` covering A`, so Nabs

` is also a matching in H ′`
covering A`, as claimed. Otherwise, for any u ∈ A`,

(7.4) |A`| < ξn/ρ ≤ 96γρn/100
(7.2)

≤ dH′`(u),

so we can find such a matching greedily.
Therefore we have pairwise edge-disjoint matchings Nabs

i in Hi covering Ai for i ∈ [k], as claimed, and
Nabs

1 , . . . , Nabs
k are edge-disjoint from N1, . . . , Nk by (AB2). For each i ∈ [k], let N ′i := Ni ∪Nabs

i , and let
N ′ = {N ′1, . . . , N ′k}. Hence each matching in N ′ covers U , so N ′ has perfect coverage of U , as desired. �

Proof of Lemma 7.7. Let F := F(R)∪{U, S}, where F(R) := {NR(u)∩U : u ∈ U}∪{NR(u)\U : u ∈ U}.
For each i ∈ [k], let Gi be the graph with V (Gi) := V (H)\V (Ni) and E(Gi) := {e ∈ R : e ⊆ V (H)\V (Ni)},
and let Ui := U \ V (Ni). Since Ni is (γ, κ)-pseudorandom with respect to F 3 U , we have

(7.5) |Ui| = γ|U | ± κn, so |Ui| ≥ γn/200.

We claim that for each i ∈ [k] there exists ui ∈ Ui and a matching Nabs
i in Gi such that the following

holds. The vertices u1, . . . , uk are distinct, the matchings Nabs
1 , Nabs

2 , . . . , Nabs
k are pairwise edge-disjoint,

and Nabs
i covers every vertex of Ui \ {ui} for each i ∈ [k]. Moreover, if |U | ≤ (1 − 2ε)n, then Nabs

i covers
every vertex of Ui for each i ∈ [k], and otherwise ui ∈ S.

To that end, we choose distinct ui ∈ Ui for each i ∈ [k], as follows.
• If |U | ≤ (1 − 2ε)n, then since R is a (ρ, 10γ, ξ, ε)-absorber for {V (H), U} by (AB1), every u ∈ Ui

satisfies |NR(u) \ U | ≥ (ρε − 10γ)n. By (AB3)(i), since Ni is (γ, κ)-pseudorandom with respect to
F ⊇ F(R) for each i ∈ [k], this inequality implies that every u ∈ Ui satisfies |NGi(u)\U | ≥ γρεn/2.
Since k ≤ κn and κ� γ, ρ, ε, and (7.5) holds, we can choose ui ∈ Ui one-by-one such that there is
a matching {uivi : i ∈ [k]} where vi ∈ NGi

(ui) \ U for each i ∈ [k].
• Otherwise, |S| ≥ γn, and since Ni is (γ, κ)-pseudorandom with respect to F 3 S, by (AB3)(i), we

have |S\V (Ni)| ≥ γ|S|−κn ≥ γ2n/2 > κn for each i ∈ [k], so we can choose ui ∈ Ui∩S = S\V (Ni)
one-by-one such that they are distinct, as required.

Now let U ′i := Ui \ {ui} if |Ui| is odd. Otherwise, let U ′i := Ui. By the choice of the vertices ui, it suffices

to find pairwise edge-disjoint perfect matchings N ′
abs
i in Gi[U

′
i ] for each i ∈ [k]. Indeed if |U | ≤ (1 − 2ε)n

and |Ui| is odd, then Nabs
i := N ′

abs
i ∪ {uivi} satisfies the claim, and otherwise Nabs

i := N ′
abs
i satisfies the

claim.
We find these matchings one-by-one using Observation 7.9. To this end, we assume that for some ` ≤ k,

we have found such matchings N ′
abs
i for i ∈ [` − 1], and we show that there exists such a matching N ′

abs
` ,

which proves the claim. Let G′` := G`[U
′
`]\
⋃
i∈[`−1]N

′abs
i . Since |U | ≥ n/100 and R is a (ρ, 10γ, ξ, ε)-absorber

for {V (H), U} by (AB1), every u ∈ U satisfies

(7.6) |NR(u) ∩ U | ≥ ρ(|U | − εn)− 10γn ≥ 99ρ|U |/100.

Note that N` is (γ, κ)-pseudorandom with respect to F ⊇ F(R)∪{U} by (AB3)(i). Together with (7.6),
this implies that every u ∈ U ′` satisfies dG`[U ′`](u) ≥ γ|NR(u)∩U |−κn−1 ≥ 98γρ|U |/100. Since ` ≤ k ≤ κn,
we have

(7.7) dG′`(u) ≥ dG`[U ′i ](u)− κn ≥ 97γρ|U |/100.

We also have

(7.8) |U ′`| ± 1 = |U`|
(7.5)
= γ|U | ± κn, so |U ′`| ≤ 5γ|U |/4.

Since R is upper (ρ, ξ,G′)-regular and |U ′`|
(7.8)

≥ γn/100− κn− 1 ≥ γn/200, G′` is upper (ρ, 200ξ/γ)-regular.
Moreover, combining (7.7) and (7.8), we have dG′`(u) ≥ 3ρ|U ′`|/4. So by Observation 7.9, G′` has a perfect

matching N ′
abs
` , as desired.

Therefore we have pairwise edge-disjoint matchings Nabs
i in Gi, as claimed, which by (AB2) are edge-

disjoint from N1, . . . , Nk. For each i ∈ [k], let N ′i := Ni ∪Nabs
i , and let N ′ = {N ′1, . . . , N ′k}. Now N ′i ⊇ Ni

and N ′i \ Ni ⊆ R for each i ∈ [k], and N ′ has nearly-perfect coverage of U with defects in S, as desired.
Moreover, if |U | ≤ (1− 2ε)n, then N ′ has perfect coverage of U , as desired. �
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7.3. Absorption for matchings having huge edges or having few vertices.

Definition 7.10 (Difficult matching). Let H be an n-vertex hypergraph, let G := H(2), and let U :=

V
(1−ε)
+ (G). A matching M in H is difficult if it covers at least 3|V (H) \ U |/4 of the vertices in V (H) \ U

and |V (H) \ U | ≥ 2. If the matching M is difficult and consists of a single edge e, then we also say that e
is difficult.

We will use the following lemma to extend matchings N for which (H, N,R, S) is either absorbable by
smallness of N or by typicality of R (provided N is not difficult).

Lemma 7.11. Let 0 < 1/n0 � ξ � κ � γ � ρ, ε � 1, and let n ≥ n0. Suppose k ≤ γn. Let H be

an n-vertex linear hypergraph, let G := H(2), let R ⊆ E(G), let U := V
(1−ε)
+ (G), and let S ⊆ U satisfy

|S| > (γ + ε)n if |U | > (1 − 10ε)n. Let N := {N1, . . . , Nk} be a set of edge-disjoint matchings in H such
that for each i ∈ [k], either

(a) (H, Ni, R, S) is (ρ, ε, γ, κ, ξ)-absorbable by smallness of Ni, or
(b) (H, Ni, R, S) is (ρ, ε, γ, κ, ξ)-absorbable by typicality of R and Ni is not difficult.

Then there is a set N ′ := {N ′1, . . . , N ′k} of pairwise edge-disjoint matchings such that for i ∈ [k],
• N ′i ⊇ Ni and N ′i \Ni ⊆ R, and
• if |U | ≤ (1 − 10ε)n, then N ′ has perfect coverage of U . Otherwise, N ′ has nearly-perfect coverage

of U with defects in S.

Proof. Let G′ be the spanning subgraph of G consisting only of the edges incident to a vertex in U .
Without loss of generality, we may assume that there is an integer s such that for each i ∈ [s], we have
|U \ V (Ni)| ≤ n/100, and for each i ∈ {s+ 1, . . . , k}, we have |U \ V (Ni)| > n/100.

For each i ∈ [k], let Ui := U \ V (Ni), let Vi := (V (H) \ U) \ V (Ni), let Hi be the bipartite graph with
the bipartition (Ui, Vi) and E(Hi) := {e ∈ R : |e ∩ Ui| = |e ∩ Vi| = 1}, and let Gi be the graph with
V (Gi) := V (H) \ V (Ni) and E(Gi) := {e ∈ R : e ⊆ V (H) \ V (Ni)}.

We first claim that there exist pairwise edge-disjoint matchings Nabs
1 , . . . , Nabs

s such that for each i ∈ [s],
Nabs
i is a matching in Hi covering all of the vertices in Ui. We find these matchings one-by-one using

Observation 7.8. To this end, we assume that for some ` ≤ s, we have found such matchings Nabs
i for

i ∈ [`− 1], we let H ′` := H` \
⋃`−1
t=1 N

abs
t , and we show that there exists such a matching Nabs

` in H ′`, which
proves the claim. It suffices to show that every u ∈ U` satisfies

(7.9) dH′`(u) ≥ ρn/7 ≥ 2ρ|U`|.

Indeed, the graph H∗` := (V (H), E(H ′`)) is upper (ρ, ξ)-regular since E(H∗` ) ⊆ R, and H∗` is bipartite with
the bipartition (U`, V (H) \U`) where dH∗` (u) = dH′`(u) ≥ 2ρ|U`| for every u ∈ U`. Therefore, if |U`| ≥ ξn/ρ,

then we have a matching Nabs
` in H∗` (and so in H ′`) covering U` by Observation 7.8, as desired. Otherwise,

by (7.9), |U`| < ξn/ρ < ρn/7 ≤ dH′`(u) for every u ∈ U`, so we can find the desired matching Nabs
` covering

U` greedily.
To prove (7.9), first suppose (b) holds. By (AB3)(iii), we have v(N`) ≤ (3/4 + ε)n ≤ 4n/5. Thus,

|V`| ≥ n − v(N`) − |U \ V (N`)| ≥ n/5 − n/100 ≥ n/6, and since R is (ρ, 10γ,G′)-typical with respect to
V 3 U ∪ V (N`) by (AB3)(iii), every u ∈ U` satisfies dH′`(u) ≥ (ρ(1/6 − ε) − 10γ − γ)n ≥ ρn/7 ≥ 2ρ|U`|,
as desired. Therefore we assume (H, N`, R, S) is absorbable by smallness of N`, so by (AB3)(ii), we have
v(N`) ≤ γn. Thus, |U | ≤ |U \V (N`)|+ v(N`) ≤ n/100 + γn ≤ n/50, and since R is (ρ, 10γ,G′)-typical with
respect to V 3 U by (AB1), every u ∈ U` satisfies dH′`(u) ≥ (ρ(49/50− ε)− 10γ − γ − γ)n ≥ ρn/7 ≥ 2ρ|U`|,
as desired. Therefore (7.9) holds in both cases, so we have the matchings Nabs

1 , . . . , Nabs
s , as claimed.

Claim 1. There exist matchings Nabs
s+1, . . . , N

abs
k and distinct vertices us+1, . . . , uk such that for each i ∈

{s + 1, . . . , k}, ui ∈ Ui, Nabs
i is a matching in Gi covering all the vertices of Ui \ {ui}, and the matchings

Nabs
1 , . . . , Nabs

k are pairwise edge-disjoint. Moreover, for each i ∈ {s + 1, . . . , k}, if |U | ≤ (1 − 10ε)n, then
Nabs
i covers all vertices in Ui, and otherwise ui ∈ S.

Proof of claim: We choose distinct ui ∈ Ui for s + 1 ≤ i ≤ k as follows. Let G′i := Gi \
⋃s
t=1N

abs
t for

s+ 1 ≤ i ≤ k.
• If |U | ≤ (1−10ε)n, then every u ∈ U satisfies |NG(u)\U | ≥ 9εn, and moreover if Ni is not difficult,

then |V (H)\(U∪V (Ni))| ≥ 2εn, which implies that every u ∈ U satisfies |NG(u)\(U∪V (Ni))| ≥ εn.
If (b) holds, then R is (ρ, 10γ,G′)-typical with respect to V 3 U ∪ V (Ni) by (AB3)(iii), so we have
|NG′i(u) \ (U ∪ V (Ni))| ≥ ρ|NG(u) \ (U ∪ V (Ni))| − 10γn − k ≥ ρεn/2 > γn ≥ k for every u ∈ Ui.
If (a) holds, then v(Ni) ≤ γn and R is (ρ, 10γ,G′)-typical with respect to V 3 U by (AB1), so we
have |NG′i(u) \ (U ∪V (Ni))| ≥ ρ|NG(u) \U | − 10γn− k− v(Ni) > 8ρεn > k for every u ∈ Ui. Thus,
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|NG′i(u)\ (U ∪V (Ni))| > k for each i ∈ {s+1, . . . , k} and for all u ∈ Ui, and since |Ui| > n/100 > k,

we can choose ui ∈ Ui one-by-one such that there is a matching {uivi : i ∈ {s + 1, . . . , k}} where
vi ∈ NG′i(ui) \ (U ∪ V (Ni)) for each i ∈ {s+ 1, . . . , k}.

• Otherwise, we have |S| > (γ+ε)n. Using (AB3)(ii) or (AB3)(iii), and γ � ε, we have |V (Ni)∩U | ≤
εn. Since S ⊆ U it then follows that |S \V (Ni)| ≥ |S|−|V (Ni)∩U | > γn for each i ∈ {s+1, . . . , k}.
Since k ≤ γn, we can choose ui ∈ S \ V (Ni) one-by-one such that they are distinct, as required.

Now let U ′i := Ui \ {ui} if |Ui| is odd. Otherwise, let U ′i := Ui. By the choice of the vertices ui, it

suffices to find pairwise edge-disjoint perfect matchings N ′
abs
i in G′i[U

′
i ] for each i ∈ {s+1, . . . , k}. Indeed, if

|U | ≤ (1−10ε)n and |Ui| is odd, then Nabs
i := N ′

abs
i ∪{uivi} satisfies the claim, and otherwise Nabs

i := N ′
abs
i

satisfies the claim.
We find these matchings (N ′

abs
i for i ∈ {s+ 1, . . . , k}) one-by-one using Observation 7.9. To this end, we

assume that for some s + 1 ≤ ` ≤ k, we have found such matchings N ′
abs
i for all s + 1 ≤ i ≤ ` − 1, we let

G′′` := G′`[U
′
`] \
⋃
s+1≤i≤`−1N

′abs
i , and we show that there exists such a matching N ′

abs
` in G′′` , which proves

the claim. Note that

(7.10) |U ′`| ≥ |U`| − 1 ≥ n/100− 1 ≥ n/200.

Since R is upper (ρ, ξ,G)-regular and (7.10) holds, G′′` is upper (ρ, 200ξ)-regular. So by Observation 7.9,
it suffices to show that every u ∈ U ′` satisfies

(7.11) dG′′` (u) ≥ 3ρ|U ′`|/4.

To prove (7.11), first suppose (b) holds. Since R is a (ρ, 10γ, ξ, ε)-absorber for V 3 U` by (AB3)(iii),
every u ∈ U ′` satisfies

dG′′` (u) ≥ ρ(|U`| − εn)− 10γn− γn− 1 ≥ ρ(|U ′`| − εn)− 12γn
(7.10)

≥ 3ρ|U ′`|/4,

as desired. Therefore, we assume (a) holds. Since R is (ρ, 10γ,G′)-typical with respect to V 3 U by (AB1),
every u ∈ U ′` satisfies

dG′′` (u) ≥ ρ(|U | − εn)− 10γn− γn− γn− 1 ≥ ρ(|U ′`| − εn)− 13γn
(7.10)

≥ 3ρ|U ′`|/4,

as desired. Therefore (7.11) holds in both cases, so we have the matchings Nabs
s+1, . . . , N

abs
k , which proves

Claim 1. �

Now, letting N ′i := Ni∪Nabs
i for each i ∈ [k], we have N ′i ⊇ Ni and N ′i \Ni ⊆ R, and N ′ := {N ′1, . . . , N ′k}

has nearly-perfect coverage of U with defects in S, as desired. Moreover, if |U | ≤ (1 − 10ε)n, then N ′ has
perfect coverage of U , as desired. �

We will use the following lemma to extend a difficult matching.

Lemma 7.12. Let 0 < 1/n0 � β � 1, and let n ≥ n0. If H is an n-vertex linear hypergraph with no
singleton edge, G := H(2), and M := {e} is a difficult matching where e is huge, then at least one of the
following holds:

(7.12:a) There is a matching M ′ such that M ⊆ M ′, M ′ \ M ⊆ E(G), and M ′ covers every vertex of
V (n−1)(H) and all but at most five vertices of V (n−2)(H), or

(7.12:b) χ′(H) ≤ n.

Proof. Let U1 := V (n−1)(H), let U2 := V (n−2)(H), let X := V (H) \ (e ∪ U1 ∪ U2), and let m := |U1 ∪ U2|.
Since H is linear and e is huge, e ∩ Ui = ∅ for i ∈ {1, 2}.

First, suppose U2 = ∅. If |U1| is even, then we can find a perfect matchingM1 inG[U1], andM ′ := M∪M1

satisfies (7.12:a), so we assume |U1| is odd. If X 6= ∅, then there is an edge uv ∈ E(G) such that u ∈ U1

and v ∈ X, and there is a perfect matching M1 in G[U1 \ {u}]. Now M ′ := M ∪M1 ∪{uv} satisfies (7.12:a),
so we assume X = ∅, and we show χ′(H) ≤ n. Note that if X,U2 = ∅, then the only edge in H\E(G) is e.
Let w ∈ U1, let M1 be a perfect matching in G[U1 \{w}], and let G′ := H\ (M1∪e). Now G′ is a graph with
exactly one vertex of degree n− 1 (namely w), so by Theorem 4.5, χ′(G′) ≤ n− 1. By combining a proper
(n− 1)-edge-colouring of G′ with the colour class consisting of M1 ∪ e, we have χ′(H) ≤ n, as desired.

Therefore we assume U2 6= ∅ and let u ∈ U2. Let G′ := G[U1∪U2]−u if m is odd and let G′ := G[U1∪U2]
otherwise. If G′ has a perfect matching, then (7.12:a) holds, so we assume otherwise. Thus, by the Tutte-
Berge formula, there is a set S such that G′ − S has at least |S|+ 2 odd components (since G′ has an even
number of vertices, G′ − S cannot have |S|+ 1 odd components). Note that if a vertex has degree at least
n − 2 in H then it has degree at least n − 3 in G. Thus δ(G′) ≥ v(G′) − 3, which implies that |S| ≤ 1.
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Moreover, if |S| = 1, then v(G′) = 4 and the vertices in V (G′) \S form a hyperedge of H. In this case G′ is
a star on four vertices, so |U2| ≤ |V (G′)∪{u}| ≤ 5 and |U1| ≤ 1. If U1 = ∅, then M ′ := M satisfies (7.12:a),
and otherwise, M ′ := M ∪ {uv} where v ∈ U1, satisfies (7.12:a), as desired. If S = ∅, then G′ is a graph
with two vertices and no edges. In this case, U1 = ∅, so M ′ := M satisfies (7.12:a). �

8. Colouring small edges that are not in the reservoir

In this section, we prove three lemmas which will be applied to colour all of the small edges that are not
in the reservoir (where the reservoir is constructed in Section 11). Since we may need to reuse the colours
already used for large edges and medium edges (given by Theorem 6.1), we need to formulate the lemmas to
colour the small edges (that are not in the reservoir) by extending the colour classes given by Theorem 6.1.

The lemma below is used repeatedly in the proof of Lemma 8.2 to colour most of the non-reserved small
edges in such a way that every colour class exhibits some pseudorandom properties.

Lemma 8.1 (Nibble Lemma). Let 0 < 1/n0 � 1/r, β � κ, γ � 1, let n ≥ n0, and let D ∈ [n1/2, n]. Let H
be an n-vertex linear multi-hypergraph.

• Let H′ ⊆ H be a linear multi-hypergraph such that V (H) = V (H′), every e ∈ H′ satisfies |e| ≤ r,
and for every w ∈ V (H′) we have dH′(w) = (1± β)D,

• let FV and FE be a family of subsets in V (H′) and E(H′), respectively, such that |FV |, |FE | ≤ nlogn,
and

• let M1, . . . ,MD ⊆ H\H′ be pairwise edge-disjoint matchings such that for every i ∈ [D], |V (Mi)| ≤
βD, and for every edge e ∈ H′, we have |{i ∈ [D] : e ∩ V (Mi) 6= ∅}| ≤ βD.

Then there exist pairwise edge-disjoint matchings N1, . . . , ND in H such that for any i ∈ [D],
(8.1.1) Ni ⊇Mi and Ni \Mi ⊆ H′,
(8.1.2) Ni is (γ, κ)-pseudorandom with respect to FV , and

(8.1.3) |F \
⋃D
j=1Nj | ≤ γ|F |+ κmax(|F |, D) for each F ∈ FE.

Note that if we let E(H′) ∈ FE , then (8.1.3) implies that
⋃D
j=1Nj contains almost all of the edges of H′.

The matchings M1, . . . ,MD will play the role of some of the colour classes given by Theorem 6.1.
The overall idea of the proof of Lemma 8.1 is as follows. First we embed H′ into an r-uniform linear

hypergraph Hunif using Lemma 4.4. We then embed Hunif into an (r + 1)-uniform auxiliary hypergraph
Haux, and we find a pseudorandom matching N∗ in Haux using Corollary 4.3, which yields D edge-disjoint
pseudorandom matchings N ′1, . . . , N

′
D in H′. Then we will show that the matchings Ni := N ′i ∪Mi for

i ∈ [D] satisfy the desired properties.

Proof. We apply Lemma 4.4 to H′ with (1+β)D, 2βD, and n playing the roles of D, C, and N , respectively,
to obtain an r-uniform linear hypergraph Hunif such that

(a) V (Hunif) ⊇ V (H′) and v(Hunif) ≤ n5, and
(b) every vertex w ∈ Hunif satisfies dHunif

(w) = (1 ± β)D. Moreover, dH′(w) = dHunif
(w) for any

w ∈ V (H′).
Note that (b) and (4.4.1) imply that
(c) H′ = Hunif |V (H′).

Let Emeet := {e ∈ Hunif : e ∩ V (H′) 6= ∅}. By (c), we have a bijective map

ψ : Emeet → H′ such that e∗ 7→ e∗ ∩ V (H′).

Thus, for any w ∈ V (H′), we have EH′(w) = {ψ(e∗) : w ∈ e∗ ∈ Hunif}. Note that the assumption
|{i ∈ [D] : e ∩ V (Mi) 6= ∅}| ≤ βD for any e ∈ H′, implies that

(8.1) for every e∗ ∈ Hunif , we have |{i ∈ [D] : e∗ ∩ V (Mi) 6= ∅}| ≤ βD.

We construct an (r+1)-uniform linear hypergraph Haux based on Hunif and the sets V (M1), . . . , V (MD),
as follows.

• For any i ∈ [D], let V ∗i := {wi : w ∈ V (Hunif)}, where for any distinct i1, i2 ∈ [D], we have

V ∗i1 ∩ V
∗
i2

= ∅. Now let us define a map ϕ : [D] × V (Hunif) →
⋃D
i=1 V

∗
i such that ϕ(i, w) := wi for

any (i, w) ∈ [D]× V (Hunif).
• For any i ∈ [D], let Vi := V ∗i \ ϕ(i, V (Mi)).
• Let V (Haux) := Hunif ∪

⋃
i∈[D] Vi, where Hunif ∩ Vi = ∅ for i ∈ [D].

• Let Haux := {{f, vi1, . . . , vir} : f = {v1, . . . , vr} ∈ Hunif , {vi1, . . . , vir} ⊆ Vi , i ∈ [D]}.
Now for every w ∈ V (Hunif) and i ∈ [D] such that wi ∈ Vi, since Haux is linear, dHunif

(w) − |V (Mi)| ≤
dHaux

(wi) ≤ dHunif
(w), since Vi is obtained from V ∗i by deleting |V (Mi)| vertices. Since |V (Mi)| ≤ βD
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and (b) holds, this implies dHaux
(wi) = (1 ± 2β)D. Moreover, by (8.1), for every e∗ ∈ Hunif , we have

(1− β)D ≤ dHaux
(e∗) ≤ D. In summary, we have the following.

(8.2) For every vertex w ∈ V (Haux), we have dHaux
(w) = (1± 2β)D.

By the construction of Haux, we have

(8.3) n ≤ (1− β)D|V (H′)|+ |Hunif | ≤ n′ := |V (Haux)| ≤ D|V (Hunif)|+ |Hunif |
(a),(b)

≤ n7.

Let

Faux :=

D⋃
i=1

{ϕ(i, A) \ ϕ(i, V (Mi)) : A ∈ FV } ∪ {ψ−1(F ) : F ∈ FE},

where |Faux| ≤ D|FV | + |FE | ≤ n2 logn ≤ (n′)2 logn′ . Since (8.2) holds and D ≥ n1/2
(8.3)

≥ (n′)1/14, we can
apply Corollary 4.3, with n′, Haux, D, 2β, γ, Faux playing the roles of n, H, D, κ, γ, F , respectively, to
obtain a matching N∗ in Haux, such that |A \ V (N∗)| = (γ ± 8β)|A| for every A ∈ Faux with |A| ≥ D1/20.
This implies that for any A ∈ Faux,

(8.4) |A \ V (N∗)| = γ|A| ± (8β|A|+D1/20).

For i ∈ [D], let

N ′i := {ψ(e∗) : e∗ = {v1, . . . , vr} ∈ Emeet , {e∗, vi1, . . . , vir} ∈ N∗} and Ni := N ′i ∪Mi.

Then N ′1, . . . , N
′
D ⊆ H′ satisfy the following properties.

(i) For any w ∈ V (H′), we have w ∈ V (N ′i) if and only if wi = ϕ(i, w) ∈ V (N∗).

(ii) For any e ∈ H′, we have e ∈
⋃D
i=1N

′
i if and only if ψ−1(e) ∈ V (N∗). (Recall that ψ−1(e) ∈ Hunif ⊆

V (Haux).)
It is easy to see that N ′1, . . . , N

′
D are pairwise edge-disjoint matchings in H′, and that for every i ∈ [D],

we have V (N ′i) ∩ V (Mi) = ∅. Moreover, recall that M1,M2, . . . ,MD ⊆ H \ H′ are pairwise edge-disjoint.
Altogether this implies that N1, . . . , ND are pairwise edge-disjoint matchings in H. This proves (8.1.1).

For any F ∈ FE , since ψ−1(F ) ⊆ Hunif ⊆ V (Haux) and ψ−1(F ) ∈ Faux, we have

|F \
D⋃
i=1

N ′i |
(ii)
= |ψ−1(F ) \ V (N∗)| (8.4)

= γ|F | ± (8β|F |+D1/20) ≤ γ|F |+ κmax(|F |, D).

Thus, (8.1.3) holds.
Finally, we prove (8.1.2). Let us consider any A ∈ FV and i ∈ [D]. Since

|A \ V (Ni)| = |(A \ V (Mi)) \ V (N ′i)|
(i)
= |ϕ(i, A \ V (Mi)) \ V (N∗)| = |(ϕ(i, A) \ ϕ(i, V (Mi))) \ V (N∗)|

and ϕ(i, A) \ ϕ(i, V (Mi)) ∈ Faux, by (8.4), we have |A \ V (N ′i)| = γ|A| ± κn. Thus, the matching Ni is
(γ, κ)-pseudorandom with respect to FV , proving (8.1.2). �

In the next lemma, using the absorption lemmas from Section 7, we extend the matchings given by

the previous lemma in such a way that each matching will cover all but at most one vertex of V
(1−ε)
+ (G),

where the uncovered vertex of V
(1−ε)
+ (G) must lie in a prescribed defect set S. In principle, we could apply

Lemma 8.1 directly with D = (1 − ρ)n to colour almost all of the non-reserved small edges, but in order
to be able to apply Lemmas 7.6 and 7.7 to each matching, we actually need to partition the hypergraph
into subhypergraphs of maximum degree at most κn, and we apply Lemma 8.1 to each part successively,
alternating with applications of one of Lemma 7.6 or 7.7.

Lemma 8.2 (Main colouring lemma). Let 0 < 1/n0 � 1/r, ξ, β � γ � ε, ρ � 1, let n ≥ n0, and let

D ∈ [n2/3, n]. Let H be an n-vertex linear multi-hypergraph, let G := H(2) and let U := V
(1−ε)
+ (G).

C1 Let S ⊆ U satisfy |S| ≥ D + γn if |U | > (1− 2ε)n,
C2 let R ⊆ E(G) be a (ρ, γ, ξ, ε)-absorber for V such that U, V (H) ∈ V,
C3 let H′ ⊆ H \ R be a linear multi-hypergraph such that V (H) = V (H′), every edge e ∈ H′ satisfies
|e| ≤ r, and dH′(w) = (1± β)D for every vertex w ∈ V (H′), and

C4 let M = {M1, . . . ,MD} be a set of edge-disjoint matchings in H\ (H′ ∪R) such that |V (Mi)| ≤ βD
for every i ∈ [D], and |{i ∈ [D] : e ∩ V (Mi) 6= ∅}| ≤ βD for every edge e ∈ H′.

Then there exists a set N := {N1, . . . , ND} of edge-disjoint matchings in H satisfying the following.
(8.2.1) For every i ∈ [D], we have Ni ⊇Mi and Ni \Mi ⊆ H′ ∪R.

(8.2.2) For every vertex w ∈ V (H), |ER(w) ∩
⋃D
k=1Nk| ≤ γD and |EH′(w) \

⋃D
k=1Nk| ≤ γD.
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(8.2.3) If |U | ≤ (1− 2ε)n, then N has perfect coverage of U . Otherwise, N has nearly-perfect coverage of
U with defects in S.

Proof. Let K := dκ−1e, where we choose κ so that r−1, ξ, β � κ � γ. First, we find a partition of H′
into pairwise edge-disjoint hypergraphs H′1, . . . ,H′K such that

⋃K
j=1H′j = H′, and every vertex has degree

(1± 2β)D/K in H′i for i ∈ [K]. (To show the desired partition exists, consider a partition chosen uniformly

at random.) Now, for each i ∈ [K], we may choose ni to be either bD/Kc or dD/Ke such that
∑K
j=1 nj = D.

Let us partition the set [D] into K disjoint parts I1, . . . , IK such that |Ii| = ni. Then ni ≤ κn, and every
vertex in H′i has degree (1± 3β)ni.

Let us define the following statements for 0 ≤ j ≤ K.
(i)j For any 1 ≤ k ≤ j, there exists a set Nk := {Nc : c ∈ Ik} of nk matchings in H such that

Mc ⊆ Nc and Nc \Mc ⊆ H′k ∪R for every c ∈ Ik. Moreover, the matchings in
⋃j
k=1Nk are pairwise

edge-disjoint.
(ii)j For every w ∈ V (H),

|ER(w) ∩
⋃
k∈[j]

⋃
N∈Nk

N | ≤ γ
∑
k∈[j]

nk and |E⋃j
k=1H

′
k
(w) \

⋃
k∈[j]

⋃
N∈Nk

N | ≤ γ
∑
k∈[j]

nk.

(iii)j If |U | ≤ (1− 2ε)n, then
⋃j
k=1Nk has perfect coverage of U . Otherwise,

⋃j
k=1Nk has nearly-perfect

coverage of U with defects in S.
Using induction on j, we will show that (i)j–(iii)j hold for j = K which clearly proves the lemma. Note

that (i)j–(iii)j trivially hold for j = 0. Let i ∈ [K], and suppose that (i)j–(iii)j hold for j = i− 1. Our goal
is to find a collection Ni of ni pairwise edge-disjoint matchings in H satisfying (i)j–(iii)j for j = i.

Let Ri := R \
⋃i−1
k=1

⋃
N∈Nk

N , let Si := S \
⋃i−1
k=1

⋃
N∈Nk

(U \ V (N)), and

(8.5) W := F(Ri) ∪ {U, Si}, where F(Ri) := {NRi
(u) ∩ U : u ∈ U} ∪ {NRi

(u) \ U : u ∈ U}.

Now we apply Lemma 8.1 with H′i,W, {EH′i(w) : w ∈ V (H)}, {Mc : c ∈ Ii}, β1/2, γ/4, ni playing the

roles of H′,FV ,FE , {M1, . . . ,MD}, β, γ,D to obtain a set N ′i := {N ′c : c ∈ Ii} of ni pairwise edge-disjoint
matchings in H such that the following hold.

(a)i For every c ∈ Ii, N ′c ⊇Mc and N ′c \Mc ⊆ H′i. In particular, N ′c ∩R = ∅.
(b)i For every c ∈ Ii, N ′c is (γ/4, κ)-pseudorandom with respect to W.
(c)i For every w ∈ V (H), |EH′i(w) \

⋃
c∈Ii N

′
c| ≤ γni/2.

(d)i For every w ∈ V (H), the number of matchings in N ′i not covering w is at most

|N ′i | − (dH′i(w)− |EH′i(w) \
⋃
c∈Ii

N ′c|)
(c)i
≤ ni − (1− 3β)ni + γni/2 ≤ γni.

Now we show that for any given c ∈ Ii, (H, N ′c, Ri, Si) is (ρ, ε, γ/4, κ, ξ)-absorbable by pseudorandomness
of N ′c, as follows.

• Using the fact that R is a (ρ, γ, ξ, ε)-absorber for V, (ii)j with j = i − 1, and Observation 7.3, we
deduce that Ri is a (ρ, 2γ, ξ, ε)-absorber for V, showing (AB1).

• (a)i implies (AB2).
• By (b)i , N

′
c is (γ/4, κ)-pseudorandom with respect to W, so (i) of (AB3) holds, as required.

Moreover, if |U | > (1 − 2ε)n, then |Si| ≥ |S| −
∑i−1
k=1 nk ≥ D + γn − D = γn, so we can apply either

Lemma 7.6 or Lemma 7.7 depending on the size of U , with γ/4, Ri, Si,N ′i playing the roles of γ,R, S,N .
This yields a set Ni := {Nc : c ∈ Ii} of ni pairwise edge-disjoint matchings in H such that the following
hold.

• For every c ∈ Ii, Nc ⊇ N ′c and Nc \N ′c ⊆ Ri. Since N ′c \Mc ⊆ H′i by (a)i , this shows (i)j for j = i.
• By (c)i , for any w ∈ V (H), |EH′i(w) \

⋃
c∈Ii Nc| ≤ γni/2. Moreover, by (d)i , all but at most γni of

the matchings in N ′i cover w. This together with (a)i implies that |ERi(w)∩
⋃
c∈Ii Nc| ≤ γni. This

shows (ii)j for j = i.
• If |U | ≤ (1− 2ε)n, then Ni has perfect coverage of U . Otherwise, Ni has nearly-perfect coverage of
U with defects in Si ⊆ S. This shows (iii)j for j = i. �

Lemma 8.2 colours most of the non-reserved small edges (as shown in (8.2.2)). We will use the following
lemma to colour the remaining non-reserved small edges such that every colour class covers all but at most

one vertex of V
(1−ε)
+ (G). Since the proportion of remaining non-reserved small edges is small, we can afford

to be less efficient in the number of colours we use in this step in order to ensure that each colour class is
small, which allows us to use Lemma 7.11 to extend them.
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Lemma 8.3 (Leftover colouring lemma). Let 0 < 1/n0 � 1/r, ξ � γ � ρ, ε � 1, let n ≥ n0, and let

D ∈ [n2/3, n]. Let H be an n-vertex linear hypergraph, let G := H(2), and let U := V
(1−ε)
+ (G).

L1 Let C be a set of colours with γD/2 ≤ |C| ≤ γD,
L2 let M := {Mc : c ∈ C} be a set of pairwise edge-disjoint matchings in H, where |V (Mc)| ≤ γn/2

for every c ∈ C,
L3 let R ⊆ E(G) \

⋃
c∈CMc be a (ρ, 10γ, ξ, ε)-absorber for V := {V (H), U},

L4 let Hrem ⊆ H\(R∪
⋃
c∈CMc) such that V (H) = V (Hrem), ∆(Hrem) ≤ γ2D/20, every edge e ∈ Hrem

satisfies |e| ≤ r and |{c ∈ C : e ∩ V (Mc) 6= ∅}| ≤ γ2D/100,
L5 let S ⊆ U be a subset satisfying |S| > (γ + ε)n if |U | > (1− 10ε)n.

Then there exists a set N := {Nc : c ∈ C} of pairwise edge-disjoint matchings such that the following
hold.
(8.3.1) For any c ∈ C, we have Nc ⊇Mc and Hrem ⊆

⋃
c∈C(Nc \Mc) ⊆ Hrem ∪R.

(8.3.2) If |U | ≤ (1− 10ε)n, then N has perfect coverage of U . Otherwise, N has nearly-perfect coverage of
U with defects in S.

Proof. Let us choose κ such that r−1, ξ � κ� γ. Let t := d4γ−1e and C1, . . . , Ct be a partition of C into
t sets such that |Ci| ≥ γ2D/10 for 1 ≤ i ≤ t.

We will first show that for every i ∈ [t], there exists a proper colouring of the edges of Hrem using
colours from Ci. To that end, let C(e) := {c ∈ C : e ∩ V (Mc) 6= ∅} for every edge e ∈ Hrem. Since
∆(Hrem) ≤ γ2D/20, |C(e)| ≤ γ2D/100 and |Ci| ≥ γ2D/10, we can apply Theorem 4.6 with γ2D/20 and
1/2 playing the roles of D and α, respectively, to show that for every i ∈ [t], there exists a proper edge-
colouring ψi : Hrem → Ci such that ψi(e) 6∈ C(e) for every e ∈ Hrem. By the definition of C(e), this implies
that V (ψ−1

i (c)) ∩ V (Mc) = ∅ for any i ∈ [t] and c ∈ Ci.
Let us now define a proper edge-colouring ψ : Hrem → C by choosing i(e) ∈ [t] uniformly and indepen-

dently at random for each e ∈ Hrem and setting ψ(e) := ψi(e)(e). Fix an arbitrary colour c ∈ C. Then

there is a unique j ∈ [t] such that c ∈ Cj , and |V (ψ−1(c))| =
∑
e∈ψ−1

j (c) |e|1i(e)=j , so by the linearity of

expectation, E[|V (ψ−1(c))|] =
∑
e∈ψ−1

j (c) |e| · P(i(e) = j) ≤ n/t ≤ γn/4.

Since |V (ψ−1(c))| is a weighted sum of independent indicator random variables with maximum weight at
most r, by applications of Theorem 4.1 together with a union bound, it is easy to see that |V (ψ−1(c))| < γn/2
for all c ∈ C with non-zero probability. Combining this with the fact that for every c ∈ C, V (ψ−1(c)) ∩
V (Mc) = ∅ and |V (Mc)| ≤ γn/2, it follows that there exists a proper edge-colouring ψ : Hrem → C such that
{ψ−1(c)∪Mc : c ∈ C} is a set of edge-disjoint matchings in H where for every c ∈ C, |V (ψ−1(c))∪V (Mc)| ≤
γn. Thus, for every c ∈ C, (H,Mc∪ψ−1(c), R, S) is (ρ, ε, γ, κ, ξ)-absorbable by smallness of Mc∪ψ−1(c). So
we can apply Lemma 7.11 with {Mc∪ψ−1(c) : c ∈ C} playing the role of N to obtain a set N = {Nc : c ∈ C}
of pairwise edge-disjoint matchings in H such that the following hold.

• For every c ∈ C, Nc ⊇Mc ∪ ψ−1(c) and Nc \ (Mc ∪ ψ−1(c)) ⊆ R; thus (8.3.1) holds.
• If |U | ≤ (1− 10ε)n, then N has perfect coverage of U . Otherwise, N has nearly-perfect coverage of
U with defects in S; thus (8.3.2) holds. �

9. Optimal edge-colourings

In this section we will prove colouring results (Lemma 9.2 and Corollary 9.6) which will be used to colour
the leftover edges of the reservoir in the final step of the proof of Theorem 1.1.

9.1. Edge-colourings with forbidden lists. The following observation follows easily from Hall’s theorem.

Observation 9.1. Let G be a bipartite graph with bipartition {A,B}, and let δA and δB be the minimum
degrees of the vertices in A and B, respectively. If |A| ≤ |B| and δA + δB ≥ |A|, then G has a matching
covering A.

Lemma 9.2. Let δ ∈ (0, 1), let H be an n-vertex graph, let C be a set of colours satisfying |C| ≥ 7δn, and
for every w ∈ V (H), let Cw ⊆ C such that the following hold.

(i) For any w ∈ V (H), dH(w) ≤ |C| − |Cw|.
(ii) There is a set U ⊆ V (H) with |U | ≤ δn such that every edge of H is incident to a vertex of U .
(iii) For every vertex w ∈ V (H), |Cw| ≤ δn.
(iv) For every c ∈ C, |{w ∈ V (H) : c ∈ Cw}| ≤ δn.

Then there exists a proper edge-colouring φ : E(H)→ C such that every edge uv ∈ E(H) satisfies φ(uv) /∈
Cu ∪ Cv.
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Proof. Let U := {u1, . . . , ut}, where t := |U | ≤ δn. Let φ0 : ∅ → C be an empty function, and for every

1 ≤ j ≤ t, let us inductively define a proper edge-colouring φj :
⋃j
k=1EH(uk)→ C such that

(a)j φj(uv) /∈ Cu ∪ Cv for each uv ∈
⋃j
k=1EH(uk), and

(b)j φj is a proper edge-colouring extending φj−1.
Since every edge of H is incident to a vertex of U by (ii), φ := φt satisfies the assertion of the lemma.

Let i ∈ [t], and suppose we have already defined φj satisfying both (a)j and (b)j for j ∈ [i− 1]; now we aim
to construct φi satisfying (a)j and (b)j for j = i.

For each v ∈ V (H) \ {u1, . . . , ui−1}, let C∗v := φi−1(EH(v) ∩
⋃i−1
j=1EH(uj)) be the set of colours of edges

incident to a vertex v ∈ V (H) in φi−1. Since any vertex v ∈ V (H) \ {u1, . . . , ui−1} is adjacent to at most
i− 1 vertices in {u1, . . . , ui−1}, we have

(9.1) |C∗v |
(b)j
= |EH(v) ∩

i−1⋃
j=1

EH(uj)| ≤ i− 1 ≤ δn.

Let A := EH(ui) \
⋃i−1
j=1EH(uj) and B := C \ (Cui

∪ C∗ui
). Let Gi be an auxiliary bipartite graph with

the bipartition {A,B} such that {e, c} ∈ E(Gi) for e = uiv ∈ A and c ∈ B if and only if c /∈ Cv ∪C∗v . Thus,
the following hold.

• |A| ≤ |B|. Indeed, |A| = dH(ui) − |EH(ui) ∩
⋃i−1
j=1EH(uj)| and |B|

(b)j

≥ |C| − |Cui
| − |EH(ui) ∩⋃i−1

j=1EH(uj)|
(i)

≥ |A|.
• For each e = uiv ∈ A, we have

(9.2) dGi
(e) = |B| − |Cv ∪ C∗v | ≥ |C| − |Cui

∪ C∗ui
| − |Cv ∪ C∗v |

(9.1), (iii)

≥ 3δn.

• For each c ∈ B, since there are at most i − 1 edges in
⋃i−1
j=1EH(uj) which could be assigned the

colour c by φi−1, we have |{v ∈ V (H) : c ∈ C∗v}| ≤ 2(i− 1) ≤ 2δn. Thus

(9.3) dGi
(c) ≥ |A| − |{v ∈ V (H) : c ∈ C∗v}| − |{w ∈ V (H) : c ∈ Cw}|

(iv)

≥ |A| − 3δn.

Let δA and δB be the minimum degrees of the vertices in A and B in Gi, respectively. Then by (9.2)
and (9.3), we have δA + δB ≥ |A|. Moreover, |A| ≤ |B|, so there exists a matching Mi in Gi covering A by
Observation 9.1.

For each e ∈ A = EH(ui) \
⋃i−1
j=1EH(uj), let ce ∈ B be the unique element such that {e, ce} ∈ E(Mi).

Let us define φi(e) := φi−1(e) for e ∈
⋃i−1
j=1EH(uj), and φi(e) := ce for e ∈ EH(ui) \

⋃i−1
j=1EH(uj).

Since ce /∈ Cui
∪ C∗ui

∪ Cv ∪ C∗v for every e = uiv ∈ EH(ui) \
⋃i−1
j=1EH(uj), φi is a proper edge-colouring

satisfying (a)j and (b)j for j = i, as desired. �

9.2. Edge-colouring pseudorandom graphs. Here we derive an optimal colouring result for pseudo-
random graphs (Corollary 9.6) from a result (Theorem 9.5) on the overfull subgraph conjecture, which in
turn is a consequence of the main result in [35] on Hamilton decompositions of robustly expanding regular
graphs.

Definition 9.3 (Lower regularity). Let ρ, ξ ∈ (0, 1), and let G be an n-vertex graph. A set R ⊆ E(G) is
lower (ρ, ξ,G)-regular if for every pair of disjoint sets S, T ⊆ V (G) with |S|, |T | ≥ ξn, we have |EG(S, T ) ∩
R| ≥ ρeG(S, T )− ξ|S||T |.

A graph H is lower (ρ, ξ)-regular if E(H) is lower (ρ, ξ,Kv(H))-regular, i.e., for every pair of disjoint sets
S, T ⊆ V (H) with |S|, |T | ≥ ξv(H), we have eH(S, T ) ≥ (ρ− ξ)|S||T |.

Observation 9.4 (Robustness of lower regularity). Let α, ξ, ρ ∈ (0, 1), and let G be a graph. Then the
following hold.
(9.4.1) If R ⊆ E(G) is lower (ρ, ξ,G)-regular and R′ ⊆ R satisfies ∆(R − R′) ≤ αv(G), then R′ is lower

(ρ, ξ + α1/2, G)-regular.
(9.4.2) If G is lower (ρ, ξ)-regular and G ⊆ H such that v(H) ≤ (1 + αξ)v(G), then H is lower (ρ(1 −

α)2, ξ
1−α )-regular.

Theorem 9.5 (Glock, Kühn, and Osthus [20]). Let 0 < 1/n0 � ν, ε� p < 1, and let n ≥ n0. Let G be an
n-vertex graph that is lower (p, ε)-regular and satisfies ∆(G) − δ(G) ≤ νn. Let defG(v) := ∆(G) − dG(v)
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for any v ∈ V (G). If n is even and

(9.4) defG(w) ≤
∑

v∈V (G)\{w}

defG(v)

for some vertex w ∈ V (G) with dG(w) = δ(G), then χ′(G) = ∆(G).

Even though the statement of [20, Theorem 1.6] requires G to have no overfull subgraph, it is shown in
its proof that it suffices to assume that G satisfies (9.4) (see the remark below [20, Theorem 1.6]). We will
use the following corollary of Theorem 9.5.

Corollary 9.6. Let 0 < 1/n0 � η, ε � p < 1, and let n ≥ n0. Let G be an n-vertex graph that is lower
(p, ε)-regular and satisfies ∆(G) − δ(G) ≤ ηn. If there are at least ∆(G) vertices in G having degree less
than ∆(G), then χ′(G) = ∆(G).

Proof. Note that (9.4) is equivalent to

2(∆(G)− δ(G)) ≤
∑

v∈V (G)

(∆(G)− dG(v)).(9.5)

Since G is lower (p, ε)-regular, it is easy to see that ∆(G) ≥ (p− 3ε)n. Now we prove the corollary. First
suppose n is even. Since G has at least ∆(G) vertices having degree less than ∆(G), we have 2(∆(G) −
δ(G)) ≤ 2ηn ≤ (p − 3ε)n ≤ ∆(G) ≤

∑
v∈V (G)(∆(G) − dG(v)). Thus (9.5) holds, which implies that (9.4)

holds. So we can apply Theorem 9.5 to show that χ′(G) = ∆(G).
Now suppose n is odd. Let t := b∆(G) − 2ηnc. Let G∗ be a graph obtained from G by adding a new

vertex v∗ adjacent to exactly t vertices of G having degree less than ∆(G) in G. Then
(a) ∆(G∗) = ∆(G),
(b) δ(G∗) = dG∗(v

∗) = t,
(c) |{v ∈ V (G) : ∆(G∗) > dG∗(v)}| ≥ ∆(G)− dG∗(v∗), and
(d) G∗ is lower (p/4, 2ε)-regular by (9.4.2).

This implies that∑
v∈V (G∗)

(∆(G∗)− dG∗(v))
(b)
=

∑
v∈V (G)

(∆(G∗)− dG∗(v)) + (∆(G∗)− δ(G∗))
(a),(b),(c)

≥ 2(∆(G∗)− δ(G∗)).

Thus, G∗ satisfies (9.5), so it satisfies (9.4). Moreover (d) holds, and ∆(G∗) − δ(G∗) ≤ 3ηv(G∗) by (a)
and (b), so applying Theorem 9.5 with G∗, p/4, 2ε, 3η playing the roles of G, p, ε, ν, respectively, we deduce

that ∆(G) ≤ χ′(G) ≤ χ′(G∗) = ∆(G∗)
(a)
= ∆(G), as desired. �

10. Constructing reservoirs

In this section, we construct a set Rres ⊆ E(G) called a reservoir with several pseudorandom properties.

Definition 10.1 (Pseudorandom / Regularising reservoirs). Let ε, ρ, ξ ∈ (0, 1), let H be an n-vertex linear
hypergraph, let G := H(2), let G′ be the spanning subgraph consisting of the edges of G with at least one

vertex in V
(1−ε)
+ (G), and let V be a set of subsets of V (H).

• A subset Rres ⊆ E(G) is a (ρ, ξ, ε,V)-pseudorandom reservoir if
(P1) for each v ∈ V (H), dRres

(v) = ρdG(v)± ξn, and
(P2) Rres ∩ E(G′) is a (ρ, ξ, ξ, ε)-absorber for V.
• Suppose Rabs is a (ρ/2, ξ, ξ, ε)-absorber for V. A set Rreg ⊆ E(G) \ Rabs is a (ρ, ξ, ε, Rabs,V)-

regularising reservoir if Rres := Rabs ∪Rreg satisfies the following.

(R1) For each v ∈ V (1−ε)
+ (G), dRres

(v) = ρdG(v)± ξn, and

(R2) for any w ∈ V (H) \ V (1−ε)
+ (G), max(ρdG(w), (ρ− 20ε)n) ≤ dRres

(w) ≤ ρ(1− ε)n+ ξn.

Now we define various types of reservoirs. The type of reservoir we choose to use will depend on the
structure of the hypergraph H.

Definition 10.2 (Types of reservoirs). Let ε, ρ, ξ ∈ (0, 1), let H be an n-vertex linear hypergraph, let
G := H(2), and let G′ be the spanning subgraph consisting of the edges of G that are incident to a vertex

in V
(1−ε)
+ (G).

For a collection V of subsets of V (H), and Rres ⊆ E(G), we say Rres is
• a (ρ, ξ, ε,V)-reservoir of Type A1 if Rres is a (ρ, ξ, ε,V)-pseudorandom reservoir,
• a (ρ, ξ, ε,V)-reservoir of Type A2 if Rres = Rabs ∪Rreg, where



29

◦ Rabs is a (ρ/2, ξ, ξ, ε)-absorber for V that is also lower (ρ/2, ξ, G′)-regular, and
◦ Rreg is a (ρ, ξ, ε, Rabs,V)-regularising reservoir, and

• a (ρ, ξ, ε,V)-reservoir of Type B if Rres is a (ρ, ξ, ξ, ε)-absorber for V.
For brevity, we often omit the type if it is clear from the context.

We will use reservoirs of Type A1 when H is neither (ρ, ε)-full nor FPP-extremal (which are defined in
Definitions 2.2 and 2.3), reservoirs of Type A2 when H is (ρ, ε)-full but not FPP-extremal, and reservoirs
of Type B when H is FPP-extremal.

Now we show the existence of a suitable absorber, a pseudorandom reservoir, and a regularising reservoir.

Proposition 10.3 (The existence of a pseudorandom reservoir and an absorber). Let 0 < 1/n0 � ξ, ε, ρ <
1, and let n ≥ n0. Let H be an n-vertex linear hypergraph, let G := H(2), and let G′ be the spanning subgraph

of G consisting of the edges of G incident to a vertex in V
(1−ε)
+ (G). If V is a collection of subsets of V (H)

such that |V| ≤ nlogn, then there exists Rrnd ⊆ E(G) such that
• Rrnd ∩ E(G′) is a (ρ, ξ, ξ, ε)-absorber for V, and lower (ρ, ξ,G′)-regular, and
• Rrnd is a (ρ, ξ, ε,V)-pseudorandom reservoir.

In particular, Rrnd is a (ρ, ξ, ε,V)-reservoir of Type A1 and Rrnd ∩ E(G′) is a (ρ, ξ, ε,V)-reservoir of
Type B.

To prove Proposition 10.3, it suffices to consider a set Rrnd ⊆ E(G) of edges chosen independently and
uniformly at random with probability ρ and apply the weighted Chernoff’s inequality (Theorem 4.1) with
all weights equal to 1.

Lemma 10.4 (The existence of a regularising reservoir). Let 0 < 1/n0 � ξ � ε� ρ� 1, and let n ≥ n0.
Let H be an n-vertex linear hypergraph, and let G := H(2). If V is a collection of subsets of V (H) such that
|V| ≤ nlogn, V (H) ∈ V, and H is (ρ, ε)-full, then for any (ρ/2, ξ, ξ, ε)-absorber Rabs for V, there exists a
(ρ, ξ, ε, Rabs,V)-regularising reservoir Rreg ⊆ E(G) \Rabs.

Proof. Let U := V
(1−ε)
+ (G) and let G′ be the spanning subgraph of G consisting of the edges of G incident

to a vertex of U . Let Rabs be a (ρ/2, ξ, ξ, ε)-absorber for V. Since V (H) ∈ V,

(10.1) for any v ∈ V (G), dRabs
(v) = ρdG′(v)/2± ξn.

Let

(10.2) U ′ := {w ∈ V (H) \ U : dG(w) ≥ (1− 20ερ−1)n}.

Since H is (ρ, ε)-full, we can choose a subset S ⊆ V (n−1)(G) with |S| = d(ρ − 20ε)ne. Note that every
vertex of S is adjacent to all the other vertices of G.

For each vertex w ∈ V (H) \ (U ∪U ′), we choose d(ρ− 20ε)n− dRabs
(w)e > 0 edges of EG′(S, {w}) \Rabs,

and let R′ ⊆ E(G′) \ Rabs be the union of all such edges for all w ∈ V (H) \ (U ∪ U ′). Then for any
w ∈ V (H) \ (U ∪ U ′), we have

(10.3) ρdG(w)
(10.2)

≤ (ρ− 20ε)n ≤ dRabs
(w) + dR′(w) ≤ (ρ− 20ε)n+ 1 ≤ ρ(1− ε)n.

For each vertex w ∈ U ∪ U ′, let us define

f(w) := bρdG(w) + ξn− dRabs
(w)− dR′(w)c and g(w) := f(w)− 1.

Claim 1. There exists a (g, f)-factor R′′ in H := G[U ∪ U ′]−Rabs = G[U ∪ U ′]−Rabs −R′.
Proof of claim: Since ε� ρ, for any w ∈ U ∪U ′, we have dG(w) ≥ (1− ρ)n. Moreover, for any w ∈ U ∪U ′,
since H is (ρ, ε)-full, dR′(w) ≤ |V (H) \ U | ≤ 10εn ≤ ρn/10, and by (10.1), dRabs

(w) ≤ ρn/2 + ξn. Hence,
for any w ∈ U ∪ U ′ we have

3ρn

10
≤ ρ(1− ρ)n+ ξn−

(ρn
2

+ ξn
)
− ρn

10
− 1 ≤ f(w) ≤ ρn+ ξn <

3ρn

2
.

Therefore, for any w ∈ U ∪ U ′,
(10.4) f(w), g(w) ∈ [ρn/4, 2ρn].

Moreover, for any w ∈ U ∪ U ′, we have

dG−Rabs
(w) ≥ (1− ρ)n−

(ρn
2

+ ξn
)
− ρn

10
≥ (1− 2ρ)n.(10.5)

By Lovász’s (g, f)-factor Theorem [36], there exists a (g, f)-factor in H if
(i) 0 ≤ g(w) < f(w) ≤ dH(w) for each w ∈ U ∪ U ′, and
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(ii) for any pair of disjoint sets S, T ⊆ V (H), c(S, T ) ≥ 0, where

c(S, T ) :=
∑
t∈T

(dH(t)− g(t)) +
∑
s∈S

f(s)− eH(S, T ) =
∑
t∈T

(dH−S(t)− g(t)) +
∑
s∈S

f(s).

Since H is (ρ, ε)-full and ε� ρ, note that

(10.6) |V (H) \ (U ∪ U ′)| ≤ |V (H) \ U | ≤ 10εn ≤ ρn.

Hence, for any w ∈ U ∪ U ′, we have

dH(w) ≥ dG−Rabs
(w)− |V (G) \ (U ∪ U ′)|

(10.5),(10.6)

≥ (1− 2ρ)n− ρn = (1− 3ρ)n
(10.4)

≥ f(w),

so (i) holds. Now, we verify (ii). If |S| ≤ (1− 5ρ)n, then for any t ∈ T , we have

dH−S(t) ≥ dG−Rabs
(t)− |V (G) \ (U ∪ U ′)| − |S|

(10.5),(10.6)

≥ (1− 2ρ)n− ρn− |S| ≥ 2ρn
(10.4)

≥ g(t),

so c(S, T ) ≥ 0. Hence we may assume that |S| > (1− 5ρ)n, which implies that |T | < 5ρn. Then∑
t∈T

g(t)
(10.4)

≤ |T | · 2ρn ≤ 10ρ2n2 ≤ (1− 5ρ)n · ρn
4
< |S| · ρn

4

(10.4)

≤
∑
s∈S

f(s),

so c(S, T ) ≥ −
∑
t∈T g(t) +

∑
s∈S f(s) ≥ 0, proving (ii) and thus the claim. �

Finally, we show that Rreg := R′∪R′′ is a (ρ, ξ, ε, Rabs,V)-regularising reservoir. Let Rres := Rabs∪R′∪R′′.
For each w ∈ U ∪ U ′, we have

dRres(w) ≥ (f(w)− 1) + dRabs
(w) + dR′(w) ≥ ρdG(w) + ξn− 2,

dRres(w) ≤ f(w) + dRabs
(w) + dR′(w) ≤ ρdG(w) + ξn.

Thus, (R1) holds, and for w ∈ U ′, (ρ−20ε)n
(10.2)

≤ ρdG(w) ≤ dRres
(w) ≤ ρ(1−ε)n+ξn, as required by (R2).

Moreover, for any w ∈ V (H) \ (U ∪ U ′), dRres
(w) = dRabs

(w) + dR′(w) since R′′ ⊆ E(H) ⊆ E(G[U ∪ U ′]).
Therefore, by (10.3), max(ρdG(w), (ρ − 20ε)n) ≤ dRres

(w) ≤ ρ(1 − ε)n, showing that (R2) holds for w ∈
V (H) \ (U ∪ U ′). Thus, (R2) holds for all w ∈ V (H) \ U . This completes the proof. �

Definition 10.5 (Regularised linear multi-hypergraph). For an n-vertex linear hypergraph H, let Hreg be
the linear multi-hypergraph obtained from H by adding max(0, n− 3− dH(w)) singleton edges incident to
each w ∈ V (H).

Recall that Hsmall := {e ∈ H : |e| ≤ r1}. In order to be able to use Lemma 8.2, we need to embed
Hsmall \ Rres into an almost-regular linear multi-hypergraph H′ by adding singleton edges. In particular,
for each vertex w ∈ V (H), we add at most max(0, n − 3 − dH(w)) singleton edges containing w, so that
H′ ⊆ Hreg.

Lemma 10.6 (Regularising lemma). Let 0 < 1/n0 � ξ, 1/r1 � β, ε, ρ � 1, and let n ≥ n0. Let H be an
n-vertex linear hypergraph, and let V be a collection of subsets in V (H) such that V (H) ∈ V. If either

(i) Rres is a (ρ, ξ, ε,V)-reservoir of Type A1 or A2, or
(ii) Rres is a (ρ, ξ, ε,V)-reservoir of Type B and 3ρ ≤ ε,

then there exists a linear multi-hypergraph H′ ⊆ Hreg such that
• H′ is obtained from Hsmall \Rres by adding singleton edges, and
• for every w ∈ V (H), we have dH′(w) = (1− ρ)(n− 1± βn).

Proof. Let G := H(2), and let U := V
(1−ε)
+ (G). Since H is linear and every w ∈ V (H) is contained in at

most one singleton,

(10.7) dH\E(G)(w) ≤ n− 1− dG(w)

2
+ 1 ≤ (1− ρ)(n− 1− dG(w)) + 1.

We will show that for any w ∈ V (H),

(10.8) dH\Rres
(w) ≤ (1− ρ)(n− 1) + ξn+ 1.

Let us first consider the case when Rres is a (ρ, ξ, ε,V)-reservoir of Type A1 or A2. In this case, for any
w ∈ V (H), we have

(10.9) ρdG(w)− ξn ≤ dRres(w) ≤ (ρ+ ξ)n.
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Indeed, if Rres is of Type A1, then (10.9) holds by (P1), and if Rres is of Type A2, then (10.9) holds
by (R1) and (R2). Now, by (10.7) and (10.9), every w ∈ V (H) satisfies

dH\Rres
(w) = dG−Rres(w) + dH\E(G)(w)

(10.9)

≤ (1− ρ)dG(w) + ξn+ dH\E(G)(w)

(10.7)

≤ (1− ρ)(n− 1) + ξn+ 1,(10.10)

proving (10.8) when Rres is a (ρ, ξ, ε,V)-reservoir of Type A1 or A2.
Now let us consider the case when Rres is a (ρ, ξ, ε,V)-reservoir of Type B. Let G′ be the spanning

subgraph of G consisting of the edges of G incident to a vertex of U . Since Rres is a (ρ, ξ, ξ, ε)-absorber for
V and V (H) ∈ V, every w ∈ V (H) satisfies

(10.11) dRres(w) = ρdG′(w)± ξn.
If w ∈ U , then dG′(w) = dG(w), so dRres

(w) = ρdG(w)± ξn and by the same reasoning as in (10.10), one
can show that (10.8) holds if w ∈ U .

It remains to show that (10.8) holds for w ∈ V (H) \ U . Indeed, every w ∈ V (H) \ U satisfies

dH\Rres
(w) = dG′−Rres

(w) + dG−E(G′)−Rres
(w) + dH\E(G)(w)

(10.11)

≤ (1− ρ)dG′(w) + ξn+ dG−E(G′)(w) + dH\E(G)(w)

= (1− ρ)dG(w) + ρdG−E(G′)(w) + dH\E(G)(w) + ξn

(10.7)

≤ (1− ρ)dG(w) + ρ(1− ε)n+
n− 1− dG(w)

2
+ 1 + ξn

= (1/2− ρ)dG(w) + ρ(1− ε)n+
n− 1

2
+ ξn+ 1

≤ (1− ρ)(n− 1) + ξn+ 1,

as desired. Note that the last inequality is equivalent to (1/2 − ρ)dG(w) + ρ(1 − ε)n ≤ (1/2 − ρ)(n − 1),
which holds since dG(w) ≤ (1− ε)n and 3ρ ≤ ε.

Now let k := b(1−ρ)(n−1)−βn/2c, and let H′ be the linear multi-hypergraph obtained from Hsmall\Rres

as follows. For every vertex w ∈ V (H) satisfying dHsmall\Rres
(w) < k, we add k − dHsmall\Rres

(w) singleton
edges containing w. Then, by (10.8), for every vertex w ∈ V (H),

(10.12) dH′(w) = (1− ρ)(n− 1)± 2βn/3 = (1− ρ)(n− 1± βn),

as desired. Now we prove that H′ ⊆ Hreg by showing that H′ is obtained from Hsmall \ Rres by adding
at most max(0, n − 3 − dH(w)) singleton edges incident to each vertex w ∈ V (H). Indeed, for any vertex
w ∈ V (H) with dHsmall\Rres

(w) < k, we add at most

k − dHsmall\Rres
(w)

(10.9),(10.11)

≤ (1− ρ)n− βn

2
−
(
dH(w)− 2n

r1

)
+ (ρ+ ξ)n ≤ n− 3− dH(w)

singleton edges incident to w, since dH(w)− dHsmall
(w) ≤ 2n/r1 and ξ, 1/r1 � β. This completes the proof

of the lemma. �

11. Proof of Theorem 1.1

Now we are ready to prove our main theorem. As discussed in Section 2, the proof depends on the
structure of H. The relevant properties of H are captured by the following definition. (Recall that (ρ, ε)-full
linear hypergraphs were introduced in Definition 2.2.)

Definition 11.1 (Types of hypergraphs and colourings). Let H be a linear n-vertex hypergraph, and
let φ : Hmed ∪ Hlarge → [n] be a proper edge-colouring. We say φ is of Type A if it satisfies (6.1:a) of
Theorem 6.1, and φ is of Type B if it satisfies (6.1:b) of Theorem 6.1. We say (H, φ) is of

• Type A1 if φ is of Type A, and H is not (ρ, ε)-full,
• Type A2 if φ is of Type A, and H is (ρ, ε)-full,
• Type B if φ is of Type B.

Proof of Theorem 1.1. Recall the hierarchy of the parameters

0 < 1/n0 � 1/r0 � ξ � 1/r1 � β � κ� γ1 � ε1 � ρ1 � σ � δ � γ2 � ρ2 � ε2 � 1,

where r0 and r1 are integers. Let n ≥ n0, and let H be an n-vertex linear hypergraph. Without loss
of generality, we may assume that H has no singleton edges. Our aim is to find n pairwise edge-disjoint
matchings containing all of the edges of H.
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Let G := H(2), let U := V
(1−ε)
+ (G), and let G′ be the spanning subgraph of G consisting of the set of

edges of G incident to a vertex of U .

Step 1. Colour large and medium edges, and define the corresponding parameters.

Let φ : Hmed ∪Hlarge → [n] be the proper edge-colouring given by Theorem 6.1.
Now we define some parameters depending on the type of (H, φ) as follows.
• ρ := ρ1 , ρabs := ρ1 , ε := ε1 , and γ := γ1 if (H, φ) is of Type A1,
• ρ := ρ1 , ρabs := ρ1/2 , ε := ε1 , and γ := γ1 if (H, φ) is of Type A2, and
• ρ := ρ2 , ρabs := ρ2 , ε := ε2 , and γ := γ2 if (H, φ) is of Type B.

Thus, we have

(11.1) κ� γ � ρ, ρabs, ε� 1.

Recall that difficult matchings were defined in Definition 7.10. The following claim is used in the later
steps.

Claim 1. The following hold.
(1.1) For any edge e ∈ H such that e ∩ U 6= ∅, we have |e| ≤ εn.
(1.2) For any edge e ∈ Hsmall, we have |{f ∈ Hlarge : e ∩ f 6= ∅}| ≤ 2r1n/r0.
(1.3) If φ is of Type B, then |U | ≤ 2δn, and there is no difficult colour class in φ.
(1.4) If φ is of Type A, then there is at most one colour c ∈ [n] such that φ−1(c) contains a huge edge

and φ−1(c) is difficult. Moreover, if such a colour c exists, then φ−1(c) = {e} for some huge edge e.

Proof of claim: Let us first prove (1.1). For any edge e ∈ H \ E(G) containing a vertex w ∈ U , since H is
linear, the vertex w is not adjacent (in G) to any vertex of e. Thus, (1− ε)n ≤ dG(w) ≤ n− |e|, implying
that |e| ≤ εn, as desired.

Now we prove (1.2). Since H is linear, every vertex w ∈ V (H) is incident to at most n/(r0 − 1) edges of
Hlarge. Thus, |{f ∈ Hlarge : e ∩ f 6= ∅}| ≤ |e|n/(r0 − 1) ≤ 2r1n/r0.

Now we show (1.3). Since there is a set of FPP-extremal edges in H with volume at least 1 − δ, we
have |U |(1 − ε)n/2 ≤ |E(G)| ≤ δ

(
n
2

)
. Thus, |U | ≤ 2δn. If φ−1(c) is difficult, then |V (φ−1(c))| ≥ 3|V (H) \

U |/4 ≥ n/2, which is impossible since each colour class covers at most δn vertices by (6.1:b)(i), (6.1:b)(ii),
and (6.1:b)(iii) of Theorem 6.1.

Finally, we prove (1.4). By (6.1:a)(i) of Theorem 6.1, every colour class of φ containing a huge edge
consists of a unique edge. Suppose φ−1(c1) and φ−1(c2) are difficult colour classes of φ such that both of
them contain a huge edge, and let c1 6= c2. Then |V (H) \ U | ≥ 2 and there exist huge edges e1 6= e2 in
H such that φ(e1) = c1 and φ(e2) = c2. If |V (H) \ U | = 2, then both e1 and e2 contain V (H) \ U since
d3|V (H) \ U |/4e = 2, contradicting the linearity of H. Otherwise, if |V (H) \ U | ≥ 3, then for i ∈ {1, 2}, we
have |ei \U | ≥ 3|V (H) \U |/4, so |(e1 ∩ e2) \U | ≥ |V (H) \U |/2 > 1, also contradicting the linearity of H. �

Step 2. Choose a reservoir Rres and a defect-set S.

Let us define

(11.2) V := {U, V (H)} ∪
n⋃
i=1

{U ∪ V (φ−1(i)), U \ V (φ−1(i))}.

By Proposition 10.3 and Lemma 10.4, there exists Rres ⊆ E(G) such that
RES1 Rres is a (ρ, ξ, ε,V)-reservoir of Type i if (H, φ) is of Type i, for i ∈ {A1,A2,B}, and
RES2 Rres contains a (ρabs, ξ, ξ, ε)-absorber Rabs for V. Moreover, if (H, φ) is of Type A2, then Rabs is

lower (ρ/2, ξ, G′)-regular, and if (H, φ) is of Type B then Rres = Rabs.
Now let us define the ‘defect’ set S by

S :=

{
U \ V (n−1)(H) if (H, φ) is of Type A1.

U if (H, φ) is of Type A2 or B.
(11.3)

Since |U | ≥ (1−10ε)n holds only if φ is of Type A by (1.3) of Claim 1, and ε� ρ holds if φ is of Type A,
we can deduce the following.

(11.4) If |U | > (1− 10ε)n, then |S| ≥ (1− ρ)n+ 5εn.

Step 3. Define various subsets of colours.

In this step, we will define various sets of colours, Cmed, Cdiff , Chuge, Cmain, Cbuff , Clarge and Cfinal, such
that [n] = Cmed ∪ Cdiff ∪ Chuge ∪ Cmain ∪ Cbuff ∪ Cfinal.
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In the following steps, roughly, our goal is to extend the colour classes φ−1(c) for c ∈ [n] \ Cfinal in such
a way that the maximum degree in the hypergraph of remaining uncoloured edges is at most |Cfinal|. To
that end, first, for each c ∈ Cdiff , we will extend the colour class φ−1(c) to cover every vertex of V (n−1)(H)
and all but at most five vertices of V (n−2)(H) using some edges of G. Then for each c ∈ Chuge ∪ Cmed we
will extend the colour class φ−1(c) to cover all but at most one vertex of U using some edges of Rabs, and
finally, we will extend the colour classes φ−1(c) for c ∈ Cmain ∪ Cbuff to contain all of the remaining edges
in Hsmall \Rres, and the resulting colour classes are further extended using some edges of Rabs.

Now we define the following parameters and sets of colours.
• Let D := b(1− ρ)(n− 1)c and D′ := b10γ1/2Dc.
• Let Cmed ⊆ [n] be a set of at most γn colours such that φ(Hmed) ⊆ Cmed, which is guaranteed

by (6.1:a)(ii) and (6.1:b)(ii) of Theorem 6.1.
• By (1.3) and (1.4) of Claim 1, there is at most one colour cdiff ∈ φ(Hhuge)\Cmed such that φ−1(cdiff)

is difficult. If such a colour cdiff exists, then let Cdiff := {cdiff}. Otherwise, let Cdiff := ∅.
• Let Chuge := φ(Hhuge) \ (Cmed ∪ Cdiff). Note that, since H is linear and for every e ∈ Chuge,
|e| ≥ βn/4, we have

(11.5) |Chuge ∪ Cdiff | ≤ e(Hhuge)
(2.2)

≤ 8β−1.

• Let Clarge := φ(Hlarge) \ (Cmed ∪ Cdiff ∪ Chuge).
• Let Cmain ⊆ [n] \ (Cmed ∪Cdiff ∪Chuge) be a subset of size D that maximises |Clarge ∩Cmain|. Note

that such a subset exists since n− |Cmed ∪Cdiff ∪Chuge| ≥ n− γn− 8β−1 ≥ D by (11.1) and (11.5).
In particular, if φ is of Type A, then Cmain ⊇ Clarge, since |Clarge| ≤ (1 − σ)n < D by (6.1:a) of
Theorem 6.1.

• Let Cbuff ⊆ [n]\ (Cmed∪Cdiff ∪Chuge∪Cmain) be a subset of size D′. Note that such a subset exists
since n− |Cmed ∪ Cdiff ∪ Chuge ∪ Cmain| ≥ n− γn− 8β−1 − (1− ρ)n ≥ ρn/2 ≥ D′ by (11.5).

• Let Cfinal := [n] \ (Cmed ∪ Cdiff ∪ Chuge ∪ Cmain ∪ Cbuff).
We will use the following observations later.
T1 If φ is of Type A, then for any c ∈ Cfinal, φ

−1(c) = ∅, since Clarge ⊆ Cmain.
T2 If φ is of Type B, then for any c ∈ Cfinal, φ

−1(c) ⊆ Hlarge \ Hhuge. Moreover, (6.1:b)(iii) of
Theorem 6.1 implies that |V (φ−1(c))| ≤ βn for any c ∈ Cfinal.

Also note that

(1− ρ)n ≤ |Cmed ∪ Cdiff ∪ Chuge ∪ Cmain ∪ Cbuff | ≤ (1− ρ+ 15γ1/2)n,(11.6)

since |Cmed| ≤ γn, |Cmain ∪ Cbuff | = D +D′ ≤ (1− ρ+ 10γ1/2)n, and (11.5) holds.

Step 4. Extend the colour classes in {φ−1(c) : c ∈ Cdiff} using Lemma 7.12.

In this step, for each c ∈ Cdiff , we extend the colour class φ−1(c) to cover every vertex of V (n−1)(H) and
all but at most five vertices of V (n−2)(H), by using only edges of G.

If Cdiff 6= ∅, then by (1.3) and (1.4) of Claim 1, Cdiff = {cdiff}, φ is of Type A, and φ−1(cdiff) = {e}
for some huge edge e. Applying Lemma 7.12 with φ−1(cdiff) playing the role of M , either χ′(H) ≤ n or we
have a set Mdiff := {Mcdiff

} such that the following holds.
D1 For each c ∈ Cdiff , Mc ⊇ φ−1(c), Mc \ φ−1(c) ⊆ E(G), Mc covers every vertex of V (n−1)(H), and
|V (n−2)(H) \ V (Mc)| ≤ 5.

Let us define

R1 := Rabs \
⋃

c∈Cdiff

Mc and S1 := S \
⋃

c∈Cdiff

(V (n−2)(H) \ V (Mc)).

Since |Cdiff | ≤ 1 and RES2 holds, by Observation 7.3, we have the following.

R1 is a (ρabs, 10ξ, ξ, ε)-absorber for V, so it is also a (ρabs, 3γ/2, ξ, ε)-absorber for V.(11.7)

If |U | > (1− 10ε)n, then |S1|
D1
≥ |S| − 5

(11.4)

≥ 2εn > (ε+ 3γ/2)n.(11.8)

Step 5. Extend the colour classes in {φ−1(c) : c ∈ Chuge ∪ Cmed} using Lemma 7.11.

In this step, for each c ∈ Chuge ∪ Cmed, we extend the colour class φ−1(c) to cover all but at most one
vertex of U , by using only edges in R1 ⊆ Rabs.

Combining (11.5) and the fact that |Cmed| ≤ γn, we have

(11.9) |Chuge ∪ Cmed| ≤ 3γn/2.
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First suppose c ∈ Chuge. Then we claim that |V (φ−1(c)) ∩ U | ≤ εn. Indeed, if φ is of Type A, then
φ−1(c) contains exactly one edge by (6.1:a)(i) of Theorem 6.1, so |V (φ−1(c))∩U | ≤ εn by (1.1) of Claim 1.
Otherwise, if φ is of Type B, by (6.1:b)(i) of Theorem 6.1, we have |V (φ−1(c))| ≤ δn < εn, so again
|V (φ−1(c)) ∩ U | ≤ εn. Moreover, as noted in (11.7), R1 is a (ρabs, 3γ/2, ξ, ε)-absorber for V, and U ∪
V (φ−1(c)), U \ V (φ−1(c)), U, V (H) ∈ V by (11.2), so (H, φ−1(c), R1, S1) is (ρabs, ε, 3γ/2, κ, ξ)-absorbable by
typicality of R1 if c ∈ Chuge. Now suppose c ∈ Cmed. Then |V (φ−1(c))| ≤ γn by (6.1:a)(ii) and (6.1:b)(ii) of
Theorem 6.1. So, again, since R1 is a (ρabs, 3γ/2, ξ, ε)-absorber for V, and U, V (H) ∈ V by (11.2), it follows
that (H, φ−1(c), R1, S1) is (ρabs, ε, 3γ/2, κ, ξ)-absorbable by smallness of φ−1(c) if c ∈ Cmed. Moreover,
since (11.8) and (11.9) hold, we can apply Lemma 7.11 with {φ−1(c) : c ∈ Chuge ∪Cmed}, R1, S1, ρabs, and
3γ/2 playing the roles of N , R, S, ρ, and γ respectively, to obtain the setMhm := {Mc : c ∈ Chuge ∪Cmed}
of pairwise edge-disjoint matchings in H such that the following hold.
HM1 For each c ∈ Chuge ∪ Cmed, Mc is edge-disjoint from the matchings in Mdiff , Mc ⊇ φ−1(c) and

Mc \ φ−1(c) ⊆ Rabs.
HM2 If |U | ≤ (1 − 10ε)n, then Mhm has perfect coverage of U . Otherwise, Mhm has nearly-perfect

coverage of U with defects in S1.
Now let us define

R2 := R1 \
⋃

c∈Chuge∪Cmed

Mc and S2 := S1 \
⋃

c∈Chuge∪Cmed

(U \ V (Mc)).

By (11.7), (11.9), and Observation 7.3, the following hold.

R2 is a (ρabs, 2γ, ξ, ε)-absorber for V.(11.10)

If |U | > (1− 10ε)n, then |S2|
(11.9)

≥ |S1| − 3γn/2
(11.8)

≥ |S| − 5− 3γn/2
(11.4)

≥ D + 4εn.(11.11)

Step 6. Colour most of the edges of Hsmall \ (Rres ∪
⋃
M∈Mdiff

M) by extending the colour classes in

{φ−1(c) : c ∈ Cmain} using Lemma 8.2.

In this step, we will first colour most of the edges in Hsmall \ (Rres ∪
⋃
M∈Mdiff

M) with colours from

Cmain by extending the colour classes in {φ−1(c) : c ∈ Cmain}, and the resulting colour classes are further
extended by using only edges of R2 ⊆ Rabs. To do this, we will use Lemma 8.2. (Note that after this step
there are only a few remaining uncoloured edges in Hsmall \ (Rres ∪

⋃
M∈Mdiff

M) incident to each vertex,

which will be coloured in the next step.)
To be able to apply Lemma 8.2, we need to first embed Hsmall \ (Rres ∪

⋃
M∈Mdiff

M) into an almost-

regular linear multi-hypergraph H∗. In order to define H∗, let H′ be the linear multi-hypergraph obtained
by applying Lemma 10.6 (Regularising lemma) with H, Rres, and β/2 playing the roles of H, Rres, and β,
respectively. In particular, H′ is a linear multi-hypergraph obtained from Hsmall \Rres by adding singleton
edges such that H′ ⊆ Hreg (which is defined in Definition 10.5). Now let H∗ := H′ \

⋃
M∈Mdiff

M . Then it

is clear that H∗ can be obtained from Hsmall \ (Rres ∪
⋃
M∈Mdiff

M) by adding singleton edges, so we have
the following.

(11.12) H∗ ⊆ Hreg \Rres ⊆ Hreg \R2, and dH∗(w) = (1± 2β)D for any w ∈ V (H).

Now we want to apply Lemma 8.2 with Hreg, H∗, {φ−1(c) : c ∈ Cmain}, R2, S2, r1, ρabs, 2β, and 2γ
playing the roles of H , H′, M, R, S, r, ρ, β, and γ, respectively. To that end, we need to check that the
assumptions C1–C4 of Lemma 8.2 are satisfied.

First, (11.11) implies that if |U | > (1−10ε)n, then |S2| ≥ D+2γn, so C1 holds. By (11.10) and (11.2), C2
holds. Since every edge e ∈ H∗ satisfies |e| ≤ r1, C3 follows from (11.12). Lastly, we show that C4
holds. By the definition of Cmain, for any c ∈ Cmain, φ−1(c) is either empty or is contained in Hlarge, so
φ−1(c) ⊆ Hreg\(H∗∪R2). Moreover, by (6.1:a)(iii) and (6.1:b)(iii) of Theorem 6.1, |V (φ−1(c))| ≤ βn ≤ 2βD.
Furthermore, by (1.2) of Claim 1, for any e ∈ H∗, |{c ∈ Cmain : e ∩ V (φ−1(c)) 6= ∅}| ≤ 2r1n/r0 ≤ 2βD, as
desired.

Thus, we can apply Lemma 8.2 to obtain a setM∗main := {M∗c : c ∈ Cmain} of D edge-disjoint matchings
in Hreg such that the following hold.
MA1* For any c ∈ Cmain, we have M∗c ⊇ φ−1(c) and M∗c \ φ−1(c) ⊆ H∗ ∪ R2 ⊆ H∗ ∪ Rabs; in particular,

M∗c is edge-disjoint from all the matchings in Mdiff ∪Mhm.
MA2* For any w ∈ V (H),

(i) |ERabs
(w) ∩

⋃
c∈Cmain

M∗c | ≤ 2γD, and

(ii) |EH∗(w) \
⋃
c∈Cmain

M∗c | ≤ 2γD.
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MA3* If |U | ≤ (1 − 2ε)n, then M∗main has perfect coverage of U . Otherwise, M∗main has nearly-perfect
coverage of U with defects in S2.

For every c ∈ Cmain, let Mc be obtained from M∗c by removing all singleton edges, and let Mmain :=
{Mc : c ∈ Cmain}. Then, since M∗main is a set of matchings in Hreg ⊇ H, Mmain is a set of matchings in H.
Since we obtain Hsmall \ (Rres ∪

⋃
M∈Mdiff

M) after removing singleton edges from H∗, MA1* and MA2*
immediately imply MA1 and MA2 stated below. Let

Hrem := Hsmall \ (Rres ∪
⋃

M∈Mdiff∪Mmain

M) = Hsmall \ (Rres ∪
⋃

c∈Cdiff∪Cmain

Mc).

MA1 For any c ∈ Cmain, Mc is edge-disjoint from all the matchings in Mdiff ∪Mhm, Mc ⊇ φ−1(c), and
Mc \ φ−1(c) ⊆

(
Hsmall \ (Rres ∪

⋃
M∈Mdiff

M)
)
∪R2.

MA2 (i) For any w ∈ V (H), |ERabs
(w) ∩

⋃
c∈Cmain

Mc| ≤ 2γD, and

(ii) ∆(Hrem) ≤ 2γD.
Now let us define

R3 := R2 \
⋃

c∈Cmain

M∗c and S3 := S2 \
⋃

c∈Cmain

(U \ V (M∗c )).

Since |Cmain| = D,

(11.13) if |U | > (1− 10ε)n, then |S3| ≥ |S2| −D
(11.11)

≥ 4εn.

Moreover, by (11.10), MA2(i) and Observation 7.3,

(11.14) R3 is a (ρabs, 4γ, ξ, ε)-absorber for V.

Step 7. Finish colouring the remaining uncoloured edges of Hsmall \Rres by extending the colour classes in
{φ−1(c) : c ∈ Cbuff} using Lemma 8.3.

Recall that Hrem = Hsmall \ (Rres ∪
⋃
c∈Cdiff∪Cmain

Mc) is the hypergraph consisting of all the uncoloured

edges in Hsmall \ Rres. In this step, we will first colour all the edges of Hrem with colours from the ‘buffer’
set Cbuff by extending the colour classes in {φ−1(c) : c ∈ Cbuff}, and the resulting colour classes are further
extended to cover all but at most one vertex of U , by using only edges of R3 ⊆ Rabs. To do this, we want
to apply Lemma 8.3 with Cbuff , {φ−1(c) : c ∈ Cbuff}, r1, ρabs, R3 and 10γ1/2 playing the roles of C, M, r,
ρ, R and γ, respectively. So now we check that the assumptions L1–L5 of Lemma 8.3 are satisfied.

First, |Cbuff | = D′ = b10γ1/2Dc, so L1 holds. For each c ∈ Cbuff , note that φ−1(c) is either empty
or is contained in Hlarge, so |V (φ−1(c))| ≤ βn ≤ 5γ1/2n by (6.1:a)(iii) or (6.1:b)(iii) of Theorem 6.1.
Thus L2 holds. Since (11.14) holds and {U, V (H)} ⊆ V by (11.2), it follows that L3 holds. By (11.13),
if |U | > (1 − 10ε)n, then |S3| ≥ 4εn ≥ (10γ1/2 + ε)n, so L5 holds. Lastly, we show that L4 holds.
Note that MA2(ii) implies that ∆(Hrem) ≤ 2γD ≤ (10γ1/2)2D/20. Moreover, since for each c ∈ Cbuff ,
φ−1(c) is either empty or is contained in Hlarge, we have Hrem ⊆ H \ (R3 ∪

⋃
c∈Cbuff

φ−1(c)), and for any

e ∈ Hrem ⊆ Hsmall, we have |{c ∈ Cbuff : e ∩ V (φ−1(c)) 6= ∅}| ≤ 2r1n/r0 ≤ (10γ1/2)2D/100, by (1.2) of
Claim 1, as desired.

Thus, by Lemma 8.3, we obtain a set of pairwise edge-disjoint matchingsMbuff := {Mc : c ∈ Cbuff} such
that the following hold.

B1 For any c ∈ Cbuff , Mc is edge-disjoint from all the matchings inMdiff ∪Mhm∪Mmain, Mc ⊇ φ−1(c)
andHrem ⊆

⋃
c∈Cbuff

(Mc\φ−1(c)) ⊆ Hrem∪R3. In particular,Hsmall\Rres ⊆
⋃
c∈Cdiff∪Cmain∪Cbuff

(Mc\
φ−1(c)) ⊆ Hsmall.

B2 If |U | ≤ (1 − 10ε)n, then Mbuff has perfect coverage of U . Otherwise, Mbuff has nearly-perfect
coverage of U with defects in S3.

Now we combine all the matchings constructed previously. Let us define

M∗prev :=Mdiff ∪Mhm ∪M∗main ∪Mbuff and Mprev :=Mdiff ∪Mhm ∪Mmain ∪Mbuff ,

where bothM∗prev andMprev consist of pairwise edge-disjoint matchings by HM1, MA1*, MA1, and B1.
Let us also define

Rfinal := Rres \
⋃

M∈Mprev

M, Gfinal := (V (H), Rfinal), and Hfinal := Rfinal ∪
⋃

c∈Cfinal

φ−1(c).

Step 8. Analyse properties of Gfinal and Hfinal.

In this step we will prove the following properties of Gfinal and Hfinal.
F1 (1− ρ)n ≤ |M∗prev| = |Mprev| = n− |Cfinal| ≤ (1− ρ+ 15γ1/2)n.
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F2 If (H, φ) is of Type A2, then ∆(Gfinal)− δ(Gfinal) ≤ 22εn, and Gfinal is lower (ρ/4, ε1/3)-regular.
F3 Hfinal = H \

⋃
M∈Mprev

M = H \
⋃
M∈M∗prev

M . Moreover, if φ is of Type A, Hfinal = Rfinal.

First, since Mprev = {Mc : c ∈ Cmed ∪ Cdiff ∪ Chuge ∪ Cmain ∪ Cbuff} and Cfinal = [n] \ (Cmed ∪ Cdiff ∪
Chuge ∪ Cmain ∪ Cbuff), F1 follows from (11.6).

Now we prove F2. First we show that for any w ∈ V (H),

(11.15) dRres\Rfinal
(w) ≤ 15γ1/2n.

Indeed, by MA1 and MA2(i), dRres\Rfinal
(w)≤|Mdiff | + |Mhm| + 2γn + |Mbuff |, and by (11.9), |Mhm| ≤

3γn/2. The previous two inequalities together with the fact that |Mdiff | ≤ 1 and |Mbuff | = D′ ≤ 10γ1/2n,
imply that (11.15) holds.

Now we show that ∆(Gfinal) − δ(Gfinal) ≤ 22εn. Indeed, since Rfinal ⊆ Rres and Rres is a (ρ, ξ, ε,V)-
reservoir of Type A2, (R1) and (R2) of Definition 10.1 imply that ∆(Gfinal) ≤ (ρ + ξ)n. On the other
hand, (R1) and (R2) of Definition 10.1 also imply that dRres

(w) ≥ (ρ − 20ε)n for any w ∈ V (H), so
by (11.15), we have dRfinal

(w) ≥ dRres(w)− 15γ1/2n ≥ (ρ− 20ε)n− 15γ1/2n ≥ (ρ− 21ε)n for any w ∈ V (H),
so δ(Gfinal) ≥ (ρ− 21ε)n. Thus, ∆(Gfinal)− δ(Gfinal) ≤ (21ε+ ξ)n ≤ 22εn, as desired.

Now we show that Gfinal is lower (ρ/4, ε1/3)-regular. Since (H, φ) is of Type A2, H is (ρ, ε)-full, so
|V (H) \ U | ≤ 10εn. Thus, by (9.4.2), it suffices to show that Gfinal[U ] is lower (ρ/3, ε1/2)-regular.

To that end, note that by RES2, Rabs is lower (ρ/2, ξ, G′)-regular, so (11.15) and (9.4.1) imply that
Rabs ∩ Rfinal is lower (ρ/2, γ1/5, G′)-regular. Moreover, for any two disjoint sets A,B ⊆ U with |A|, |B| ≥
ε1/2|U | ≥ ε1/2n/2, we have eG′(A,B) ≥ (|A| − εn)|B| ≥ (1 − 2ε1/2)|A||B|. Therefore, for any two disjoint
sets A,B ⊆ U with |A|, |B| ≥ ε1/2|U | ≥ γ1/5n, we have

eGfinal[U ](A,B) ≥ ρ

2
eG′(A,B)− γ1/5|A||B| ≥ ρ

2
(1− 2ε1/2)|A||B| − γ1/5|A||B| ≥ (ρ/3− ε1/2)|A||B|,

so Gfinal[U ] is lower (ρ/3, ε1/2)-regular, completing the proof of F2.
Finally, we prove F3. Since H = Hsmall ∪ (Hmed ∪Hlarge) and Hfinal = Rfinal ∪

⋃
c∈Cfinal

φ−1(c), in order

to show that Hfinal = H \
⋃
M∈Mprev

M , it suffices to prove the following two statements.

(11.16) Hsmall \
⋃

M∈Mprev

M = Rfinal and (Hmed ∪Hlarge) \
⋃

M∈Mprev

M =
⋃

c∈Cfinal

φ−1(c).

The first statement of (11.16) directly follows from the fact that Hsmall \ Rres ⊆
⋃
M∈Mprev

M which is

guaranteed by B1. Now we show the second statement of (11.16). To that end, first note that D1, HM1, MA1,
and B1 together imply that for each c ∈ [n] \ Cfinal, φ

−1(c) ⊆ Mc ∈ Mprev, so
⋃
c∈[n]\Cfinal

φ−1(c) ⊆⋃
M∈Mprev

M . Moreover,
⋃
c∈[n]\Cfinal

(Mc \ φ−1(c)) ⊆ Hsmall, so
⋃
M∈Mprev

M ∩
⋃
c∈Cfinal

φ−1(c) = ∅. This

proves that (11.16) holds, showing that Hfinal = H \
⋃
M∈Mprev

M . Since H has no singleton edges, it

immediately follows that H \
⋃
M∈Mprev

M = H \
⋃
M∈M∗prev

M . Moreover, if φ is of Type A, then by T1,⋃
c∈Cfinal

φ−1(c) = ∅, so Hfinal = Rfinal. This completes the proof of F3.

Step 9. Bound the degrees of vertices in Hfinal.

In this step we prove the following statements when bounding the number of colours used in the final
step.

UC1 For any w ∈ V (H) \ U , dHfinal
(w) ≤ |Cfinal| − ρεn/4.

UC2 For any w ∈ U \ V (n−1)(H), dHfinal
(w) ≤ |Cfinal| − 1.

UC3 For any w ∈ V (n−1)(H), dHfinal
(w) ≤ |Cfinal|. Moreover, there are at least |Cfinal| vertices of degree

less than |Cfinal| in Hfinal.
UC4 If (H, φ) is either Type A1 or B, then for any w ∈ V (n−1)(H), dHfinal

(w) ≤ |Cfinal| − 1.
Now we prove UC1. First we show that for any w ∈ V (H) \ U , dRres

(w) ≤ ρ(1 − ε)n + ξn. Indeed, if
Rres is a (ρ, ξ, ε,V)-reservoir of Type A1 or A2, then it follows from (P1) or (R2). Otherwise, if Rres is a
(ρ, ξ, ε,V)-reservoir of Type B, then it also follows since Rres is (ρ, ξ,G′)-typical with respect to V 3 V (H).
Thus, for any w ∈ V (H) \ U ,

(11.17) dGfinal
(w) ≤ dRres

(w) ≤ ρ(1− ε)n+ ξn
F1
≤ n− |Mprev| − ρεn/2

F1
= |Cfinal| − ρεn/2.

Since w is incident to at most 2n/r0 ≤ ρεn/4 edges ofHlarge, andHfinal\Rfinal =
⋃
c∈Cfinal

φ−1(c) ⊆ Hlarge

by T1 and T2, we deduce that dHfinal\Rfinal
(w) ≤ ρεn/4. This together with (11.17) implies that for any

w ∈ V (H) \ U , dHfinal
(w) = dGfinal

(w) + dHfinal\Rfinal
(w) ≤ |Cfinal| − ρεn/4, proving UC1.

Before proving UC2, UC3, and UC4, we need to collect some facts. For any w ∈ V (H), let m(w) be
the number of the matchings in M∗prev not covering w. Since M∗prev is a set of edge-disjoint matchings in
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Hreg, and Hreg is a linear multi-hypergraph obtained from H by adding max(0, n − 3 − dH(w)) singleton
edges incident to each vertex w ∈ V (H) (where H has no singleton edges), we deduce that all but at most
m(w) + max(0, n− 3− dH(w)) matchings in Mprev cover w. Moreover, by F3, Hfinal = H \

⋃
M∈Mprev

M ,

so for any w ∈ V (H) we have

dHfinal
(w) ≤ dH(w)− (|Mprev| −m(w)−max(0, n− 3− dH(w)))

F1
= |Cfinal|+m(w)−min(n− dH(w), 3).(11.18)

Recall from Step 4 that S1 = S\
⋃
c∈Cdiff

(V (n−2)(H)\V (Mc)). Note that D1 implies that every matching

in Mdiff covers all of the vertices in V (n−1)(H), and HM2, MA3*, and B2 imply that Mhm ∪M∗main ∪
Mbuff =M∗prev \Mdiff has nearly-perfect coverage of U with defects in S1. In particular, every matching in

M∗prev\Mdiff covers all the vertices in U\S1, every matching inMdiff covers all the vertices in V (n−1)(H)\S1

and |Mdiff | ≤ 1. Thus, we have

(11.19) m(u) ≤ 1 for any u ∈ U \ S1, and m(v) = 0 for any v ∈ V (n−1)(H) \ S1.

Now note that every vertex in S1 is covered by all but at most one matching in M∗prev \ Mdiff , every

matching in Mdiff covers all the vertices in V
(n−2)
+ (H) ∩ S1 and |Mdiff | ≤ 1. So we have m(u) ≤ 2 for any

u ∈ S1 and m(v) ≤ 1 for any v ∈ V (n−2)
+ (H) ∩ S1. Combining this with (11.19), we deduce that

(11.20) m(u) ≤ 2 for any u ∈ U \ V (n−2)
+ (H), and m(v) ≤ 1 for any v ∈ V (n−2)

+ (H).

Finally, if |U | ≤ (1−10ε)n thenM∗prev \Mdiff has perfect coverage of U by HM2, MA3*, and B2. This

combined with the fact that every matching in Mdiff covers all the vertices in V (n−1)(H) and |Mdiff | ≤ 1,
implies that

(11.21) if |U | ≤ (1− 10ε)n, then m(u) ≤ 1 for u ∈ U \ V (n−1)(H), and m(v) = 0 for v ∈ V (n−1)(H).

Now we are ready to prove UC2, UC3, and UC4. Note that (11.20) and (11.18) together imply that
for any v ∈ U \ V (n−1)(H), dHfinal

(v) ≤ |Cfinal| − 1 , thus UC2 holds.
Now we prove UC3. Note that (11.20) and (11.18) together imply that for any v ∈ V (n−1)(H),

dHfinal
(v) ≤ |Cfinal|. To prove the second statement of UC3, we will bound the number of vertices

v ∈ V (n−1)(H) satisfying m(v) = 0. Since M∗prev \ Mdiff has nearly-perfect coverage of U with defects
in S1, every matching in M∗prev \Mdiff covers all but at most one vertex in U . Moreover, every matching

in Mdiff covers all of the vertices in V (n−1)(H). Thus, by F1, there are at most |Mprev| = n − |Cfinal|
vertices v ∈ V (n−1)(H) satisfying m(v) ≥ 1, so every other vertex of V (n−1)(H) has degree less than |Cfinal|
by (11.18). This fact combined with UC1 and UC2 implies that there are at least |Cfinal| vertices with
degree less than |Cfinal| in Hfinal, proving UC3.

Finally, if (H, φ) is of Type A1 then S1 ⊆ S = U \ V (n−1)(H) by (11.3), so by (11.19) every vertex
v ∈ V (n−1)(H) satisfies m(v) = 0. On the other hand, if (H, φ) is of Type B, then by (1.3) of Claim 1,
|U | ≤ 2δn, so again every vertex v ∈ V (n−1)(H) satisfies m(v) = 0 by (11.21). Thus, in either case we have
dHfinal

(v) ≤ |Cfinal| − 1 by (11.18), proving UC4.

Step 10. Colour Hfinal with colours in Cfinal.

We divide the proof into three cases depending on the type of (H, φ). In each case, it suffices to show that
there is a set Mfinal = {Mc : c ∈ Cfinal} of edge-disjoint matchings in Hfinal such that for every c ∈ Cfinal,
φ−1(c) ⊆ Mc and

⋃
c∈Cfinal

Mc = Hfinal. Indeed, then H =
⋃
M∈Mprev∪Mfinal

M by F3, so Mprev ∪Mfinal

would be the desired set of n pairwise edge-disjoint matchings in H, proving Theorem 1.1.

Case 1 : (H, φ) is of Type A1.
Note that in this case Hfinal = Rfinal by F3, and recall that Gfinal = (V (H), Rfinal). Thus, by UC1, UC2,

and UC4, ∆(Gfinal) ≤ |Cfinal| − 1. Applying Vizing’s theorem (Theorem 4.5) to Gfinal, we obtain a set
Mfinal = {Mc : c ∈ Cfinal} of edge-disjoint matchings in Gfinal such that

⋃
c∈Cfinal

Mc = Rfinal = Hfinal.

Moreover, by T1, for any c ∈ Cfinal, φ
−1(c) = ∅, so φ−1(c) ⊆Mc trivially holds, as desired. This completes

the proof of Theorem 1.1 in the case when (H, φ) is of Type A1.

Case 2 : (H, φ) is of Type A2.
Note that in this case Hfinal = Rfinal by F3. Thus, by UC1, UC2, and UC3, ∆(Gfinal) ≤ |Cfinal|, and

(11.22) there are at least |Cfinal| vertices having degree less than |Cfinal| in Gfinal.
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If ∆(Gfinal) ≤ |Cfinal| − 1, then we may apply Vizing’s theorem (Theorem 4.5) to Gfinal to obtain the
desired setMfinal = {Mc : c ∈ Cfinal} of edge-disjoint matchings where for any c ∈ Cfinal, φ

−1(c) ⊆Mc, and⋃
c∈Cfinal

Mc = Rfinal = Hfinal as in the previous case.

Otherwise, if ∆(Gfinal) = |Cfinal|, then by (11.22) and F2, we can apply Corollary 9.6 with ρ/4, ε1/3,
22ε, and Gfinal playing the roles of p, ε, η, and G, respectively, to obtain a set Mfinal = {Mc : c ∈ Cfinal}
of edge-disjoint matchings such that

⋃
c∈Cfinal

Mc = Rfinal = Hfinal. Moreover, by T1, for any c ∈ Cfinal,

φ−1(c) = ∅, so φ−1(c) ⊆ Mc trivially holds, as desired. This completes the proof of Theorem 1.1 in the
case when (H, φ) is of Type A2.

Case 3 : (H, φ) is of Type B.
First, for each w ∈ V (H), let us define Cw := {c ∈ Cfinal : w ∈ V (φ−1(c))}. Note that by definition,

Hfinal \ Rfinal =
⋃
c∈Cfinal

φ−1(c), and by T2, for any c ∈ Cfinal, φ
−1(c) ⊆ Hlarge. Thus, for any vertex

w ∈ V (H), we have

(11.23) |Cw| = dHfinal\Rfinal
(w) ≤ 2δn,

since φ is a proper edge-colouring, and w is incident to at most 2n/r0 ≤ 2δn edges of Hlarge. Note
that UC1, UC2, and UC4 imply ∆(Hfinal) ≤ |Cfinal| − 1, so for any vertex w ∈ V (H), we have

(11.24) dRfinal
(w) = dHfinal

(w)− dHfinal\Rfinal
(w)

(11.23)

≤ |Cfinal| − 1− |Cw|.
Now we apply Lemma 9.2 with Gfinal, Cfinal, and 2δ playing the roles of H, C, and δ, respectively.

To that end, we need to check that the assumptions (i)–(iv) of Lemma 9.2 are satisfied. First, by F1,
|Cfinal| ≥ (ρ− 15γ1/2)n ≥ 14δn. By (11.24), (i) of Lemma 9.2 holds. Now, by (1.3) of Claim 1, |U | ≤ 2δn,
and by Definition 7.2(i) and RES2, Rfinal ⊆ Rres = Rabs ⊆ E(G′). Thus, every edge of Gfinal is incident to
a vertex of U by the definition of G′ given before Step 1, so (ii) of Lemma 9.2 holds. By (11.23), (iii) of
Lemma 9.2 holds. Finally, by T2, for any c ∈ Cfinal, |{w ∈ V (H) : c ∈ Cw}| = |V (φ−1(c))| ≤ βn ≤ 2δn,
so (iv) of Lemma 9.2 holds.

Hence, by applying Lemma 9.2, we obtain a proper edge-colouring ψ : Rfinal → Cfinal such that every
uv ∈ Rfinal satisfies ψ(uv) /∈ Cu∪Cv, implying that V (ψ−1(c))∩V (φ−1(c)) = ∅ for every c ∈ Cfinal. Now let
Mc := ψ−1(c)∪φ−1(c) for each c ∈ Cfinal. Then the setMfinal := {Mc : c ∈ Cfinal} consists of pairwise edge-
disjoint matchings such that φ−1(c) ⊆Mc for each c ∈ Cfinal, and

⋃
c∈Cfinal

Mc = Rfinal ∪
⋃
c∈Cfinal

φ−1(c) =
Hfinal, as desired. This completes the proof of Theorem 1.1. �
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