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ABSTRACT. The Erdés-Faber-Lovész conjecture (posed in 1972) states that the chromatic index of any
linear hypergraph on n vertices is at most n. In this paper, we prove this conjecture for every large n. We
also provide stability versions of this result, which confirm a prediction of Kahn.

1. INTRODUCTION

Graph and hypergraph colouring problems are central to combinatorics, with applications and connections
to many other areas, such as geometry, algorithm design, and information theory. As one illustrative
example, the fundamental Ajtai-Komlés-Pintz-Spencer-Szemerédi (AKPSS) theorem [2] shows that locally
sparse uniform hypergraphs have large independent sets. This was initially designed to disprove the famous
Heilbronn conjecture in combinatorial geometry but has found numerous further applications e.g., in coding
theory. The AKPSS theorem was later strengthened by Frieze and Mubayi [18] to show that linear k-uniform
hypergraphs with & > 3 have small chromatic number. Here a hypergraph H is linear if every two distinct
edges of H intersect in at most one vertex.

1.1. The Erdés-Faber-Lovasz conjecture. In 1972, Erdés, Faber, and Lovész conjectured (see [15]) the
following equivalent statements. Let n € N.
(i) If Ay, ..., A, are sets of size n such that every pair of them shares at most one element, then the
elements of U?:l A; can be coloured by n colours so that all colours appear in each A;.
(ii) If G is a graph that is the union of n cliques, each having at most n vertices, such that every pair
of cliques shares at most one vertex, then the chromatic number of G is at most n.

(iii) If H is a linear hypergraph with n vertices, then the chromatic index of H is at most n.

Here the chromatic index x'(H) of a hypergraph H is the smallest number of colours needed to colour
the edges of H so that any two edges that share a vertex have different colours. The formulation (iii) is the
one that we will consider throughout the paper. For simplicity, we will refer to this conjecture as the EFL
conjecture.

Erdés considered this to be ‘one of his three most favorite combinatorial problems’ (see e.g., [29]). The
simplicity and elegance of its formulation initially led the authors to believe it to be easily solved (see e.g.,
the discussion in [10] and [15]). It was initially designed as a simple test case for a more general theory
of hypergraph colourings. However, as the difficulty became apparent Erdés offered successively increasing
rewards for a proof of the conjecture, which eventually reached $500.

Previous progress towards the conjecture includes the following results. Seymour [42] proved that every
n-vertex linear hypergraph H has a matching of size at least e(H)/n, where e(H) is the number of edges in
H. (Note that this immediately follows from the validity of the EFL conjecture, but it is already difficult
to prove.) Kahn and Seymour [30] proved that every m-vertex linear hypergraph has fractional chromatic
index at most n. Chang and Lawler [9] showed that every n-vertex linear hypergraph has chromatic index at
most [3n/2 —2]. Finally, a breakthrough of Kahn [25] yielded an approximate version of the conjecture, by
showing that every n-vertex linear hypergraph has chromatic index at most n + o(n). (His surveys [27, 29]
discuss many related results and open problems.)

1.2. Main results. In this paper we prove the EFL conjecture for every large n.

Theorem 1.1. For every sufficiently large n, every linear hypergraph H on n vertices has chromatic index
at most n.

There are three constructions for which Theorem 1.1 is known to be tight: a complete graph K, for any
odd integer n (and minor modifications thereof), a finite projective plane of order k on n = k% +k+1 points,
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and a degenerate plane {{1,2},...,{1,n},{2,...,n}}. Note that the first example has bounded edge size
(two), while the other two examples have unbounded edge size as n tends to infinity.

Kahn’s proof [25] is based on a powerful method known as the Rodl nibble. Roughly speaking, this
method builds a large matching using an iterative probabilistic procedure. It was originally developed
by Ro6dl [40] to prove the Erdés-Hanani conjecture [14] on combinatorial designs. Another famous result
based on this method is the Pippenger—Spencer theorem [39], which implies that the chromatic index of any
uniform hypergraph H of maximum degree D and codegree o(D) is D+o(D). (Note that this in turn implies
that the EFL conjecture holds for all large r-uniform linear hypergraphs of bounded uniformity r» > 3.) In
a seminal paper, Kahn [28] later developed the approach further to show that the same bound D + o(D)
even holds for the list chromatic index (an intermediate result in this direction, which also strengthens the
Pippenger—Spencer theorem, was the main ingredient of his proof in [25]). The best bound on the o(D)
error term for the list chromatic index of such hypergraphs was obtained by Molloy and Reed [37], and for
the chromatic index, the best bound was proved in [31]. Our proof will also rely on certain properties of
the Rodl nibble.

In addition, our proof makes use of powerful colouring results for locally sparse graphs (Theorems 6.4
and 6.6). This line of research goes back to Ajtai, Komlds, and Szemerédi [3] who (independently of
Rodl [40]) developed a very similar semi-random nibble approach to give an upper bound O(k?/log k)
on the Ramsey number R(3,k) by finding large independent sets in triangle-free graphs (the matching
lower bound R(3, k) = Q(k?/log k) was later established by Kim [33], also using a semi-random approach).
Inspired by an earlier result of Kim [32], the above Ramsey bound by Ajtai, Komlés and Szemerédi was
subsequently strengthened by a highly influential result of Johansson [24], who showed that triangle-free
graphs of maximum degree A have chromatic number O(A/log A). The result of Frieze and Mubayi [18]
mentioned at the start of Section 1 is one of several analogues and generalizations of Johansson’s Theorem.
It also turns out that the condition of being triangle-free can be relaxed (in various ways) to being ‘locally
sparse’ [1, 4, 12, 44]. We will be able to apply such results to suitable parts of the line graph of our given
linear hypergraph H.

One step in our proof involves what may be considered a ‘vertex absorption’ argument; here certain
vertices not covered by a matching produced by the Rédl nibble are ‘absorbed’ into the matching to form
a colour class. (Vertex) absorption as a systematic approach was introduced by Rodl, Ruciriski, and Sze-
merédi [41] to find spanning structures in hypergraphs (with precursors including [16, 34]). Absorption
ideas were first used for edge decomposition problems in [35] to solve Kelly’s conjecture on tournament
decompositions. We will make use of an application of the main result of [35] to the overfull subgraph
conjecture (which was derived in [20]).

Kahn [27] predicted that the bound in the EFL conjecture can be improved if H is far from being one of
the extremal examples mentioned above. We confirm his prediction by proving a ‘linear’ and a ‘sublinear’
stability result as follows.

Theorem 1.2 (linear stability). For every § > 0, there exist ng,o > 0 such that the following holds. For
any n > ng, if H is an n-vertex linear hypergraph with mazimum degree at most (1 — §)n such that the
number of edges of size (1 £ §)\/n in H is at most (1 — 30)n, then the chromatic index of H is at most
(1-o0)n.

Theorem 1.3 (sublinear stability). For every ¢ > 0, there exist ng,n > 0 such that the following holds.
For any n > ng, if H is an n-vertex linear hypergraph with mazimum degree at most nn and no edge e € H
such that ny/n < |e| < v/n/n, then the chromatic index of H is at most en.

1.3. Related results and open problems. Formulation (ii) of the EFL conjecture can be viewed as a
statement implying that a local restriction on the local density of a graph has a strong influence on its
global structure. A famous example where this is not the case is the construction by Erdds of graphs of
high girth and high chromatic number. Another well known instance where this fails is a bipartite version
of the EFL conjecture due to Alon, Saks, and Seymour (see Kahn [26]); they conjectured that if a graph
G can be decomposed into k edge-disjoint bipartite graphs, then the chromatic number of G is at most
k + 1. This conjecture was a generalisation of the Graham-Pollak theorem [21] on edge decompositions of
complete graphs into bipartite graphs, which has applications to communication complexity. However, this
conjecture was disproved by Huang and Sudakov [22] in a strong form, i.e., it is not even close to being true.

A natural generalization of the EFL conjecture was suggested by Berge [6] and Fiiredi [19]; if H is a linear
hypergraph with vertex set V, then the chromatic index of H is at most max,ev ||J,.5, €|- This would be
a direct generalization of Vizing’s theorem on the chromatic index of graphs. Finally, another beautiful
question leading on from Theorem 1.1 is whether it can be extended to list colourings.



2. OVERVIEW

In this section, we provide an overview of the proof of Theorem 1.1.

2.1. Colouring linear hypergraphs with bounded edge sizes. Here, we discuss the proof of Theo-
rem 1.1 in the special case when all edges of H have bounded size. In this subsection, we fix constants
satisfying the hierarchy

0<l/npp<ékl/rgy<Kekpkl,

we let n > ng, and we let H be an n-vertex linear hypergraph such that every e € H satisfies 2 < |e| < 7.
We first describe the ideas which already lead to the near-optimal bound x/(H) < n+ 1.

Let G be the graph with V(G) := V(H) and E(G) = {e € H : |e|] = 2}. The first step of the proof
is to include every edge of G in a ‘reservoir’ R independently with probability 1/2 that we will use for
‘absorption’. With high probability, each v € V(H) satisfies dr(v) = dg(v)/2 £ &n. Since H is linear, this
easily implies that A(H\ R) < (1/24&)n. So by the Pippenger-Spencer theorem [39], we obtain the nearly
optimal bound x'(H \ R) < (1/2 + v)n. Now using R as a ‘vertex-absorber’, we would like to extend the
colour classes of H\ R to cover as many vertices of U as possible, where U := {u € V(H) : dg(u) > (1—¢)n}.
This would allow us to control the maximum degree in the hypergraph consisting of uncoloured edges, so
that it can then be coloured with few colours. To that end, we need the following important definition.

Definition 2.1 (Perfect and nearly-perfect coverage). Let H be a linear multi-hypergraph, let A be a set
of edge-disjoint matchings in H, and let S C U C V(H).
e We say N has perfect coverage of U if each N € N covers U.
e We say N has nearly-perfect coverage of U with defects in S if
(i) each u € U is covered by at least |[N'| — 1 matchings in A/ and
(ii) each N € N covers all but at most one vertex in U such that U\ V(N) C S.

We will construct some H' C H and a proper edge-colouring ¢ : H' — C such that H' O H \ R,
|C| = (1/2 + ~)n and the set of colour classes {1)~!(c) : ¢ € C} has nearly-perfect coverage of U (with
defects in U). Crucially, this means that H \ H' is a graph and satisfies A(H \ H') < n —|C|. (Indeed,
every vertex u € U satisfies dy(u) < m — 1 and is covered by all but at most one of the colour classes
of ¢, and every vertex v ¢ U satisfies dy\3(v) < dr(v) < ((1 —€)/2 +&)n < n —|C|.) Therefore,
Vizing’s theorem [43] implies that x'(H \ H') < A(H\ H')+1 < n —|C| + 1, so altogether we have
X (H) < xX'(H)+ X' (H\H') <n+1, as claimed.

To construct H' and 1) we iteratively apply the Roédl nibble to (the leftover of) H \ R to successively
construct large matchings N; which are then removed from H \ R and form part of the colour classes of 1.
(The R6dl nibble is applied implicitly via Corollary 4.3, which guarantees a large matching in a suitable
hypergraph.) Crucially, each matching N; exhibits pseudorandom properties, which allow us to use some
edges of R to extend N; into a matching M; (which will form a colour class of 1) with nearly-perfect coverage
of U, as desired. (This is why we apply the Rodl nibble in our proof rather than the Pippenger-Spencer
theorem.) Thus, R acts as a ‘vertex-absorber’ for U\ V(V;) and the final edge decomposition of the unused
edges of R into matchings is achieved by Vizing’s theorem. (Actually, this only works if H \ R is nearly
regular, which is not necessarily the case. Thus, we first embed H\ R in a suitable nearly regular hypergraph
‘H* and prove that the respective matchings in H* have nearly-perfect coverage of U, which suffices for our
purposes.)

Let us now discuss how to improve the bound x'(H) <n+1to x'(H) <n. Let S :={u € U : dg(u) <
n — 1}, and note that if {tp=!(c) : ¢ € C} has either perfect coverage of U, or nearly-perfect coverage of U
with defects in S, then A(H \ H') < n —1—|C|. In this case, we may use the same argument as before
with Vizing’s theorem to obtain x'(#H) < n. However, it is not always possible to find such a colouring. For
example, if H is a complete graph K, for odd n (which is one of the extremal examples for Theorem 1.1),
then U = V(H) and S = &, so it is not possible for even a single colour class to have nearly-perfect
coverage of U with defects in S. However, we can adapt the above nibble-absorption-Vizing approach to
work whenever H is not ‘close’ to K, in the following sense.

Definition 2.2 ((p,e)-full). Let H be an n-vertex linear hypergraph, and let G be the graph with V(G) =
V(H) and E(G) :=={e € H :|e| =2}. Fore,p € (0,1), H is (p,e)-full if

o {ueV(H):dg(u) > (1 —¢e)n}| > (1 —10e)n, and

o {veV(H) dg(v) =n—1} > (p— 15¢)n.

As mentioned above, when H is not (p,e)-full we can adapt the nibble-absorption-Vizing approach to
show that x/'(#H) < n (with a reservoir of density p rather than 1/2). If H is (p, ¢)-full then we will ensure that
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the leftover H\ H’' C R is a quasirandom almost regular graph (which involves a more careful choice of R —
again it will have density close to p rather than 1/2 but now it consists of a ‘random’ part and a ‘regularising’
part). This allows us to apply a result [20] on the overfull subgraph conjecture (see Corollary 9.6) which
implies that x/(H \ H') < A(H \ H'). (The result in [20] is obtained as a straightforward consequence
of the result in [35] that robustly expanding regular graphs have a Hamilton decomposition, and thus, a
1-factorisation if they have even order.)

2.2. Colouring linear hypergraphs where all edges are large. Now we discuss how to prove Theo-
rems 1.1 and 1.2 when all edges of H have size at least some large constant. In this step it is often very
useful to consider the line graph L(H) of H and use the fact that x(L(#H)) = x’(#). In this subsection, we
fix constants satisfying the hierarchy

0<1/ny < 1/r<o<9,

we let n > ng, and we let H be an n-vertex linear hypergraph such that every e € H satisfies |e| > 7.
Now we sketch a proof that x'(H) < n for such H. If H is a finite projective plane of order k, where
k* + k + 1 = n, then the line graph L(#) is a clique K,. Thus, x'(H) = x(L(H)) = n, so the bound
X' (H) < n is best possible. Thus, we refer to the case where H has approximately n edges of size (1+0)y/n
as the ‘FPP-extremal’ case. We also sketch how to prove the improved bound x/'(H) < (1 — o)n if H is not
in the FPP-extremal case. As we discuss in the next subsection, we will need this result in the proof of
Theorem 1.1.

Consider an ordering < of the edges e1, e, ..., ey of H according to their size, i.e., e; < e; if |e;| > |e;|
for every i,j € [m]. For an edge e € H, let di(e) denote the number of edges in A which intersect e
and precede e in <. Clearly, a greedy colouring following this size-monotone ordering achieves a bound of
X' (H) < max; di(ei) + 1 (this bound was also used in [9, 25]). Moreover, it is easy to see that if this greedy
colouring algorithm fails to produce a colouring with at most (1 — o)n colours, i.e., if an edge e satisfies
di(e) > (1 — o)n, then almost all of the corresponding edges that intersect e and precede e must have size
close to |e|.

Surprisingly, if one allows some flexibility in the ordering (in particular, if we allow it to be size-monotone
only up to some edge e* such that di(e*) > (1 — o)n while every edge f with e* < f satisfies di(f) <
(1 —o)n), then one can show much more: Either we can modify the ordering to reduce the number of edges
which come before e*, or there is a set W C H (where e* is the last edge of W) such that

(W1) |e*| = |e| for every e € W, and
(W2) the edges of W cover almost all pairs of vertices of H.

If |e*| < (1 — d)y/n, then one can show that L(W) induces a ‘locally sparse’ graph (as H is linear).
Moreover, (W1) implies that the maximum degree of L(W) is not too large, and thus one can show that
X(L(W)) is much smaller than (1 — o)n (leaving enough room to colour the edges preceding W with a
new set of colours). This together with (W2) allows us to extend the colouring of W to all of H using a
suitable modification of the above greedy colouring procedure for the remaining edges in H to obtain that
X' (H) < (1 —o)n, as desired.

If |e*| > (1 — 8)+/n, then we first colour the edges of size at least (1 — §)y/n (in particular, the edges of
W) as follows. Let H' C H be the hypergraph consisting of these edges. If e(H’) < n, then, of course, we
may colour the edges of H' with different colours. Otherwise, if ¢ :== e(H’) — n > 0, the main idea is to find
a matching of size ¢ in the complement of L(H') (where L(#H') will be close to being a clique of order not
much more than n). By assigning the same colour to the edges of H’ that are adjacent in this matching,
we obtain x'(H') = x(L(H')) < n. Now we extend the colouring to all of H using a suitable modification
of the above greedy colouring procedure again to obtain that x/'(#H) < n, as desired.

2.3. Combining colourings of the large and small edges. We now describe how one can prove Theorem
1.1 by building on the ideas described in Sections 2.1 and 2.2. In this subsection and throughout the rest
of the paper we work with constants satisfying the following hierarchy:

(2.1) 0<1/ng <K /ry KL/ KPLKRLENKEIKL P KO KIKL 7 K pyKeg K 1.

Some of these constants are used to characterize the edges of a hypergraph by their size, as follows.

Definition 2.3 (Edge sizes). Let H be an n-vertex linear hypergraph with n > nyg.
o Let Hoyman ={e €H : |e|] <r}. An edge e € H is small if € € Hgman-
o Let Himed ={e €H : 1 <le| <ro}. An edge e € H is medium if e € Hped.
o Lot Hiage ={e €H : |e| >} An edge e € H is large if e € Hiarge-
o Let Hox ={e €H : |le| = (1+0)y/n}. An edge e € H is FPP-extremal if € € Hex.
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o Let Hiuge :={e € H : |e| > Bn/4}. An edge e € H is huge if e € Hpyge-

Note that Hemail; Hmed, Hiarge form a partition of the edges of H (see Figure 1). Also note that if H is
an n-vertex linear hypergraph and 1/n <« « < 1, then

(2.2) {e e H:le| >an}| <2/a.

In the proof of Theorem 1.1, given an n-vertex linear hypergraph H with n > ng (where we assume
7 has no singleton edges), we first find a proper edge-colouring ¥1 : Hmed U Hiarge — C1 as discussed in
Section 2.2, and then we extend it to a proper n-edge-colouring of Heman by adapting the argument presented
in Section 2.1. The proof proceeds slightly differently depending on whether we are in the FPP-extremal
case. As discussed in the previous subsection, in the non-FPP-extremal case, X' (Hmed U Hiarge) < (1 —0)n,
so we may assume |C1| = (1 — o)n. In this case, we let v := 71, € := ¢1, and p = py; in the FPP-extremal
case, we let v := g, p = po, and € := g5. We define G and U as in Section 2.1, and we define a suitable
‘defect’” set S C U (whose choice now depends on the structure of #). In order to extend the colouring 1
of Himed UHiarge to H, we need it to satisfy a few additional properties, which are provided by Theorem 6.1.
Roughly, we need that

(1) each colour class of 1 covers at most Bn vertices, with exceptions for colour classes containing huge
or medium edges, and
(2) at most yn colours are assigned by 7 to colour medium edges.

We choose a ‘reservoir’ R from E(G); how we choose it depends on whether we are in the FPP-extremal
case. In the non-FPP-extremal case, we choose it as described in Section 2.1, and in the FPP-extremal case,
we include every edge of G incident to a vertex of U to be in R independently with probability p.

Let Chm € C1 be the set of colours assigned to a huge or medium edge by 1. Note that e(Hhuge) < 8/
by (2.2), so consequently, by (2), |Chm| < 371/2. For each ¢ € Cy, we use Lemma 7.11 to extend 17 *(c)
(in the sense of Section 2.1) using edges of R, so that {1);*(c) : ¢ € Chm} has nearly perfect coverage of U
with defects in S. There is possibly an exceptional colour class, which we call difficult (see Definition 7.10),
that we need to consider in this step. This situation arises if H is close to being a degenerate plane. If
‘H is the degenerate plane, then there is a huge edge e of size n — 1, and U consists of a single vertex of
degree n — 1. Even though H is not (p,e)-full, if ¢ is assigned to the edge e, it is clearly impossible to
extend ¥~ (c) to have perfect coverage of U, which would be necessary in order to finish the colouring with
Vizing’s theorem in the final step. However, if there is a difficult colour class that we cannot absorb, then
we show that we can colour H directly (see Lemma 7.12).

We now construct some H' with Hgman \ R € H' € Hsman and a proper edge-colouring v, : H' — Cy such
that 15 is compatible with 11, |Cy| is slightly larger than (1 —p+7)n, CoNChm = @, and {17 (c) Uy ' (e)
¢ € Chm U Co} has nearly-perfect coverage of U with defects in S. (Actually, as in Section 2.1 we obtain
this coverage property only for a suitable auxiliary hypergraph H* O H', but we again ignore this here for
simplicity.) In the non-FPP-extremal case, since p = p; < o, this means we can reserve a set Cpa of
colours (of size close to pn) which are used neither by ¥; nor by 5. Then in the final step of the proof, we
can colour the leftover graph Hgman \ H' C R (with colours from Chyap) as described in Section 2.1. In the
FPP-extremal case, we may have |C1| = n, so we need to find a proper edge-colouring of Hgman \ H’ using
colours from C1 \ Cy while avoiding conflicts with ;. But in this case most pairs of vertices are contained in
an edge of Heyx, which implies that |U| is small. Moreover, every edge of the leftover graph Hgman \ H' C R
is incident to a vertex of U. These two properties allow us to colour the leftover graph Hgman \ H' with
A(Hgsman \ H') colours while using (1) and (2) to avoid conflicts with 1, as desired.

We conclude by discussing how to construct H’' and 3. Using the colours in Cs, we colour all of the
edges of Hgman \ R and some of the remaining uncoloured (by 1) edges of R based on the nibble and the
absorption strategy outlined in Section 2.1. For this, the following properties are crucial (which follow from
(1) and the definition of Hyeq respectively).
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(a) ¥7*(c) covers at most Bn vertices for each ¢ € Cy, and
(b) every vertex v € V(H) is contained in at most n/(rg — 1) edges that are assigned a colour in C5 by
11 (since for any ¢ € Cy, either ¥ !(c) is empty or all the edges in 1, *(c) are large). Thus, each
edge in Hgman still has slightly more than (1 — p)n colours available in Cy that do not conflict with
1 (since any edge of Hgman intersects at most rin/(rg — 1) large edges and r1/(rg — 1) < 7).
We will use (a) and (b) to show that the effect of the previously coloured edges (by 1) on the Rédl
nibble argument is negligible, i.e., we can adapt the arguments of Section 2.1, so that the colouring ¥y of
H' is compatible with ).

2.4. Organisation of the paper. In Section 3, we introduce some notation that we use throughout the
paper, and in Section 4 we collect some tools that we use in the proof. In Section 5 we prove Theorem 1.1
for hypergraphs where every edge has size at least (1—0)+/n, and in Section 6, we prove Theorem 6.1, which
we use to colour the large and medium edges of our hypergraph. In Section 6, we also prove Theorems 1.2
and 1.3. (In particular, Theorems 1.2 and 1.3 do not rely on the subsequent sections.) In Section 7, we
prove several lemmas that we use for vertex absorption, and in Section 8, we show how to combine the
results of Section 7 with hypergraph matching results (based on the Rddl nibble) to colour the small edges
of our hypergraph not in the reservoir. In Section 9, we prove Lemma 9.2 and introduce Corollary 9.6, both
of which are used in the final step of the proof to colour the uncoloured reservoir edges. In Section 10 we
show how we select the reservoir edges, and finally in Section 11, we prove Theorem 1.1.

3. NOTATION

For n € N, we write [n] :={k € N : 1 <k <n}. Wewritec=a+tbifa—b<c<a+b We use the
‘<’ notation to state our results. Whenever we write a hierarchy of constants, they have to be chosen from
right to left. More precisely, if we claim that a result holds whenever 0 < a < b < 1, then this means that
there exists a non-decreasing function f : (0,1] — (0, 1] such that the result holds for all 0 < a,b < 1 with
a < f(b). We will not calculate these functions explicitly. Hierarchies with more constants are defined in a
similar way.

A hypergraph H is an ordered pair H = (V(H), E(H)) where V(H) is called the vertex set and E(H) C
2V(1) is called the edge set. If E(H) is a multiset, we refer to H as a multi-hypergraph. Throughout the
paper we usually write H instead of F(H). We say that a (multi-)hypergraph H is r-uniform if for every
e € E(H) we have |e| = r. In particular, 2-uniform hypergraphs are simply called graphs.

Given any multi-hypergraph #, let v(#) denote the number of vertices in H and let e(H) denote the
number of edges in H. Let (¥ := {e € H : |e| = i}. Throughout the paper, we usually denote H?) by G.
For any subset S C V(H), let H|s be the multi-hypergraph with the vertex set V(H|s) := S and edge set
Hls:={eNS : ecH and en S # @}. For any vertex v € V(H), let Ey(v) :={e € H:v € e}. We define
the degree of v by dy(v) == |Ey(v)|. More generally, for any given multiset R C H, let Er(v) denote the
multiset of edges incident to v in R, and dr(v) := |Eg(v)|. We denote the minimum and maximum degrees
of the vertices in H by 6(#) and A(H), respectively. Let V(D (H) == {v € H : dy(v) = d}. Moreover, if
d €N, then let VI (H) = {v € H : dy(v) > d} and if = € (0,1), then let V") (H) = {v € H : dy(v) > zn},
where n = v(#H). For any edge e € H, the set Ny (e) denotes the multiset of edges f € E(H) \ {e} that
intersect e. The subscript H from Ny (e) may be omitted if it is clear from the context. If H' C H and
e € H, then we denote Ny (e) NH' by Ny (e), even if e ¢ H'.

The line graph L(H) of a (multi-)hypergraph H = (V(H), E(H)) is the graph whose vertex set is E(H),
where two vertices in L(#H) are adjacent if the corresponding edges in E(H) have a non-empty intersection.
A matching M in ‘H is a subset of pairwise disjoint edges of H. We often regard M as a hypergraph with
V(M) = J.cps e For any vertex u € V(H), we say u is covered by a matching M if u € e for some e € M.
For any X C V(#), we say that a matching M covers X if M covers every vertex in X. For any integer
k > 0 and a (multi-)hypergraph H, a map ¢ : H — [k] is a proper edge-colouring of H if ¢(e) # ¢(f) for
any pair of distinct edges e, f € H such that e f # (. For any integer ¢ and a proper edge-colouring
¢ : H — [k], let $~1(i) be the set of edges e € H with ¢(e) = i. (Note that ¢~1() is a matching, for any i.)

A (multi-)hypergraph H is linear if for any distinct e, f € H, |eN f| < 1. A linear hypergraph may contain
singleton edges (but no edge is repeated). A linear multi-hypergraph may contain multiple singleton edges
incident to the same vertex but any edge of size at least two cannot be repeated (as that would contradict
linearity). Given any linear multi-hypergraph H on n vertices, and any W C H, the normalised volume of
W is defined as voly (W) == 3.y () /(%). We sometimes omit the subscript and write vol(W) instead
of voly (W) when it is clear from the context. Note that since H is linear, voly (W) < 1 for any W C H.



Given any graph G, for any subset of vertices V' C V(G), we denote the subgraph of G induced by V’
as G[V'] .= (V',E’), where E' .= {e € E(G) : e CV'}. We write G —V':= G[V\V']. If V! = {v}, then we
simply write G — v instead of G — {v}. For any disjoint pair of subsets S,T C V(G), let E¢(S,T) := {st €
E(G):s € S,t €T}, and let eq(S,T) = |Ec(S,T)|. Let G := (V(G), E(G)) denote the complement of a
graph G. For any non-negative integer functions g, f : V(G) — Z, a subset F' C E(G) is a (g, f)-factor in
G if g(w) < dp(w) < f(w) for each w € V(G).

4. PRELIMINARIES
We often use the following weighted version of Chernoff’s inequality.

Theorem 4.1 (Weighted Chernoff’s inequality [11]). Let ¢1,...,¢m > 0 be real numbers, let Xq,...,Xm
be independent random variables taking values 0 or 1, let X = Z:il ¢iX; and let C' == max;cy) ¢;- Then,

P(|X — E(X)| > t) < 2e70ERTFT5

4.1. Pseudorandom hypergraph matchings. Now we state a special case of a recent result of Ehard,
Glock, and Joos [13] that provides a matching covering almost all vertices of every set in a given collection
of sets. This result will be used in the proof of Lemma 8.1. A similar result, but with weaker bounds, was
proved earlier by Alon and Yuster [5]. The proof in [13] is derived via an averaging argument from a result
on the chromatic index of hypergraphs by Molloy and Reed [37], which in turn relies on the Rddl nibble.

Theorem 4.2 (Ehard, Glock, and Joos [13]). Let r > 2 be an integer, and let ¢ == 1/(15007?). There
exists Ay such that the following holds for all A > Ag. Let H be an r-uniform linear hypergraph with
A(H) < A and e(H) < exp(A=’). Let F* be a set of subsets of V(M) such that |F*| < exp(A%) and
Y veg dn(v) > A26/25 for any S € F*. Then, there exists a matching My in H such that for any S € F*,
we have | SNV (M) = (1+£A) Y ves dn(v)/A.

We remark that Theorem 4.2 is a direct application of [13, Theorem 1.2] by setting ¢ := 1/30 and the
weight functions wg(e) := |SNe| for S € F*, where wg(H) > max.c3 ws(e) A follows by the assumption
> ves dn(v) > A%/ since wg(H) = Y, cg du(v) and wg(e) < r for any e € H.

Our vertex absorption arguments will actually require that the number of uncovered vertices in S is small
but not too small. So we need the following ‘sparsified’ version of Theorem 4.2, which allows us to have
better control on the number of uncovered vertices. To deduce Corollary 4.3 from Theorem 4.2, one simply
applies Theorem 4.2 to obtain a matching My (in #) and then we randomly remove each edge of M, with
probability 7 to obtain a matching M which satisfies the assertion of Corollary 4.3 with positive probability.
We remark that one could also derive Corollary 4.3 via a direct application of the Rodl nibble (see [31] for
a proof of a stronger result based on stronger assumptions).

Corollary 4.3. Let 0 < 1/ng < 1/r,k,v < 1. For any integer n > ng, let H be an r-uniform linear
n-vertex hypergraph such that every vertex has degree (14 k)D, where D > n'/10 . Let F be a set of subsets
of V(H) such that |F| < n%1°8™. Then there ewists a matching M of H such that for any S € F with
|S| > DY?% we have |S\ V(M)| = (v + 4r)|S].

4.2. Embedding lemma. The following lemma allows us to embed any linear hypergraph H with maxi-
mum degree D into an almost regular, uniform, linear hypergraph H,n; with maximum degree D, satisfying
some additional properties.

Lemma 4.4. Let 0 < 1/Ny,1/Dg,1/Co < 1/r < 1/3, where r € N. Let N > Ny, let C > Cy, let D > Dy,

and let H be an N-vertex linear multi-hypergraph with A(H) < D. If every e € H satisfies |e| < r, then

there exists an r-uniform linear hypergraph Hunie such that the following hold.

(4-4.1) H C Hunit|v () and Hunitlv ) \ H only contains singleton edges.

(4.4.2) For any v € V(Hunit), D — C < dy,,.(v) < D. Moreover, if dy(v) > D — C for v € V(H), then
A3 yis (V) = iy (v).

(4-4-8) v(Hunit) < 7(r —1)2D3N.

The proof of Lemma 4.4 is a straightforward modification of the proof of [31, Lemma 8.1]. Here we briefly
sketch the proof. First, let H* be an r-uniform linear hypergraph obtained from H by adding r — |e| new
vertices to each e € H. Let T := (r — 1)2D?%. For every (sufficiently large) integer d < D, by considering
Steiner systems, one can easily construct a simple T-vertex r-uniform hypergraph H, such that every vertex
of Hg4 has degree between d — ¢, and d for some constant ¢, depending on r. We define our desired multi-
hypergraph Huir by taking the union of T" vertex-disjoint copies of H*, where the first copy is identified with



8 DONG YEAP KANG, TOM KELLY, DANIELA KUHN, ABHISHEK METHUKU, AND DERYK OSTHUS

H*. Then, for each v € V(H*) with dy-(v) < D — C, let v}, ... v be the T clone vertices of v € V(H*)
in Hunie, and extend Hyuir by making Hunie[{v!, ..., vT}] induce a copy of H D—dy,« (v), Which implies that
D—c.<dy, (v)<Dforl1<i<T.

4.3. Some colouring results. We use Vizing’s theorem [43] in the final step of our proof when # is not
(p,e)-full in the non-FPP-extremal case. We also use the following stronger form in Lemma 7.12.

Theorem 4.5 (Vizing [43]). Every graph G with A(G) < D satisfies X'(G) < D + 1. Moreover, if G
contains at most two vertices of degree D, then x'(G) < D.

The following theorem is used as one of the ingredients to prove Theorems 1.2 and 1.3 in Section 6, as
well as in Section 8 to colour a small ‘leftover’ part in Lemma 8.3.

Theorem 4.6 (Kahn [28]). Let 0 < 1/Dy < «,1/r < 1, and let D > Dy. Let H be a linear hypergraph
such that A(H) < D, and every e € H satisfies le] < r. Let C be a set with |C| > (14 «)D, and for each
e € H, let C(e) C C and |C(e)| < aD/2. Then there exists a proper edge-colouring ¢ : H — C such that
¢(e) ¢ Cle) for each e € H.

Theorem 4.6 immediately follows from [28, Theorem 1.1] by defining a list S(e) := C'\ C(e) of available
colours for each e € H.
5. COLOURING FPP-EXTREMAL AND LARGER EDGES
In this section we prove Theorem 1.1 when all edges are FPP-extremal or larger, as follows.

Lemma 5.1. Let 0 < 1/ng < § < 1, and let n > ng. If H is an n-vertex linear hypergraph where every
e € H satisfies le] > (1 — §)v/n, then H has a proper edge-colouring with n colours, where each colour is
assigned to at most two edges.

First we need the following simple observations. For a hypergraph H, recall that L(#) denotes the line
graph of # and L(#) denotes its complement.

Observation 5.2. Let H be an n-vertex linear hypergraph. If there is a matching N in L(H) of size
e(H) — n, then H has a proper edge-colouring with n colours, where each colour is assigned to at most two

edges. O
A pair {e, f} C H in an n-vertex hypergraph H is useful if e # f, eN f # &, and |[N(e) N N(f)| < n.

Proposition 5.3. Let H be an n-vertex linear hypergraph, and let t = e(H) —n. If e1,...,eor € H are
distinct pairwise intersecting edges such that {eg;_1, e2;} is a useful pair for each i € [t], then H has a proper
edge-colouring with n colours, where each colour is assigned to at most two edges.

Proof. We may assume that e(H) > n. We will show that there exists a matching N in L(H) of size t.

For i € [t], suppose we have chosen distinct edges z1,...,2,-1 € H \ {e1,...,e2} where z; is non-
adjacent to at least one of eg;_1 or eg; in L(H) for 1 < 5 < ¢ — 1. We claim that one can choose
z; € H\{e1,...,eq} distinet from z1,...,2;_1 such that z; is non-adjacent to either es;_; or eg; in L(H).

Indeed, since |N(eg;—1) N N(ez;)| < n, letting S :== H \ (N(e2;—1) N N(ez;)), we have |S| > e(H) —n and
every e € S is non-adjacent to at least one of eg; 1 or ey;. Since i — 1 < e(H) —n — 1 we can choose z; € S
distinct from z1,...,2;—1. Moreover, since S N {e1,...,ea} =0, we have z; € H \ {e1,...,ea}, as desired.

Let z1,22,...,2 € H\ {e1,..., e} be chosen using the above procedure. Then since z; is non-adjacent

to either egj_1 or ey; for each j € [t], we have a matching N in L(#H) of size t = e(H) — n. Now applying
Observation 5.2, the proof is complete. O

Proposition 5.4. Let H be an n-vertex linear hypergraph, and let {A, B} be a partition of H such that
|A| + |B| — n < |A|/4. If for every distinct intersecting e, f € A, the pair {e, f} is useful, then H has a
proper edge-colouring with n colours, where each colour is assigned to at most two edges.

Proof. We may assume that |A| + |B] > n+ 1. Let N be a matching of maximum size in L(H). If
|IN| > e(H) —n = |A| + |B| —n, then by Observation 5.2, we have a proper colouring of H with the desired
properties. Thus we may assume that |N| < |A| + |B| — n. Then we have

[ANV(N)[ =2(|A] + [B] = n) = |A] = 4(JA[ + [B] =n) 2 0
since we assumed |A| 4+ |B| —n < |A]/4. By the maximality of N, all pairs e, f € A\ V(N) are adjacent.
Thus we may choose 2t := 2(]A| + |B| — n) distinct aq, ..., a2 € A\ V(N) which are pairwise adjacent such

that |N(az;—1) N N(az;)| < n holds for each i € [¢]. Thus we can apply Proposition 5.3 to {as,...,a2:} to
complete the proof. O



Proposition 5.5. Let 0 < 1/ng < § < 1, and let n > ng satisfy k> +k+1>n> (k—1)% +k+ 1 where
n,k € N. Let H be an n-vertex linear hypergraph where every e € H satisfies |e| > (1 — §)y/n, and let
e, f € H be distinct intersecting edges of size at most k. Let w € eN f, and let m be the number edges of
size at most k — 1 containing w. If at least one of e or f has size at most k — 1, or if m < 1/(30), then
{e, [} is a useful pair.

Proof. If at least one of e or f has size at most k — 1, then

n—1
< - — —2< (k- - -
IN() AN < (el = (1] 1)+ ) =2 < (k= (k=) + Ty
<(k*—k+2)—2k+ (1+28)vn<n,
as desired.
Now we may assume |e| = |f] =k and m < 1/(30) < %ﬂffl). Let us consider the number of vertices

in V(H) \ (eU f) sharing an edge with w. By the definition of m and the linearity of H, we have
m((1=30)vn—1)+(dw)—2-—m)(k—1)<n—leUfl=n—-2k+1<k(k—1)+2,

which implies

k(k—1)+2 (I1=6)y/n—-1 E(k—1)+2
. -2 —————— — < .
(5.1) dlw) —2< P +m(1 P < - +20m
Thus,
61 ., 2
IN()NN(HI< (el =D(fl =) +d(w) =2 <k —k+1+— +20m<n,
so {e, f} is a useful pair, as desired. O

Now we prove Lemma 5.1.

Proof of Lemma 5.1. First of all, we may assume that e(H) > n. Let k be a positive integer such that
(5.2) B—k+2=(k-1°+k+1<n<k*+k+1,
let A= :={ee€H : |e|]<k—1},let At ={ecH : |e]=k}, let A=A UA" andlet B:={e € H :
le] > k4 1}. Note that
k(k+1) ¢:2) |B
voly (B) > \B\@ > u
n(n —1 n

Since |e| > (1 — §)4/n for all e € H, we have

1-6 - 126
(5.3) volge(A) > 4] (L7OVIY (M) o 4 1220
2 2 n
Combining the above two inequalities with voly (A) 4 voly (B) < 1, we have
(5.4) |[A| + |B| —n < 26|A|.

If |A~] < 300, then by Proposition 5.5, for any distinct intersecting e, f € A, we have that {e, f} is
useful. Moreover, (5.4) implies that |A| 4+ |B| —n < |A|/4. Thus we can apply Proposition 5.4 to obtain
a proper edge-colouring of H with the desired properties, proving the lemma in this case. Hence, we may
assume that

(5.5) |A~| > 300.

Note that
k(k+1) k(k—1) G2 |B| | |AY] 3
(At UB) > |B|/——5 + AT —/——£% > — 4+ — ([1——].
voli( )z |n(n—1)+‘ |n(n—1) ~ n + n Vn

Similarly as in (5.3), we have voly (A~) > |A™|(1 — 26)/n. Combining the previous two inequalities with
the fact that voly (AT U B) + voly (A™) < 1, we obtain
(5.6) e(H)—n—|A—|+|A+UB|—n<w+2é|A—\

. = <7 .
Thus if |[AT| < /n]A~|/15, then we have |[A~| + |[AT U B| —n < |A7|/4. Using this inequality and
Proposition 5.5, we can apply Proposition 5.4 with A~ and AT UB playing the roles of A and B, respectively,
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to obtain an edge-colouring of ‘H with the desired properties, proving the lemma in this case. Thus we can
assume that

A (5.5)
(5.7) |AT] > \/ﬁl|5 | > 20y/n.
Now let t := e(H) —n, let L := L(H) be the line graph of A, and let N be a maximal matching in L. We
assume |N| < t, as otherwise by Observation 5.2, we obtain the desired proper edge-colouring of H, proving
the lemma. Combining this inequality with (5.6) and (5.7), we have

3|AY] 5/A%]
vn Vi

Most of the remainder of the proof is devoted to the following claim.

Claim 1. There are 2t distinct eq, .. .,es € AT such that

(i) e1,...,ea are pairwise intersecting and

(11) {e2i—1,e2:} is useful for i € [t].
Proof of claim: Since N is maximal, H \ V(N) is a clique in L. We choose e1,...,ea in AT\ V(N), which
will ensure that (i) holds.

For each x € V(H), let A, == {e € A= : z € e}, and let Viug = {z € V(H) : |As] > (40)71}.
Thus, if e, f € H are distinct and intersecting such that w ¢ Vi,,q where w € eN f, then {e, f} is useful by
Proposition 5.5. We choose ey, . . ., eg; such that w € eq;_1 Ney; satisfies w ¢ Viag, which will ensure that (ii)
holds. Let P == {(w,e) : w € Viaa and w € e € A~ }, and note that [Viaa| - (46)71 < |P| < (k—1)|A7| <
2y/n|A~|. Thus,

(5.9) [Vbaal < 86|47 v/,

(5.8) IN| <t < +20]A7| <

(5.9)
Now let A* := {e € AT : |[eNViaa| = V/0n}, and note that |A*[v/0n < |Viaa| 7= < 166n|A~|. Therefore

5 A
(5.10) |A*| < 16vVon|A™| < |20 |
Thus
(5:8),(5.10) 9| A*| (5.7)
(5.11) AT\ (AT UV 2 4% - - )]s 2 S sy
Now we iterate the following procedure for i € [t'], where ¢’ := [|A™|/4]. Suppose we have chosen distinct

e1,. .., ea—1) € AT\ (A* UV(N)) such that {es;_1,ez;} is useful for each j € [i — 1]. Consider the set
S; = AJr \ (A* UV(N)U{ey,..., 62@_1)}), which has size

(5.11) 9| A+ AT] 5.7
(5.12) S| > AT\ (A*UV(N)| -2t —1) > |1—0|—% > 5

We first show that there exists a useful pair {e;_1,e2;} € S;. For any e € S;, we have |e N Vpaa| < Von
since S; C A1\ A*. Therefore, letting P; == {(w,e) : e € S;, w € e\ Vbaa}, we have

| Pl Pl
_ d (w)=m ————— e Va’
|V<H>\vbadwemz)\vbm 5:00) = [V Vow] = 1 e;‘ \ Vo

1800 V) G209 57 Va2

n

Thus there exists a vertex w € V(H) \ Vhaa with dg,(w) > 2, which implies that there is a useful pair
{62,‘_1, 621'} C S; such that w € eg;_1 N eo;.

The above procedure constructs a useful pair {ea;_1,€e9;} C AT\ (A*UV(N)) for each i € [t']. Recall that
since N is maximal, the elements of AT\ V() are pairwise intersecting. Since ¢’ > |A*|/4 >t =e(H) —n
by (5.8), e1,. .., ez satisfy (i) and (ii), as claimed. ¢

Now by combining Claim 1 and Proposition 5.3, there is a proper edge-colouring of H with n colours
such that each colour is assigned to at most two edges, which completes the proof of Lemma 5.1. 0
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6. COLOURING LARGE AND MEDIUM EDGES

The main result of this section is the following, which we use in the proof of Theorem 1.1 to colour large
and medium edges.

Theorem 6.1. Let 0 < 1/ng < 1/rg € 1/r,0 < 11 € 0 K 6§ K 72 € 1, and let n > ng. If H is an
n-vertex linear hypergraph where every e € H satisfies |e| > r1, then at least one of the following holds:

(6.1:a) There exists a proper edge-colouring of H using at most (1 — o)n colours such that
(i) every colour assigned to a huge edge is assigned to no other edge,
(ii) every medium edge is assigned a colour from a set Creq of size al most yin such that for every
¢ € Ched, at most y1n vertices are incident to an edge coloured ¢, and
(#ii) for every colour ¢ ¢ Cimea not assigned to a huge edge, at most fn vertices are incident to an
edge coloured c.
(6.1:b) There exists a set of FPP-extremal edges of volume at least 1 — & and a proper edge-colouring of H
using at most n colours such that
(i) for every colour c assigned to a huge edge, at most dn vertices are incident to an edge coloured
&
(ii) every medium edge is assigned a colour from a set Creq of size at most yan such that for every
¢ € Cined, at most y1n vertices are incident to an edge coloured c, and
(iii) for every colour ¢ ¢ Cpea not assigned to a huge edge, at most fn vertices are incident to an
edge coloured c.

Note that every linear hypergraph H satisfies voly () < 1, so in (6.1:b), the FPP-extremal edges contain
almost all of the pairs of vertices.
We now prove Theorem 1.2 by combining Theorem 4.6 and Theorem 6.1.

Proof of Theorem 1.2. Without loss of generality, we may assume that ¢ is sufficiently small. Let 0 <
1/ng < 1/rg < 1/r1, < v < 0 < § < 1, and recall Hgman, Hmed, Hiarge; and Hex were defined in
Definition 2.3. By assumption, e(Hex) < (1 — 3d)n, so

-1
voly (Hex) < (1 —30)n - ((1 +§Nﬁ> (Z) < (1= 32)(_11+ O)'n <1-46.

Hence, applying Theorem 6.1 with Hmea UHlarge, 7> 0, and d playing the roles of H, 71, o, and d, respectively,
we obtain a proper edge-colouring ¢ : Hmed U Hiarge — [(1 — 0)n] and Cpea € [(1 — o)n| such that every
€ € Hmea satisfies ¢'(e) € Cpeq and |Cred| < yn.

For every e € Hgman, let C(e) :=={¢'(f) : f € Hiarge , €N f # @}. Note that for each vertex w € V(H),
there are at most 2r; In edges of Hiarge incident to w. Therefore, for every e € Hgmal, there are at most
27"17"0_171 edges f € Hiarge such that e N f # @. Hence, |C(e)| < Bn. So applying Theorem 4.6 with Hgman,
38, r1, |(1 = d)n], [(1 — o)n] \ Cmed playing the roles of H, a, r, D, C, respectively, we obtain a proper
edge-colouring ¢" : Hgman — [(1 — 0)n] \ Cinea such that for every e € Hyman, ¢”(e) € C(e), which implies
that ¢ (e) # ¢'(f) for every f € Hiarge with e N f # &. Hence ¢ := ¢’ U¢" : H — [(1 — o)n] is a proper
edge-colouring, as desired. O

6.1. Reordering. If < is a linear ordering of the edges of a hypergraph H, for each e € H, we define
Nﬁ(e) = {f € Nyle) : f < e} and di(e) = |N£ (e)|. We omit the subscript % when it is clear from the
context. For each e € H, we also let H=¢ := {f € H : f < e}. The main result of this subsection is the
following key lemma, which we use to find the ordering of the edges of H mentioned in Section 2.2.

Lemma 6.2 (Reordering lemma). Let 0 < 1/r; < 7,1/K where 7 < 1 and K > 1. If H is an n-vertex
linear hypergraph where every e € H satisfies |e| > 71, then there exists a linear ordering < of the edges of
‘H such that at least one of the following holds.

(6.2:a) Every e € H satisfies d=(e) < (1 — 1)n.
(6.2:b) There is a set W C H such that
(W1) maxeew le| < (1 +374K*) min.cy |e| and
(W2) voly(W) > Ur=Tm /0",
Moreover, if €* is the last edge of W, then
(01) for all f € H such that e* < f and f # e*, we have d=(f) < (1 —7)n and
(02) for alle, f € H such that f < e <e*, we have |f| > |e].
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Proposition 6.3. Let ay,aq, 7 > 0. Let H be an n-vertex linear hypergraph where every e € H satisfies
le] > 1+ ag. Lete € H, letr = le|, let my = |{f € N(e) : |f| > (1 +a1)r}|, and let ma = |{f € N(e) :
IT4+a)r>|fl>r/1+a2)}]. If r > 1+ ag, then

me . (1+ ag)n

i 1 .
(i) ( +a1)m1+1+a2_ r—1—as

Moreover, if my +mg > (1 — 7)n and a; > 0, then
(1+a2)(1+ w)) n

. < .
(ii) my < <7‘+ P —— o

If < is an ordering of the edges of an n-vertex linear hypergraph H satisfying e < f if |e] > |f|, then
Proposition 6.3(i) with a1, aa, 7 = 0 implies that every e € H with |e| > 2 satisfies d=(e) < (1+1/(|e|—1))n.
This well-known fact immediately implies that every linear n-vertex hypergraph H satisfies x'(H) < 2n+1,
and if all of its edges have size at least r; > 2, then x'(H) < (1+1/(r; — 1))n+ 1.

Proof of Proposition 6.3. There are exactly r(n — r) pairs of vertices {u,v} of H where u ¢ e and v € e.
Thus, since H is linear, 3 ;. v, (|f| —=1) < 7(n —r). In particular,

Z (I4+a)r—1)+ Z (r/l4+az)—1) <r(n—r).
fFEN(e):|f1=(1+au)r FEN(e):(I4ar)r>|f|>r/(1+az)
Dividing both sides of this inequality by r and rearranging terms, we obtain
(6.1) I+ a)mi +ma/(1+az) <n—r+(mi+mz)/r.

Similarly, we have

r(n—r) < (14 ag)rn
r/(l+a)—1" r—1—ay
Substituting this inequality in the right side of (6.1), we obtain (i), as desired.

Now suppose additionally m; +ms > (1 — 7)n and a; > 0. By combining the former inequality with (i),
we obtain aymy < mn+n(l+ag)/(r—1—az)+ (1 —1/(1 + az))ma. Since 1 —1/(1 4+ ag) < aq, we have
aymy < 4+ n(l+ az)/(r — 1 — as) + asma, and by combining this inequality with the bound on mq
from (6.2), we obtain (ii), as desired. O

(6.2) my +mg <

Proof of Lemma 6.2. We consider an ordering =< of the edges of H satisfying (O1) and (O2) for some e* € H
such that e(?—lje*) is minimum. Note that such an ordering exists — in particular, any ordering where f < e
whenever |f| > |e| satisfies (O1) and (O2) for e*, where e* is the last edge in the ordering.

If e(H=¢") = 1, then < satisfies (6.2:a), as desired, so we assume we do not have this case. Now we have
d=(e*) > (1 — 7)n, or else the predecessor of e* also satisfies (O1) and (02), contradicting the choice of
e(H3¢") to be minimum.

Let 7 := |e*|, and let W = {f <e*: |f| < (1+37Y4K*)r}. We claim that W satisfies (6.2:b). By the
choice of =<, every e € N=(e*) satisfies

(6.3) IN(e)NHZ| > (1 —7)n,

or else we can make e the successor of e*. Let X := {e € N=(e*) : |e| < (1 + K+/7)r}. By (02), we may
apply Proposition 6.3(ii) with K+/7 and 0 playing the roles of a; and aw, respectively, to obtain

2 2

(6.4) X > (1—7)n—|N3(e)\ X| > (1—7— T;%”) n> (1—7— ﬁ) n

Consider e € X. Note that by (02) and the definition of W, every f € H=¢ \ W satisfies |f| >
(1+3rY4K*)r > (1 + K37'/%)|e|. We now aim to apply Proposition 6.3(ii) to e with K37'/% and K./7
playing the roles of a; and «q, respectively. Let mj; and mgy be defined as in Proposition 6.3. Then
[((N(e) " HZ¢)\ W)| < my. Moreover, since e € X, (6.3) implies that m; + my > (1 — 7)n. Thus, we can
apply Proposition 6.3 to deduce that for every e € X we have
1+ KT+ K+\/Tle| + K27le] n__ 6K2ﬁn_671/4n

le|/2 K371/4 = K371/47 K

(In the second inequality, we used that |e| > r by (02).)

Now we use these inequalities to lower bound the size of W. First we claim that every e € X satisfies

(6.6) IN(e)N(W\N(E))|>0Q—7—77Y*/K)n — (1+ K/7)r?.

(6.5)  |(N(e)nHZ)\ W] < ( N
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To that end, we bound |[N(e) N N=(e*)], as follows. Let Ny = {f € N(e) N N=(e*) : fNe* = eNe*}
and Ny := (N(e) N N=(e*)) \ Ny. Since H is linear and every edge in N=(e*) has size at least r, we have
[Ni| < n/(r — 1) and [N < (je| — 1)(Je*| — 1) < (1 + K/7)r2. Thus,

(6.7) |N@)me@ﬂ\g;§T+w1+KyFy?

On the other hand, since W C H=¢", |[N(e) N (W \ N(e*))| = |(N(e) "H=¢")n (W \ N(e*))|. Moreover,

we have
[(N(e) NHZ) N (W \ N(e))| = [N(e) NHZ| — [(N(e) NHZ) \ W[ —|N(e) N NZ(e")].

Combining this inequality with (6.3), (6.5), (6.7), one can see that (6.6) follows, as claimed.
For every f € W\ N(e*), we also have

(6.8) IN()NX] < IN(f)ON(e) < [flle’] < (143K )2,

Since 3 e x [N(e)N(WAN(e"))| = [{(e, f) :e € X, fe WAN(e™), e € N(f)} = 2 rewn(er)
by combining (6.6) and (6.8), we have

N(f)nX],

- T — 7‘1/4 n T
|W\N<e*>|z|X|((1 /K ”K\f),

(1+37V4K4)r2 14 371/4K+4
and since X C N(e*) N W, this inequality implies

(1—71—7"4/K)n 1+ KT
Wl >1|X 1-—
Wiz |< (1+37Y/4K4)r2 * 1+ 371/4K4
7 1/4 2
> 177_72ﬁ 1—7-77"%/K niv
K 14 371/4K4 r2
where the second inequality follows from (6.4) and the fact that 1 > % Thus, voly (W) >
w3/ (5) = |W|7’;—z(1 —-1/r) > %7 so W satisfies (6.2:b), as claimed, and moreover, < satis-
fies (O1) and (02), as required. O

6.2. Colouring locally sparse graphs. To prove Theorem 6.1 we use the following theorem [38, Theo-
rem 10.5], which has been improved in [8, 7, 23].

Theorem 6.4 (Molloy and Reed [38]). Let 0 < 1/A < ¢ < 1. Let G be a graph with A(G) < A. If every
v € V(Q) satisfies e(G[N(v)]) < (1—¢) (g), then x(G) < (1 —¢/eb)A.

Corollary 6.5. Let 0 < 1/ng,1/r < a < ¢ < 1, let n > ng, and suppose r < (1 — {)y/n. If H is an
n-vertex linear hypergraph such that every e € H satisfies |e| € [r, (1 + a)r], then x' (H) < (1 — ¢/500)n.

Proof. Let A = (1 + a)r(n—1r)/(r —1), and let L := L(H). For every edge e € H, there are at most
(14 a)r(n — r) pairs of vertices {u,v} of H where u ¢ e and v € e. Thus, since H is linear and every edge
has size at least r, we have A(L) < A. Similarly, if e, f € H share a vertex, then |Np(e) N NL(f)| < n/(r—
1)+ (1+a)?? < (1-5(/6)n. Thus, every v € V(L) satisfies (L[N (v)]) < A(1—5¢/6)n/2 < (1-5(/6)(3)-
Therefore by Theorem 6.4, x'(H) = x(L) < (1 —5¢/(6€%))A < (1 — ¢/500)n, as desired. O

In the proof of Theorem 1.3, we use the following theorem, which has been further improved in [1, 4, 12,
44).

Theorem 6.6 (Alon, Krivelevich, and Sudakov [4]). Let 0 < (,1/Kg¢ < 1. Let G be a graph with
A(G) < A. If every v € V(G) satisfies e(G[N(v)]) < (A2, then x(G) < KgA/log(1/¢).

We need the following corollary of Theorem 6.6. The proof is nearly identical to the proof of Corollary 6.5,
with Theorem 6.4 replaced by Theorem 6.6, so we omit it.

Corollary 6.7. Let 0 < 1/ng < n < a,e < 1, and let n > ng. If H is an n-vertex linear hypergraph such
that every e € H satisfies 1/n < |e| < ny/n and mingcy |e| > amaxccy ||, then X' (H) < en.

We remark that the proof of Corollary 6.7 is also similar to that of [17, Theorem 1.1], where a similar
statement was proved for uniform regular linear hypergraphs (which implies that the EFL conjecture holds
for all r-uniform regular linear n-vertex hypergraphs satisfying ¢ < r < y/n/c for some constant ¢ > 0).
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6.3. Proof of Theorems 1.3 and 6.1. Let ¢ be a proper edge-colouring of an n-vertex hypergraph .
For a € (0, 1), we say ¢ is a-bounded if every colour c satisfies at least one of the following: c¢ is assigned to
at most one e € H, or ¢~ 1(c) covers at most an vertices of H.

Proposition 6.8. Let o > 0, and let H be an n-vertex linear hypergraph where every e € H satisfies
le| >r+1.
(i) If My, ..., M; are pairwise edge-disjoint matchings in H that each cover at least an vertices, then
t <n/(ar).
(ii) There is an a-bounded proper edge-colouring of H using at most X'(H) + 2n/(a?r) colours.

Proof. Since H is linear, we have 1 > voly (Uf:1 Mi) = ' voly(M;). Moreover, for each i € [t],

voly (M;) > %(Tgl)/(g) > ar/n. Combining these inequalities, we have t < n/(ar), as desired for (i).

Now let ¢ be a proper edge-colouring of # using a set C of x/(H) colours. For each ¢ € C, let M, := ¢~*(c),
and let ¢ :=={c e C: |V(M,.)| > an}. By (i), we have |C’| < n/(ar). For each ¢ € C’, there is a partition
of M. into a set M, of pairwise disjoint matchings such that every M € M., covers at least an/2 vertices
and satisfies at least one of the following: |M| = 1, or M covers at most an vertices of H. Note that
|IM.| < 2/a. Now for each ¢ € C’, we choose a distinct set of |M,| colours C, disjoint from C, and we
define a proper edge-colouring ¢’ of H as follows. For each ¢ € C'\ C’ and e € M., we let ¢'(e) := ¢(e). For
each ¢ € C' and e € M., we let ¢'(e) € C. such that for every M € M., every edge of M is assigned the
same colour. By the choice of M., every colour is either assigned to at most one e € H by ¢', or there are
at most an vertices of H that are incident to an edge assigned that colour, so ¢’ is a-bounded, as desired.
Moreover, by the bounds on |M.| and |C’|, the colouring ¢’ uses at most |C| +2|C’|/a < X'(H) +2n/(a?r)
colours, as desired for (ii). O

Proposition 6.9. Let 0 < 1/ng < 1/r < aj,as < 1, and let n > ng. Let < be a linear ordering of the
edges of an n-vertez linear hypergraph H where every e € H satisfies le| > r. If C is a list-assignment for
the line graph of H such that every e € H satisfies |C(e)| > d=(e) +ain, then there is an as-bounded proper
edge-colouring ¢ of H such that ¢(e) € C(e) for every e € H.

Proof. Let Hyig == {e € H : |e| > asn/2}, and note that e(Hyiz) < 4/a2 by (2.2). By possibly reordering <
and replacing «; with oy /2, we may assume without loss of generality that every e € Hy,, satisfies e < f
for f S H\Hbig.

Choose an edge e* € H and an as-bounded proper edge-colouring ¢ of H=¢" satisfying ¢(e) € C(e) for
every e € H3¢" such that e(?—lfe*) is maximum. Note that such a choice indeed exists, for example when e*
is the first edge in <. We claim that e* is the last edge of H in =, in which case ¢ is the desired colouring.
Suppose to the contrary, and let f be the successor of e*. We have f ¢ Hy,g, or else assigning f a colour in
C(f)\{¢(e) : e < f} would yield an as-bounded colouring of #=/, contradicting the choice of e*.

Now let C1 = .cn=(s) #(€), and let Cy be the set of colours ¢ for which there are at least apn/2
vertices of H incident to an edge assigned the colour c¢. If there is a colour ¢ € C(f) \ (C1 U C2), then
assigning ¢(f) := ¢ would yield an ap-bounded colouring of #=f, contradicting the choice of e*. Therefore
|C1| + |Ca| > |C(f)|, and since |C1| < d=(f), we have |Ca| > ain/2. However, by Proposition 6.8(i),
|C2] < 2n/(az(r — 1)) < aan/2, a contradiction. O

Before we prove Theorem 6.1, we prove Theorem 1.3 using Theorem 4.6, Lemma 6.2, Corollary 6.7, and
Proposition 6.9. The proof of Theorem 6.1 uses similar ideas, with Corollary 6.5 instead of Corollary 6.7.

Proof of Theorem 1.3. We may assume that e < 1. Choose ng,n to satisfy 0 < 1/ng,n < e. First we
decompose H into three spanning subhypergraphs, as follows. Let H; == {e € H : 1/n < |e| < ny/n}, let
Ho={ee€H:|e| <1/n}, and let Hs :={e € H : |e| > v/n/n}. Since A(H) < nn, by Theorem 4.6 applied
to Ho with nn, 1/2, and 1/n playing the roles of D, a, and r, respectively, we have x'(Hz2) < 3nn/2 < en/4.
Since H is linear and voly (H3) < 1, we have e(H3) < 2nn, and thus, x'(Hs3) < 2nn < en/4. Therefore it
suffices to show that x'(H1) < en/2.

Without loss of generality, let us assume H; # @. Let Hi™ := H;, and for every positive integer i, define
spanning subhypergraphs #1, H5° W, of H1f as follows. If HIf = &, then let 21 HE W, = @.
Otherwise, apply Lemma 6.2 to H!*® with 1 — £/6 and =2 playing the roles of 7 and K, respectively, to
obtain an ordering =<;. If <; satisfies (6.2:a), then let ’HfOOd = HM | and let HI® W, := @. Otherwise, let
W; be the set W obtained from (6.2:b), let e} be the edge of W; which comes last in <;, let H2°°% := 7{left \
(HEef )= let f be the edge of W; which comes first in <;, and let H°™ == HI°™ \ {e € HIEN : fr <, e}
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By (02), we may assume without loss of generality that every e € H!*! satisfying fF <; e <; e} is in W;.
By the choices of 7 and K, if <; and W; satisfy (6.2:b), then
(W;1) maxeew, |e|] < e 19ef| and
(Wi2) voly (W;) > €.

For any 7 > 1, note that the sets W7,..., W, are pairwise disjoint. Moreover, if W; = & then Hidt =g,
and if W; # @ then Wy,..., W;_; are also nonempty. Thus, we have ). voly (W;) < 1, and if W; # & then
i < e 20 by (W;2), so there is some integer k > 1 such that Wj, = &, and k < e=2° + 1. Hence,

(6.9) H, is partitioned into Wiy, ..., Wy_; and H5°°9, ... ,H%OOd,
where Wi, ..., Wi_1 are nonempty, and H5°°¢, . .. ,’H,%OOd could be empty.
Combine =i,...,=; to obtain an ordering < of H; where if f € HngOd U W;, then e < f for every

e € (HIM)Zif . Let Heood = Ui—czl #5°°dand note that by (6.2:a) and (O1),

K3
(6.10) if e € HE°Y, then dj; (e) < en/6.

By (W;1), and since every e € H; satisfies 1/n < |e| < ny/n, for each ¢ € [k—1] we can apply Corollary 6.7
to W; with n, €1, and €/(6k) playing the roles of 7, a, and ¢, respectively, to obtain a proper edge-colouring
¢i : W; — C;, where |C;| < en/(6k). By (6.10), we can apply Proposition 6.9 to H&°°d with 1/5, £/6, and
1/2 playing the roles of r, oy, and as, respectively, to obtain a proper edge-colouring ¢’ : Heood _ O

where |C'| < en/3. We may assume without loss of generality that C’, Cy,...,Ci_1 are pairwise disjoint.
Therefore by (6.9), we can combine @', ¢1, ..., ¢r_1 to obtain a proper edge-colouring ¢ : H; — C’UU?;I C;.
Since |C'] + Zf;ll |CI| < en/2, we have x'(H1) < en/2, as desired. O

Proposition 6.10. Let 0 < 1/ng < 1/rg < 1/r1 < v < 1, and let n > ng. If H is an n-vertex linear
hypergraph where every e € H satisfies r1 < |e| < 1o, then there is a y-bounded proper edge-colouring of H
using at most yn colours.

Proof. By Proposition 6.8(ii) applied with v and 1 — 1 playing the roles of a and r, respectively, there is
a y-bounded proper edge-colouring ¢ of H using at most X' (H) + 2n/(v%(r1 — 1)) < x'(H) + yn/2 colours.
Since H is linear and every e € H satisfies |e| > 71, we have A(H) < n/(r;y — 1). Thus, by Theorem 4.6,
X' (H) < 2n/ry <n/2, so ¢ uses at most yn colours, as desired. O

Proof of Theorem 6.1. Recall that Hyea = {€ € H @ 11 < le| < 70}, Hiarge = {€ € H : |e] > ro}, and
Hiuge = {e € H : |e| > pn/4}. Let H' := H \ Huuge. By Proposition 6.10, there is a ~;-bounded proper
edge-colouring ¢peq Of Himea using a set Cheq of at most y1n colours. We use ¢eq in all cases when we
prove (6.1:a), and we define Ceq differently when we prove (6.1:b) (see Case 2.2 below).

Now we apply Lemma 6.2 several times and combine the resulting orderings to obtain an ordering < of
‘H. We also define several subhypergraphs of H, which we assume are all spanning. First, apply Lemma 6.2
to H' with 1 — 42/3, and 7, 2 playing the roles of 7 and K, respectively, to obtain an ordering <;. We
define e}, Wi, and ’H%‘md, as follows. If <; satisfies (6.2:a), then let e} be the first edge of H', let W; = &,
and let H%OOd = H’'. Otherwise, let W; be the set W obtained from (6.2:b), let ef be the last edge of W7,
and let HE°Y .= H/\ (H/)Z1¢. In both cases, let I == 1"\ H5°°Y and let ry := |e}]. By the choices of
7 and K, and since 6 < 79 < 1, if <1 and W satisfy (6.2:b), then
(W11) max.cw, |e|] < ra/73° and
(W12) voly (W) >~3° > 4.

If Hf' = &, then let €} = e} and Wy, HE®? == @. If Hf* £ & we apply Lemma 6.2 to He with
30 and 1 playing the roles of 7 and K, respectively, to obtain an ordering <o, and we define e}, Wy, and
H§°°d, as follows. If <y satisfies (6.2:a), then let e} be the first edge of HI® in <5, let Wy == @, and let
HE = Hleft | Otherwise, let W be the set W obtained from (6.2:b), let e} be the last edge of Wy in <o,
and let HEC! == AP\ (FI)Z2¢3 . In all cases, let HE® = (A U Hipnge) \ HE*?, and let 73 := |e3|. By
the choices of 7 and K, and since 0 < § < 1, if <o and W satisfy (6.2:b), then
(W31) maxeew, |e| < (14 40/4)r; and
(W32) volg (Ws) > (1 — /%)% > 145

Finally, if W5 # @, then let f* be the edge of Wy which comes first in <, and let Hz = H¥™ \ {e €
HE®  f* <5 e}. Otherwise, let Hsz = Hiuge- Thus in both cases, Hhuge € Hs. Apply Lemma 6.2 with
H3, 1 — 1/2000, and 2000% playing the roles of H, 7, and K, respectively, to obtain an ordering <3. Since
Wo NHs = &, we have voly (Ws) + voly (Hsz) < 1. Thus, <3 satisfies (6.2:a), because (6.2:b) would imply
there is a set W' C H3 disjoint from Wy with voly (W') > 4, contradicting (W22).
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Wy

7'[hugc f* 6;

‘ ‘ 2 good 7"‘1
< (1 +40’1/4)’I"3 T3 Hgood i
le2eft 2

Hs

F1GURE 2. Combining three applications of the Reordering Lemma in the proof of Theorem 6.1:
the ordering =< is increasing from left to right. (Huhuge C Hs, but Hnuge need not form an initial
segment.)

By (02) of Lemma 6.2, we may assume without loss of generality that every e € H™t satisfying f* <»
e =g €5 isin Wa, so

(6.11) H is partitioned into Hi™, H5°°Y, and #5°°, and 5™ is partitioned into Hs and Wi.

Combine <7, <9, and <3 to obtain an ordering < of ‘H where
o if f € 15 then e < f for every € € Hyuge U (H')S17,
o if f e HgOOd U Wa, then e < f for every e € Hpuge U (HE)=2/ and
o if f € Hg, then e < f for every e € H§3f.
See Figure 2. Note the following.
(a) Hiuge € Hs, and e(Hnuge) < 8/8 by (2.2).
(b) If e € HE*°, then dj,(e) < yon/2.
¢) If e € HEY, then d(e) < (1 — 20)n and d53

( Hlert
(d) If e € Hs, then dj;(e) < n,/2000.
(e) If e € HE™, then |e| > ry = |ef].
(f) If e € HE™ then |e| > 73 = |e3].
We consider two cases: <o satisfies (6.2:a), or both <; and = satisfy (6.2:b). Note that if <; satis-
fies (6.2:a), then <5 vacuously satisfies (6.2:a) (that is, the former case applies).
Case 1: =, satisfies (6.2:a).
In this case, we prove (6.1:a). If <, satisfies (6.2:a), then Hg U HE*° U HE°Y = H by (6.11), so every
e € H satisfies d;_l(e) < (I = 20)n by (b), (c), and (d). Thus, by Proposition 6.9 applied to Hiarge With
ro, 0/2, and B/5 playing the roles of r, ay, and s, respectively, we obtain a 8/5-bounded proper edge-
colouring ¢rarge 0f Hiarge using colours from a set Ciarge Of size at most (1 — 30 /2)n disjoint from Crieq. We
combine @rarge and Pmeq to obtain a proper edge-colouring ¢ of H satisfying (6.1:a), as follows. For each
e € Hiarge, let @(€) == Prarge(€), and for each e € Hped, let ¢(e) = Pmed(e). Since Ciarge N Crmea = & and
|Crarge U Cmed| < (1 — 0)n, the colouring ¢ is proper and uses at most (1 — o)n colours, as required. Since
Glarge 1 B/5-bounded, ¢ satisfies (i) and (iii), and since @meq is y1-bounded, ¢ satisfies (ii), as desired.
Case 2: Both <; and = satisfy (6.2:b).
We assume

(6.12) rg < v/n/(1—40),

as otherwise voly (H5®) < 1 and (f) would imply e(H5™) < (1 — 30)n. Together with (c), this fact would
imply that <5 satisfies (6.2:a).

We now consider two additional cases: r3 < (1 — d§)y/n, and r3 > (1 — §)4/n. In the former case, we
prove (6.1:a), and in the latter case we prove (6.1:b).
Case 2.1: r3 < (1 —d)+/n.

Let ¢ :=1—r3/y/n. Since r3 < (1 —§)y/n, we have ¢ > §. First we show how to colour W5 \ Hpeq in the
following claim.

Claim 1. There is a B/5-bounded proper edge-colouring ¢’ of Wao \ Hmeda using at most (1 — ¢/1000)n
colours.

(e) < (1 —30)n.

Proof of claim: By (Wal), we can apply Corollary 6.5 with 73 and 40'/* playing the roles of r and «,

respectively, so x'(Wa \ Hmed) < (1 — ¢/500)n. Thus, the claim follows from Proposition 6.8(ii) with /5
and g playing the roles of « and 7, respectively, since ¢ > & and 2n/((3/5)%r¢) < 62n < (n/1000. ¢
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We will colour Hs \ Hmea With a set of colours disjoint from those that we assign to Wy \ Hpeq using the
following claim.

Claim 2. There is a 3/5-bounded proper edge-colouring ¢" of Hz \ Hmea using at most (¢/1000 — 20)n
colours.

Proof of claim: Let k := e(H3 \ Hmea). If k& < ((/1000 — 20)n, then we can simply assign each edge of
Hs \ Humea a distinct colour and the claim holds, so we assume k > (¢/1000 — 20)n. Since ¢ > &, we have
k > 26%n. By (f), every edge of Hs has size at least 73, so we have voly (H3 \ Hmeda) > k(rs — 1)2/n2. On
the other hand, by (W22), and since Hz N Wa = @ by (6.11), we have voly (H3) < §3. Thus, 26°n < k <
83n2/(rs — 1)2, s0 r3 < 6Y/4\/n.

Therefore, ¢ > 1000/1001. Now by (d) and Proposition 6.9 applied with Hs \ Hmed, =3, 70, 1/6000, and
B/5 playing the roles of H, <, r, a1, and «q, respectively, we obtain a /5-bounded proper edge-colouring
of Hsz \ Hmea using a set of at most n/1500 < ({/1000 — 20)n colours, as desired. ¢

We may assume that ¢’ and ¢ use disjoint sets of colours. By Claims 1 and 2, we can combine ¢’ and ¢
to obtain a 3/5-bounded proper edge-colouring ¢; of Hx™\ Heq using a set Cy of at most (1 —20)n colours.
We may assume that C1NCreq = @. Let C be a set of (1—30/2)n—|C1| colours disjoint from Cq and Chyeq,
and let Chyge € C where ¢ € Chyge if ¢1(f) = ¢ for some f € Hpuge- By (a), [(C1UC2)\Chuge| > (1-T0/4)n.

We extend ¢; to a 8/5-bounded proper edge-colouring of Hjarge using the following claim.

Claim 3. There is a 3/5-bounded proper edge-colouring ¢s of (HE U HE°Y) \ Hunea such that every
e € (HET UHEN \ Hunea satisfies

° ¢2(€) S (Cl U 02) \ Chuge and

o a(e) # ¢1(f) for every f € Nypere\ gy, (€).

Proof of claim: We apply Proposition 6.9 to (H2°°? U H5°Y) \ Hued, as follows. We let 7o, o/4 and 3/5
play the roles of r, oy and s, respectively, and we define the list-assignment for L((H5°°! U #H5°°%) \
Humea) as Cle) = ((C1 U C2) \ Chuge) \ UfeN (e) ¢1(f). Since every e € HE;OOd U H%OOd satisfies

HIQSft\Hmed
[Nygere (€)| + dig"‘)du?ﬁ""d(e) = d%(e) < (1—20)n by (b) and (c), we have [C(e)| = (1 — 7o /4)n — [Nypon| >
dig‘mdu%%"“d(e) + on/4 as required. Therefore by Proposition 6.9, there is a 3/5-bounded proper edge-
colouring ¢y of (HE°°? U HEY) \ Hunea such that ¢o(e) € Cle) for every e € (HE°Y U HE) \ Hunea, and
the choice of C(e) ensures that ¢, satisfies the claim. ¢

Now we combine ¢1, @2, and ¢meq to obtain a proper edge-colouring ¢, and we show that ¢ satisfies (6.1:a).
Indeed, by (6.11), every edge of H is assigned a colour by ¢, and since |Cy| 4 |Ca| + |Cied| < (1 —30/2) +
mn < (1 —o)n, the colouring ¢ uses at most (1 — o)n colours, as required. Since ¢a(e) ¢ Chyge for each
e € (HE°Y U HEY) \ Hpea, since (a) holds, and since ¢” is 3/5-bounded, ¢ satisfies (i). Since ¢; and ¢,
are 3/5-bounded, ¢ satisfies (iii), and since @meq is y1-bounded, ¢ satisfies (ii), as desired.

Case 2.2: r3 > (1 —4)y/n.

By (f) and Lemma 5.1, there is a proper edge-colouring ¢; of H¥™ using a set C' of at most n colours
such that every colour is assigned to at most two edges. By (Wa1), (W22), and (6.12), there are no edges of
size at least dn/2 in H. Hence, ¢ satisfies (i) of (6.1:b), and ¢1|yperer 5y, . i B/2-bounded. Let Chuge € C
where ¢ € Chyge if ¢1(f) € H for some f € Hhuge, and let Cryeq € C'\ Chuge have size yon (such a set exists
by (a)).

By (W;2) and (W322), W1 N Wy # &, so by (f), there is an edge e € Wi such that |e| > r5. Therefore
by (W11), 72 > v3% 3. Also, r3 > (1 — §)y/n > 219/74°, so 19 > 2r¢. Thus, by (e), we have Hpeq C H%OOd.

We use the following two claims to colour H5°? and #2°°. The proofs are similar to the proof of
Claim 3, so we omit them.

Claim 4. There is a /5-bounded proper edge-colouring ¢o of H%OOd such that every e € ’H%OOd satisfies
i ¢2(€) eC \ Chuge and
o Pa(e) # ¢1(f) for every f € Nyjeri(e). ¢

Claim 5. There is a 1 /2-bounded proper edge-colouring ¢s of HE°Y such that every e € HE*? satisfies
e ¢3(€) € Crea and
o os3(e) # ¢1(f) for every f € Nlezeft(e) and ¢3(e) # ¢2(f) for every f € mNH%ood(e). ¢
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Now we combine ¢1, ¢2, and ¢3 to obtain a proper edge-colouring ¢, and we show that ¢ satisfies (6.1:b).
Indeed, since |C| < n, the colouring ¢ uses at most n colours, as required. Since r3 > (1 — §)y/n,
by (f), (W2l), and (6.12), the edges in W5 are FPP-extremal, and by (W22), voly (W) > 1 — 6, as re-
quired. Since ¢;(e) ¢ Chuge for each e € HE! for i € {2,3} and (a) holds, and since ¢, satisfies (i)
of (6.1:b), ¢ satisfies (i). Since ¢1|pere\ gy, . 18 B/2-bounded and ¢, is B/5-bounded, ¢ satisfies (iii), and

since moreover, Cped N Chuge = &, Hmed C ’H%OOd, and ¢3 is 71 /2-bounded, ¢ satisfies (ii), as desired. [

7. VERTEX ABSORPTION TO EXTEND COLOUR CLASSES

In this section, we will define properties that that we need our absorbers to satisfy in order to carry
out the vertex absorption step outlined in Section 2.1 (These absorbers will form part of the reservoirs R,
which will be constructed in Section 10.) We also formalise various properties that allow a matching to be
extended using vertex absorption.

7.1. Quasirandom properties for absorption.

Definition 7.1 (Typicality and upper regularity). Let v, p,& € (0,1), let G be an n-vertex graph, let V be
a set of subsets of V(G), and let R C E(G). We say R is
e (p,v,G)-typical with respect to V if for every X € V, every vertex v € V(G) satisfies |[Ng(v) N X| =
pINg(v) N X| £ yn and |[Ngr(v) \ X| = p|Ng(v) \ X| £ n, and
e upper (p,&, G)-regular if for every pair of disjoint sets S, T C V(G) with |S|,|T| > &n, we have
We also say a graph H is upper (p,§)-regular if E(H) is upper (p,&, K, x))-regular.

Note that if H is a subgraph of G such that {v(G) < v(H), and E(H) is upper (p, £, G)-regular, then H
is upper (p, &v(G)/v(H))-regular.

Definition 7.2 (Absorbers). Let £,7, p,e € (0,1). Let H be a linear multi-hypergraph, let G := H®), let

G’ be the spanning subgraph of G consisting of those edges with at least one vertex in Vil_s)(G), and let V
be a set of subsets of V(H). We say Raps is a (p,7, &, €)-absorber for V if it satisfies the following properties:
(i) Ruwn C E(C),
(ii) Raps is (p, 7, G')-typical with respect to V, and
(iii) Raps is upper (p, &, G')-regular.

Observation 7.3 (Robustness of absorbers). Let &,~,p,e € (0,1). Let H be a linear multi-hypergraph, and
let V be a set of subsets of V(H). The following hold.
o A (p,7,&, ¢)-absorber for V is also a (p,7, &, &)-absorber for V, if vy <~ < 1.
e For any (p,v,§&,e)-absorber R for V, if R* C R and A(R—R') < an, then R’ is also a (p, v+, &, €)-
absorber for V.

Definition 7.4 (Pseudorandom matchings). Let n € N, 7,k € (0,1), and let H be an n-vertex multi-
hypergraph. For a family F of subsets of V(#), a matching M in H is (v, k)-pseudorandom with respect
to F if every S € F satisfies |S\ V(M)| = v|S| £ kn.

Definition 7.5 (Absorbable matchings). Let & k,7v,p,e € (0,1). Let H be an n-vertex linear multi-
hypergraph, let G :== H?) let U == VS_E)(G), and let S CU. Let R C E(G), and let M be a matching in
H. We say (H, M, R,S) is (p,e,7, k, &) -absorbable if
(AB1) Risa (p,107,¢&,e)-absorber for some V such that U, V(H) € V,
(AB2) M C H\ R, and
(AB3) at least one of the following holds:
(i) M is (v, k)-pseudorandom with respect to F(R) U {U, S}, where F(R) .= {Ng(u)NU : u €
UYU{Nr(u)\U : uweU},
(ii) v(M) < ~n, or
(iil) [V(M)NU|<enand UUV(M),U\ V(M) e V.
We say (H, M, R, S) is
e (p,e,7,k,&)-absorbable by pseudorandomness of M if (i) holds,
e (p,e,7, K, &)-absorbable by smallness of M if (ii) holds, and
e (p,e,7, K, &)-absorbable by typicality of R if (iii) holds.
We simply say (H, M, R, S) is absorbable if it is (p, €,~, k, £)-absorbable and p, €, 7, &, and £ are clear
from the context.
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If H is an n-vertex linear hypergraph and ¢ : Hmed U Hiarge — C is obtained from Theorem 6.1, then we
will choose an absorber R such that for each ¢ € C, (H, ¢~ (c), R, S) is absorbable by smallness of ¢~1(c) if
¢ € Cheq and by typicality of R if ¢ assigns ¢ to a huge edge. For essentially every other ¢ € C, we will find
a matching M. D ¢~!(c) in Section 8 such that (H, M., R, S) is absorbable by pseudorandomness of M,.

In Sections 7.2 and 7.3, we will show that if (H, M, R, S) is absorbable, then we can extend M to cover
all but at most one vertex of U using the edges of R.

7.2. Absorption for pseudorandom matchings. We will use the following two lemmas (depending on
whether |U] is small or not) to extend matchings N for which (H, N, R, S) is absorbable by pseudorandom-
ness of N.

Lemma 7.6. Let 0 < 1/ng K { K K K ¥ K p,e K 1, let n > ng and let k < kn. Let H be an n-vertex
linear multi-hypergraph, let G .= H?, let R C E(G), and let U == VS*E) (G). Let N :={Ny,..., Ny} be
a set of edge-disjoint matchings in H such that (H, N;, R, @) is absorbable by pseudorandomness of N; for
each i € [k].
If [U| < n/100, then there is a set of edge-disjoint matchings N' == {N{,...,N.} in H such that for all

i€ k],

e N/ DN, and N/\ N; CR, and

o N’ has perfect coverage of U.

Lemma 7.7. Let 0 < 1/ng K E K k K v K p,e K 1, let n > ng and let k < kn. Let H be an n-vertex
linear multi-hypergraph, let G := H®), let R C E(G), let U = VS*E) (G), and let S C U satisfy |S| > yn if
|U| > (1 —2¢)n. Let N :={Ny,..., Ny} be a set of edge-disjoint matchings in H such that (H,N;, R, S) is
absorbable by pseudorandomness of N; for each i € [k].
If |U| > n/100, then there is a set of edge-disjoint matchings N’ := {N7,..., N} in H such that for all

ik

e N/ DN, and N[\ N; CR, and

o if |U| < (1—2¢)n, then N' has perfect coverage of U. Otherwise, N' has nearly-perfect coverage of

U with defects in S.

To prove the above lemmas we will need the following simple observations, which follow easily from Hall’s
theorem.

Observation 7.8. Let 0 < £ < p < 1. If H is an upper (p,§)-reqular bipartite graph with bipartition (A, B)
such that v(H) < p|A|/€ and every v € A satisfies dg(v) > 2p|A|, then H has a matching covering A.

Observation 7.9. Let 0 < 1/m < £ < p < 1. If G is an m-vertez, upper (p,)-regular graph such that
every v € V(QG) satisfies dg(v) > 3pm/4, and m is even, then G has a perfect matching.

Proof of Lemma 7.6. For each i € [k], let H; be the bipartite graph consisting of edges in R with the
bipartition (A4;, B;), where 4; .= U \ V(N;) and B; :== (V(H)\ U) \ V().

We claim that there exist pairwise edge-disjoint matchings N2 in H; covering A; for each i € [k]. We
find these matchings one-by-one using Observation 7.8, if |4;| > &n/p. Otherwise, we find them greedily.
To this end, we assume that for some ¢ < k, we have found such matchings Nj‘bs for i € [¢ — 1], and we
show that there exists such a matching Néabs, which proves the claim. Let H) := Hy \ Uie[f—l] Nabs,

We first show that every vertex u € Ay satisfies dp;(u) > 2p|Ae|. Since |U[ < n/100 and R is a
(p, 10, &, )-absorber for {V(#H),U} by (AB1), every u € A, satisfies

(7.1) INr(u) \ U| > (p(99/100 — ) — 10v)n > 98pn/100.

Note that each N; is (v, k)-pseudorandom with respect to F := F(R)U{U} by (AB3)(i). Together with (7.1),
this implies that every u € Ay satisfies dg,(u) > v|Ng(u) \ U] — kn > 97vpn/100. Since ¢ < k < kn, we
have

(7.2) dmy(u) > dp,(u) — kn > 96vpn/100.

Since N; is (7, k)-pseudorandom with respect to F 3 U and |U| < n/100, we also have

(7.3) |A¢| < A|U| + kn < yn/50.

Combining (7.2) and (7.3), we have dp;(u) > 2p|A,|, as desired.
Note that the graph H; := (V(H), E(Hy;)) is upper (p,§)-regular since H C R, and H; is bipartite
with the bipartition (A, V(H) \ A¢) where dp; (u) > 2p|Ayl, for every u € A,. Therefore, if [A¢| > &n/p,
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then Observation 7.8 implies that H; has a matching N, Ebs covering Ay, so N, ;bs is also a matching in H)
covering Ay, as claimed. Otherwise, for any u € Ay,

(7.2)
(7.4) |[Ae| < &n/p < 967pn /100 < dpy(u),

so we can find such a matching greedily.

Therefore we have pairwise edge-disjoint matchings N2> in H; covering A; for i € [k], as claimed, and
Nabs . N2Ps are edge-disjoint from Ny, ..., Ni by (AB2). For each i € [k], let N/ := N; U N2** and let
N"={Ni,...,N.}. Hence each matching in N covers U, so N has perfect coverage of U, as desired. [

Proof of Lemma 7.7. Let F := F(R)U{U, S}, where F(R) := {Ng(u)NU : v € U}U{Ng(u)\U : u e U}.
For each ¢ € [k], let G; be the graph with V(G;) := V(H)\V(N;) and E(G;) ={e € R : e CV(H)\V(V;)},
and let U; := U \ V(IV;). Since N; is (7, k)-pseudorandom with respect to F > U, we have

(7.5) |U;| = v|U| + kn, so |U;| > yn/200.

We claim that for each i € [k] there exists u; € U; and a matching NiabS in GG; such that the following
holds. The vertices u1,...,u; are distinct, the matchings N2P5, N3Ps ... N8bs are pairwise edge-disjoint,
and N2P® covers every vertex of U; \ {u;} for each i € [k]. Moreover, if |[U| < (1 — 2¢)n, then N2P* covers
every vertex of U; for each i € [k], and otherwise u; € S.

To that end, we choose distinct u; € U; for each i € [k], as follows.

o If |U| < (1 — 2¢)n, then since R is a (p, 107, &, e)-absorber for {V(H),U} by (AB1), every u € U;
satisfies |[Ng(u) \ U| > (pe — 10y)n. By (AB3)(i), since N; is (7, k)-pseudorandom with respect to
F 2 F(R) for each i € [k], this inequality implies that every u € U; satisfies |[Ng, (u) \U| > ypen/2.
Since k < kn and k < v, p, &, and (7.5) holds, we can choose u; € U; one-by-one such that there is
a matching {u;v; : ¢ € [k]} where v; € Ng, (u;) \ U for each ¢ € [k].

e Otherwise, |S| > yn, and since N; is (v, £)-pseudorandom with respect to F 3 S, by (AB3)(i), we
have [S\V (N;)| > 7|S|—kn > v?n/2 > rn for each i € [k], so we can choose u; € U;NS = S\V(N;)
one-by-one such that they are distinct, as required.

Now let U] == U; \ {u;} if |U;] is odd. Otherwise, let U] := U;. By the choice of the vertices u;, it suffices
to find pairwise edge-disjoint perfect matchings N'*™ in G;[U!] for each i € [k]. Indeed if |U| < (1 — 2¢)n
and |U;] is odd, then N2» := N’ U {u,;v;} satisfies the claim, and otherwise N2 := N/** satisfies the
claim.

We find these matchings one-by-one using Observation 7.9. To this end, we assume that for some ¢ < k,
we have found such matchings N’ ?bs for i € [¢ — 1], and we show that there exists such a matching N’ ?bs,
which proves the claim. Let G = G¢[Uj]\U,¢(,—1) N’ Since [U| > n/100 and Ris a (p, 10, £, )-absorber
for {V(H),U} by (AB1), every u € U satisfies

(7.6) INr(u) NU| > p(JU| — en) — 10yn > 99p|U|/100.

Note that Ny is (7, £)-pseudorandom with respect to F 2 F(R)U{U} by (AB3)(i). Together with (7.6),
this implies that every u € Uy satisfies dg, ;) (v) > 7| Nr(u)NU|—=rn—1 > 98vp|U[/100. Since £ < k < kn,
we have

(7.7) day (u) > dg,wr(u) — kn > 97yp|U|/100.

We also have

(7.8) Ui £1 = U] "= U] £ 5, s0 [U] < 54|U1/4.

7.8
Since R is upper (p, &, G')-regular and |Uj| (Z) yn/100 — kn — 1 > yn/200, G} is upper (p, 200¢ /v)-regular.
Moreover, combining (7.7) and (7.8), we have dg; (u) > 3p|Uy|/4. So by Observation 7.9, G has a perfect
matching N’ 2bs, as desired.

Therefore we have pairwise edge-disjoint matchings N2 in G, as claimed, which by (AB2) are edge-
disjoint from Ni,..., Nj. For each i € [k], let N/ := N; U N2 and let N/ = {N7,...,N;}. Now N/ D N;
and N/ \ N; C R for each ¢ € [k], and N has nearly-perfect coverage of U with defects in S, as desired.
Moreover, if |U| < (1 — 2¢)n, then N’ has perfect coverage of U, as desired. O
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7.3. Absorption for matchings having huge edges or having few vertices.

Definition 7.10 (Difficult matching). Let H be an n-vertex hypergraph, let G := H®) and let U =
VS*E)(G). A matching M in H is difficult if it covers at least 3|V(H) \ U|/4 of the vertices in V(H) \ U
and [V(#H) \ U| > 2. If the matching M is difficult and consists of a single edge e, then we also say that e
is difficult.

We will use the following lemma to extend matchings N for which (H, N, R, S) is either absorbable by
smallness of N or by typicality of R (provided N is not difficult).

Lemma 7.11. Let 0 < 1/ng €K £ €K k € v K p,e € 1, and let n > ng. Suppose k < yn. Let H be
an n-vertex linear hypergraph, let G == H?), let R C E(G), let U = V_ﬁl_g)(G), and let S C U satisfy
IS| > (y+e)n if |U| > (1 —10e)n. Let N == {Ny,...,Nr} be a set of edge-disjoint matchings in H such
that for each i € [k], either
(a) (H,N;,R,S) is (p,&,, K, &)-absorbable by smallness of N;, or
(b) (H,Ni,R,S) is (p,e,7,k,&)-absorbable by typicality of R and N; is not difficult.
Then there is a set N' := {Nj, ..., N.} of pairwise edge-disjoint matchings such that for i € [k],
e N/ DN, and N/\ N; C R, and
o if [U| < (1 —10¢e)n, then N' has perfect coverage of U. Otherwise, N has nearly-perfect coverage
of U with defects in S.

Proof. Let G’ be the spanning subgraph of G consisting only of the edges incident to a vertex in U.
Without loss of generality, we may assume that there is an integer s such that for each i € [s], we have
|U\ V(N;)| <n/100, and for each i € {s+1,...,k}, we have |U \ V(N;)| > n/100.

For each i € [k], let U; := U \ V(N;), let V; == (V(H)\ U) \ V(IV;), let H; be the bipartite graph with
the bipartition (U;,V;) and E(H;) = {e € R : |lenU;| = l[enV;| = 1}, and let G; be the graph with
V(G) =VH)\V(V;) and E(G;) ={e€ R : e CV(H)\V(N)}.

We first claim that there exist pairwise edge-disjoint matchings N5, ..., N2bS such that for each i € [s],
NP is a matching in H; covering all of the vertices in U;. We find these matchings one-by-one using
Observation 7.8. To this end, we assume that for some ¢ < s, we have found such matchings Nf“bs for
i€ [t—1], welet Hj:= H;\ Uf;i Nibs|and we show that there exists such a matching N3P in Hj, which
proves the claim. It suffices to show that every u € U, satisfies

(7.9) diy(u) > pn/T > 2p|Uy|.

Indeed, the graph H; := (V(H), E(H})) is upper (p, {)-regular since E(H;) C R, and H/ is bipartite with
the bipartition (Up, V(H) \ Ue) where dpy (u) = dp;(u) > 2p|Us| for every u € U,. Therefore, if [Ug| > §n/p,
then we have a matching N3*® in H} (and so in H}) covering U, by Observation 7.8, as desired. Otherwise,
by (7.9), |Ue| <&n/p < pn/T < dp;(u) for every u € Uy, so we can find the desired matching N2bs covering
U, greedily.

To prove (7.9), first suppose (b) holds. By (AB3)(iii), we have v(Ny) < (3/4 + e)n < 4n/5. Thus,
Vel > n—ov(Ng) — |U\ V(Ng)| > n/5—n/100 > n/6, and since R is (p, 10y, G')-typical with respect to
V2 UUV(N,) by (AB3)(iii), every u € Uy satisfies dp,(u) > (p(1/6 —€) — 10y —v)n > pn/7 > 2p|Uy|,
as desired. Therefore we assume (H, Ny, R, S) is absorbable by smallness of Ny, so by (AB3)(ii), we have
v(Ny) < yn. Thus, |U| < |[U\V(Ny)| 4+ v(Ng) < n/1004+yn < n/50, and since R is (p, 107y, G')-typical with
respect to V' 5 U by (AB1), every u € Uy satisfies dp; (u) > (p(49/50 — ) — 10y —v —)n > pn/7 > 2p|U,|,
as desired. Therefore (7.9) holds in both cases, so we have the matchings NP ... N2b% as claimed.

Claim 1. There exist matchings N?Eﬁ, el N,?bs and distinct vertices us41,...,u such that for each i €
{s+1,...,k}, u; € U;, N is a matching in G; covering all the vertices of U; \ {u;}, and the matchings
Nbs L N2Ps are pairwise edge-disjoint. Moreover, for each i € {s+1,...,k}, if [U| < (1 — 10e)n, then

N?bs covers all vertices in U;, and otherwise u; € S.

Proof of claim: We choose distinct u; € U; for s +1 < i < k as follows. Let G} := G, \ Ule N2bs for
s+1<i<k.

o If |U| < (1—10¢)n, then every u € U satisfies |[Ng(u) \ U| > 9en, and moreover if N; is not difficult,

then |[V(H)\(UUV (N;))| > 2en, which implies that every u € U satisfies | Ng(u)\ (UUV(N;))| > en.

If (b) holds, then R is (p, 10y, G')-typical with respect to ¥V 5 U U V(N;) by (AB3)(iii), so we have

INg/(u) \ (UUV(N:))| = pINg(u) \ (UUV(N;))| = 10yn — k > pen/2 > yn > k for every u € U;.

If (a) holds, then v(NV;) < yn and R is (p, 10y, G')-typical with respect to ¥V 3 U by (AB1), so we

have [N (u) \ (UUV(N;))| > p|Na(u) \U| = 10yn —k —v(N;) > 8pen > k for every u € U;. Thus,
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|Ne/ (u) \(UUV(N;))| > k for each i € {s+1,...,k} and for all u € U;, and since |U;| > n/100 > k,

we can choose u; € U; one-by-one such that there is a matching {u;v; : i € {s+1,...,k}} where

v; € Ner(ui) \ (UUV(N;)) for each i € {s+1,..., k}.

e Otherwise, we have |S| > (y+¢)n. Using (AB3)(ii) or (AB3)(iii), and v < €, we have |V (N;)NU| <

en. Since S C U it then follows that |S\V(N;)| > |S|—|V(V;)NU| > yn for each i € {s+1,...,k}.

Since k < yn, we can choose u; € S\ V(N;) one-by-one such that they are distinct, as required.
Now let U/ == U; \ {w;} if |U;| is odd. Otherwise, let U/ := U;. By the choice of the vertices u;, it
suffices to find pairwise edge-disjoint perfect matchings N’?bs in Gj[U]] for each i € {s+1,...,k}. Indeed, if
[U| < (1—10¢)n and |U;| is odd, then N2> := N’**SU{u,;v;} satisfies the claim, and otherwise N2Ps := N'#P3
satisfies the claim.

We find these matchings (N’;-abbs fori € {s+1,...,k}) one-by-one using Observation 7.9. To this end, we
assume that for some s + 1 < ¢ < k, we have found such matchings N’ ?bs forall s+1<4i<¥¢—1, welet
Gy = GUI\ U sr1<ico s N2 and we show that there exists such a matching N’5* in GY/, which proves
the claim. Note that

(7.10) \U}| > |Ug| = 1> n/100 — 1 > n,/200.

Since R is upper (p, &, G)-regular and (7.10) holds, G/ is upper (p, 200§)-regular. So by Observation 7.9,
it suffices to show that every u € U satisfies

(7.11) day (u) > 3p|Ug| /4.

To prove (7.11), first suppose (b) holds. Since R is a (p, 107, &, ¢€)-absorber for V 5 U, by (AB3)(iii),
every u € Uy satisfies

(7.10)
day(u) > p(|Ue| —en) = 10yn —yn — 1 > p(|U;] —en) — 12yn > 3p|U;| /4,

as desired. Therefore, we assume (a) holds. Since R is (p, 107, G')-typical with respect to ¥V 3 U by (AB1),
every u € Uj satisfies

(7.10)
day(u) > p(|U] = en) =10yn —yn —yn —1 > p(|U| —en) = 13yn > 3p|U;| /4,

as desired. Therefore (7.11) holds in both cases, so we have the matchings N, ;‘JESI, ..., N2 which proves
Claim 1. N

Now, letting N/ := N;UN2Ps for each i € [k], we have N/ D N; and N/\ N; C R, and N” := {N7,..., N/}
has nearly-perfect coverage of U with defects in S, as desired. Moreover, if |U| < (1 — 10e)n, then N has
perfect coverage of U, as desired. O

We will use the following lemma to extend a difficult matching.

Lemma 7.12. Let 0 < 1/ng < B < 1, and let n > ng. If H is an n-vertex linear hypergraph with no
singleton edge, G == H?, and M = {e} is a difficult matching where e is huge, then at least one of the
following holds:

(7.12:a) There is a matching M’ such that M C M', M’ \ M C E(G), and M’ covers every vertex of
V=U(H) and all but at most five vertices of V"=2)(H), or
(7.12:3) X' (H) < n.

Proof. Let Uy == V=D (H), let Uy := V"=2(H), let X = V(H)\ (eUU; UUy), and let m := |Uy U Uy|.
Since H is linear and e is huge, e N U; = @ for i € {1,2}.

First, suppose Uy = @. If |U;| is even, then we can find a perfect matching M, in G[U;], and M’ := MUM;
satisfies (7.12:a), so we assume |Uy| is odd. If X # @&, then there is an edge uv € E(G) such that v € Uy
and v € X, and there is a perfect matching M; in G[Uy \ {u}]. Now M’ := M U M; U{uv} satisfies (7.12:a),
so we assume X = @, and we show x’'(H) < n. Note that if X, Us = @, then the only edge in H\ E(G) is e.
Let w € Uy, let M be a perfect matching in G[U; \ {w}], and let G’ := H\ (M;Ue). Now G’ is a graph with
exactly one vertex of degree n — 1 (namely w), so by Theorem 4.5, x’(G’) < n — 1. By combining a proper
(n — 1)-edge-colouring of G’ with the colour class consisting of M; U e, we have x'(H) < n, as desired.

Therefore we assume Uy # @ and let u € Us. Let G' := G[U; UUs] —u if m is odd and let G’ := G[U; UUs)
otherwise. If G’ has a perfect matching, then (7.12:a) holds, so we assume otherwise. Thus, by the Tutte-
Berge formula, there is a set S such that G’ — S has at least |S| + 2 odd components (since G’ has an even
number of vertices, G’ — S cannot have |S| + 1 odd components). Note that if a vertex has degree at least
n — 2 in H then it has degree at least n — 3 in G. Thus §(G’) > v(G’) — 3, which implies that |S| < 1.
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Moreover, if |S| = 1, then v(G’) = 4 and the vertices in V/(G’) \ S form a hyperedge of H. In this case G’ is
a star on four vertices, so |Us| < |[V(G)U{u}| <5 and |Uy] < 1. If U; = &, then M’ := M satisfies (7.12:a),
and otherwise, M’ := M U {uv} where v € Uy, satisfies (7.12:a), as desired. If S = &, then G’ is a graph
with two vertices and no edges. In this case, Uy = @, so M’ := M satisfies (7.12:a). O

8. COLOURING SMALL EDGES THAT ARE NOT IN THE RESERVOIR

In this section, we prove three lemmas which will be applied to colour all of the small edges that are not
in the reservoir (where the reservoir is constructed in Section 11). Since we may need to reuse the colours
already used for large edges and medium edges (given by Theorem 6.1), we need to formulate the lemmas to
colour the small edges (that are not in the reservoir) by extending the colour classes given by Theorem 6.1.

The lemma below is used repeatedly in the proof of Lemma 8.2 to colour most of the non-reserved small
edges in such a way that every colour class exhibits some pseudorandom properties.

Lemma 8.1 (Nibble Lemma). Let 0 < 1/ng < 1/r,8 < K,y < 1, let n > ng, and let D € [n*/? n]. Let H
be an n-vertex linear multi-hypergraph.
o Let H' C H be a linear multi-hypergraph such that V(H) = V(H'), every e € H' satisfies |e] < r,
and for every w € V(H') we have dyy(w) = (1 £ 8)D,
e let Fy and Fg be a family of subsets in V(H') and E(H'), respectively, such that | Fy |, |Fg| < nlos",
and
o let My,...,Mp C H\H be pairwise edge-disjoint matchings such that for every i € [D], |V (M;)| <
BD, and for every edge e € H', we have |{i € [D] : eNV(M;) # &}| < 8D.
Then there exist pairwise edge-disjoint matchings Nu,...,Np in H such that for any i € [D],
(8.].1) Ni ) Mi and Ni \Ml - H/,
(8.1.2) Nj is (v, k)-pseudorandom with respect to Fy, and
(8.1.3) |F\ Ui, N;| < ¥|F| + kmax(|F|, D) for each F € Fp.

Note that if we let E(H’) € Fg, then (8.1.3) implies that Ule N; contains almost all of the edges of #H'.
The matchings My, ..., Mp will play the role of some of the colour classes given by Theorem 6.1.

The overall idea of the proof of Lemma 8.1 is as follows. First we embed H’ into an r-uniform linear
hypergraph H ;s using Lemma 4.4. We then embed H,,i¢ into an (r + 1)-uniform auxiliary hypergraph
Haux, and we find a pseudorandom matching N* in H,u using Corollary 4.3, which yields D edge-disjoint
pseudorandom matchings N{,...,Np in H'. Then we will show that the matchings N; := N/ U M; for
i € [D] satisfy the desired properties.

Proof. We apply Lemma 4.4 to H’ with (1+3)D, 256D, and n playing the roles of D, C, and N, respectively,
to obtain an r-uniform linear hypergraph Huis such that
(a) V(Hunit) 2 V(H') and v(Hunit) < n°, and
(b) every vertex w € Hupnit satisfies dy,,(w) = (1 £ 8)D. Moreover, dy(w) = dy,,,(w) for any
we V(H).
Note that (b) and (4.4.1) imply that
(c) H' = Hunitlv -
Let Fmeet := {€ € Hunit : eNV(H') # &}. By (c), we have a bijective map
¥ Emeet — H' such that e* — e* NV (H').

Thus, for any w € V(H'), we have Ey(w) = {¢(e*) : w € e* € Hunir}- Note that the assumption
{i € [D]: enV(M;) # @}| < 8D for any e € H’, implies that

(8.1) for every e* € Hunif, we have |{i € [D] : e* NV (M,;) # @} < 8D.

We construct an (r + 1)-uniform linear hypergraph H,,x based on Hynir and the sets V(My), ...,V (Mp),
as follows.

e For any i € [D], let V* := {w® : w € V(Hunir)}, where for any distinct i1,i2 € [D], we have
VNV = @. Now let us define a map ¢ : [D] x V(Hunit) — Ui’;l V* such that ¢(i,w) := w’ for
any (i,w) € [D] x V(Hunit)-

e For any i € [D], let V; := V* \ (i, V(M;)).

o Let V(Haux) := Hunit U Uie[D] Vi, where Hynis N V; = @ for i € [D].

o Let Haouw = {{f,0,...,02} : f={v1,...,0:} € Humit , {v},..., 02} CV;, i€ [D]}.

Now for every w € V(Hunit) and i € [D] such that w’ € V;, since Hauyx is linear, dy,, (w) — |[V(M;)] <
dy,, (W) < dyy,..(w), since V; is obtained from V;* by deleting |V (M;)| vertices. Since |V (M;)| < 8D
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and (b) holds, this implies dy,, (w’) = (1 & 28)D. Moreover, by (8.1), for every e* € Hunit, we have
(1-8)D < dHaux( *) < D. In summary, we have the following,.

(8.2) For every vertex w € V(Haux), we have dy,, (w) = (1 £28)D

By the construction of H,.x, we have

(a),(0)
(8.3) n < (1= B)DIV(H)| + [Hunit| < 0" = |V (Hawe)| < DIV (Hunit)| + [Hunit| < 7.

Let
D
Faux . U A\ (i, V(M) : Ae FyyU{y~Y(F) : Fe Fg},

8.3
where |F2| < D|Fy| + |Fg| < n2losm < (n/)21°87" Since (8.2) holds and D > n'/2 (2) (n")/14 we can
apply Corollary 4.3, with n’, Haux, D, 28, v, F*"* playing the roles of n, H, D, &, vy, F, respectively, to
obtain a matching N* in Haux, such that |A\ V(N*)| = (y + 88)|4| for every A € F™ with |A| > D'/,
This implies that for any A € Fa"*

(8.4) |A\V(N®)| = y|A| + (88]4] + D'/*°).
For i € [D], let
N = {y(e*) : e* ={v1,...,v.} € Bumeet , 1€5,05,...,0L} € N*} and N; := N/ U M;.

Then N7y,..., N C H’ satisfy the following properties.

(i) For any w € V(H'), we have w € V(N/) if and only if w’ = ¢(i,w) € V(N*).

(ii) For any e € H’', we have e € Uil N/ if and only if p~1(e) € V(N*). (Recall that 1~1(e) € Hunir C

V(Haux)-)
It is easy to see that Ni,..., N}, are pairwise edge-disjoint matchings in H’, and that for every i € [D],
we have V(N]) NV (M;) = @. Moreover, recall that My, Ma, ..., Mp C H \ H' are pairwise edge-disjoint.
Altogether this implies that Ny,..., Np are pairwise edge-disjoint matchings in #H. This proves (8.1.1).
For any F € ]—'E, since Y ~H(F) C Hypir € V(H*™ ) and ¢~ 1(F) € F*U*, we have

(84)

|F\UN’ D11\ V(N E | Pl £ (88]F| + DY) < 4| F| + kmax(|F|, D).

i=1
Thus, (8.1.3) holds.
Finally, we prove (8.1.2). Let us consider any A € Fy and i € [D]. Since

ANVN)| = [(A\ V(M) \ V(N)] 2 (i, A\ V(M) \ V(N = [(li, A) \ i, V(M) \ V()]
and (i, A) \ ¢(i, V(M;)) € F**™*, by (8.4), we have |A\ V(N/)| = v|A| £ kn. Thus, the matching N; is
(v, k)-pseudorandom with respect to Fy, proving (8.1.2). O

In the next lemma, using the absorption lemmas from Section 7, we extend the matchings given by
the previous lemma in such a way that each matching will cover all but at most one vertex of V_ﬁl_a)(G),

where the uncovered vertex of V+(17€)(G) must lie in a prescribed defect set S. In principle, we could apply
Lemma 8.1 directly with D = (1 — p)n to colour almost all of the non-reserved small edges, but in order
to be able to apply Lemmas 7.6 and 7.7 to each matching, we actually need to partition the hypergraph
into subhypergraphs of maximum degree at most xn, and we apply Lemma 8.1 to each part successively,
alternating with applications of one of Lemma 7.6 or 7.7.

Lemma 8.2 (Main colouring lemma). Let 0 < 1/ng < 1/r 6,0 < v K g,p < 1, let n > ng, and let
D € [n*®,n]. Let H be an n-vertex linear multi-hypergraph, let G := H? and let U := V(1 6)(G)
C1l Let S CU satisfy |S| > D +yn if |U| > (1 — 2¢)n,
C2 let R C E(QG) be a (p,7,&,¢€)-absorber for V such that UV(H) eV,
C3 let H' C H\ R be a linear multi-hypergraph such that V(H) = V(H'), every edge e € H' satisfies
le] <7, and dy(w) = (1 £ B)D for every vertex w € V(H'), and
C4 let M ={Mi,...,Mp} be a set of edge-disjoint matchings in H \ (H' UR) such that |V (M;)| < 8D
for every i € [D ], and |{i € [D] : eNV(M;) # &}| < 8D for every edge e € H'.
Then there exists a set N := {N1,...,Np} of edge-disjoint matchings in H satisfying the following.
(8.2.1) For everyi € [D], we have N; O M; and N; \ M; CH' UR.
(8.2.2) For every vertex w € V(H), |Er(w) N U},CD:1 Ni| <D and |Ey (w) \ L_J,{V‘D:1 Ni| <4D.
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(8.2.8) If |[U| < (1 — 2¢e)n, then N has perfect coverage of U. Otherwise, N has nearly-perfect coverage of
U with defects in S.

Proof. Let K := [k~!], where we choose x so that r=!, ¢, 8 < & << 7. First, we find a partition of H'
into pairwise edge-disjoint hypergraphs H1, ..., H’ such that U = H’, and every vertex has degree
(1£2B8)D/K in H] for i € [K]. (To show the desured partition ex1sts consider a partition chosen uniformly
at random.) Now, for each ¢ € [K], we may choose n; to be either | D/K | or [D/K] such that Zszl n; = D.
Let us partition the set [D] into K disjoint parts Iy, ..., Ik such that |I;| = n;. Then n; < kn, and every
vertex in M, has degree (1 £ 38)n;.

Let us define the following statements for 0 < j < K.

(i); For any 1 < k < j, there exists a set N := {N. : ¢ € I} of ny matchings in A such that
M, C N, and N.\ M. C H} UR for every c € Ij. Moreover, the matchings in Uizl N, are pairwise
edge-disjoint.

(ii); For every w € V(H),

|ER(’LU)ﬂ U U N‘S’}/an and ‘EUiZIH/ \U U N‘<’}/an

ke[j] NENK kelj] ke[j] NeENK

(iii); If |[U] < (1 —2¢)n, then (J;_, Ny has perfect coverage of U. Otherwise, Ui:l N has nearly-perfect
coverage of U with defects in S.
Using induction on j, we will show that (i);—(iil),; hold for j = K which clearly proves the lemma. Note
that (i),;—(iii), trivially hold for j = 0. Let i € [K], and suppose that (i);—(iii); hold for j =¢— 1. Our goal
is to find a collection N; of n; pairwise edge- dlsJ01nt matchings in H satisfying (i),—(iii),; for j = 1.

Let Rz .—R\U._ UNEN'kN let Sz *S\U = UNeNk(U\V( ))v and
(8.5) W := F(R;) U{U,S;}, where F(R;) := {Ng,(u)NU : u€ U} U{Ng,(u)\U : ueU}.

Now we apply Lemma 8.1 with ], W, {Ey;(w) : w € V(H)},{M. : ¢ € L}, "2 ,~v/4,n; playing the
roles of ', Fy, Fg,{My,...,Mp},B,v,D to obtain a set N!:={N/| : ¢ e I} of n; pairwise edge-disjoint
matchings in H such that the following hold.

(a); For every ¢ € I;;, N. D M, and N!\ M. C H.. In particular, NN R = &.

(b); For every c € I;, N/ is (v/4, k)-pseudorandom with respect to W.

(c)i For every w € V(H), |Ez;(w) \ Ueer, Nol < ymi/2.

(d); For every w € V(H), the number of matchings in A/ not covering w is at most

V| = (dagy (w) = By (w) \ | NI < ni — (1= 3B)n; +yni/2 < yn;.
cel;
Now we show that for any given ¢ € I;, (H, N., R;,S;) is (p,e,7/4, k, §)-absorbable by pseudorandomness
of N/, as follows.
e Using the fact that R is a (p,~, ¢, €)-absorber for V, (ii); with j = ¢ — 1, and Observation 7.3, we
deduce that R; is a (p, 27, &, )-absorber for V, showing (AB1).
e (a); implies (AB2).
e By (b);, N/ is (v/4, k)-pseudorandom with respect to W, so (i) of (AB3) holds, as required.
Moreover, if |U| > (1 — 2¢)n, then |S;| > |S| — L_:ll ng > D+ yn — D = «n, so we can apply either
Lemma 7.6 or Lemma 7.7 depending on the size of U, with v/4, R;, S;, N playing the roles of v, R, S, V.
This yields a set AV; := {N, : ¢ € I;} of n; pairwise edge-disjoint matchings in H such that the following
hold.
e For every c € I;, N, O N, and N.\ N. C R;. Since N.\ M. C H; by (a);, this shows (i), for j = i.
e By (c)i, for any w € V(H), [Ey; (w) \ U, c;, Ne| < yni/2. Moreover, by (d);, all but at most yn; of
the matchings in V] cover w. This together with (a); implies that |Eg, (w) NU.c;, Ne| < yni. This
shows (ii), for j =i.
e If |U| < (1 — 2¢)n, then N; has perfect coverage of U. Otherwise, N; has nearly-perfect coverage of
U with defects in S; C S. This shows (iii); for j = 1. O

Lemma 8.2 colours most of the non-reserved small edges (as shown in (8.2.2)). We will use the following
lemma to colour the remaining non-reserved small edges such that every colour class covers all but at most
one vertex of VS%)(G). Since the proportion of remaining non-reserved small edges is small, we can afford
to be less efficient in the number of colours we use in this step in order to ensure that each colour class is
small, which allows us to use Lemma 7.11 to extend them.
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Lemma 8.3 (Leftover colouring lemma). Let 0 < 1/ng < 1/r,{ < v <K p,e < 1, let n > ng, and let
D € [n?/3,n]. Let H be an n-vertex linear hypergraph, let G := H?), and let U := VS*E)(G).
L1 Let C be a set of colours with yD /2 < |C| <D,
L2 let M :={M, : c € C} be a set of pairwise edge-disjoint matchings in H, where |V (M.)| < yn/2
for every c € C,
L3 let R C E(G)\ Upee Me be a (p,10v,&,€)-absorber for V := {V(H),U},
L4 let Hiem € H\(RUU co Mc) such that V(H) = V(Hrem), A(Hrem) < v2D /20, every edge e € Hrom
satisfies le| <7 and |[{c € C : eNV(M,.) # @}| <~+2D/100,
L5 let S C U be a subset satisfying |S| > (v + ¢)n if |[U| > (1 — 10e)n.
Then there exists a set N := {N. : ¢ € C} of pairwise edge-disjoint matchings such that the following
hold.
(8.8.1) For any c € C, we have N. 2 M. and Hyem € U.co(Ne \ Me) € Heem U R.
(8.3.2) If |U| < (1 —10¢e)n, then N has perfect coverage of U. Otherwise, N has nearly-perfect coverage of
U with defects in S.

Proof. Let us choose  such that r=1, & < k < 7. Let t := [4y~!] and C4,...,C; be a partition of C into
t sets such that |C;| > ~2D/10 for 1 <i < t.

We will first show that for every i € [t], there exists a proper colouring of the edges of Hiem using
colours from C;. To that end, let C(e) := {c € C : eNV(M.) # @} for every edge e € Hyem. Since
A(Hrem) < v2D/20, |C(e)| < ¥2D/100 and |C;| > ?D/10, we can apply Theorem 4.6 with v2D/20 and
1/2 playing the roles of D and «, respectively, to show that for every i € [¢], there exists a proper edge-
colouring ; : Hyem — C; such that ¢;(e) & C(e) for every e € Hyem. By the definition of C(e), this implies
that V (¢, *(c)) N V(M,) = @ for any i € [t] and ¢ € C;.

Let us now define a proper edge-colouring 9 : Hyem — C by choosing i(e) € [t] uniformly and indepen-
dently at random for each e € Hem and setting 1(e) := 1;(ey(e). Fix an arbitrary colour ¢ € C. Then
there is a unique j € [t] such that ¢ € C;, and |V (¢~ 1(c))| = Zeew;l(c) le|1;(e)=;, so by the linearity of

expectation, E[|V (¢ ~1(c))|] = Zeewjl(c) le| - P(i(e) = §) < n/t < yn/4.

Since |V (¢71(c))| is a weighted sum of independent indicator random variables with maximum weight at
most 7, by applications of Theorem 4.1 together with a union bound, it is easy to see that [V (v ~1(c))| < yn/2
for all ¢ € C with non-zero probability. Combining this with the fact that for every ¢ € C, V(¢»~1(c)) N
V(M,.) = gand |V (M.)| < yn/2, it follows that there exists a proper edge-colouring 9 : Hyem — C such that
{p"Y(c)UM, : c € C} is a set of edge-disjoint matchings in H where for every ¢ € C, |V (¢~ 1(c)) UV (M..)| <
wn. Thus, for every ¢ € C, (H, M.Uv~1(c), R, S) is (p, €,7, K, £)-absorbable by smallness of M, U ~!(c). So
we can apply Lemma 7.11 with {M.Uv~1(¢) : ¢ € C} playing the role of A to obtain aset N' = {N, : ¢ € C'}
of pairwise edge-disjoint matchings in H such that the following hold.

e For every c€ C, N. 2 M.Uv1(¢) and N, \ (M. U~ (c)) C R; thus (8.3.1) holds.
o If [U| < (1 —10¢)n, then N has perfect coverage of U. Otherwise, A has nearly-perfect coverage of
U with defects in S; thus (8.3.2) holds. O

9. OPTIMAL EDGE-COLOURINGS

In this section we will prove colouring results (Lemma 9.2 and Corollary 9.6) which will be used to colour
the leftover edges of the reservoir in the final step of the proof of Theorem 1.1.

9.1. Edge-colourings with forbidden lists. The following observation follows easily from Hall’s theorem.

Observation 9.1. Let G be a bipartite graph with bipartition {A, B}, and let 54 and dp be the minimum
degrees of the vertices in A and B, respectively. If |A| < |B| and 64 + 0 > |A|, then G has a matching
covering A.

Lemma 9.2. Let § € (0,1), let H be an n-vertex graph, let C be a set of colours satisfying |C| > 7én, and
for every w € V(H), let C,, C C such that the following hold.

(i) For anyw € V(H), dg(w) < |C| — |Cpl-

(ii) There is a set U C V(H) with |U| < on such that every edge of H is incident to a vertex of U.

(iii) For every vertex w € V(H), |Cy| < on.

(iv) For everyce C, {w € V(H) : c € Cy}| < dn.
Then there exists a proper edge-colouring ¢ : E(H) — C such that every edge wv € E(H) satisfies ¢(uv) ¢
CyUC,.
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Proof. Let U := {uy,...,us}, where t := |U| < on. Let ¢y : & — C be an empty function, and for every
1 < j <t, let us inductively define a proper edge-colouring ¢; : (Jl_, Ex(uy) — C such that

(a); ¢j(uv) ¢ C,, UC, for each uv € |J]_; En(uy), and

(b); ¢; is a proper edge-colouring extending ¢;_1.

Since every edge of H is incident to a vertex of U by (ii), ¢ := ¢, satisfies the assertion of the lemma.
Let ¢ € [t], and suppose we have already defined ¢; satisfying both (a),; and (b); for j € [i — 1]; now we aim
to construct ¢; satisfying (a); and (b), for j = i.

For each v € V(H) \ {u1,...,ui—1}, let C := ¢;—1(En(v) N U;;ll Er(u;)) be the set of colours of edges

incident to a vertex v € V(H) in ¢;_1. Since any vertex v € V(H) \ {u1,...,u;—1} is adjacent to at most
i — 1 vertices in {uq,...,u;—1}, we have
vy i—1 .
(9.1) ICxl = [Eg(v) N | Er(w)| <i—1<dn.
j=1

Let A := Epg(u;) \ U;;ll Eg(uj) and B := C\ (Cy, UC;,). Let G; be an auxiliary bipartite graph with
the bipartition {A, B} such that {e,c} € E(G;) for e = u;v € A and ¢ € B if and only if ¢ ¢ C, UC}:. Thus,
the following hold.

J

. (®)
o |A] < |B|. Indeed, |A] = dpr(u;) = |Er(u;) N U2y En(uy)] and [B| = |C| = [Cu,| = |Bar(ui) N

A )
i—1
Uj—1 Eu(uy)] = [A]-
e For each e = u;v € A, we have

(9.1), (iii)
(9.2) da,(€) = |B| = |Cy UC| > |C] = |Cu, UCE | — |CLUCE] > 30m.

e For each ¢ € B, since there are at most ¢ — 1 edges in U;;ll Er(uj;) which could be assigned the
colour ¢ by ¢;_1, we have |[{v e V(H):ce€ C¥}| <2(i —1) <2n. Thus

(9.3) dg,(c) > Al —{veV(H):ceCoH —{w e V(H) : ce Cyu} (iEV) |A| — 3dn.

Let 64 and dp be the minimum degrees of the vertices in A and B in Gj, respectively. Then by (9.2)
and (9.3), we have 4 + dp > |A|. Moreover, |A| < |B|, so there exists a matching M; in G; covering A by
Observation 9.1. _

For each e € A = Egy(u;) \ U;;ll Ew(u;), let c. € B be the unique element such that {e,c.} € E(M;).

Let us define ¢;(e) = ¢;_1(e) for e € U;;ll Ep(u;), and ¢i(§) = ¢ for e € Fg(u;) \ U;;ll En(uy).
Since ¢, ¢ C,, UC;; UC, UC; for every e = uv € Ep(u;) \ U;;ll Er(u;), ¢; is a proper edge-colouring
satisfying (a); and (b), for j = i, as desired. O

9.2. Edge-colouring pseudorandom graphs. Here we derive an optimal colouring result for pseudo-
random graphs (Corollary 9.6) from a result (Theorem 9.5) on the overfull subgraph conjecture, which in
turn is a consequence of the main result in [35] on Hamilton decompositions of robustly expanding regular
graphs.

Definition 9.3 (Lower regularity). Let p,£ € (0,1), and let G be an n-vertex graph. A set R C E(G) is
lower (p, &, G)-regular if for every pair of disjoint sets S, T C V(G) with |S|,|T| > &n, we have |Eg(S,T) N
R| > peg(S,T) —¢|S]|T].

A graph H is lower (p, §)-regular if E(H) is lower (p,§, K,())-regular, i.e., for every pair of disjoint sets
S, T CV(H) with |S|,|T| > (v(H), we have ey (S, T) > (p — &)|S||T|.

Observation 9.4 (Robustness of lower regularity). Let a,&,p € (0,1), and let G be a graph. Then the

following hold.

(9.4.1) If R C E(QG) is lower (p, &, G)-regular and R’ C R satisfies A(R — R') < av(G), then R' is lower
(p, € + a'/?, G)-regular.

(9.4.2) If G is lower (p,&)-reqgular and G C H such that v(H) < (14 a&)v(G), then H is lower (p(1 —

a)?, 1fa )-regular.

Theorem 9.5 (Glock, Kiihn, and Osthus [20]). Let 0 < 1/ny < v,e < p <1, and let n > ng. Let G be an
n-vertex graph that is lower (p,e)-regular and satisfies A(G) — 6(G) < vn. Let defg(v) := A(G) — dg(v)
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for any v € V(G). If n is even and

(9.4) defa(w) < ) defg(v)

veV(G)\{w}
for some vertex w € V(G) with dg(w) = 6(G), then X' (G) = A(G).

Even though the statement of [20, Theorem 1.6] requires G to have no overfull subgraph, it is shown in
its proof that it suffices to assume that G satisfies (9.4) (see the remark below [20, Theorem 1.6]). We will
use the following corollary of Theorem 9.5.

Corollary 9.6. Let 0 < 1/ng < n,e < p < 1, and let n > ng. Let G be an n-vertex graph that is lower
(p,e)-reqular and satisfies A(G) — §(G) < nn. If there are at least A(G) wvertices in G having degree less
than A(G), then x'(G) = A(G).

Proof. Note that (9.4) is equivalent to

(9-5) 2(A(G) = 8(G) £ Y (AG) — dg(v)).

veV(G)

Since G is lower (p,e)-regular, it is easy to see that A(G) > (p — 3e)n. Now we prove the corollary. First
suppose n is even. Since G has at least A(G) vertices having degree less than A(G), we have 2(A(G) —
6(G)) <2mm < (p—3e)n < A(G) < 3, ev(6)(A(G) = dg(v)). Thus (9.5) holds, which implies that (9.4)
holds. So we can apply Theorem 9.5 to show that x/'(G) = A(G).

Now suppose n is odd. Let t := |[A(G) — 2nn]. Let G* be a graph obtained from G by adding a new
vertex v* adjacent to exactly t vertices of G having degree less than A(G) in G. Then

(a) A(G") = AG),
(b) 5(G*) = de- (") = 1,
(c) Hv e V(G) : A(G”) > da+(v)}| = A(G) — dg+(v™), and
(d) G* is lower (p/4,2¢)-regular by (9.4.2).
This implies that
(b) (a),(b),(c)
Y (AGE) —da-(v) = Y (AGT) —da-(v) + (AGT) = 8(G")) = 2(A(G") = 5(G)).

VeV (G*) VeV (@)

Thus, G* satisfies (9.5), so it satisfies (9.4). Moreover (d) holds, and A(G*) — §(G*) < 3nv(G*) by (a)
and (b), so applying Theorem 9.5 with G*,p/4, 2¢, 3n playing the roles of G, p, e, v, respectively, we deduce

A(G), as desired. O

(@)

that A(G) < X'(G) < ¥'(G7) = AG") &

10. CONSTRUCTING RESERVOIRS

In this section, we construct a set Ry C E(G) called a reservoir with several pseudorandom properties.

Definition 10.1 (Pseudorandom / Regularising reservoirs). Let €, p,& € (0, 1), let H be an n-vertex linear
hypergraph, let G := H®) let G’ be the spanning subgraph consisting of the edges of G with at least one
vertex in V_i(rlfe)(G)7 and let V be a set of subsets of V/(H).
o A subset R.s C E(G) is a (p, &, e, V)-pseudorandom reservoir if
(P1) for each v € V(H), dg,..(v) = pda(v) £ &n, and
(P2) Ries NE(G') is a (p, &, &, e)-absorber for V.
e Suppose Raps is a (p/2,€,§,€)-absorber for V. A set Ry € E(G) \ Rabs is a (p,&, €, Rabs, V)-
reqularising reservoir if Ryes := Rabs U Ryeg satisfies the following.

(R1) For each v € Vil_s)(G) dp,..(v) = pdg(v) £ &én, and

Lres

(R2) for any w € V(H)\ V{'~7(G), max(pdg (w), (p — 206)n) < dp,,. (w) < p(1 — &)n + &n.

Now we define various types of reservoirs. The type of reservoir we choose to use will depend on the
structure of the hypergraph #.

Definition 10.2 (Types of reservoirs). Let €,p,& € (0,1), let H be an n-vertex linear hypergraph, let
G = H®, and let G’ be the spanning subgraph consisting of the edges of G that are incident to a vertex
in VF*E)(G).
For a collection V of subsets of V(H), and Ryes € E(G), we say Ry is
e a(p,& e, V)-reservoir of Type Ay if Ryes is a (p, &, &, V)-pseudorandom reservoir,
o a (p, &, e, V)-reservoir of Type Ay if Ryes = Rabs U Ryeg, Where



29

o Raps is a (p/2,€,&,e)-absorber for V that is also lower (p/2,&, G')-regular, and
o Ryeg is a (p, &, €, Rabs, V)-regularising reservoir, and
o a(p,& e, V)-reservoir of Type B if Ryes is a (p, &, €, €)-absorber for V.
For brevity, we often omit the type if it is clear from the context.

We will use reservoirs of Type A; when H is neither (p,€)-full nor FPP-extremal (which are defined in
Definitions 2.2 and 2.3), reservoirs of Type As when H is (p, ¢)-full but not FPP-extremal, and reservoirs
of Type B when H is FPP-extremal.

Now we show the existence of a suitable absorber, a pseudorandom reservoir, and a regularising reservoir.

Proposition 10.3 (The existence of a pseudorandom reservoir and an absorber). Let 0 < 1/ng < &,¢,p <
1, and let n > ng. Let 1 be an n-vertex linear hypergraph, let G :== H?), and let G’ be the spanning subgraph
of G consisting of the edges of G incident to a vertex in V_ﬁlfe)(G). If V is a collection of subsets of V(H)
such that |V| < nl°8™ then there exists Runa C E(G) such that

o RaNE(G) is a (p,&, &, €)-absorber for V, and lower (p,&, G')-reqular, and

o Rua is a (p, &, e, V)-pseudorandom reservoir.

In particular, Ryna is a (p,&,e,V)-reservoir of Type A1 and Ryng N E(G') is a (p,&,e,V)-reservoir of

Type B.

To prove Proposition 10.3, it suffices to consider a set Rinqg C E(G) of edges chosen independently and
uniformly at random with probability p and apply the weighted Chernoff’s inequality (Theorem 4.1) with
all weights equal to 1.

Lemma 10.4 (The existence of a regularising reservoir). Let 0 < 1/ng € £ € e € p < 1, and let n > ny.
Let H be an n-vertex linear hypergraph, and let G == H?). If V is a collection of subsets of V(H) such that
V| < nleen V(H) € V, and H is (p,e)-full, then for any (p/2,&,€,€)-absorber Raps for V, there exists a
(p, &, €, Rabs, V)-reqularising reservoir Ryes C E(G) \ Rabs-

Proof. Let U = Vil_s)(G) and let G’ be the spanning subgraph of G consisting of the edges of G incident
to a vertex of U. Let Raps be a (p/2,&, €, e)-absorber for V. Since V(H) € V,

(10.1) for any v € V(G), dg,,.(v) = pdg/(v)/2 £+ én.
Let
(10.2) U={weVH)\U : do(w) > (1 —20ep™")n}.

Since H is (p,)-full, we can choose a subset S C V("~1(G) with |S| = [(p — 20e)n]. Note that every
vertex of S is adjacent to all the other vertices of G.

For each vertex w € V(H)\ (UUU’), we choose [(p —20e)n —dg,,.(w)] > 0 edges of Eg/ (S, {w})\ Rabs,
and let R C E(G’) \ Raps be the union of all such edges for all w € V(H) \ (U U U’). Then for any
w e V(H)\ (UUU), we have

(10.3) pda(w) (1%2) (p—20e)n <dpg,, (w) +dr(w) < (p—20e)n+ 1< p(1 —e)n.
For each vertex w € U U U’, let us define
f(w) = pda(w) +&n — dg,,. (w) — dr(w)] and g(w ( )— 1.
Claim 1. There ezists a (g, f)-factor R” in H := G[U UU'] — Raps = U'l = Raps — R'.

) =

GlU
Proof of claim: Since ¢ < p, for any w € UUU’, we have dg(w) > (1 — )n Moreover, for any w € UUU’,
since H is (p, e)-full, dr/(w) < |[V(H) \ U| < 10en < pn/10, and by (10.1), dg,,.(w) < pn/2 + &n. Hence,
for any w € U U U’ we have

3pn on 3pn
1 . (— ) < < .
10 <p(l—=p)n+én 5 T&n) — 15 flw) < pn+én < 5
Therefore, for any w € U UU’,
(10.4) F(w),g(w) € [pn/4, 2pm].
Moreover, for any w € U UU’, we have
(10.5) do-ry () > (1= pn— (5 +én) = 25 > (1 - 2p)n.

By Lovész’s (g, f)-factor Theorem [36], there exists a (g, f)-factor in H if
(i) 0 < g(w) < f(w) < dp(w) for each w € UUU’, and
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(ii) for any pair of disjoint sets S, T C V(H), ¢(S,T) > 0, where

c(S,T) = Z(dH )+ Zf —en(S,T) = Z(dH s(t )+ Zf

teT seS teT ses
Since H is (p,e)-full and € < p, note that
(10.6) VH)\ O UU)| < [V(H)\U| < 10en < pn.

Hence, for any w € U U U’, we have

(10.5),(10.6) (10.4)
di(w) > dg—p,.(w) = [V(G)\(OUU)] =  (1=20)n—pn=1-3p)n > f(w),

so (i) holds. Now, we verify (ii). If |S| < (1 — 5p)n, then for any ¢ € T, we have

, (10.5),(10.6) (10.4)
dp-s(t) 2 da-g,,, () = [V(G)\(UUU)|=[S] = (A=2p)n—pn—|[S|=>2pn > g(2),

so ¢(S,T) > 0. Hence we may assume that |S| > (1 — 5p)n, which implies that |T| < 5pn. Then

(10 4) on pn (1
teT “
s0 c(S,T) > =3 cp 9(t) + X ,cq f(8) > 0, proving (ii) and thus the claim. ¢

Finally, we show that Ryeg = R'UR" isa (p, &, €, Rabs, V)-regularising reservoir. Let Rycs = RapsUR'UR”.
For each w € U UU’, we have

dR,..(w) >

dR,..(w) <

(f(w) = 1) +dp,,. () + dr(w) = pdg(w) +&n — 2
f(w) +dp,y,. () + dr(w) < pdg(w) + &n.

10.2
Thus, (R1) holds, and for w € U’, (p—20¢e)n ( < : pda(w) <dg,. (w) < p(1—e)n+&n, as required by (R2).
Moreover, for any w € V(H) \ (UUU’), dg,..(w) = dg,,.(w) + dr(w) since " C E(H) C E(GU UU")).
Therefore, by (10.3), max(pdg(w), (p — 20e)n) < dg,..(w) < p(1 — €)n, showing that (R2) holds for w €
V(H)\ (UUU’). Thus, (R2) holds for all w € V(H) \ U. This completes the proof. O

Definition 10.5 (Regularised linear multi-hypergraph). For an n-vertex linear hypergraph #, let H,cz be
the linear multi-hypergraph obtained from H by adding max(0,n — 3 — dy (w)) singleton edges incident to
each w € V(H).

Recall that Heman = {e € H : |e|] < r1}. In order to be able to use Lemma 8.2, we need to embed
Hsman \ Rres into an almost-regular linear multi-hypergraph H’ by adding singleton edges. In particular,
for each vertex w € V(#), we add at most max(0,n — 3 — dy(w)) singleton edges containing w, so that

H/ c 7'[reg-

Lemma 10.6 (Regularising lemma). Let 0 < 1/ng < &,1/r1 < B,e,p < 1, and let n > ng. Let H be an
n-vertez linear hypergraph, and let V be a collection of subsets in V(H) such that V(H) € V. If either
(i) Ryes s a (p, &, e, V)-reservoir of Type A1 or Ag, or
(ii) Ryes is a (p,&,€,V)-reservoir of Type B and 3p < e,
then there exists a linear multi-hypergraph H' C Hyeg such that
o H' is obtained from Hsman \ Rres by adding singleton edges, and
o for every w € V(H), we have dyy(w) = (1 — p)(n — 1+ Bn).

Proof. Let G = H®), and let U = V_&l_e)(G). Since H is linear and every w € V(#) is contained in at
most one singleton,

n—1—dg(w
(10.7) dyp\e(a)(w) < %() +1<(1-p)n—1—-dg(w))+1.
We will show that for any w € V(H),
(10.8) d\Ryo (W) < (1= p)(n—1) +&n + 1.

Let us first consider the case when R,es is a (p, &, &, V)-reservoir of Type Aj or A,. In this case, for any
w € V(H), we have

(10.9) pda(w) —&n < dg,, (w) < (p+En.
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Indeed, if Ry is of Type Aj, then (10.9) holds by (P1), and if Ry is of Type As, then (10.9) holds
by (R1) and (R2). Now, by (10.7) and (10.9), every w € V(H) satisfies

(10.9)
i\ Ryeo (W) = dG—R,..(w) + dpppy(w) < (1 —p)da(w) +En + dip g(a) (w)
(10.7)
(10.10) < (Q-pn—1)+&n+1,

proving (10.8) when R, is a (p, &, ¢, V)-reservoir of Type Aj or As.

Now let us consider the case when Ry is a (p,&, e, V)-reservoir of Type B. Let G’ be the spanning
subgraph of G counsisting of the edges of G incident to a vertex of U. Since R, is a (p, &, &, €)-absorber for
V and V(H) € V, every w € V(H) satisfies

(10.11) A (W) = pdcy (w) % €n.

If w € U, then dg(w) = dg(w), so dg,..(w) = pdg(w) £ &n and by the same reasoning as in (10.10), one
can show that (10.8) holds if w € U.
It remains to show that (10.8) holds for w € V(#H) \ U. Indeed, every w € V(H) \ U satisfies

AH\Ryee (W) = d6— Ry (W) + dG - B(G1)~ Ryee (W) + di\ () (W)
(10.11
(1 — p)dG/ (U)) +én + dG—E(G’) (U)) + dH\E(G)(w)
= (1 — p)dc;(w) + pdg,E(G/)(w) + d’H\E(G) (’LU) +&n

" (1= pda(w) + o1 - e+ P

-1
= (1/2 = p)da(w) + p1 = e)n + "= +n +1
<U-pmn-1)+en+1,
as desired. Note that the last inequality is equivalent to (1/2 — p)dg(w) + p(1 —&)n < (1/2 — p)(n — 1),
which holds since dg(w) < (1 —&)n and 3p < e.
Now let k == | (1—p)(n—1)—Fn/2], and let H’' be the linear multi-hypergraph obtained from Hgman \ Rres

as follows. For every vertex w € V(H) satisfying dy;_ \R,..(w) < k, we add k — dy__ .\ R,..(w) singleton
edges containing w. Then, by (10.8), for every vertex w € V(H),

(10.12) dy(w)=(1-p)(n—1)£2n/3=(1—-p)(n—1%pn),
as desired. Now we prove that H' C H,es by showing that H' is obtained from Hgman \ Rres by adding

at most max(0,n — 3 — dy(w)) singleton edges incident to each vertex w € V(). Indeed, for any vertex
w € V(H) with dy_ . \R,..(w) <k, we add at most

+1+&n

res

(10.9),(10.11) Bn 2,
b @) 5 (o= G () = 22 ) 4 o < 03 - duw)
singleton edges incident to w, since dy(w) — dyy, ., (w) < 2n/r; and £,1/r; < 8. This completes the proof
of the lemma. 0

11. PROOF OF THEOREM 1.1

Now we are ready to prove our main theorem. As discussed in Section 2, the proof depends on the
structure of H. The relevant properties of H are captured by the following definition. (Recall that (p, e)-full
linear hypergraphs were introduced in Definition 2.2.)

Definition 11.1 (Types of hypergraphs and colourings). Let H be a linear n-vertex hypergraph, and
let ¢ : Hmed U Hiarge — [1] be a proper edge-colouring. We say ¢ is of Type A if it satisfies (6.1:a) of
Theorem 6.1, and ¢ is of Type B if it satisfies (6.1:b) of Theorem 6.1. We say (H, ¢) is of

e Type A; if ¢ is of Type A, and H is not (p, e)-full,

e Type Ay if ¢ is of Type A, and H is (p, e)-full,

e Type B if ¢ is of Type B.

Proof of Theorem 1.1. Recall the hierarchy of the parameters
0<1/ng<rg KEKLIM KPLRLKNKELPLLILIL Yy L po L ey <1,

where rg and r; are integers. Let n > ng, and let H be an n-vertex linear hypergraph. Without loss
of generality, we may assume that H has no singleton edges. Our aim is to find n pairwise edge-disjoint
matchings containing all of the edges of .
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Let G == H® let U = VS*E)(G), and let G’ be the spanning subgraph of G consisting of the set of
edges of G incident to a vertex of U.

Step 1. Colour large and medium edges, and define the corresponding parameters.

Let ¢ : Hied U Hiarge — [n] be the proper edge-colouring given by Theorem 6.1.
Now we define some parameters depending on the type of (H, ¢) as follows.

® pI=p1, Pabs = pP1,E:=¢€1,and v:=v1 if (H, ) is of Type Ay,

® pi=p1, Pabs =p1/2,e:=¢1,and v =y if (H, ) is of Type Ao, and

® P =3, Pabs = P2, & =cg,and v =y if (H,¢) is of Type B.
Thus, we have

(11.1) K <Ky <K P, Pabs, € K 1.

Recall that difficult matchings were defined in Definition 7.10. The following claim is used in the later
steps.

Claim 1. The following hold.
(1.1) For any edge e € H such that eNU # &, we have |e| < en.
(1.2) For any edge € € Hsman, we have |{f € Hiage : €N f # @} < 2r1n/ry.
(1.3) If ¢ is of Type B, then |U| < 26n, and there is no difficult colour class in ¢.
(1.4) If ¢ is of Type A, then there is at most one colour ¢ € [n] such that ¢~'(c) contains a huge edge
and ¢~*(c) is difficult. Moreover, if such a colour c exists, then ¢~1(c) = {e} for some huge edge e.

Proof of claim: Let us first prove (1.1). For any edge e € H \ E(G) containing a vertex w € U, since H is
linear, the vertex w is not adjacent (in G) to any vertex of e. Thus, (1 —¢)n < dg(w) < n — |e|, implying
that |e| < en, as desired.

Now we prove (1.2). Since H is linear, every vertex w € V(%) is incident to at most n/(ro — 1) edges of
Hiarge- Thus, [{f € Hiarge : €N f # S} < leln/(ro — 1) < 2rin/ro.

Now we show (1.3). Since there is a set of FPP-extremal edges in H with volume at least 1 — §, we
have |U|(1 — e)n/2 < |E(G)| < 6(%). Thus, |U| < 20n. If ¢~*(c) is difficult, then [V (¢~ (c))| > 3|V (H) \
U|/4 > n/2, which is impossible since each colour class covers at most dn vertices by (6.1:b)(i), (6.1:b)(ii),
and (6.1:b)(iii) of Theorem 6.1.

Finally, we prove (1.4). By (6.1:a)(i) of Theorem 6.1, every colour class of ¢ containing a huge edge
consists of a unique edge. Suppose ¢~1(c1) and ¢~1(co) are difficult colour classes of ¢ such that both of
them contain a huge edge, and let ¢; # co2. Then |[V(H) \ U| > 2 and there exist huge edges e; # ez in
H such that ¢(e1) = ¢1 and ¢(e2) = co. If [V(H) \ U| = 2, then both e; and ez contain V(H) \ U since
[3|V(H)\ U|/4] = 2, contradicting the linearity of H. Otherwise, if |V(#H) \ U| > 3, then for ¢ € {1,2}, we
have |e; \U| > 3|V (H)\U|/4, so [(e1 Nex)\U| > [V(H)\U|/2 > 1, also contradicting the linearity of 7. ¢

Step 2. Choose a reservoir R.es and a defect-set S.
Let us define

(11.2) V={U,VH)}U | J{UUV (e (1), U\ V(e (i)}
i=1
By Proposition 10.3 and Lemma 10.4, there exists R..s C E(G) such that
RES1 R, is a (p,&, e, V)-reservoir of Type ¢ if (H, ¢) is of Type ¢, for i € {A1, Az, B}, and
RES2 R, contains a (paps, &, &, €)-absorber R,ps for V. Moreover, if (H, ¢) is of Type Aa, then Raps is
lower (p/2,€, G')-regular, and if (H, ¢) is of Type B then R,es = Raps.
Now let us define the ‘defect’ set S by

g {U \V=D(H) if (H,$) is of Type Aj.

(11.3) : .
U if (H, ¢) is of Type As or B.

Since |U| > (1 —10¢e)n holds only if ¢ is of Type A by (1.3) of Claim 1, and € < p holds if ¢ is of Type A,
we can deduce the following.

(11.4) If |U| > (1 — 10e)n, then |S| > (1 — p)n + ben.
Step 3. Define various subsets of colours.

In this step, we will define various sets of colours, Cyed, Cdits Chuges Cmainy Couff, Clarge and Chnal, such
that [n] = Cmed U Caig U C’huge U Cmain U Chugr U Chinal.



33

In the following steps, roughly, our goal is to extend the colour classes ¢~!(c) for ¢ € [n] \ Cgnal in such
a way that the maximum degree in the hypergraph of remaining uncoloured edges is at most |Cgpal|. To
that end, first, for each ¢ € Cgig, we will extend the colour class ¢~'(c) to cover every vertex of V(=1 (%)
and all but at most five vertices of V("2 (H) using some edges of G. Then for each ¢ € Chyge U Crned We
will extend the colour class ¢~ !(c) to cover all but at most one vertex of U using some edges of Raps, and
finally, we will extend the colour classes ¢~!(c) for ¢ € Crain U Chugr to contain all of the remaining edges
in Hsman \ Rres, and the resulting colour classes are further extended using some edges of R,ps.
Now we define the following parameters and sets of colours.
e Let D:=|(1—p)(n—1)] and D" :== [10y'/2D].
e Let Chea C [n] be a set of at most yn colours such that ¢(Hmed) € Cmed, which is guaranteed
by (6.1:a)(ii) and (6.1:b)(ii) of Theorem 6.1.
e By (1.3) and (1.4) of Claim 1, there is at most one colour cait € ¢(Hnuge) \ Cmed such that ¢! (cair)
is difficult. If such a colour cgi exists, then let Caig = {caig }. Otherwise, let Cqig = @.
o Let Chuge = ¢(Hnuge) \ (Cmed U Cairr). Note that, since H is linear and for every e € Chyge,
le] > Bn/4, we have

(2.2)
(11-5) ‘Chuge U Cdiﬁ‘ < e(Hhuge) < 85_1-

o Let Clargc = d)(Hlargc) \ (Cmcd U Cdiff ) Chugc)~
o Let Crain € [12] \ (Cimed U Caist U Chuge) be a subset of size D that maximises |Clarge N Ciain|- Note
that such a subset exists since n — [Ced U Caift U Chuge| > n—yn—8371 > D by (11.1) and (11.5).
In particular, if ¢ is of Type A, then Cpain 2 Clarge, siice |Clarge] < (1 —0o)n < D by (6.1:a) of
Theorem 6.1.
e Let Chugr C [\ (Cimed U Caiff U Chuge U Cmain) be a subset of size D’. Note that such a subset exists
since 1 — |Cmed U Cai U Chuge U Crain| > 1 —yn — 8371 — (1 —p)n>pn/2 > D' by (11.5).
e Let Cﬁnal = [’I’L] \ (Cmed U Cdiff ) C'huge ) C'main ) Cbuff)-
We will use the following observations later.
T1 If ¢ is of Type A, then for any ¢ € Chnal, ¢~ '(c) = &, since Clarge € Cinain-
T2 If ¢ is of Type B, then for any ¢ € Chnal, ¢ () € Hiarge \ Hhuge- Moreover, (6.1:b)(iii) of
Theorem 6.1 implies that |V (¢~ 1(c))| < Bn for any ¢ € Chpal-
Also note that

(116) (1 - p)n < |Cmed U Cdiff U C’huge U C’main U Cbuff' < (1 —p + 1571/2)71,

since |Ced| < 71, |Crnain UChug| =D+ D' < (1—p+ 10’y1/2)n7 and (11.5) holds.
Step 4. Extend the colour classes in {¢p~1(c) : ¢ € Caig} using Lemma 7.12.

In this step, for each ¢ € Cyig, we extend the colour class ¢~ (c) to cover every vertex of V("= (#) and
all but at most five vertices of V(»=2)(#), by using only edges of G.

If Caqip # @, then by (1.3) and (1.4) of Claim 1, Cqig = {caig}, ¢ is of Type A, and ¢~ (caix) = {e}
for some huge edge e. Applying Lemma 7.12 with ¢~ (cqig) playing the role of M, either x'(H) < n or we
have a set My = {M,,,,, } such that the following holds.

D1 For each ¢ € Cyg, M. 2 ¢~ *(c), M.\ ¢~ '(c) C E(G), M. covers every vertex of V(»~1 (%), and

V2 (34)\ V(M,)| < 5.
Let us define
Ry=Rus\ |J Mcand Sy:=38\ (] (V"2 (H)\ V(M)

ceCaitr c€Caitr
Since |Cgie| < 1 and RES2 holds, by Observation 7.3, we have the following.

(11.7) Ry is a (pabs, 10, &, €)-absorber for V, so it is also a (pabs, 37/2, &, €)-absorber for V.

D1 (11.4)
(11.8) If |U| > (1 — 10e)n, then |S1| > |S| =5 > 2en> (e + 3v/2)n.
Step 5. Extend the colour classes in {¢p~(c) : ¢ € Chyge U Cmea} using Lemma 7.11.

In this step, for each ¢ € Chyge U Cmed, We extend the colour class gb*l(c) to cover all but at most one
vertex of U, by using only edges in Ry C Raps-
Combining (11.5) and the fact that |Ciea| < yn, we have

(11.9) [Chuge U Cmed| < 3yn/2.
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First suppose ¢ € Chyge- Then we claim that [V (¢7*(c)) N U| < en. Indeed, if ¢ is of Type A, then
¢»~1(c) contains exactly one edge by (6.1:a)(i) of Theorem 6.1, so |V (¢~ 1(c)) NU| < en by (1.1) of Claim 1.
Otherwise, if ¢ is of Type B, by (6.1:b)(i) of Theorem 6.1, we have |V (¢~1(c))| < én < en, so again
[V(¢p~t(c)) NU| < en. Moreover, as noted in (11.7), Ry is a (pabs, 37/2,&,€)-absorber for V, and U U
V(p~(e),U\V (¢~ (c)), U, V(H) € V by (11.2), so (H,p1(c), R1,51) is (pabs, €, 37/2, k, )-absorbable by
typicality of Ry if ¢ € Chyge. Now suppose ¢ € Cieq. Then [V (671 (c))| < yn by (6.1:a)(ii) and (6.1:b)(ii) of
Theorem 6.1. So, again, since Ry is a (pabs, 37/2, &, €)-absorber for V, and U,V (H) € V by (11.2), it follows
that (H, ¢~ t(c), R1,S1) is (pabs, €, 37/2, k, £)-absorbable by smallness of ¢~1(c) if ¢ € Cheq. Moreover,
since (11.8) and (11.9) hold, we can apply Lemma 7.11 with {¢~'(c) : ¢ € Chuge U Cmea}s R1, S1, pabs, and
37/2 playing the roles of N, R, S, p, and ~y respectively, to obtain the set My, = {M, : ¢ € Chyge U Crmed }
of pairwise edge-disjoint matchings in H such that the following hold.

HM1 For each ¢ € Chyge U Cred, M. is edge-disjoint from the matchings in Mgig, M. 2 ¢~ 1(c) and
M. \ ¢_1(C) C Raps-
HM?2 If |U|] < (1 — 10e)n, then My, has perfect coverage of U. Otherwise, My, has nearly-perfect
coverage of U with defects in S;.
Now let us define

Ry =Ry \ U  Mcand Sy =8\ U @\vw)).

c€ChugeUCmed ¢c€ChugeUCmed
By (11.7), (11.9), and Observation 7.3, the following hold.

(11.10) Rs is a (paps, 27, &, €)-absorber for V.
(11.9) (11.8) (11.4)
(11.11) If |U| > (1 — 10e)n, then |S3| > |S1|—3yn/2 > |S|-5—-3yn/2 > D +4en.
Step 6. Colour most of the edges of Hsman \ (Rres U UMEMdiff M) by extending the colour classes in
{¢7(c) : ¢ € Ciain} using Lemma 8.2.

In this step, we will first colour most of the edges in Hgman \ (Rres U U MeMass M) with colours from
Cmain by extending the colour classes in {¢p71(c) : ¢ € Cpain}, and the resulting colour classes are further
extended by using only edges of Re C Raps. To do this, we will use Lemma 8.2. (Note that after this step
there are only a few remaining uncoloured edges in Hgman \ (Rres U U MeMuin M) incident to each vertex,
which will be coloured in the next step.)

To be able to apply Lemma 8.2, we need to first embed Hgman \ (Rres U UMeMdm M) into an almost-
regular linear multi-hypergraph H*. In order to define H*, let H’ be the linear multi-hypergraph obtained
by applying Lemma 10.6 (Regularising lemma) with H, R.s, and /2 playing the roles of H, Ryes, and 5,
respectively. In particular, H' is a linear multi-hypergraph obtained from Hgman \ Rres by adding singleton
edges such that H' C H,eq (which is defined in Definition 10.5). Now let H* := H'\ Upsc g, M- Then it
is clear that H* can be obtained from Hgman \ (Rres U U e Masee M) by adding singleton edges, so we have
the following.

(11.12) H* C Hieg \ Rres € Hueg \ Rz, and dy~(w) = (1 £ 28)D for any w € V(H).

Now we want to apply Lemma 8.2 with Hyeg, H*, {¢71(c) : ¢ € Crain}, R2, Sa, 71, pabs, 283, and 2y
playing the roles of H , H', M, R, S, r, p, B, and =, respectively. To that end, we need to check that the
assumptions C1-C4 of Lemma 8.2 are satisfied.

First, (11.11) implies that if |U| > (1—10¢)n, then |S2| > D+2vn, so C1 holds. By (11.10) and (11.2), C2
holds. Since every edge e € H* satisfies |e|] < ry, C3 follows from (11.12). Lastly, we show that C4
holds. By the definition of Chain, for any ¢ € Chain, (b_l(c) is either empty or is contained in Hjarge, SO
¢ (c) C Hyeg\(H*UR2). Moreover, by (6.1:a)(iii) and (6.1:b)(iii) of Theorem 6.1, [V (¢~ (c))| < Bn < 28D.
Furthermore, by (1.2) of Claim 1, for any e € H*, |[{¢ € Cuain : e NV (¢~ 1(c)) # @} < 2rin/ro < 28D, as
desired.

Thus, we can apply Lemma 8.2 to obtain a set M2 . = {M} : ¢ € Cpain} of D edge-disjoint matchings
in H,eg such that the following hold.

MA1* For any ¢ € Cppain, we have M D ¢~ 1(c) and M} \ ¢~1(c) C H* U Ry C H* U Raps; in particular,
M is edge-disjoint from all the matchings in Maig U Mpm.
MAZ2* For any w € V(H),
(1) ‘ERabs (w) n UcGCma;n M:‘ < 2’VD7 and
(i) [Ex- () \Upeqy,,. M2] < 29D.
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MA3* If |[U| < (1 — 2¢)n, then M? .. has perfect coverage of U. Otherwise, MZ . has nearly-perfect
coverage of U with defects in S5.

For every ¢ € Chain, let M, be obtained from M} by removing all singleton edges, and let Myain =

{M. : ¢ € Cain}. Then, since M} . is a set of matchings in Hyeg 2 H, Mmain is a set of matchings in H.

Since we obtain Heman \ (Rres U UMeMdiff M) after removing singleton edges from H*, MA1* and MA2*
immediately imply M A1 and M A2 stated below. Let

Hrem = Hsmall \ (Rres U U M) = Hsmall \ (Rres U U Mc)-
MeMaistUMmain c€CqiftUCmain
MA1 For any ¢ € Chain, M. is edge-disjoint from all the matchings in Mgig U Mpm, M. 2 ¢~1(c), and
M. \ Qbil(c) c (Hsmall \ (Rres ) UMEMdiff M)) U Rs.
MA2 (i) For any w € V(H), |ER,,.(w) NUcco, .. Mc| < 27D, and
(i1) A(Hyem) < 29D.
Now let us define

abs

Ry:=Ry\ |J M;and S3:=8,\ [J (U\V()).

¢€Cmain c€Cmain
Since |Crain| = D,
(11.11)
(11.13) if |U| > (1 — 10e)n, then |S3| > |Sa| — D > 4den.
Moreover, by (11.10), MA2(i) and Observation 7.3,
(11.14) Rs is a (pabs, 47, &, €)-absorber for V.

Step 7. Finish colouring the remaining uncoloured edges of Hsman \ Rres by extending the colour classes in
{¢7(c) : ¢ € Chug} using Lemma 8.3.

Recall that Hrem = Hsman \ (Rres U Ucecdiffucmain M,) is the hypergraph consisting of all the uncoloured
edges in Hgman \ Rres. In this step, we will first colour all the edges of Hyer, with colours from the ‘buffer’
set Cpust by extending the colour classes in {¢_1(C) : ¢ € Chugt}, and the resulting colour classes are further
extended to cover all but at most one vertex of U, by using only edges of R3 C Raps- To do this, we want
to apply Lemma 8.3 with Chugr, {¢7(c) : ¢ € Chugt}, 71, Pabs, R and 10y/2 playing the roles of C, M, r,
p, R and 7, respectively. So now we check that the assumptions L1-L5 of Lemma 8.3 are satisfied.

First, |Chug| = D' = [10v*/2D|, so L1 holds. For each ¢ € Chpug, note that ¢~'(c) is either empty
or is contained in Hiarge, 50 |V(6'(c))| < Bn < 5yY/2n by (6.1:a)(iii) or (6.1:b)(iii) of Theorem 6.1.
Thus L2 holds. Since (11.14) holds and {U,V(H)} C V by (11.2), it follows that L3 holds. By (11.13),
if |[U| > (1 — 10&)n, then |S3| > 4en > (1042 + €)n, so L5 holds. Lastly, we show that L4 holds.
Note that MA2(ii) implies that A(Hyem) < 2yD < (1071/2)2D/20. Moreover, since for each ¢ € Chug,
¢~ !(c) is either empty or is contained in Hiarge, We have Heem € H \ (R3 U U e, ®~'(c)), and for any
e € Heom € Hemall, we have [{c € Chug : e NV (¢ (c)) # D} < 2rin/ro < (10vY/2)2D/100, by (1.2) of
Claim 1, as desired.

Thus, by Lemma 8.3, we obtain a set of pairwise edge-disjoint matchings Myug = {M. : ¢ € Cpu} such
that the following hold.

B1 For any ¢ € Cpug, M. is edge-disjoint from all the matchings in Mgig U Mpm U Main, Me 2 ¢~ 1(c)
and Hrem € Ueq,,, (Mc\@7'(¢)) € HremURs. In particular, Haman\ Rres € Uee U0, U0 (Me\
(b_l(c)) g Hsmall-

B2 If |U| < (1 — 10e)n, then My,ug has perfect coverage of U. Otherwise, Myyug has nearly-perfect
coverage of U with defects in Ss.

Now we combine all the matchings constructed previously. Let us define

M;rev = Mdiff U Mhm ) M;knain ) Mbuff and Mprev = Mdiff U Mhm U Mmain U Mbuff7
where both M ., and M,e, consist of pairwise edge-disjoint matchings by HM1, MA1*, MA1, and B1.
Let us also define
Rﬁnal = Rres \ U M7 Gﬁnal = (V(H), Rﬁnal)7 and Hﬁnal = Rﬁnal U U Qbil(c)'
MeMprey c€C¥inal
Step 8. Analyse properties of Ggnal and Henal-

In this step we will prove the following properties of Ggnal and Henal-
F1 (1—-p)n < | M| = ‘MpreV| =71 — |Chnal] < (1 —p+ 1571/2)71-

prev
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F2 If (H, ¢) is of Type Ay, then A(Gginal) — 0(Ginal) < 22en, and Gpna is lower (p/4,e'/3)-regular.
F3 Hpna = H\ UMeMprev M="H\ UMEM;M M. Moreover, if ¢ is of Type A, Hgnal = Rnal-
First, since ./\/lprev = {Mc ¢ € Cheq U Cgig U Chuge U Crain U Cbuff} and Chpal = [n] \ (Crned U Cqig U
Chuge U Cinain U Cousr), F1 follows from (11.6).

Now we prove F2. First we show that for any w € V(H),
(1]"15) dRres\Rﬁnal (w) S ]‘571/277“

Indeed, by MA1 and MA2(i), dg, \ Ry (W) <|IMaig| + [Miom| + 290 + [Myug|, and by (11.9), M| <
3vn/2. The previous two inequalities together with the fact that |[Maig| < 1 and [Mpug| = D’ < 107y*/?n,
imply that (11.15) holds.

Now we show that A(Gfina) — 0(Ginal) < 22en. Indeed, since Ranal € Ryes and Ryes is a (p, &, €, V)-
reservoir of Type Ay, (R1) and (R2) of Definition 10.1 imply that A(Ggnal) < (p + §)n. On the other
hand, (R1) and (R2) of Definition 10.1 also imply that dg,._(w) > (p — 20e)n for any w € V(H), so
by (11.15), we have dg,,.,(w) > dg,..(w) — 157"/?n > (p— 20e)n — 157*/2n > (p — 21e)n for any w € V(H),
50 0(Ganal) = (p — 21e)n. Thus, A(Gfinal) — 0(Ganal) < (21 4+ &)n < 22en, as desired.

Now we show that Ggpna is lower (p/4,e'/3)-regular. Since (H, ) is of Type Ay, H is (p,e)-full, so
[V(H)\ U| < 10en. Thus, by (9.4.2), it suffices to show that Ggna[U] is lower (p/3,£'/2)-regular.

To that end, note that by RES2, R.s is lower (p/2,£,G’)-regular, so (11.15) and (9.4.1) imply that
Rabs N Rena is lower (p/2,7'/, G')-regular. Moreover, for any two disjoint sets A, B C U with |A|,|B| >
e2|U| > e'/?n/2, we have eq/ (A, B) > (|A| — en)|B| > (1 — 2¢'/2)|A||B|. Therefore, for any two disjoint
sets A, B C U with |A|,|B| > £'/2|U| > 4'/5n, we have

P P
€Ganu[U] (4, B) 2 Sear (4, B) — ¥/?14||B] > Z(1= 2¢'/%)|A||B| — '/°|A||B| = (p/3 — '/?)|A|| B,

50 Ganal|U] is lower (p/3,e/?)-regular, completing the proof of F2.
Finally, we prove F3. Since H = Hsman U (Hmed U Hiarge) and Hinal = Rfinat U U ey, #~1(c), in order
to show that Hena = H \ U MEMprov M, it suffices to prove the following two statements.

(11.16) Hoamat\ | M =Rapa and (HmeaUMee)\ | M= [J ¢ 7'(0.
MeMprev MeMprev c€Clinal

The first statement of (11.16) directly follows from the fact that Heman \ Rres C Ujsc Myrew M which is
guaranteed by B1. Now we show the second statement of (11.16). To that end, first note that D1, HM1, M A1,
and B1 together imply that for each ¢ € [n] \ Chnal, ¢7(c) € M, € Mprey, SO UCE[n]\Cﬁnal o) C
Unremtyne, M- Moreover, U e cpma (Me \ #71(c)) € Hsmall, 5O Unmempee M N Ucecna ¢~ 1(c) = @. This
proves that (11.16) holds, showing that Hana = H \ UMeMprev M. Since H has no singleton edges, it
immediately follows that %\ Uycnq... M = H\ Uprepm= M. Moreover, if ¢ is of Type A, then by T1,

prev prev

Ucecﬁml (]5_1(0) = &, 80 Hfinal = Renal- This completes the proof of F3.
Step 9. Bound the degrees of vertices in Henal-

In this step we prove the following statements when bounding the number of colours used in the final
step.
UC1 For any w € V(H)\ U, dyu,,., (W) < |Chnal| — pen/4.
UC2 For any w € U\ VP D(H), dy,,.., (w) < |Chnal| — 1.
UC3 For any w € V=D (H), dy,,.,(0) < |Chinal|. Moreover, there are at least |Canal| vertices of degree
less than |Chpal| in Heinal-
UC4 If (H, ¢) is either Type A; or B, then for any w € V*=V(H), dy,,., (w) < |Chnal| — 1.

Now we prove UCL. First we show that for any w € V(H)\ U, dg,..(w) < p(1 —&)n + &n. Indeed, if
Ries is a (p, &, e, V)-reservoir of Type A; or Ay, then it follows from (P1) or (R2). Otherwise, if Ry is a
(p, &, e, V)-reservoir of Type B, then it also follows since Ryes is (p, &, G')-typical with respect to V 3 V(H).
Thus, for any w € V(H)\ U,

F1
(11.17) dGgom (W) < dp, (W) <p(l—e)n+&n < n— |MpreV| — pen/2 = |Ctinal| — pen/2.

Since w is incident to at most 2n/ry < pen/4 edges of Hiarge, and Henal \ Rinal = Ucecﬁnal ¢ (e) € Hiarge
by T1 and T2, we deduce that dy,, .\ Ry, (W) < pen/4. This together with (11.17) implies that for any
w e VH)\U, dygpn (W) = dagn(w) + dHfinal\Rfinal(w) < |Cfinal| — pen/4, proving UCL.

Before proving UC2, UC3, and UC4, we need to collect some facts. For any w € V(H), let m(w) be

the number of the matchings in M7, ., not covering w. Since M., is a set of edge-disjoint matchings in
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Hreg, and Hiyeg is a linear multi-hypergraph obtained from H by adding max(0,n — 3 — dy(w)) singleton
edges incident to each vertex w € V(H) (where H has no singleton edges), we deduce that all but at most
m(w) + max(0,n — 3 — dy (w)) matchings in M, cover w. Moreover, by F3, Hanal = H \ UMeMpx-ev M,
so for any w € V(H) we have

Aty (W) < dpg(w) = ([Moprev| — m(w) — max(0,n — 3 — dy(w)))
(11.18) | Chnat| + m(w) — min(n — dy (w), 3).

Recall from Step 4 that S1 = S\U.cq,,,, (V(n=2)(H)\V(M.,)). Note that D1 implies that every matching
in Mg covers all of the vertices in V("_l)(H), and HM2, MA3*, and B2 imply that My, UM% . U

Mputt = M5, oy \ Maig has nearly-perfect coverage of U with defects in S;. In particular, every matching in

M;reV\Mdiff covers all the vertices in U\ S1, every matching in Mg covers all the vertices in y(n—1) (H)\ 'Sy
and |Maig| < 1. Thus, we have

(11.19) m(u) <1 for any u € U\ Sy, and m(v) = 0 for any v € V=D () \ S;.
Now note that every vertex in S; is covered by all but at most one matching in M} ., \ Mas, every

matching in Mgz covers all the vertices in V+(n_2)(7-l) NSy and [Maig| < 1. So we have m(u) < 2 for any
u € Sy and m(v) <1 for any v € V_&L_Q) (H) N'S;. Combining this with (11.19), we deduce that

11.20 m(u) < 2 for any u € U vy , and m(v) <1 for any v € V2 gy,
+ +

Finally, if [U] < (1—10¢)n then M3 .\ Maix has perfect coverage of U by HM2, MA3*, and B2. This

combined with the fact that every matching in Mgig covers all the vertices in V=1 (H) and [Mag| < 1,
implies that

(11.21)  if |U| < (1 —10&)n, then m(u) < 1 for u € U\ V=D (%), and m(v) = 0 for v € V=D (7).

Now we are ready to prove UC2, UC3, and UC4. Note that (11.20) and (11.18) together imply that
for any v € U\ V"~D(H), dyy,,., (v) < |Chinall — 1, thus UC2 holds.

Now we prove UC3. Note that (11.20) and (11.18) together imply that for any v € V~D(H),
Ao (V) < |Chnall- To prove the second statement of UC3, we will bound the number of vertices
v € VI"=D(H) satisfying m(v) = 0. Since M., \ Maig has nearly-perfect coverage of U with defects
in Sy, every matching in M} ., \ Maig covers all but at most one vertex in U. Moreover, every matching
in My covers all of the vertices in V(»~1 (). Thus, by F1, there are at most [Mprev| = 1 — |Chinall
vertices v € V("= (H) satisfying m(v) > 1, so every other vertex of V("= (%) has degree less than |Cfpai]
by (11.18). This fact combined with UC1 and UC2 implies that there are at least |Cgnal| vertices with
degree less than |Chpal| in Henal, proving UC3.

Finally, if (H, ) is of Type A; then S; C S = U\ V=Y (H) by (11.3), so by (11.19) every vertex
v € V("= (H) satisfies m(v) = 0. On the other hand, if (H,¢) is of Type B, then by (1.3) of Claim 1,
|U| < 26m, so again every vertex v € V(*~D(H) satisfies m(v) = 0 by (11.21). Thus, in either case we have
A (V) < |Chinall — 1 by (11.18), proving UCA4.

Step 10. Colour Heana with colours in Chna-

We divide the proof into three cases depending on the type of (H, ¢). In each case, it suffices to show that
there is a set Mgpa = {M, : ¢ € Chnar} of edge-disjoint matchings in Heana such that for every ¢ € Chpal,
¢~1(c) € M, and chcﬁnal M, = Hgna- Indeed, then H = UMEMprevUMﬁnal M by F3, s0 Mprev U Méinal
would be the desired set of n pairwise edge-disjoint matchings in H, proving Theorem 1.1.

Case 1: (H,¢) is of Type A;.

Note that in this case Hnal = Rfinal by F3, and recall that Gana = (V(H), Rena1)- Thus, by UC1, UC2,
and UC4, A(Gfinal) < |Chnall — 1. Applying Vizing’s theorem (Theorem 4.5) to Gfinal, we obtain a set
Ménar = {M, : ¢ € Cana} of edge-disjoint matchings in Ggnar such that Ucecfinal M, = Rgnal = Henal-
Moreover, by T1, for any ¢ € Cgpal, ¢~ 1(c) = @, so ¢~ 1(c) C M, trivially holds, as desired. This completes
the proof of Theorem 1.1 in the case when (H, ¢) is of Type A;.

Case 2: (H, ) is of Type As.
Note that in this case Hfinal = Rfnal by F3. Thus, by UC1, UC2, and UC3, A(Gfnal) < |Cinal|, and

(11.22) there are at least |Chnal| vertices having degree less than |Chinal| in Gfinal.
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If A(Gfinal) < |Chnall — 1, then we may apply Vizing’s theorem (Theorem 4.5) to Ggna to obtain the
desired set Mgpa1 = {M, : ¢ € Cgipal} of edge-disjoint matchings where for any ¢ € Canal, ¢~ *(c) € M., and
Ucecﬁm1 M. = Rgnal = Heinal as in the previous case.

Otherwise, if A(Gfnal) = |Chinall, then by (11.22) and F2, we can apply Corollary 9.6 with p/4, e'/3,
22¢, and Gfnal playing the roles of p, €, 1, and G, respectively, to obtain a set Mgapa = {M, : ¢ € Chnal}
of edge-disjoint matchings such that Ucecﬁm1 M. = Ranal = Henal- Moreover, by T1, for any ¢ € Chpal,
¢71(c) = @, so ¢~ 1(c) C M, trivially holds, as desired. This completes the proof of Theorem 1.1 in the
case when (H, ¢) is of Type As.

Case 3: (H,¢) is of Type B.

First, for each w € V(H), let us define Cy, = {¢ € Chpa : w € V(¢ 1(c))}. Note that by definition,
Heinal \ Rfinal = UceCﬁnal ¢~ *(c), and by T2, for any ¢ € Chpal, ¢ '(¢) € Hiarge- Thus, for any vertex
w € V(H), we have

(11.23) |Cuw| = d?'lﬁnal\Rfinal(w) < 20n,

since ¢ is a proper edge-colouring, and w is incident to at most 2n/rg < 26n edges of Hiarge. Note
that UC1, UC2, and UC4 imply A(Hgina) < |Chinal| — 1, so for any vertex w € V(H), we have

(11.23)
(11-24) deinal(w) = dHfinal(w) - dHfinal\Rfinal(w) < |Cﬁﬂa1| -1- |Cw|

Now we apply Lemma 9.2 with Gapal, Chnal, and 26 playing the roles of H, C, and §, respectively.
To that end, we need to check that the assumptions (i)—(iv) of Lemma 9.2 are satisfied. First, by F1,
|Cinatl > (p — 159Y/2)n > 146n. By (11.24), (i) of Lemma 9.2 holds. Now, by (1.3) of Claim 1, |U| < 26n,
and by Definition 7.2(i) and RES2, Rgnal € Rres = Rabs € E(G’). Thus, every edge of Gfinar is incident to
a vertex of U by the definition of G’ given before Step 1, so (ii) of Lemma 9.2 holds. By (11.23), (iii) of
Lemma 9.2 holds. Finally, by T2, for any ¢ € Capal, |[{w € V(H) : ¢ € Cy}| = [V(¢71(c))| < Bn < 25n,
so (iv) of Lemma 9.2 holds.

Hence, by applying Lemma 9.2, we obtain a proper edge-colouring v : Rgna — Chnal such that every
uv € Rpnal satisfies ¥(uv) ¢ C,UC,, implying that V(¥ =1(c))NV(¢~1(c)) = & for every ¢ € Chpal. Now let
M, =~ (c)Ugp1(c) for each ¢ € Chpal. Then the set Mgpar == {M.. : ¢ € Cgnal} consists of pairwise edge-
disjoint matchings such that ¢=1(c) C M, for each ¢ € Cgpal, and Ueecry Me = Rinat UU e, ¢ ) =
Hnal, as desired. This completes the proof of Theorem 1.1. O
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