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Abstract—The Erdős-Faber-Lovász conjecture (posed in
1972) states that the chromatic index of any linear hypergraph
on n vertices is at most n. Erdős considered this to be one of
his three most favorite combinatorial problems and offered
a $500 reward for a proof of this conjecture. We prove
this conjecture for every large n. Here, we also provide a
randomised algorithm to find such a colouring in polynomial
time with high probability.
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I. INTRODUCTION

Graph and hypergraph colouring problems are central to
combinatorics, with applications and connections to many
other areas, such as geometry, algorithm design, and infor-
mation theory. A proper edge-colouring of a hypergraph H
is an assignment of colours to the edges of H such that
no two edges of the same colour share a vertex, and a
proper vertex-colouring of H is an assignment of colours
to the vertices of H such that every edge contains vertices
of at least two different colours. The chromatic index of H,
denoted χ′(H), is the minimum number of colours used in
a proper edge-colouring of H, and the chromatic number,
denoted χ(H), is the minimum number of colours used in
a proper vertex-colouring of H. For a graph G, Vizing’s
theorem [1] implies that χ′(G) ∈ {∆(G),∆(G)+1}, where
∆(G) is the maximum degree of a vertex in G. A graph G
is of Class 1 if χ′(G) = ∆(G) and it is of Class 2 if
χ′(G) = ∆(G) + 1. Thus Vizing’s theorem shows every
graph is of Class 1 or Class 2. However, Holyer [2] showed
that it is actually NP-hard to decide whether a graph is of
Class 1 or Class 2 (and thus determining the chromatic
index of a linear hypergraph is NP-hard as well. Here a
hypergraph H is linear if every two distinct edges of H
intersect in at most one vertex). In fact, Leven and Galil [3]
showed that it is NP-hard to determine whether a graph is of
Class 1 or Class 2 even if we restrict ourselves to d-regular
graphs (i.e., graphs with all the degrees equal to d). However,
Ferber and Jain [4] showed that d-regular graphs on an
even number of vertices which are ‘good’ spectral expanders
are of Class 1, and their proof yields a polynomial-time
randomised colouring algorithm.

For vertex colourings the situation is similar – for a
graph G it is also NP-hard to determine χ(G) exactly [5],

[6]. In fact, for sufficiently large q, even colouring a q-
colourable graph with 2Ω(q1/3) colours is NP-hard [7]. For
k ≥ 3, it is already NP-hard to determine whether a k-
uniform hypergraph has a 2-coloring. See [8], [9], [10] for
more results on the hardness of edge colouring and vertex
colouring hypergraphs.

Thus it is natural to seek general bounds (and algorithms
which attain these bounds) for these parameters. This is still
challenging in particular for hypergraphs: for example, for
k ≥ 3 it is even non-trivial to determine the chromatic
index of a complete k-uniform hypergraph K(k)

n , a problem
famously resolved by Baranyai’s theorem [11].

A. The Erdős-Faber-Lovász conjecture

In 1972, Erdős, Faber, and Lovász conjectured (see [12])
the following equivalent bounds on colouring set systems,
graphs, and hypergraphs. Let n ∈ N.
(i) If A1, . . . , An are sets of size n such that every pair

of them shares at most one element, then the elements
of

⋃n
i=1Ai can be coloured by n colours so that all

colours appear in each Ai.
(ii) If G is a graph that is the union of n cliques, each

having at most n vertices, such that every pair of cliques
shares at most one vertex, then the chromatic number
of G is at most n.

(iii) If H is a linear hypergraph with n vertices, then the
chromatic index of H is at most n.

The formulation (iii) is the one that we will consider
throughout the paper. For simplicity, we will refer to this
conjecture as the EFL conjecture.

Erdős considered this to be ‘one of his three most favorite
combinatorial problems’ (see e.g., [13]). The simplicity and
elegance of its formulation initially led the authors to believe
it to be easily solved (see e.g., the discussion in [14]
and [12]). It was initially designed as a simple test case for a
more general theory of hypergraph colourings. However, as
the difficulty became apparent Erdős offered successively
increasing rewards for a proof of the conjecture, which
eventually reached $500.

Previous progress towards the conjecture includes the
following results. Seymour [15] proved that every n-vertex
linear hypergraph H has a matching of size at least e(H)/n,
where e(H) is the number of edges in H. (Note that this



immediately follows from the validity of the EFL conjecture,
but it is already difficult to prove.) Kahn and Seymour [16]
proved that every n-vertex linear hypergraph has fractional
chromatic index at most n. Chang and Lawler [17] showed
that every n-vertex linear hypergraph has chromatic index
at most d3n/2 − 2e. Finally, a breakthrough of Kahn [18]
yielded an approximate version of the conjecture, by show-
ing that every n-vertex linear hypergraph has chromatic in-
dex at most n+o(n). Recently Faber and Harris [19] proved
the conjecture for linear hypergraphs whose edge sizes range
between 3 and cn1/2 for a small absolute constant c > 0.
More background and earlier developments related to the
EFL conjecture are detailed in the surveys of Kahn [20],
[13]. See also the recent survey by the authors [21].

B. Main result

We prove that the EFL conjecture is true for every large
n. Our proof also yields a randomised colouring algorithm.

Theorem I.1. For every sufficiently large n, every linear
hypergraph H on n vertices has chromatic index at most n.
Moreover, there is a randomised polynomial-time algorithm
which finds a proper edge n-colouring of H with high
probability.

There are three constructions for which Theorem I.1 is
known to be tight: a complete graph Kn for any odd integer
n (and minor modifications thereof), a finite projective plane
of order k on n = k2 +k+1 points, and a degenerate plane
{{1, 2}, . . . , {1, n}, {2, . . . , n}}. Note that the first example
has bounded edge size (two), while the other two examples
have unbounded edge size as n tends to infinity.

Kahn’s proof [18] is based on a powerful method known
as the Rödl nibble. Roughly speaking, this method builds a
large matching using an iterative probabilistic procedure. It
was originally developed by Rödl [22] to prove the Erdős–
Hanani conjecture [23] on combinatorial designs. Another
famous result based on this method is the Pippenger–Spencer
theorem [24], which implies that the chromatic index of any
uniform hypergraph H of maximum degree D and codegree
o(D) is D+o(D). (Note that this in turn implies that the EFL
conjecture holds for all large r-uniform linear hypergraphs
of bounded uniformity r ≥ 3.) In a seminal paper, Kahn [25]
later developed the approach further to show that the same
bound D+o(D) even holds for the list chromatic index (an
intermediate result in this direction, which also strengthens
the Pippenger–Spencer theorem, was the main ingredient of
his proof in [18]). The best bound on the o(D) error term for
the list chromatic index of such hypergraphs was obtained
by Molloy and Reed [26], and for the chromatic index, the
best bound was proved in [27]. Our proof will also rely on
certain properties of the Rödl nibble.

In addition, our proof makes use of powerful colouring
results for locally sparse graphs. This line of research goes
back to Ajtai, Komlós, and Szemerédi [28] who (preceding

Rödl [22]) developed a very similar semi-random nibble
approach to give an upper bound O(k2/ log k) on the
Ramsey number R(3, k) by finding large independent sets
in triangle-free graphs (the matching lower bound R(3, k) =
Ω(k2/ log k) was later established by Kim [29], also using a
semi-random approach). The above Ramsey bound by Ajtai,
Komlós and Szemerédi was subsequently strengthened by a
highly influential result of Johansson [30], who showed that
triangle-free graphs of maximum degree ∆ have chromatic
number O(∆/ log ∆) (and a related result was proved in-
dependently by Kim [31]). There are many generalisations
and analogues of Johansson’s theorem, in particular Frieze
and Mubayi [32] proved a version of this for hypergraphs. It
also turns out that the condition of being triangle-free can be
relaxed (in various ways) to being ‘locally sparse’ [33], [34],
[35], [36]. We will be able to apply such results to suitable
parts of the line graph of our given linear hypergraph H.

One step in our proof involves what may be considered
a ‘vertex absorption’ argument; here certain vertices not
covered by a matching produced by the Rödl nibble are
‘absorbed’ into the matching to form a colour class. (Vertex)
absorption as a systematic approach was introduced by
Rödl, Ruciński, and Szemerédi [37] to find spanning struc-
tures in hypergraphs (with precursors including [38], [39]).
Absorption ideas were first used for edge decomposition
problems in [40] to solve Kelly’s conjecture on tournament
decompositions. We will make use of an application of
the main result of [40] to the overfull subgraph conjecture
(which was derived in [41]).

II. OVERVIEW OF THE PROOF OF THEOREM I.1

In this section, we provide an overview of the proof of
Theorem I.1. A more detailed overview for Sections II-A
and II-B is given in the recent survey of the authors [21].

A. Colouring linear hypergraphs with bounded edge sizes

Here, we discuss the proof of Theorem I.1 in the special
case when all edges of H have bounded size. In this
subsection, we fix constants satisfying the hierarchy

0 < 1/n0 � ξ � 1/r � γ � ε� ρ� 1,

we let n ≥ n0, and we let H be an n-vertex linear
hypergraph such that every e ∈ H satisfies 2 ≤ |e| ≤ r.
We first describe the ideas which already lead to the near-
optimal bound χ′(H) ≤ n+ 1.

Let G be the graph with V (G) := V (H) and E(G) :=
{e ∈ H : |e| = 2}. The first step of the proof is to include
every edge of G in a ‘reservoir’ R independently with
probability 1/2 that we will use for ‘absorption’. With high
probability, each v ∈ V (H) satisfies dR(v) = dG(v)/2±ξn.
Since H is linear, this easily implies that ∆(H \ R) ≤
(1/2 + ξ)n. So by the Pippenger–Spencer theorem [24], we
obtain the nearly optimal bound χ′(H \ R) ≤ (1/2 + γ)n.
Now using R as a ‘vertex-absorber’, we would like to extend



the colour classes of H \R to cover as many vertices of U
as possible, where U := {u ∈ V (H) : dG(u) ≥ (1 − ε)n}.
This would allow us to control the maximum degree in the
hypergraph consisting of uncoloured edges, so that it can
then be coloured with few colours. To that end, we need the
following important definition.

Definition II.1 (Perfect and nearly-perfect coverage). Let H
be a linear multi-hypergraph, let N be a set of edge-disjoint
matchings in H, and let S ⊆ U ⊆ V (H).
• We say N has perfect coverage of U if each N ∈ N

covers U .
• We sayN has nearly-perfect coverage of U with defects

in S if (i)
1) each u ∈ U is covered by at least |N | − 1

matchings in N and
2) each N ∈ N covers all but at most one vertex in

U such that U \ V (N) ⊆ S.

We will construct some H′ ⊆ H and a proper edge-
colouring ψ : H′ → C such that H′ ⊇ H \ R, |C| =
(1/2 + γ)n and the set of colour classes {ψ−1(c) : c ∈ C}
has nearly-perfect coverage of U (with defects in U ).
Crucially, this means that H \ H′ is a graph and satisfies
∆(H\H′) ≤ n− |C|. (Indeed, every vertex u ∈ U satisfies
dH(u) ≤ n − 1 and is covered by all but at most one of
the colour classes of ψ, and every vertex v /∈ U satisfies
dH\H′(v) ≤ dR(v) ≤ ((1 − ε)/2 + ξ)n < n − |C|.)
Therefore, Vizing’s theorem [1] implies that χ′(H \ H′) ≤
∆(H \ H′) + 1 ≤ n − |C| + 1, so altogether we have
χ′(H) ≤ χ′(H′) + χ′(H \H′) ≤ n+ 1, as claimed.

To constructH′ and ψ we iteratively apply the Rödl nibble
to (the leftover of) H \ R to successively construct large
matchings Ni which are then removed from H\R and form
part of the colour classes of ψ. (The Rödl nibble is applied
implicitly via [42, Corollary 4.3], which guarantees a large
matching in a suitable hypergraph.) Crucially, each matching
Ni exhibits pseudorandom properties, which allow us to use
some edges of R to extend Ni into a matching Mi (which
will form a colour class of ψ) with nearly-perfect coverage
of U , as desired. (This is why we apply the Rödl nibble in
our proof rather than the Pippenger-Spencer theorem.) Thus,
R acts as a ‘vertex-absorber’ for U \ V (Ni) and the final
edge decomposition of the unused edges of R into matchings
is achieved by Vizing’s theorem. (Actually, this only works
if H\R is nearly regular, which is not necessarily the case.
Thus, we first embed H \ R in a suitable nearly regular
hypergraph H∗ and prove that the respective matchings in
H∗ have nearly-perfect coverage of U , which suffices for
our purposes.)

Let us now discuss how to improve the bound χ′(H) ≤
n + 1 to χ′(H) ≤ n. Let S := {u ∈ U : dG(u) < n −
1}, and note that if {ψ−1(c) : c ∈ C} has either perfect
coverage of U , or nearly-perfect coverage of U with defects
in S, then ∆(H \H′) ≤ n− 1− |C|. In this case, we may

use the same argument as before with Vizing’s theorem to
obtain χ′(H) ≤ n. However, it is not always possible to find
such a colouring. For example, if H is a complete graph
Kn for odd n (which is one of the extremal examples for
Theorem I.1), then U = V (H) and S = ∅, so it is not
possible for even a single colour class to have nearly-perfect
coverage of U with defects in S. However, we can adapt the
above nibble-absorption-Vizing approach to work whenever
H is not ‘close’ to Kn in the following sense.

Definition II.2 ((ρ, ε)-full). Let H be an n-vertex linear
hypergraph, and let G be the graph with V (G) := V (H)
and E(G) := {e ∈ H : |e| = 2}. For ε, ρ ∈ (0, 1), H is
(ρ, ε)-full if
• |{u ∈ V (H) : dG(u) ≥ (1− ε)n}| ≥ (1− 10ε)n, and
• |{v ∈ V (H) : dG(v) = n− 1}| ≥ (ρ− 15ε)n.

As mentioned above, when H is not (ρ, ε)-full we can
adapt the nibble-absorption-Vizing approach to show that
χ′(H) ≤ n (with a reservoir of density ρ rather than 1/2).
If H is (ρ, ε)-full then we will ensure that the leftover
H \H′ ⊆ R is a quasirandom almost regular graph (which
involves a more careful choice of R – again it will have
density close to ρ rather than 1/2 but now it consists of
a ‘random’ part and a ‘regularising’ part). This allows us
to apply a result [41] on the overfull subgraph conjecture
which implies that χ′(H \ H′) ≤ ∆(H \ H′). (The result
in [41] is obtained as a straightforward consequence of the
result in [40] that robustly expanding regular graphs have a
Hamilton decomposition, and thus, a 1-factorisation if they
have even order.)

B. Colouring linear hypergraphs where all edges are large

Now we discuss how to prove Theorems I.1 when all
edges ofH have size at least some large constant. In this step
it is often very useful to consider the line graph L(H) of H
and use the fact that χ(L(H)) = χ′(H). In this subsection,
we fix constants satisfying the hierarchy

0 < 1/n0 � 1/r � σ � δ,

we let n ≥ n0, and we let H be an n-vertex linear hyper-
graph such that every e ∈ H satisfies |e| > r. Now we sketch
a proof that χ′(H) ≤ n for such H. If H is a finite projective
plane of order k, where k2 + k+ 1 = n, then the line graph
L(H) is a clique Kn. Thus, χ′(H) = χ(L(H)) = n, so the
bound χ′(H) ≤ n is best possible. Thus, we refer to the
case where H has approximately n edges of size (1± δ)

√
n

as the ‘FPP-extremal’ case. We also sketch how to prove
the improved bound χ′(H) ≤ (1 − σ)n if H is not in the
FPP-extremal case. As we discuss in the next subsection,
we will need this result in the proof of Theorem I.1.

Consider an ordering � of the edges e1, e2, . . . , em of
H according to their size, i.e., ei � ej if |ei| > |ej | for
every i, j ∈ [m]. For an edge e ∈ H, let d�H(e) denote the
number of edges in H which intersect e and precede e in



�. Clearly, a greedy colouring following this size-monotone
ordering achieves a bound of χ′(H) ≤ maxi d

�
H(ei) + 1

(this bound was also used in [17], [18]). Moreover, it is
easy to see that if this greedy colouring algorithm fails to
produce a colouring with at most (1 − σ)n colours, i.e., if
an edge e satisfies d�H(e) ≥ (1 − σ)n, then almost all of
the corresponding edges that intersect e and precede e must
have size close to |e|.

Surprisingly, if one allows some flexibility in the ordering
(in particular, if we allow it to be size-monotone only up to
some edge e∗ such that d�H(e∗) ≥ (1 − σ)n while every
edge f with e∗ � f satisfies d�H(f) < (1− σ)n), then one
can show much more: Either we can modify the ordering to
reduce the number of edges which come before e∗, or there
is a set W ⊆ H (where e∗ is the last edge of W ) such that

(W1) |e∗| ≈ |e| for every e ∈W , and
(W2) the edges of W cover almost all pairs of vertices of

H.
If |e∗| ≤ (1 − δ)

√
n, then one can show that L(W )

induces a ‘locally sparse’ graph (as H is linear). Moreover,
(W1) implies that the maximum degree of L(W ) is not
too large, and thus one can show that χ(L(W )) is much
smaller than (1 − σ)n (leaving enough room to colour the
edges preceding W with a new set of colours). This together
with (W2) allows us to extend the colouring of W to all
of H using a suitable modification of the above greedy
colouring procedure for the remaining edges in H to obtain
that χ′(H) ≤ (1− σ)n, as desired.

If |e∗| ≥ (1−δ)
√
n, then we first colour the edges of size

at least (1−δ)
√
n (in particular, the edges of W ) as follows.

Let H′ ⊆ H be the hypergraph consisting of these edges.
If e(H′) ≤ n, then, of course, we may colour the edges
of H′ with different colours. Otherwise, if t := e(H′) −
n > 0, the main idea is to find a matching of size t in the
complement of L(H′) (where L(H′) will be close to being
a clique of order not much more than n). By assigning the
same colour to the edges of H′ that are adjacent in this
matching, we obtain χ′(H′) = χ(L(H′)) ≤ n. Now we
extend the colouring to all ofH using a suitable modification
of the above greedy colouring procedure again to obtain that
χ′(H) ≤ n, as desired.

C. Combining colourings of the large and small edges

We now describe how one can prove Theorem I.1 by
building on the ideas described in Sections II-A and II-B.
In this subsection and throughout the rest of the paper we
work with constants satisfying the following hierarchy:

0 < 1/n0 � 1/r0 � ξ � 1/r1 � β � κ� γ1 � ε1

� ρ1 � σ � δ � γ2 � ρ2 � ε2 � 1. (II.1)

Some of these constants are used to characterize the edges
of a hypergraph by their size, as follows.

Definition II.3 (Edge sizes). Let H be an n-vertex linear
hypergraph with n ≥ n0.
• Let Hsmall := {e ∈ H : |e| ≤ r1}. An edge e ∈ H is

small if e ∈ Hsmall.
• Let Hmed := {e ∈ H : r1 < |e| ≤ r0}. An edge e ∈ H

is medium if e ∈ Hmed.
• Let Hlarge := {e ∈ H : |e| > r0}. An edge e ∈ H is

large if e ∈ Hlarge.
• Let Hex := {e ∈ H : |e| = (1 ± δ)

√
n}. An edge

e ∈ H is FPP-extremal if e ∈ Hex.
• Let Hhuge := {e ∈ H : |e| ≥ βn/4}. An edge e ∈ H

is huge if e ∈ Hhuge.

Note that Hsmall,Hmed,Hlarge form a partition of the
edges of H. Also note that if H is an n-vertex linear
hypergraph and 1/n� α < 1, then

|{e ∈ H : |e| ≥ αn}| ≤ 2/α. (II.2)

In the proof of Theorem I.1, given an n-vertex linear
hypergraph H with n ≥ n0 (where we assume H has
no singleton edges), we first find a proper edge-colouring
ψ1 : Hmed ∪Hlarge → C1 as discussed in Section II-B, and
then we extend it to a proper n-edge-colouring of Hsmall by
adapting the argument presented in Section II-A. The proof
proceeds slightly differently depending on whether we are
in the FPP-extremal case. As discussed in the previous sub-
section, in the non-FPP-extremal case, χ′(Hmed∪Hlarge) ≤
(1− σ)n, so we may assume |C1| = (1− σ)n. In this case,
we let γ := γ1, ε := ε1, and ρ := ρ1; in the FPP-extremal
case, we let γ := γ2, ρ := ρ2, and ε := ε2. We define G and
U as in Section II-A, and we define a suitable ‘defect’ set
S ⊆ U (whose choice now depends on the structure of H).
In order to extend the colouring ψ1 of Hmed ∪Hlarge to H,
we need it to satisfy a few additional properties, which are
provided by [42, Theorem 6.1]. Roughly, we need that (1)

1) each colour class of ψ1 covers at most βn vertices,
with exceptions for colour classes containing huge or
medium edges, and

2) at most γn colours are assigned by ψ1 to colour
medium edges.

We choose a ‘reservoir’ R from E(G); how we choose
it depends on whether we are in the FPP-extremal case.
In the non-FPP-extremal case, we choose it as described in
Section II-A, and in the FPP-extremal case, we include every
edge of G incident to a vertex of U to be in R independently
with probability ρ.

Let Chm ⊆ C1 be the set of colours assigned to a huge or
medium edge by ψ1. Note that e(Hhuge) ≤ 8/β by (II.2),
so consequently, by (2), |Chm| ≤ 3γn/2. For each c ∈ Chm,
we use [42, Lemma 7.11] to extend ψ−1

1 (c) (in the sense of
Section II-A) using edges of R, so that {ψ−1

1 (c) : c ∈ Chm}
has nearly perfect coverage of U with defects in S. There is
possibly an exceptional colour class, which we call difficult
(see [42, Definition 7.10]), that we need to consider in this



step. This situation arises if H is close to being a degenerate
plane. If H is the degenerate plane, then there is a huge edge
e of size n− 1, and U consists of a single vertex of degree
n − 1. Even though H is not (ρ, ε)-full, if c is assigned to
the edge e, it is clearly impossible to extend ψ−1(c) to have
perfect coverage of U , which would be necessary in order to
finish the colouring with Vizing’s theorem in the final step.
However, if there is a difficult colour class that we cannot
absorb, then we show that we can colour H directly (see
[42, Lemma 7.12]).

We now construct some H′ with Hsmall \ R ⊆ H′ ⊆
Hsmall and a proper edge-colouring ψ2 : H′ → C2 such
that ψ2 is compatible with ψ1, |C2| is slightly larger than
(1− ρ+ γ)n, C2 ∩ Chm = ∅, and {ψ−1

1 (c) ∪ ψ−1
2 (c) : c ∈

Chm ∪ C2} has nearly-perfect coverage of U with defects
in S. (Actually, as in Section II-A we obtain this coverage
property only for a suitable auxiliary hypergraph H∗ ⊇ H′,
but we again ignore this here for simplicity.) In the non-
FPP-extremal case, since ρ = ρ1 � σ, this means we can
reserve a set Cfinal of colours (of size close to ρn) which
are used neither by ψ1 nor by ψ2. Then in the final step of
the proof, we can colour the leftover graph Hsmall \H′ ⊆ R
(with colours from Cfinal) as described in Section II-A. In
the FPP-extremal case, we may have |C1| = n, so we need
to find a proper edge-colouring of Hsmall \H′ using colours
from C1 \ C2 while avoiding conflicts with ψ1. But in this
case most pairs of vertices are contained in an edge of Hex,
which implies that |U | is small. Moreover, every edge of the
leftover graph Hsmall \H′ ⊆ R is incident to a vertex of U .
These two properties allow us to colour the leftover graph
Hsmall\H′ with ∆(Hsmall\H′) colours while using (1) and
(2) to avoid conflicts with ψ1, as desired.

We conclude by discussing how to construct H′ and ψ2.
Using the colours in C2, we colour all of the edges of
Hsmall \ R and some of the remaining uncoloured (by ψ1)
edges of R based on the nibble and the absorption strategy
outlined in Section II-A. For this, the following properties
are crucial (which follow from (1) and the definition of
Hmed respectively).

(a) ψ−1
1 (c) covers at most βn vertices for each c ∈ C2,

and
(b) every vertex v ∈ V (H) is contained in at most n/(r0−

1) edges that are assigned a colour in C2 by ψ1 (since
for any c ∈ C2, either ψ−1

1 (c) is empty or all the edges
in ψ−1

1 (c) are large). Thus, each edge in Hsmall still
has slightly more than (1−ρ)n colours available in C2

that do not conflict with ψ1 (since any edge of Hsmall

intersects at most r1n/(r0−1) large edges and r1/(r0−
1)� γ).

We will use (a) and (b) to show that the effect of
the previously coloured edges (by ψ1) on the Rödl nibble
argument is negligible, i.e., we can adapt the arguments of
Section II-A, so that the colouring ψ2 of H′ is compatible

with ψ1.

III. ALGORITHMIC ASPECTS OF THE PROOF

In this section, we show how the arguments in Sections
4–11 of [42] can be modified to obtain a randomised
polynomial-time algorithm. In particular, this section is
intended to be read in conjunction with Sections 4–11 of
[42].

A. Embedding lemma

[42, Lemma 4.4] shows how an arbitrary bounded degree
linear hypergraphH can be embedded into a regular uniform
hypergraph Hunif . The proof of [42, Lemma 4.4] uses
the existence of Steiner systems for which no randomised
polynomial-time algorithm is provided in the literature. Here
we describe how to use an explicit construction (given
in [43]) instead, to prove essentially the same result.

Lemma III.1. Let 0 < 1/N0, 1/D0, 1/C0 � 1/r ≤ 1/3,
where r ∈ N. Let N ≥ N0, let C ≥ C0, let D ≥ D0, and let
H be an N -vertex linear multi-hypergraph with ∆(H) ≤ D.
If every e ∈ H satisfies |e| ≤ r, then there is a polynomial-
time algorithm to find an r-uniform linear hypergraph Hunif

satisfying the following.
(a) H ⊆ Hunif |V (H), and Hunif |V (H) \ H only contains

singleton edges.
(b) For any v ∈ V (Hunif), D − C ≤ dHunif

(v) ≤ D.
Moreover, if dH(v) ≥ D − C for v ∈ V (H), then
dHunif

(v) = dH(v).
(c) v(Hunif) ≤ r5D3N .

The bound in III.1(c) is slightly worse than the corre-
sponding bound in [42, Lemma 4.4]. Nevertheless, it is
sufficient since we only use III.1(c) in a weaker form,
i.e., the bound v(Hunif) ≤ N5 suffices for the proof of
Theorem I.1.

Proof of Lemma III.1 (sketch): Let H∗ be an r-uniform
linear hypergraph obtained from H by adding r − |e| new
vertices to each e ∈ H.

Let T := r4D2. For every integer 1 ≤ d ≤ D, we
construct a T -vertex r-uniform linear hypergraph Hd such
that every vertex has degree either d−1 or d, as follows. Let
H′d be the r-partite r-uniform d-regular linear hypergraph
with parts X1, . . . , Xr such that Xi := Zrd for each
i ∈ [r], where H′d := {ex,y : x ∈ {0, . . . , rd − 1}, y ∈
{0, . . . , d − 1}, ex,y ∩ Xi = {x + (i − 1)y} ∀i ∈ [r]}.
Let t := dT/|V (H′d)|e. Since t ≥ |V (H′d)| − 1, there exist
integers a1 ≥ · · · ≥ at, where each ai is equal to either
|V (H′d)| − 1 or |V (H′d)| and

∑t
i=1 ai = T . For i ∈ [t],

if ai = |V (H′d)| then let Gi := H′d, and otherwise let Gi
be a hypergraph obtained from H′d by deleting exactly one
vertex. Finally, let Hd be the vertex-disjoint union of all Gi
for i ∈ [t].

We define our desired multi-hypergraph Hunif by taking
the union of T vertex-disjoint copies of H∗, where the first



copy is identified with H∗. Then, for each v ∈ V (H∗) with
dH∗(v) < D − C, let v1, . . . , vT be the T clone vertices
of v ∈ V (H∗) in Hunif , and extend Hunif by making
Hunif [{v1, . . . , vT }] induce a copy of HD−dH∗ (v), which
implies that D − 1 ≤ dHunif

(vi) ≤ D for 1 ≤ i ≤ T .

B. Local sparsity theorems

[42, Corollary 6.5] shows that if H is a linear hypergraph
which is close to being r-uniform for some r ≤ (1− ζ)

√
n,

then χ′(H) is significantly less than n. [42, Corollary 6.5]
is a straightforward consequence of [42, Theorem 6.4] by
Molloy and Reed [44] which bounds the chromatic number
of locally sparse graphs. Thus an algorithmic version of
[42, Corollary 6.5] can be obtained from an algorithmic
version of [42, Theorem 6.4]. This was obtained by Hurley,
de Joannis de Verclos, and Kang [45] who improved the
estimate on χ(G) in [42, Theorem 6.4] and remarked [45,
Section 4] that their proof gives a randomised algorithm
of time complexity linear in the number of vertices and
polynomial in the degree using the algorithmic version of
the local lemma of Moser and Tardos [46]. We can use this
instead of [42, Theorem 6.4] to prove the following corollary
which gives an algorithmic version of [42, Corollary 6.5].

Corollary III.2. Let 0 < 1/n0, 1/r � α � ζ < 1, let
n ≥ n0, and suppose r ≤ (1 − ζ)

√
n. If H is an n-vertex

linear hypergraph such that every e ∈ H satisfies |e| ∈
[r, (1 + α)r], then χ′(H) ≤ (1 − ζ/500)n. Moreover, there
is a randomised polynomial-time algorithm which finds a
proper edge-colouring of H using at most (1 − ζ/500)n
colours with high probability.

C. Matchings and Colourings

Here we discuss how to obtain an algorithmic version
of [42, Theorem 4.6] on edge colourings with lists (namely
Corollary III.5) and of [42, Corollary 4.3] on pseudorandom
matchings (namely Corollary III.7). For this, we can use (an
algorithmic version of) the following result of Molloy and
Reed [26].

Theorem III.3 (Molloy and Reed [26]). Let 0 < 1/D0 �
1/r < 1, and let D ≥ D0. If H is a linear hypergraph such
that ∆(H) ≤ D and every e ∈ H satisfies |e| ≤ r, then
χ′`(H) ≤ D +D1−1/r log5D.

We remark that Theorem III.3 is slightly stronger than the
statement in [26, Theorem 1], since it allows the edges of
H to be of size at most r rather than exactly r. However,
Theorem III.3 can be easily deduced from [26, Theorem
1] by first embedding the hypergraph H in an r-uniform
hypergraph Hunif using Lemma III.1 and then applying [26,
Theorem 1].

Although Molloy and Reed’s proof of [26, Theorem 1] is
non-constructive, they provided a polynomial-time algorithm
in [26, Section 7] which finds a proper edge-colouring of
H under the additional assumption ∆(H) = O(1) using a

‘local lemma like lemma’ [26, Lemma 17]. Here we indicate
how to get a randomised polynomial-time algorithm that
finds a proper colouring of H with high probability without
this additional assumption. First, using the algorithmic local
lemma of Moser and Tardos [46, Theorem 1.2], we imme-
diately obtain the following analogue of [26, Lemma 17].
In particular, Lemma III.4 does not require the assumption
∆(H) = O(1).

Lemma III.4. Let F be a hypergraph such that each edge of
F intersects at most d other edges. Suppose that each vertex
v of F has a list L(v) of colours. For each edge e, we are
explicitly given a boolean function Bade :

∏
v∈e L(v) →

{0, 1}.
Consider a probability space where each vertex v ∈

V (F) is equipped with a random variable that chooses a
colour from L(v) independently and uniformly at random.
If P(Bade = 1) ≤ 1/e(d + 1) for each e ∈ F , then
there exists an assignment of colours to all vertices of F
such that Bade = 0 for every edge e. Moreover, one can
find such an assignment in polynomial time in e(F) with
high probability, provided that there is a polynomial-time
algorithm to evaluate the Boolean function Bade for each
e ∈ F .

We can then use Lemma III.4 instead of [26, Lemma 17]
in the proof of [26, Theorem 18] to obtain the following
algorithmic variant of Theorem III.3 (and in particular an
algorithmic version of [42, Theorem 4.6]).

Corollary III.5. Let 0 < 1/D0 � α, 1/r < 1, and let D ≥
D0. Let H be a linear hypergraph such that ∆(H) ≤ D and
every e ∈ H satisfies |e| ≤ r. For any e ∈ H, let C(e) be a
list of colours such that |C(e)| ≥ D + D1−r log5D. Then
there is a randomised polynomial-time algorithm which finds
a proper edge-colouring φ of H such that φ(e) ∈ C(e) with
high probability.

In particular, if C is a set of colours with |C| ≥ (1+α)D,
and for each e ∈ H, C ′(e) ⊆ C such that |C ′(e)| ≤ αD/2,
then there is a randomised polynomial-time algorithm to find
a proper edge-colouring φ : H → C such that φ(e) /∈ C ′(e)
for each e ∈ H with high probability.

Now we discuss how to obtain Corollary III.7, which is
an algorithmic version of [42, Corollary 4.3] for finding a
pseudorandom matching in a hypergraph. To that end, we
need an algorithmic version of a theorem of Ehard, Glock,
and Joos [47, Theorem 1.2] that provides a matching M
in a hypergraph H covering almost all vertices of every set
in a given collection of sets. (This quantitatively improves
an earlier result of Alon and Yuster [48].) Their proof in
[47] actually provides a randomised algorithm except that
it uses Theorem III.3. However, fortunately, we can instead
use its algorithmic version, i.e., Corollary III.5. This yields
a randomised polynomial-time algorithm to construct the
matching M with high probability.



Theorem III.6 (Ehard, Glock, and Joos [47]). Let r ≥ 2 be
an integer, and let ε := 1/(1500r2). There exists ∆0 such
that the following holds for all ∆ ≥ ∆0.

Given an r-uniform linear hypergraph H which satisfies
∆(H) ≤ ∆ and e(H) ≤ exp(∆ε2), and given a family
F of subsets of V (H) such that |F| ≤ exp(∆ε2) and∑
v∈S dH(v) ≥ ∆26/25, there is a randomised polynomial-

time algorithm that constructs a matching M in H with
high probability such that for any S ∈ F , |S ∩ V (M)| =
(1±∆−ε

2

)
∑
v∈S dH(v)/∆.

Theorem III.6 implies the following desired algorithmic
variant of [42, Corollary 4.3].

Corollary III.7. Let 0 < 1/n0 � 1/r, κ, γ < 1. For any
integer n ≥ n0, let H be an r-uniform linear n-vertex
hypergraph such that every vertex has degree (1 ± κ)D,
where D ≥ n1/100. Let F be a set of subsets of V (H) such
that |F| ≤ n2 logn. Then there is a randomised algorithm
that constructs a matchingM of H such that for any S ∈ F
with |S| ≥ D1/20, we have |S \ V (M)| = (γ ± 4κ)|S|.

One can deduce Corollary III.7 from Theorem III.6 by
applying Theorem III.6 to obtain a matchingM0 (in H) and
then randomly removing each edge of M0 with probability
γ to obtain a matching M which satisfies the assertion of
Corollary III.7 with high probability by Chernoff’s bound
(see the paragraph following [42, Theorem 4.2] for more
details).

D. Colouring large and medium edges

We need the following algorithmic version of [42, Theo-
rem 6.1].

Theorem III.8. Let 0 < 1/n0 � 1/r0 � 1/r1, β � γ1 �
σ � δ � γ2 � 1, and let n ≥ n0. Given an n-vertex linear
hypergraph H where every e ∈ H satisfies |e| > r1, there
exists a randomised polynomial-time algorithm which finds,
with high probability, either

(III.8:a) a proper edge-colouring of H using at most (1− σ)n
colours such that
(i)

1) every colour assigned to a huge edge is assigned
to no other edge,

2) every medium edge is assigned a colour from a
set Cmed of size at most γ1n such that for every
c ∈ Cmed, at most γ1n vertices are incident to an
edge coloured c, and

3) for every colour c /∈ Cmed not assigned to a huge
edge, at most βn vertices are incident to an edge
coloured c,

(III.8:b) or a set of FPP-extremal edges of volume at least 1−
δ and a proper edge-colouring of H using at most n
colours such that (i)

1) for every colour c assigned to a huge edge, at
most δn vertices are incident to an edge coloured
c,

2) every medium edge is assigned a colour from a
set Cmed of size at most γ2n such that for every
c ∈ Cmed, at most γ1n vertices are incident to an
edge coloured c, and

3) for every colour c /∈ Cmed not assigned to a huge
edge, at most βn vertices are incident to an edge
coloured c.

To prove Theorem III.8, we need algorithmic versions of
[42, Lemma 5.1] and [42, Lemma 6.2]. These algorithmic
versions are stated below as Lemmas III.9 and III.10 respec-
tively.

Lemma III.9. Let 0 < 1/n0 � δ � 1, and let n ≥ n0.
Given an n-vertex linear hypergraph H where every e ∈
H satisfies |e| ≥ (1 − δ)

√
n, there is a polynomial-time

algorithm that finds a proper edge-colouring of H with n
colours, where each colour is assigned to at most two edges.

To find the desired colouring of H in Lemma III.9, we
can use an algorithm (e.g., [49], [50], [51], [52]) that finds
a maximum matching in the graph L(H) which runs in
polynomial time. Here L(H) denotes the line graph of the
hypergraph H, and L(H) denotes the complement of L(H).

For any hypergraph H, any ordering � of the edges of
H, and any e ∈ H, let H�e := {f ∈ H : f � e}, let
N�(e) := {f ∈ H : f ∈ N(e) and f � e}, and let
d�(e) := |N�(e)|.

Lemma III.10 (Reordering lemma). Let 0 < 1/r1 �
τ, 1/K where τ < 1, K ≥ 1, and 1 − τ − 7τ1/4/K > 0.
Given an n-vertex linear hypergraph H where every e ∈ H
satisfies |e| ≥ r1, there is a polynomial-time algorithm that
finds a linear ordering � of the edges of H such that at
least one of the following holds.

(a) Every e ∈ H satisfies d�(e) ≤ (1− τ)n.
(b) There is a set W ⊆ H such that

(W1) maxe∈W |e| ≤ (1 + 3τ1/4K4) mine∈W |e| and
(W2) volH(W ) ≥ (1−τ−7τ1/4/K)2

1+3τ1/4K4 .
Moreover, if e∗ is the last edge of W , then

(O1) for all f ∈ H such that e∗ � f and f 6= e∗, we
have d�(f) ≤ (1− τ)n and

(O2) for all e, f ∈ H such that f � e � e∗, we have
|f | ≥ |e|.

In the proof of [42, Lemma 6.2], the ordering � of the
edges of H and e∗ ∈ H were not chosen explicitly (i.e.,
they were chosen so that e(H�e∗) is minimised subject to
satisfying both (O1) and (O2). However, the proof of [42,
Lemma 6.2] shows that to find an ordering � satisfying
Lemma III.10, it suffices to find an ordering � such that
either � satisfies III.10(a) or



(O3) there is an edge e∗ with d�(e∗) > (1−τ)n, satisfying
(O1) and (O2), such that |N(e) ∩ H�e∗ | > (1 − τ)n
for any e ∈ N�(e∗).

It can be easily seen that the desired ordering � satisfying
either III.10(a) or (O3) can be obtained by starting with an
ordering �0 where |e| ≥ |f | for all e �0 f , and successively
moving at most e(H) edges to new positions. This yields a
polynomial-time algorithm.

Algorithmic aspects of the proof of Theorem III.8: To
prove Theorem III.8 we follow the proof of [42, Theo-
rem 6.1] with some changes. The proof of [42, Theorem 6.1]
relies on [42, Lemmas 5.1 and 6.2], [42, Corollary 6.5],
and [42, Propositions 6.6, 6.7 and 6.8]. Below we list the
required modifications.

We replace [42, Lemma 5.1] by Lemma III.9, [42,
Lemma 6.2] by Lemma III.10, and [42, Corollary 6.5] by
Lemma III.2, respectively. The proof of [42, Proposition 6.6]
immediately gives a polynomial-time algorithm which finds
an α-bounded edge-colouring using b+2n/(α2r) colours in
polynomial-time given an arbitrary proper edge-colouring of
H with b colours. In the proof of [42, Proposition 6.7], we
proceeded by contradiction but the argument immediately
shows that one can colour H greedily in the order prescribed
by the ordering �. Lastly, in the proof of [42, Proposi-
tion 6.8], we use Corollary III.5 instead of [42, Theorem 4.6]
to find an edge-colouring of H with at most γn/2 colours.

E. Vizing’s theorem

We need the following algorithmic version of a theorem
of Vizing [1].

Theorem III.11. Let G be a graph with maximum degree
D. Then there is a polynomial-time algorithm that finds
a proper (D + 1)-edge-colouring of G. Moreover, if the
vertices of maximum degree in G induce a forest, then there
is a polynomial-time algorithm that finds a proper D-edge-
colouring of G.

Note that Theorem III.11 immediately implies [42, Theo-
rem 4.5]. For a proof of Theorem III.11, see the proof of [53,
Theorem 28.1] (based on the ideas of Ehrenfeucht, Faber,
and Kierstead [54]) and the remarks following the proof.

F. Algorithmic aspects of the proof of Theorem I.1

Below we follow the proof of Theorem I.1 shown in
[42, Section 11] and (sequentially) present an exhaustive
list of all the modifications required to the proof in order to
produce a polynomial-time randomised algorithm that finds
the desired colouring of H with high probability.

We replace [42, Theorem 6.1] by its algorithmic variant
Theorem III.8, which is used to colour all medium and
large edges of H. Then to define a reservoir set R of
edges (of size two) we use [42, Proposition 10.3 and

Lemma 10.4] – the proof of [42, Proposition 10.3] imme-
diately yields a polynomial-time randomised algorithm, and
[42, Lemma 10.4] uses the Lovász (g, f)-factor theorem [55]
which has a polynomial-time algorithm (see [56, Section
10.2]).

To extend the colour classes obtained from huge edges
using edges in R, we use [42, Lemmas 7.11 and 7.12]. The
proof of [42, Lemmas 7.12] uses the fact that any graph G
with exactly one vertex of maximum degree can be properly
edge-coloured with ∆(G) colours, and by Theorem III.11,
there is a polynomial-time algorithm to find such a colour-
ing. The proof of [42, Lemmas 7.11] requires finding a
maximum matching in a certain graph, but it is well-known
that there is a polynomial-time algorithm for doing so (see
e.g., [49], [50], [51], [52]).

To extend the colour classes obtained from other medium
and large edges using edges in R, we use [42, Lemmas 8.2
and 8.3]. The proof of [42, Lemmas 8.2] uses [42, Lem-
mas 8.1, 7.6 and 7.7].

In the proof of [42, Lemma 8.1] we use Lemma III.1
and Corollary III.7 instead of [42, Lemma 4.4] and [42,
Corollary 4.3], respectively.

The proofs of [42, Lemmas 7.6 and 7.7] require finding
a maximum matching in a certain graph, which can be
done in polynomial time as mentioned above. In the proof
of [42, Lemma 8.3] we use Corollary III.5 instead of [42,
Theorem 4.6].

Finally, to colour the graph Gfinal consisting of remaining
edges of R, we use either [42, Theorem 4.5], [42, Corol-
lary 9.6], or [42, Lemma 9.2]. We replace [42, Theorem 4.5]
by Theorem III.11 which has a polynomial-time algorithm.
[42, Corollary 9.6] is derived from [41, Theorem 1.6]
whose proof in [41] yields a polynomial-time algorithm, and
the proof of [42, Lemma 9.2] requires finding a maximum
matching in a certain graph for which, again, there is a
polynomial-time algorithm (e.g., [49], [50], [51], [52]).
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and a conjecture of Erdős, Faber, Lovász,” Combinatorica,
vol. 8, no. 3, pp. 293–295, 1988. [Online]. Available:
https://doi.org/10.1007/BF02126801

[18] J. Kahn, “Coloring nearly-disjoint hypergraphs with n+o(n)
colors,” J. Combin. Theory Ser. A, vol. 59, no. 1, pp. 31–
39, 1992. [Online]. Available: https://doi.org/10.1016/0097-
3165(92)90096-D

[19] V. Faber and D. G. Harris, “Edge-coloring linear hypergraphs
with medium sized edges,” Random Structures Algorithms,
vol. 55, no. 1, pp. 153–159, 2019. [Online]. Available:
https://doi.org/10.1002/rsa.20843

[20] J. Kahn, “Asymptotics of Hypergraph Matching, Covering
and Coloring Problems,” in Proceedings of the International
Congress of Mathematicians. Springer, 1995, pp. 1353–1362.
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[22] V. Rödl, “On a packing and covering problem,” European J.
Combin., vol. 6, no. 1, pp. 69–78, 1985. [Online]. Available:
https://doi.org/10.1016/S0195-6698(85)80023-8
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