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0. Introduction

Let G be a connected reductive algebraic group over the algebraic closure
F̄q of a finite field Fq (where q is a power of a prime p), equipped with a
Frobenius endomorphism F : G→ G that gives G an Fq-rational structure,
and let GF be the group of rational points of G (GF is a finite group
of Lie type). Let ` be a prime different from p, and good for G. We
also suppose that ` satisfies certain technical conditions: ` does not divide
|(Z(G)/Z◦(G))F | or |(Z(G∗)/Z◦(G∗))F

∗ | (where G∗ is the Langlands dual
of G taken over the same field F̄q), and if GF has a component of type 3D4,
then ` 6= 3.

The aim of this article is to classify the unipotent `-blocks of GF with
abelian defect groups, and to demonstrate in each case that a general con-
jecture made in [4] holds: if e is an `-block of GF with abelian defect group
D, and (D, f) is a maximal e-Brauer pair of GF , then the blocks e of GF

and f of NGF (D, f) are isotypical. Along the way, we demonstrate a general
result concerning the π-blocks of GF (where π is a set of primes ` possessing
in particular the above properties). The part concerning the classification
of blocks is also obtained in [8] by other methods.

This paper originally appeared as Blocs à groupes de défaut abéliens des groupes
réductifs finis, Astérisque 212 (1993) 93–117.
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In [6], the analogous results are demonstrated under the stronger hypoth-
esis that ` is ‘large’ (i.e., essentially that ` doesn’t divide the order of the
Weyl group of G). In this case, these results are obtained by an application
of the generic methods of [6]. To extend to the case of small primes (the
non-generic case) we need to develop techniques combining methods from
[6] and [7].

If ` 6= p, the conditions on ` given above automatically hold when the
Sylow `-subgroups of GF are abelian [11], so we have in particular:

Theorem. If a Sylow `-subgroup D of GF is abelian, the principal `-blocks
of GF and NGF (D) are isotypical.

1. Sets of Prime Numbers, π-Series

In the first section we introduce the main notation and recall, with some
extensions, the main results from [7]. We determine the main properties of
the primes considered in the sequel.

From now on, we use the following notation: G is a connected reductive
algebraic group over the algebraic closure F̄q of the field Fq of characteris-
tic p, equipped with an Fq-rational structure. Write F : G → G for the
corresponding Frobenius endomorphism, and GF for the group of rational
points of G. By a Levi subgroup of G we mean a Levi subgroup L of a
parabolic subgroup of G, and if L is rational, we write RG

L and ∗RG
L for the

associated Deligne–Lusztig induction and restriction respectively (see, for
example, [10]).

1.A. Background. Let π be a set of primes not containing p, and let π′ be
all primes not in π. If n is a natural number, write nπ for the largest divisor
of n that is a product of elements of π.

Definition 1.1. Let σG
F

π′ be the class function on GF given by

σG
F

π′ (g) =

{
|GF |π g is a π′-element

0 otherwise.

It is clear that σG
F

π′ (g) only depends on the semisimple part of g.

If γ is a unipotent character of GF , we write deg(γ) for its degree, and
Deg(γ) for its generic degree. Thus Deg(γ) ∈ Q[x] and deg(γ) = γ(1) =
Deg(γ)(q).

The next facts follow from [7, 2.5].

(1.2)

(1) For every F -stable Levi subgroup L of G and every class function ψ
on LF , we have

∗RG
L (σG

F

π′ ψ) = deg(RG
L (1))π σ

LF

π′
∗RG

L (ψ)

and
σG

F

π′ R
G
L (ψ) = deg(RG

L (1))π R
G
L (σL

F

π′ ψ)
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(2) σG
F

π′ is uniform, and

σG
F

π′ =
∑

[T]
GF

deg(RG
T (1))π

|WGF (T)|
RG

T (σT
F

π′ ),

where the sum is taken over a set of representations of the GF -
conjugacy classes of maximal F -stable tori of G, and where WGF (T) =
NGF (T)/T.

Remark. By convention, the π-part of a number is always positive. In par-
ticular,

deg(RG
L (1))π deg(RG

L (1))π′ = εGεL deg(RG
L (1)),

where εG = (−1)i and i is the semisimple Fq-rank of G.

We have σT
F

π′ =
∑
θ, where θ ranges over the set of characters of TF

whose order is a π-number. If uσG
F

π′ denotes the projection of σG
F

π′ onto
the subspace of class functions generated by the unipotent characters, we
deduce that

(1.3) uσG
F

π′ =
∑

[T]
GF

deg(RG
T (1))π

|WGF (T)|
RG

T (1).

As is standard, we write E(GF , (s)) for the Lusztig series associated to the

conjugacy class of the semisimple element s ∈ G∗F
∗

and set Eπ(GF , 1) :=⋃
s∈(G∗F

∗
)π
E(GF , (s)) (see [7]). We write prG

F

π for the projection from the

space of class functions on GF to the subspace generated by the elements
of Eπ(GF , 1), and we set

RegG
F

π := prG
F

π RegG
F

=
∑

χ∈Eπ(GF ,1)

χ(1)χ.

Finally, we write URegG
F

π for the projection of RegG
F

π onto the subspace
generated by the unipotent characters.

The second assertion in the next proposition has already been proved in
[7].

Proposition 1.4.

(1) RegG
F

π =
∑

[T]
GF

deg(RG
T (1))π

|WGF (T)|
RG

T (RegT
F

π ),

(2) RegG
F

π = σG
F

π′ D(uσG
F

π∪{p}), where D denotes Alvis–Curtis duality.

Proof. We obtain (1) by applying prG
F

π to the formula

RegG
F

=
∑

[T]
GF

degRG
T (1)

|WGF (T)|
RG

T (RegT
F

),
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since

prG
F

π (RG
T (RegT

F
)) = RG

T (prT
F

π (RegT
F

)) = RG
T (RegT

F

π ).

We now prove (2). By (1.3), we have that

(1.5) uσG
F

π∪{p} =
∑

[T]
GF

deg(RG
T (1))π′

|WGF (T)|
RG

T (1).

Multiplying both sides of (1.3) by σG
F

π′ and using (1.2(1)), together with the

equality D(RG
T (1)) = εGεTR

G
T (1), we obtain the result. �

As in [7], we see from Proposition 1.4(2) that RegG
F

π is the regular char-
acter associated to a central π-idempotent of Q̄GF , which we denote by

eG
F

π .

1.B. The case where π consists of good primes. Suppose now that
π only consists of primes that are good for G. Hence, for every abelian
π-subgroup S of GF , the group C◦G(S) is an F -stable Levi subgroup of G
(see for example [13, 2.1]).

Definition 1.6. A Levi subgroup of G is π-split if it is a connected cen-
tralizer of an abelian π-subgroup of GF .

A group M is a π-split Levi subgroup of G if and only if there exists an
F -stable maximal torus T of G such that M = C◦G(TF

π ), where we write

TF
π for a Sylow π-subgroup of TF .

Definition 1.7.

(1) An F -stable maximal torus T of G is π-anisotropic if the Sylow π-
subgroup TF

π of TF is contained in Z◦(G)F . We write Tπ(G) for
the set of π-anisotropic maximal tori of G.

(2) For every uniform class function ψ on GF , the π-cuspidal projection
of ψ, denoted by cπ(ψ), is defined by

cπ(ψ) :=
∑

[T∈Tπ(G)]
GF

1

|WGF (T)|
RG

T (∗RG
T (ψ)).

In what follows, the symbols =GF , 6GF , ⊆GF and 4GF , represent the
symbols =, 6, ⊆ and 4 modulo GF -conjugation.

The following analogue of [6, Lemma 2.14] will be useful.

Lemma 1.8. Let φ be a function on the set of all F -stable maximal tori of
G, invariant under GF -conjugation. Let M be a π-split Levi subgroup of
G. We have ∑

[T:TFπ=
GF

Z◦(M)Fπ ]
GF

φ(T) =
1

|WGF (M)|
∑

[T∈Tπ(M)]
MF

φ(T)

|WMF (T)|
.

Proof. It suffices to follow the proof of [6, Lemma 2.14], replacing d by π. �
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As in [6, §2.C], we write AbIrr(GF ) for the character group of the abelian
group GF /[G,G]F (seen as characters of GF ), and we write AbπIrr(GF )
for the subgroup of elements of AbIrr(GF ) whose order is a π-number. We
set

AbπReg(GF ) :=
∑

θ∈AbπIrr(GF )

θ.

Proposition 1.9.

(1) RegG
F

π =
∑

[M π-split]
GF

degRG
M(1)

|WGF (M)|
RG

M(AbπRegM
F
cπ(URegM

F
)).

(2) URegG
F

=
∑

[M π-split]
GF

degRG
M(1)

|WGF (M)|
RG

M(cπ(URegM
F

)).

Proof. The proof is similar to that of [6, 2.16,2.33]. In the formula for

RegG
F

π in Proposition 1.4(1), grouping the tori T according to whether the
subgroups TF

π are GF -conjugate, and applying Lemma 1.8 to each grouping,
we obtain

RegG
F

π =
∑

[M]
GF

1

|WGF (M)|
∑

[T∈Tπ(M)]
MF

degRG
T (1)

|WMF (T)|
RG

T (RegT
F

π )

=
∑

[M]
GF

degRG
M(1)

|WGF (M)|
RG

M

 ∑
[T∈Tπ(M)]

MF

degRM
T (1)

|WMF (T)|
RM

T (RegT
F

π )


=
∑

[M]
GF

degRG
M(1)

|WGF (M)|
RG

M

(
cπ(RegM

F

π )
)

where each sum is over a set of representatives M of GF -classes of π-split
Levi subgroups. (1) is therefore a consequence of the following analogue of
[6, 2.34].

Lemma 1.10.

cπ(RegG
F

π ) = AbπRegG
F
cπ(URegG

F
).

Proof of 1.10. According to Proposition 1.4(1) and Definition 1.7(2), we see
that

cπ(RegG
F

π ) =
∑

[T∈Tπ(G)]
GF

degRG
T (1)

|WGF (T)|
RG

T (RegT
F

π )

cπ(URegG
F

π ) =
∑

[T∈Tπ(G)]
GF

degRG
T (1)

|WGF (T)|
RG

T (1T
F

)

It therefore suffices to demonstrate that, for all T ∈ Tπ(G), we have

RG
T (RegT

F

π ) = AbπRegG
F
RG

T (1T
F

). Since the function AbπRegG
F

is ‘p-

constant’ (see [7, 2.5]) we have that AbπRegG
F
RG

T (1T
F

) = RG
T (ResG

F

TF (AbπRegG
F

).
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Therefore it suffices to verify that

(*) ResG
F

TF (AbπRegG
F

) = RegT
F

π .

The function ResG
F

TF (AbπRegG
F

) is a function on TF that takes the value

|GF /[G,G]F |π on the elements t ∈ TF whose image modulo [G,G]F is a
π-regular element, and value 0 on the other elements of TF .

The group GF /[G,G]F is a quotient of TF (see for example [6, §2]) and
|GF /[G,G]F | = |Z◦(G)F |. By the hypothesis on TF we have |TF |π =
|Z◦(G)F |π, therefore |TF |π = |GF /[G,G]F |π; we see that TF ∩ [G,G]F

is a π′-group. As a result, the function ResG
F

TF (AbπRegG
F

) takes the value

0 on the π-singular elements of TF . This completes the proof of equality
(*). �

The proof of (2) is identical, starting instead with (1.3). �

Remark. The proof of Lemma 1.10 above shows that there exist π-anisotropic
tori, so Z([G,G])F is a π′-group. This hypothesis is precisely that of Propo-
sition 1.19(1) below.

1.C. F -excellent primes. For reasons that will become clear later (see for
example Propositions 1.15 and 1.16), we must impose some restrictions on
the set of primes that we use (see [13, 2.3] and also [8]).

Definition 1.11. A prime ` is (G, F )-excellent if and only if

(1) ` is good for G,
(2) ` 6= p,
(3) ` does not divide either |(Z(G)/Z◦(G))F | or |(Z(G∗)/Z◦(G∗))F

∗ |,
(4) ` is not equal to 3 if GF possesses a component of type 3D4.

The ‘large’ primes (‘generic’) of [6, §5] satisfy these conditions.

Proposition 1.12. Suppose that G is simple. If ` 6= p and ` - |W | then `
is excellent for (G, F ).

Proof. Since the bad primes divide |W |, and since 3 divides the order of the
Weyl group of type D4, we just have to prove condition (3).

Following the notation of [6], we write R for the root system of G, a subset
of the cocharacter group X of T, and R∨ for the dual system, a subset of
the character group Y of T. Additionally, we write Q(R) and Q(R∨) for the
Z-submodule of X and Y respectively, generated by R and R∨ respectively,
and let P (R) be the dual of Q(R∨) in Q⊗X.

The character group of Z(G)/Z◦(G) is isomorphic to a p′-torsion sub-
group of X/Q(R). Since the torsion subgroup of X/Q(R), namely the
group Q(R)⊥⊥/Q(R), is a subgroup of P (R)/Q(R), it suffices to verify
that |P (R)/Q(R)| and |P (R∨)/Q(R∨)| (the latter must be considered to
obtain the result for G∗) divides |W |. But, by definition |P (R)/Q(R)| is
the connection index fR of R, and fR = fR∨ divides |W | by [2, Proposition
VI.2.7]. �
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The next property of excellence is fundamental (it has already been ob-
served in [8, 1.2]).

Proposition 1.13. Let L be an F -stable Levi subgroup of G. If ` is excellent
for (G, F ), it is also excellent for (L, F ).

Proof. As before, only condition (3) needs verification. By [13, 2.4] the group
H1(F,Z(L)/Z◦(L)) is isomorphic to a direct factor of H1(F,Z(G)/Z◦(G)).
This gives the result because for any finite group A with an automorphism
F we have the short exact sequence

1 AF A H1(F,A) 1- -F−1 - - ,

which shows that |H1(F,Z(G)/Z◦(G))| = |(Z(G)/Z◦(G))F |. The same
applies to L. �

We need some concepts defined in [5] and [6]. Let T be an F̄q-torus,
defined over Fq. The associated Frobenius endomorphism induces on Y (T)
an operator of the form qφ, where φ is an endomorphism of finite order.
We call the data T = (X(T), Y (T), φ) a generic torus. We write |T| for
the characteristic polynomial of φ; the notation is ‘justified’ by the fact that
|TF | = |T|(q). Given an integer d, T possesses a unique F -stable subtorus
Td such that |Td| is a power of Φd (the dth cyclotomic polynomial). Such
a subtorus is called a Φd-group, and Td is called the Sylow Φd-subgroup of
T. The Levi subgroups of G that are the centralizers of Φd-subgroups are
called d-split.

Definition 1.14. Let S be an F -stable torus, and let d ∈ N. A prime
` is (S, F, d)-adapted if |SF |` = |SFd |` (i.e., the Sylow `-subgroup of SF is

contained in the Sylow Φd-subgroup of SF ). A set π of primes is (S, F, d)-
adapted if all of the elements in it are.

Let T be an F -stable maximal torus of G and θ ∈ Irr(TF ). We write
G(T, θ) (see [6, 2.C]) for the group generated by T, together with the radical
subgroups Uα (relative to T) with θ(α∨) = 1.

Proposition 1.15. Let L be an F -stable Levi subgroup of G. Let π be a set
of primes that are excellent for (G, F ), and (Z◦(L)/Z◦(G), F, d)-adapted.

(1) If S is a π-subgroup of (Z◦(L))F then C◦G(S) is a d-split Levi sub-
group of G.

(2) Let θ be a π-character of (L/[L,L])F , and let T be an F -stable max-
imal torus of L. Then G(T, θ) is a d-split Levi subgroup of G.

Proof. For every element of π that is good for G, the group C◦G(S) is a
Levi subgroup of G (see for example [13, 2.1]); we have S ⊆ C◦G(S) as
S ⊆ L ⊆ C◦G(S) and, as every element of π is still excellent for (C◦G(S), F )
by Proposition 1.13, we have S ⊆ Z◦(C◦G(S)). As Z◦(C◦G(S)) ⊆ Z◦(L)
(because C◦G(S) contains L), π is still (Z◦(C◦G(S))/Z◦(G), F, d)-adapted.

As a result, the quotient (Z◦(C◦G(S)))F /(SF ·Z◦(G))F ) is a π′-group, if S is
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the Sylow Φd-subgroup of Z◦(C◦G(S)); therefore S is contained in S ·Z◦(G).
Hence we have C◦G(S) = C◦G(S), demonstrating that C◦G(S) is a d-split Levi
subgroup of G.

The second assertion follows from the first, applied to the group G∗,
which is possible because the primes that are excellent for (G, F ) are also
excellent for (G∗, F ∗), and Z◦(G) and Z◦(G∗) have the same generic order,
as do Z◦(L) and Z◦(L∗). �

The following technical result will be used in Section 2 for the description
of `-blocks of abelian defect group of GF .

Proposition 1.16. Let L be an F -stable Levi subgroup of G, and let ` be
a prime that is good for G, and not dividing WGF (L, λ) for some unipotent
representation λ of LF . If ` = 3, suppose in addition that GF does not have
a component of type 3D4. There exists d such that ` is (Z◦(L)/Z◦(G), F, d)-
adapted.

Proof. To prove the proposition, we may suppose that G is adjoint. Indeed,
if L′ is the image of L in Gad, then Z◦(L)/Z◦(G) and Z◦(L′) have the same
generic order. The character λ, being unipotent, factors through a unipotent
character λ′ of GF

ad and WGF
ad

(L′, λ′) = WGF (L, λ).

We therefore suppose that G is adjoint. Since an adjoint group is a
product of the restriction of scalars of simple groups, G is a product of

groups of the form (G
(a)
i , F

(a)
i ) (the restriction of scalars of Fqa to Fq of

(Gi, Fi)), and (L, λ) is a product of (L
(a)
i , F

(a)
i ). As (L

(a)
i )F = LF

a

i and

W
G

(a)F (a)

i

(L
(a)
i , λ

(a)
i ) = WGFa

i
(Li, λi),

we can even replace (G
(a)
i , F

(a)
i ,L

(a)
i , λ

(a)
i ) with (Gi, F

a
i ,Li, λi), and suppose

that G is a product of simple groups, each F -stable.
We now use the following lemma, which has appeared in [12, 3.1].

Lemma 1.17. If T = (X,Y, φ) is a generic torus, and (T, F ) is the algebraic
torus corresponding to a choice of q, then a prime ` that does not divide the
order of φ is (T, F )-adapted.

Proof of 1.17. Let
∏r
i=1 Φni

di
be the polynomial order of T. As it is the

characteristic polynomial of φ on Y , the order of φ is the lowest common
multiple of the orders (as roots of unity) of the zeros of Φd, which is the
lowest common multiple of the di. Moreover, if ` is not (T, F )-adapted, it
divides two of the cyclotomic factors, which we write Φd(q) and Φd′(q). It
therefore divides (see, for example [5, Appendix 2, (3)]) the lowest common
multiple of d and d′, so therefore divides the order of φ, and we have the
lemma. �

The following paragraph freely uses concepts and notation of [6]. Suppose
that (G,T0, F ) is a triple associated to the generic group G = ((X,R, Y,R∨),Wφ),
where T0 is chosen to be quasi-split, i.e., such that there exists an F -stable
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Borel subgroup B containing T0. Suppose also that L is associated to
L = ((X,R′, Y, R′∨),WLwφ). We can identify WGF (L, λ) with WG(L,λ)

where λ ∈ Uch(G) is such that ρL
F

λ = λ (see [6, 1.26]). Let R+ be the posi-
tive roots of the root system corresponding to the choice of B. We therefore
have a decomposition as a semidirect product NWG(L,λ) = WLoW ′ where
W ′ ∼= WG(L,λ) consists of those v ∈ NWG(L,λ) such that v(R′+) = R′+.
We may assume that, in the class WLwφ that defines L, w was chosen with
wφ(R′+) = R′+. Let δ be the order of φ: we have (wφ)δ ∈ NWG(L,λ) and,
since we again have (wφ)δ(R′+) = R′+, we similarly obtain (wφ)δ ∈ W ′.
Therefore, by the hypothesis of the proposition, ` does not divide the order
of (wφ)δ.

If ` does not divide δ, then ` doesn’t divide the order of wφ, and by
Lemma 1.17 we see that there is d such that ` is (T, F, d)-adapted, where
T is a maximal tori of L corresponding to a generic torus (X,Y,wφ). This
implies in particular that ` is (Z◦(L), F, d)-adapted, yielding the proposition
in this case.

Now suppose that ` divides δ. As we have chosen T0 to be quasi-split, φ
is a diagram automorphism, of order 2 or 3 on each non-split component Gi

of G because they are simple and F -stable. Therefore ` = 2 or ` = 3. We
even have, since we assumed that ` is good for G, and excluded components
of type 3D4 for ` = 3, that δ = ` = 2 and that every non-split component
of G is of type An. Let Gi be such a component; then G−i is split and, as

WG−i
(L−i , σLi(λi)) = WGi(Li,λi) (see [6, 3.3] for the definition of σLi) we

know, using the result already proved for δ = 1 for G−i , that 2 divides at

most one of the cyclotomic factors of |Rad(L−i )|(q) = ±|Rad(Li)|(−q). This
gives the result since Φd(q) ≡ Φd(−q) (mod 2). �

Remark. Let G be a group of type 3D4, and set (L, λ) = (T, 1) where,

• if q ≡ 1 (mod 3), T is a maximal torus such that

|T| = (x2 + x+ 1)(x− 1)(x+ 1)

• and if q ≡ −1 (mod 3), T is a maximal torus such that

|T| = (x2 − x+ 1)(x+ 1)(x− 1).

Hence 3 is not (T, F, d)-adapted for these tori, but, the two tori have a Weyl
group WGF (T, 1) isomorphic to (Z/2Z)2 (see [9]): this shows that excluding
the type 3D4 in the statement of the proposition is necessary.

Proposition 1.18.

(1) Let π be a set of primes different from p, and not dividing the order of
(Z(G∗)/Z◦(G∗))F , and let s be a π-element of GF . Then CG(s)F =
C◦G(s)F .

(2) Let π be a set of primes that are good for G, and not dividing the
order of (Z(G)/Z◦(G))F . Let T be an F -stable maximal torus of G
and let θ ∈ Irr(TF )π. Then NGF (T, θ) ⊆ G(T, θ).
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Proof. (1) is in [13, 2.5] (see also [8, 4.4(i)]). (2) can be deduced by applying
(1) to G∗ and using the fact that, if (T∗, s) is dual to (T, θ), then, as π only
contains primes that are good for G, we have that the group G(T, θ) is dual
to C◦G∗(s). �

The following result will be used in Section 3 for a description of isotypies.

Proposition 1.19.

(1) Let π be a set of primes, none of which divides the order of Z([G,G])F .
The restriction of GF to Z◦(G)Fπ induces an isomorphism

AbπIrr(GF )
∼−→ Irr(Z◦(G)Fπ ).

(2) Let L be an F -stable Levi subgroup of G, let T be a maximal torus
of L, and let π be a set of primes that are excellent for (G, F ), and
that do not divide Z([L,L])F . Let θ ∈ AbπIrr(LF ), and let θT be the
restriction of θ to TF , and θZ the restriction to Z◦(L)Fπ . We have

NGF (L, θZ) = NG(T,θT)F (L).

Proof. The exact sequence

0→ Z([G,G]) ∩ Z◦(G)→ Z◦(G)→ G/[G,G]→ 0

gives the exact sequence of Galois cohomology

0→ (Z([G,G]) ∩ Z◦(G))F → (Z◦(G))F

→ (G/[G,G])F → H1(F,Z([G,G]) ∩ Z◦(G))→ 0

and, by assumption, the terms at either end are π′-groups, whence we get
(1).

Under the assumptions of the statement, G(T, θT) is the largest F -stable
Levi subgroup M containing L such that θT is the restriction of a character of
AbIrr(MF ). Moreover, if T′ is another rational maximal torus of L, we have
G(T, θT) = G(T′, θT′). Therefore we may suppose that we have chosen T
to be a quasi-split torus of L. Two quasi-split tori are conjugate in LF , and
we can therefore find representatives of NGF (L, θZ)/LF in NGF (L,T) (and
by (1) these representatives are in NGF (L,T, θ), hence in NGF (L,T, θT));
hence NGF (L, θZ) = NGF (T, θT,L) ·LF , which is equal to NG(T,θT)F (L) by

(1) of the proposition. �

2. Unipotent blocks with abelian defect groups

2.A. Necessary conditions. We analyze the structure of maximal pairs of
unipotent `-blocks of GF with abelian defect group, when ` is excellent for
(G, F ).

Let ` be a prime that is excellent for (G, F ). Let K be a finite extension
of the field of `-adic rationals Q` that is ‘large enough’ for GF , and let O
be its ring of integers, a finite extension of the ring of `-adic integers Z`.
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Let e be a unipotent block of OGF , i.e., a primitive central idempotent of

OGF such that eeG
F

` = e, where eG
F

` is the central idempotent correspond-

ing to E`(GF , 1) (see Section 1). Let D be a defect group of e, which we
suppose is abelian. Set L := C◦G(D). Since ` is good, there is an F -stable

Levi subgroup of G, and we have (see Lemma 1.17(2) above) LF = CGF (D).
Let f be an `-block of LF such that BrD(e) · f = f , where BrD denotes the
Brauer morphism (in other words, f is a root of e, and (D, f) is a maximal
e-Brauer pair). Let λ be the canonical character of LF .

Theorem 2.1.

(1) D is a Sylow `-subgroup of Z(LF ), and D ⊆ Z◦(L)F .
(2) λ is a character of `-defect zero of LF /D, i.e., deg(λ)` = |LFss|`.
(3) NGF (D,λ) = NGF (L, λ), and ` - |WGF (L, λ)|.
(4) λ is a unipotent character of LF and it is the unique unipotent char-

acter of LF in the block f .
(5) ` - |Z([L,L]F )|.
(6) There exists an integer d such that ` | Φd(q) and (L, λ) is a d-cuspidal

pair for G. The integer d is uniquely determined if L is a proper
subgroup of G, and hence ` is (Z◦(L)/Z◦(G), F, d)-adapted.

Remark. The group GL15(13) has a unipotent character of 7-defect 0, which
is both 2-cuspidal and 14-cuspidal. We therefore see that the uniqueness of
d in assertion (6) requires that L is proper.

Proof. The first three assertions are classical results of block theory (the
inclusion D ⊆ Z◦(L)F follows from the fact that ` is excellent).

To demonstrate (4), we first check that the block f is unipotent, i.e., that

feL
F

` = f . By iterating the formula Br〈x〉(e
GF

` ) = e
C◦G(x)F

` (see [7, 3.2]),

where x denotes an `-element of GF , we see that BrD(eG
F

` ) = eL
F

` . It

therefore suffices to apply the Brauer morphism BrD to the equality eeG
F

` =
e to get that all constituents of BrD(e) (and in particular f) are unipotent.

The following lemma follows immediately from [14, 3.1].

Lemma 2.2 (G. Hiss). Every unipotent block contains a unipotent charac-
ter.

As λ is the unique character of f that is trivial on D, and as all unipotent
characters of LF are trivial on Z(LF ), we deduce assertion (4).

To demonstrate (5) note that, since λ is unipotent, its restriction to
[L,L]F is again an irreducible character. However, |[L,L]F | = |(L/Z(L))F | =
|LF /Z(L)F | · |H1(F,Z(L))|, therefore (deg λ)` = |[L,L]F |`. Hence λ is a
character of `-defect 0 of [L,L]F , and this implies that this group does not
have a non-trivial central `-subgroup, demonstrating (5).

We prove (6). Suppose first that L 6= G. There therefore exists d ∈ N such
that φd divides the generic order of Z◦(L)/Z◦(G) and ` | Φd(q). As ` does
not divide WGF (L, λ)|, it results from Proposition 1.16 that d is uniquely



12 MICHEL BROUÉ AND JEAN MICHEL

determined by these conditions. In other words, ` is (Z◦(L)/Z◦(G), F, d)-
adapted. We obtain therefore by Proposition 1.15(i) that L is d-split.

Moreover, there exists a product c of bad primes for L such that c ·
Deg(λ) ∈ Z[x] is a monic polynomial (see for example, [6, 1.32]). Therefore
|Lss|/c·Deg(λ) is a product of cyclotomic polynomials multiplied by a power
of x, whose value at q is not divisible by `. As ` divides Φd, we have that
the contribution of the cyclotomic polynomial Φd to Deg(λ) and |Lss| are
equal; this proves that λ is d-cuspidal by [6, 2.9], and completes the proof
of Theorem 2.1. �

Remark. Note that, if L = G, the proof above shows that λ is a d-cuspidal
character of GF for all d such that ` | Φd(q) and Φd | |Gss|.

2.B. The unipotent π-blocks with abelian defect groups. In this sec-
tion, for some sets π of primes, we define subsets of the π-series Eπ(GF , 1),
which we show correspond to π-idempotents of ZQ̄GF , and for π = {`} they
correspond to the `-blocks of abelian defect group in GF .

The following notation and hypotheses will be in effect for the rest of this
section:

(Hd) (L, λ) is a d-cuspidal pair for G.
(Hπ1) π is a set of primes excellent for (G, F ).
(Hπ2) For all ` ∈ π, L = CG(Z◦(L)F` ).

(Hπ3) deg(λ)π = |LFss|π.
(Hπ4) WGF (L, λ) is a π′-group.
(Hdπ) π is (Z◦(L)/Z◦(G), F, d)-adapted.

Remark. If π consists only of primes ` that are excellent for (G, F ), we have
(see Theorem 2.1) that the above hypotheses are satisfied for a suitable
choice of (L, λ) if GF has an `-block with abelian defect group.

Notation.

• From now on, we assume that we have chosen an F -stable maximal
torus T0 of L.
• Let ` ∈ π. We write eL

F

`,(L,λ) for the primitive `-idempotent of ZQ̄LF

defined by λ. Hence eL
F

`,(L,λ) is an `-block of LF with defect group

Z◦(L)F` .

• We write eG
F

`,(L,λ) for the unique block of GF corresponding to eL
F

`,(L,λ)

under the Brauer correspondence – in other words, using the notation
of [1], we have

({1}, eGF

`,(L,λ)) ⊆ (Z◦(L)F` , e
LF

`,(L,λ)).

As NGF (Z◦(L)F` , e
LF

`,(L,λ)) = NGF (L, λ) and ` doesn’t divide |WGF (L, λ)|,
it follows from Brauer’s first main theorem (see for example [1]) that (Z◦(L)F` , e

LF

`,(L,λ))

is a maximal eG
F

`,(L,λ)-Brauer pair. In particular,
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(2.3) Z◦(L)F` is a defect group of eG
F

`,(L,λ).

We will provide, among other things, (see Theorem 2.8 below) a complete

description of the characters of GF in eG
F

`,(L,λ), demonstrating that they are

exactly the characters of E`(GF , 1) that lie above (L, λ). We proceed in
several stages.

Studying E(GF , 1, (L, λ)).
Let E(GF , 1, (L, λ)) the set of unipotent characters γ of GF such that

(γ,RG
L (λ))GF 6= 0. We write Irr(GF , eG

F

`,(L,λ)) for the set of irreducible char-

acters of GF in eG
F

`,(L,λ).

Lemma 2.4. E(GF , 1, (L, λ)) ⊆ Irr(GF , eG
F

`,(L,λ)).

Proof. We go by induction on |GF : LF |. If GF = LF , then the lemma
is trivial. Otherwise, there exists x ∈ Z◦(L)F` , x /∈ Z(GF ). Let G(x) :=

C◦G(x) and GF (x) := G(x)F . By induction, the lemma is true if we replace
G by G(x).

Let γ ∈ E(GF , 1, (L, λ)). By the Curtis type formula described as in [3,
4.3], we have

decx,G
F

` (γ) = dec
x,GF (x)
` (∗RG

G(x)(γ)).

Since, by [6, 4.5], the character ∗RG
G(x)(γ) is afforded by the free Z-module

generated by ⋃
(L′,λ′)∼

GF
(L,λ)

E(GF (x), 1, (L′, λ′))

(where (L′, λ′) runs through the set of pairs of G(x) that are GF -conjugate
to (L, λ)), we see that

decx,G` (γ) ∈ Z̄
⋃

(L′,λ′)∼
GF

(L,λ)

E(GF (x), 1, (L′, λ′)),

and by induction hypothesis

decx,G` (γ) ∈ Z̄
⋃

(L′,λ′)∼
GF

(L,λ)

Irr(GF (x), eG
F

`,(L,λ)).

As (〈x〉, eG
F (x)

`,(L′,λ′)) ⊇ ({1}, eGF

`,(L′,λ′)) for all (L′, λ′) ∼GF (L, λ), to prove the

lemma it now suffices (by Brauer’s second main theorem) to check that

decx,G
F

` (γ) 6= 0.
Applying again the Curtis type formula ([3, 4.3]) we obtain

∗R
G(x)
L (decx,G

F

` (γ)) = decx,L
F

` (∗RG
L (γ)),

and it remains to check that decx,L
F

` (∗RG
L (γ)) 6= 0. Since, by [6, 3.15],

∗RG
L (γ) = (γ,RG

L (λ))
∑

w∈W
GF

(L)/W
GF

(L,λ)

λw,
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it remains to check that decx,L
F

` (λ) 6= 0. But, as λ is unipotent (therefore

trivial on Z◦(L)F ) and is therefore of defect zero, we have decx,L
F

` (λ) =
λ. �

The following characterization of abelian defect groups is analogous to
that in [6, 4.8]. Note that, in the case where π = {`}, it provides a charac-
terization of defect groups in terms of the application of the Deligne–Lusztig
functor RG

T (such a characterization has been suggested by G. Hiss).

Proposition 2.5. Let γ ∈ E(GF , 1, (L, λ)). If T is an F -stable maximal
torus of G, and if (RG

T (1), γ)GF 6= 0, then the Hall π-subgroup TF
π of TF is

GF -conjugate to a subgroup of Z◦(L)F . Moreover, there exists an F -stable
maximal torus T such that TF

π = Z◦(L)Fπ .

Proof. Suppose that (γ,RG
T (1))GF 6= 0, and let x ∈ TF

` for some ` ∈ π. By
the Curtis type formula, we have

∗R
C◦G(x)
T decx,G

F

` (γ) = decx,T
F

` (∗RG
T (γ)),

hence in particular decx,G
F

` (γ) 6= 0 since ∗RG
T (γ) = (RG

T (1), γ)GF · 1TF and

decx,T
F

` (1TF ) 6= 0. This implies that x is GF -conjugate to an element of the

defect group of the `-block of γ, which by Lemma 2.4 is Z◦(L)F .
We now show the first part of the proposition by induction on dim G. If

TF
π ⊆ Z◦(G)F , nothing needs to be proved. Otherwise, there exists ` ∈ π

and x ∈ TF
` \ Z◦(G)F . By the reasoning above, x is GF -conjugate to

some x′ ∈ Z◦(L)F ; this conjugation sends T to some maximal torus T′ of
M := C◦G(x′). As π is (Z◦(L)/Z◦(G), F, d)-adapted, it follows from Propo-

sition 1.15(1) that M is a d-split Levi subgroup of G. As (RG
T′(1), γ)GF =

(RG
T (1), γ)GF 6= 0, it follows that there exists µ ∈ E(MF , 1) with ∗RM

T′(µ) 6=
0 and (M, µ) 4 (G, γ). Let (L′, λ′) be a d-cuspidal pair such that (L′, λ′) 4
(M, µ). Then (L′, λ′) is GF -conjugate to (L, λ), and by induction hypothesis
we have

T′π 6MF Z◦(L′) and Z◦(L′) =GF Z◦(L),

hence the first part of the proposition holds.

For every F -stable maximal tori T of L such that (λ,RL
T(1)) 6= 0, by [6,

1.38] we have that (deg λ)π divides |LF : TF |π. As (deg λ)π = |LFss|π, we
have that TF

π 6 Z
◦(L), whence TF

π = Z◦(L)Fπ . �

The next result shows that the π-local subgroups used in our context are,
as in [6], d-split groups.

Lemma 2.6. A Levi subgroup of G containing L is π-split if and only if it
is d-split.

Proof. A π-split Levi subgroup M containing L is the connected centralizer
of a π-subgroup of Z(L)F . This π-subgroup is necessarily contained in
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Z◦(L)F since π is excellent for (G, F ) (hence excellent for (L, F )). By
Proposition 1.15 and by hypothesis (Hdπ), M is d-split.

Conversely, if M ⊇ L is d-split, then M is the centralizer of the π-part
of its centre. Indeed, let M′ be the centralizer of the π-part of the centre of
M′. By the above, M′ is d-split. If M′ strictly contains M, the d-part of
the centre of M′ is strictly smaller than the d-part of the centre of M, and
by (Hdπ) it follows that it must be true of the π-part, a contradiction. �

As in [6], we set

URegG
F

(L,λ) :=
∑

γ∈E(GF ,1,(L,λ))

deg γ · γ.

Lemma 2.7.

(1) Let γ ∈ E(GF , 1, (L, λ)), and let ψ be a uniform unipotent function
on GF . Hence

(γ,ψ)GF =
∑

[M]
GF

1

|WGF (M)|
(γ,RG

M(cπ
∗RG

M(ψ)))GF ,

where M runs through the set of all d-split Levi subgroups of G
containing L.

(2) We have

URegG
F

(L,λ) =
∑

[(M,µ)]
GF

deg(RG
M(1))

|WGF (M, µ)|
RG

M(deg cπ(µ) · µ),

where (M, µ) runs through the set of all d-split pairs such that (L, λ) 4
(M, µ).

Proof. We start with (1). As ψ is uniform, we have

(γ,ψ)GF =

γ, ∑
[T]

GF

1

|WGF (T)|
RG

T
∗RG

Tψ


GF

.

We continue as in the proof of Proposition 1.9(1). Here we know that the
terms where M is not π-split and containing L (which is equivalent to being
d-split and containing L by Lemma 2.6) are zero by Proposition 2.5.

For (2), we have

URegG
F

(L,λ) =
∑

γ∈E(GF ,1,(L,λ))

(γ,URegG
F

)GF γ.

Applying (1) with ψ = URegG
F

, exchanging the summations, and using the
equality

∗RG
M(URegG

F
) = deg(RG

M(1))URegM
F
,
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we obtain

URegG
F

(L,λ) =
∑

[M]
GF

deg(RG
M(1))

|WGF (M)|
∑

γ∈E(GF ,1,(L,λ))

(
γ,RG

M(cπURegM
F

)
)
GF

γ,

where M runs though the π-split Levi subgroups of GF . Expanding cπURegM
F

=∑
µ∈E(MF ,1) deg cπ(µ) · µ, there are only representatives of GF -conjugacy

classes of pairs (M, µ) (which are necessarily up to GF -conjugation above
(L, λ)), so we obtain the lemma. �

Descriptions of the blocks

Recall the notation used in [6] for Lusztig’s indexing of the irreducible
characters of GF . Let T be a rational maximal torus of GF . For θ a char-
acter of TF and ν a unipotent character of GF (T, θ), we write χGF

(G(T,θ),θ,ν)

for the irreducible character of GF that corresponds to the pair (θ, ν) via
the Jordan decomposition of characters.

Theorem 2.8. We set

RegG
F

π,(L,λ) =
∑

[(N,θ,ν)]
GF

deg(χGF

(N,θ,ν))χ
GF

(N,θ,ν)

where θ ranges over AbπIrr(LF ), N := G(T, θ), and ν ∈ E(NF , 1, (L, λ)).

(1) We have

RegG
F

π,(L,λ) =
∑

[(M,µ)]
GF

degRG
M(1)

|WGF (M, µ)|
RG

M(AbπRegM
F · deg cπ(µ)µ)

where (M, µ) runs through the set of d-split pairs of GF such that
(L, λ) 4GF (M, µ).

(2) The character RegG
F

π,(L,λ) is the regular character associated to a cen-

tral π-idempotent of Q̄GF . In particular, its values are divisible by
|GF |π.

Remark. For π = {`}, the idempotent corresponding to RegG
F

`,(L,λ) is the one

we have already designated by eG
F

`,(L,λ). In the general case, we denote by

eG
F

π,(L,λ) the idempotent corresponding to RegG
F

π,(L,λ).

Proof. We set ΘNF

G,π :=
∑
θ, where the sum runs over all elements θ of

AbπIrr(LF ) such that G(T, θ) = N. Then

RegG
F

π,(L,λ) =
∑

[(N,ν)]
GF

degRG
N(1)

|WGF (N, ν)|
RG

N(ΘNF

G,π · deg(ν)ν)

where (N, ν) ranges over the set of d-split pairs such that (L, λ) 4GF (N, ν).
We will use the next technical lemma twice.
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Lemma 2.9. Let φ be a GF -invariant function on the set of d-split pairs
(N, ν) such that (L, λ) 6GF (N, ν). Then∑
[(N,ν):(L,λ)6

GF
(N,ν)]

GF

φ(N, ν)

|WGF (N, ν)|
=

∑
{(N,ν):(L,λ)6

GF
(N,ν)}

|WNF (L, λ)|
|WGF (L, λ)|

φ(N, ν).

Proof of 2.9. Note that the first sum covers the GF -conjugacy classes of
pairs (N, ν) while the second sum covers all pairs (N, ν). The lemma easily
follows from [6, 3.14]. �

By Lemma 2.9, we see that

RegG
F

(L,λ) =
∑

{(N,ν):(L,λ)6
GF

(N,ν)}

|WNF (L, λ)|
|WGF (L, λ)|

RG
N(ΘNF

G,π · deg(µ)µ)

=
∑

{N:L6N}

|WNF (L, λ)|
|WGF (L, λ)|

RG
N(ΘNF

G,π ·URegN
F

(L,λ))

By Lemma 2.9, and by Lemma 2.7(2), we have that

URegN
F

(L,λ) =
∑

{M;L6M6N}

|WMF (L, λ)|
|WGF (L, λ)|

RG
N(
∑
µ

deg cπ(µ)µ)

where (M, µ) is d-split and such that (L, λ) 4 (M, µ). By virtue of the
formula ∑

N≥M
ΘNF

M,π

∣∣∣
MF

= AbπRegM
F
,

we obtain

RegG
F

(L,λ) =
∑

{(M,µ);(L,λ)6
GF

(M,µ)}

|WMF (L, λ)|
|WGF (L, λ)|

RG
M(AbπRegM

F · deg cπ(µ)µ)

where (M, µ) runs through the set of d-split pairs. The formula we need
results by another application of Lemma 2.9. This proves (1).

We move to (2). It is necessary and sufficient to prove that |GF |π divides

all of the values of RegG
F

π,(L,λ). By (1), we see that it suffices to prove that

for all d-split pairs (M, µ) such that (L, λ) 4 (M, µ),

|GF |π divides
degRG

M(1)

|WGF (M, µ)|
RG

M(AbπRegM
F · deg cπ(µ)µ).

As WGF (M, µ) is a quotient of a subgroup of WGF (L, λ) (see [6, 3.14]), we
see that WGF (M, µ) is a π′-group, and so it suffices to verify that |MF

ss|π
divides deg cπ(µ). This is a consequence of the following proposition.

Proposition 2.10. For γ ∈ E(GF , 1, (L, λ)), |GF
ss|π divides deg cπ(γ).

Proof of 2.10. We first prove the following technical lemma, a corollary of
Lemma 1.8.
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Lemma 2.11. Let γ ∈ E(GF , 1). Then

(γ,D(uσG
F

π∪{p}))GF =
∑

[(M,µ)]
GF

εGεM|GF : MF |π′
|WGF (M,µ)|

(RG
M(µ), γ)GF

Deg(cπ(µ))

|MF
ss|π

where the sum is over representatives of GF -conjugacy classes of pairs con-
sisting of a π-split Levi subgroup M of G and where µ ∈ E(MF , 1).

Proof of 2.11. By (1.5) and Lemma 1.8 we deduce that

D(uσG
F

π∪{p}) =
∑

[M π-split]
GF

εGεM
(DegRG

M(1))π′

|WGF (M)|
RG

M(cπ(uσM
F

π∪{p})).

Therefore

(γ,D(uσG
F

π∪{p}))GF =∑
[M π-split]

GF

εGεM
(DegRG

M(1))π′

|WGF (M)|
(cπ(uσM

F

π∪{p}),
∗RG

M(γ))MF .

On the other hand, again using (1.5), we also have:

(γ,D(cπ(uσG
F

π∪{p})))GF =
∑

[T∈Tπ(G)]
GF

εGεT
|GF : TF |π′\{p}
|WGF (T)|

(γ,RG
T (1))GF

=
∑

[T∈Tπ(G)]
GF

DegRG
T (1)

|WGF (T)|
(γ,RG

T (1))GF

|GF
ss|π

=
Degcπ(γ)

|GF
ss|π

.

Applying this last formula for M, we obtain

(γ,D(uσG
F

π∪{p}))GF =
∑

[M π-split]
GF

εGεM
|GF : MF |π′
|WGF (M)|

Deg(cπ(∗RG
M(γ)))

|MF
ss|π

and the lemma follows easily. �

This lemma allows us to prove the proposition, by induction on |GF : LF |.
Indeed, the left-hand side of Lemma 2.11 is an integer, since σG

F

π∪{p}, and

hence the dual of the unipotent projection D(uσG
F

π∪{p}), is a virtual character.

If L = G, the sum of the right-hand side of Lemma 2.11 only contains terms
equal to deg cπ(γ)/|GF

ss|π, whence the result holds in this case. In the general
case, the right-hand side includes only one term where M = G, equal to
deg cπ(γ)/|GF

ss|π and, since by the induction hypothesis deg(cπ(µ))/|MF
ss|π

is an integer, all of the other terms are π-numbers. Indeed, by [6, 3.3(2)(a)],
(RG

M(µ), γ)GF divides |WGF (M, µ)| and the latter number is prime to π by
(Hπ4). We deduce that the term for M = G is also a π-number, yielding
the proposition. �
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�

3. The Isotypies

Let ` be a prime that is excellent for (G, F ). Let eG
F

`,(L,λ) be an `-block

of GF with abelian defect group D (see Theorem 2.1 for the properties
and notation used here), where L = C◦G(D), and where λ is the canonical

character of CGF (D) in the block corresponding to eG
F

`,(L,λ) under the Brauer

correspondence. Recall the following properties (see Theorems 2.1 and 2.8;
see also [8, 4.2]).

• L is a Levi subgroup of G, and LF = CGF (D). Moreover, there
exists d such that L is d-split and (L, λ) is a d-cuspidal pair, and `
is Z◦(L)/Z◦(G)-adapted.

• Irr(eG
F

`,(L,λ),G
F ) is the set of constituents of the characters RG

L (θλ),

where θ ∈ Ab`Irr(L
F ).

We fix once and for all an F -stable maximal torus T of L. If θ is a linear
character of LF , we set (see Section 1 above)

G(θ) := G(T, θ|TF ) and GF (θ) := G(θ)F .

By Proposition 1.18(2), we know that the set of irreducible characters of the
group Z◦(L)F` oWGF (L, λ) is therefore

Irr(Z◦(L)F` oWGF (L, λ) = {Ind
Z◦(L)F` oWGF

(L,λ)

Z◦(L)F` oWGF (θ)
(L,λ)

(θ · τ)},

where θ runs through a system of representatives of the orbits of WGF (L, λ)
on Irr(Z◦(L)F` ), and where θ is identified with its extension to TF .

Theorem.

(1) For every subgroup S of Z◦(L)F` , the group M = C◦G(S) is a d-

split Levi subgroup of G. We have MF = CGF (S), and the Brauer

correspondent BrS(eG
F

`,(L,λ)) of eG
F

`,(L,λ) is given by the formula

BrS(eG
F

`,(L,λ)) =
∑

(L′,λ′)

eM
F

`,(L′,λ′)

where (L′, λ′) ranges over a set of representatives of the MF -conjugacy
classes of d-cuspidal pairs of MF that are GF -conjugate to (L, λ).

(2) Applying

IG
F

`,(L,λ) : ZIrr
(
Z◦(L)F` oWGF (L, λ)

)
→ ZIrr(GF , eG

F

`,(L′,λ′))

given by

Ind
Z◦(L)F` oWGF

(L,λ)

Z◦(L)F` oWGF (θ)
(L,λ)

(θ · τ) 7→ RG
G(θ)(θ · I

G(θ)
(L,λ)(τ))

yields an isotypy between (Z◦(L)F` oWGF (L, λ), 1) and (GF , eG
F

`,(L,λ)).
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Proof. Assertion (1) is proved in [6, 5.8] under more restrictive hypotheses

on `. These hypotheses ensure that MF = CGF (S), and that eG
F

`,(L,λ) is an `-

idempotent. However, in our case the first property is assured by Proposition
1.18(1), and the second is assured by the properties mentioned before the
statement of the theorem.

Similarly, for the proof of assertion (2), we can follow some of the details
of the proof in [6], whose steps we outline.

Recall that, for an `-element x of GF , we set G(x) := C◦G(x) and

GF (x) := G(x)F .

We first show that applying IG
F

`,(L,λ) commutes with applying the decom-

position:

(a) decx,G
F

`,(L,λ) · I
GF

`,(L,λ) = I
GF (x)
`,(L,λ) · dec

x,Z◦(L)F` oWGF
(L,λ)

` ,

where

• For a class function ψ on GF the class function decx,G
F

`,(L,λ)(ψ) on

GF (x) is the function that vanishes outside the `-regular elements

and takes the value ψ(xx′e
GF (x)
`,(L,λ)) on x′ ∈ GF (x)`′ .

• Similarly, for φ a class function on Z◦(L)F` oWGF (L, λ), we write

dec
x,Z◦(L)F` oWGF

(L,λ)

` (φ) for the class function on Z◦(L)F` oWGF (x)(L, λ)
that vanishes outside the set of `-regular elements and takes the value
φ(xx′) on x′ ∈ Z◦(L)F` oWGF (x)(L, λ)`′ .

To prove (a), using the Curtis type formula and the fundamental Theorem
3.2 of [6], we reduce to the case where x is central in G, then, using the
character formula for Deligne–Lusztig induction, to the case where x = 1
(see [6, 5.17] and after). We are therefore reduced to proving

(e) dec1,GF

`,(L,λ) · I
GF

`,(L,λ) = IG
F

`,(L,λ) · dec
1,Z◦(L)F` oWGF

(L,λ)

` ,

We proceed therefore by induction on dim(G)− dim(L). If L = G, then
we use the following lemma (here we differ from [6], in replacing the property
‘d-cuspidal’ by ‘of central defect’).

Lemma 3.1.

(1) Let λ be a character of central `-defect in LF and let θ ∈ Ab`Irr(L
F ).

We have

dec1,LF

`,(L,λ)(θ · λ) =
1

|Z◦(L)F` |
Ab`RegL

F · λ =
1

|Z◦(L)F` |
∑

η∈Irr(Z◦(L)F` )

ηλ.

(2) For θ ∈ Irr(Z◦(L)F` ), we have

dec
1,Z◦(L)F` (θ)

` =
1

|Z◦(L)F` |
RegZ

◦(L)F` =
1

|Z◦(L)F` |
∑

η∈Irr(Z◦(L)F` )

η.
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Contrary to the situation in [6], the two assertions are evident (the first
reflects the fact that a character of central `-defect vanishes on the elements
whose `-part is central).

The induction hypothesis then initially gives us property (a) for all el-
ements x ∈ Z◦(L)F` that are not central in G. Using the fact that any
class function in the block b is a sum of its decomposition for the various
x ∈ Z◦(L)F` , we deduce (a) for the remaining elements (see [6, 5.20]).

To demonstrate assertion (2) of the theorem, it remains to show that

IG
F

`,(L,λ) realizes a perfect isometry. We proceed again by induction on dim(G)−
dim(L). We do not reproduce the details of the proof of [6], but the reader
can easily verify that the only argument used there that needs to be changed
is [6, Lemma 5.21], which must be replaced by the following lemma.

Lemma 3.2. Let γ be a character of central `-defect of GF . For all g ∈ GF ,
|CGF (g) : Z◦(G)F` | divides γ(g).

Proof of 3.2. If we replace Z◦(G)F in the statement by Z(G)F = Z(GF )
(this is allowed since it was assumed ` is prime to the order of Z(G)F /Z◦(G)F ),
this is a well-known property of characters of central defect. �

�
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[1] Jonathan Alperin and Michel Broué. Local methods in block theory. Ann. Math.,
110:143–157, 1979.

[2] Nicholas Bourbaki. Lie groups and Lie algebras. Chapters 4–6. Elements of Math-
ematics (Berlin). Springer–Verlag, Berlin, 2002. Translated from the 1968 French
original by Andrew Pressley.
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groups. Astérisque, 212:7–92, 1993.
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