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The aim of this documentation is to cover all of the new commands introduced in the symmetric package.

To run it, use AttachSpec("symmetric.s");.



Chapter 1

Functions regarding partitions

1.1 Printing partitions

PrintReducedFormPartition(pa: :SeqEnum[RngIntE1t]) -> MonStgElt
Prints a partition in reduced form, suitable to including in a ITEX document. So, for example, the

partition with one 3 and nine 1s is printed as (3,17).

1.2 Counting partitions

NumberOfPartitionsWithAtMostParts(n: :RngIntElt,k: :RngIntElt) -> RngIntElt
Given a non-negative integer n and a positive integer k, returns the number of partitions of n into at

most k parts.

NumberOfPartitionsWithExactlyParts(n: :RngIntElt,k: :RngIntE1lt) -> RngIntElt
Given a non-negative integer n and a positive integer k, returns the number of partitions of n into exactly

k parts.

1.3 Special partitions

HookPartitions(n: :RngIntElt) -> SeqEnum

The collection of all hook partitions of size n, ordered lexicographically.

AlmostHookPartitions(n: :RngIntElt) -> SeqEnum

The collection of all almost-hook partitions of size n, ordered lexicographically.

TwoPartPartitions(n::RngIntElt) -> SeqEnum

The collection of all partitions of size n with exactly two parts, ordered lexicographically.

ThreePartPartitions(n::RngIntElt) -> SeqEnum

The collection of all partitions of size n with exactly three parts, ordered lexicographically.



1.4 Self-conjugate partitions

IsSelfConjugate(pa: :SeqEnum [RngIntE1t]) -> BoolElt

Return true if the partition pa is self-conjugate. Input must be a partition with no trailing zeros.

SelfConjugatePartitions(n: :RngIntElt,k: :RngIntElt) -> SeqEnum
The self-conjugate partitions of n of length at most k (or equivalently with first row of size at most k),
(n>0,k >0).

SelfConjugatePartitions(n: :RngIntElt) -> SeqEnum

The unrestricted self-conjugate partitions of n (n > 0).

NumberOfSelfConjugatePartitions(n: :RngIntElt) -> RngIntElt

The number of unrestricted self-conjugate partitions of the non-negative integer n.

SelfConjugateEndoskeleton(pa: : [RngIntE1t]) -> SeqEnum

Computes the largest self-conjugate partition contained within the partition pa.

SelfConjugateExoskeleton(pa:: [RngIntElt]) -> SeqEnum

Computes the smallest self-conjugate partition containing the partition pa.

1.5 Iterator for partitions

To construct all partitions of n, Magma has the in-built command Partitions(n). This is very space-
intensive for n > 100, so an iterator is required. We also include a function that computes the partition that

has position m in the lexicographic ordering on partitions.

NextPartition(pa::SeqEnum[RngIntElt] ,n::RngIntElt) -> SeqEnum
Given a partition pa of size n (where n is specified to speed up calculations slightly), returns the next
partition in the lexicographic ordering on partitions. If (1*) is given as input, it returns (n). Note that no

checking is done as to whether the input is a partition with no trailing zeros, to maintain speed.

NextPartition(~pa: :SeqEnum[RngIntElt] ,n: :RngIntElt)
Given a partition pa of size n (where n is specified to speed up calculations slightly), destructively re-
turns the next partition in the lexicographic ordering on partitions. If (17) is given as input, it returns (n).

Note that no checking is done as to whether the input is a partition with no trailing zeros, to maintain speed.

NextPartition(pa::SeqEnum[RngIntElt]) -> SeqEnum
Given a partition pa of length n, returns the next partition in the lexicographic ordering on partitions.

If (1) is given as input, it returns (n).

NextPartition(~pa: :SeqEnum[RngIntE1t])
Given a partition pa of length n, destructively returns the next partition in the lexicographic ordering

on partitions. If (1*) is given as input, it returns (n).



IndexToPartition(n: :RngIntElt,m: :RngIntElt) -> SeqEnum
Given a non-negative integer n and a positive integer m, returns the mth partition of size n in the lexico-

graphic ordering on partitions, so the mth entry in the sequence Partitions(n).

IndexToPartition(P: :SeqEnum[RngIntElt]) -> RngIntElt

Returns the index of the partition with respect to lexigraphical ordering among partitions of the same
size. (One is the first index by default, can be changed with the parameter StartAtIndex.) This is much
faster than the inbuilt Magma command IndexOfPartition for larger partitions. Note that the Magma

command starts counting at 0 whereas this function counts at 1, so it inverts the IndexToPartition function.

1.6 Hooks, -sets, etc.

This section covers extra commands regarding moving between [-sets and partitions, and other things asso-

ciated to [-sets.

IsBetaSet (X::SetEnum[RngIntE1t]) -> BoolElt,SeqEnum

Returns true and the corresponding partition if X is a beta set, and false otherwise.

PartitionToBetaSet (pa: :SeqEnum[RngIntElt]) -> SetEnum

Returns the corresponding 'standard’ beta-set to the partition pa. This is the beta-set with no 0.

BetaSetToPartition(X::SetEnum[RngIntElt]) -> SeqEnum

Returns the partition corresponding to the beta-set X.

StandardBetaSet (X: :SetEnum[RngIntE1t]) -> SetEnum

Returns the standard beta-set equivalent to X.

AreEquivalent (X: :SetEnum[RngIntE1t],Y: :SetEnum[RngIntE1t]) -> BoolElt,SetEnum
Returns true is the beta-sets X and Y are equivalent, and if so the standard beta-set equivalent to both

of them.

ConjugateBetaSet (X: :SetEnum[RngIntElt]) -> SetEnum
The standard beta-set corresponding to the conjugate partition of the partition corresponding to the

beta-set X.

HookLengths (pa: :SeqEnum [RngIntElt]) -> SetMulti
Returns the multiset of hook lengths of the partition pa.

PrintAbacus(pa: :SeqEnum [RngIntE1t],t: :RngIntElt) -> MonStgElt

Prints the t-abacus corresponding to the partition pa.



PrintAbacus(X: :SetEnum[RngIntE1lt],t::RngIntElt) -> MonStgElt

Prints the t-abacus corresponding to the beta-set X of first-column hook lengths.

1.7 Conjugacy classes

NumberOfSymmetricConjugacyClassSizes(n: :RngIntElt) -> RngIntElt
Returns the cardinality of the set of conjugacy class sizes of the symmetric group of degree n. For n up

to 100 this is returned from a lookup table. Otherwise the result is calculated, which can take some time.



Chapter 2

Character degrees and their

multiplicities

One of the more interesting aspects of symmetric group representation theory is how certain questions, which
are very easy for groups of Lie type, are incredibly difficult for symmetric groups, and vice versa. While it
is fairly easy to understand minimal degrees of symmetric group representations, second and third minimal,
and even higher, for groups of Lie type this is a difficult problem that has mostly been solved now.

On the other hand, it’s generally not so bad to describe what characters of large degree look like.
Asymptotically they are the Steinberg, and Deligne—Lusztig theory gives us a relatively satisfactory answer.

For symmetric groups things are much harder in some sense.

2.1 Maximal character degrees

These functions use a lookup table up to n = 150. Above that they construct the answer, which is quite

slow and uses a large amount of memory. This will fail if you computer has less than 5TB of RAM.

MaximalSymmetricCharacterDegree(n: :RngIntElt) -> RngIntElt,SetEnum

Returns the largest degree of an irreducible character of the symmetric group of degree n. The first
output is the degree, the second is the set of partitions corresponding to the irreducible characters of that
degree. For n at most 150 this is returned from a lookup table. Otherwise the result is calculated, which

will take a long time and definitely fail if you computer has less than 5TB of RAM.

SecondMaximalSymmetricCharacterDegree(n: :RngIntElt) -> RngIntElt,SetEnum

Returns the second largest degree of an irreducible character of the symmetric group of degree n. The
first output is the degree, the second is the set of partitions corresponding to the irreducible characters of
that degree. For n at most 150 this is returned from a lookup table. Otherwise the result is calculated,

which will take a long time and definitely fail if you computer has less than 5TB of RAM.

ThirdMaximalSymmetricCharacterDegree(n: :RngIntElt) -> RngIntElt,SetEnum
Returns the third largest degree of an irreducible character of the symmetric group of degree n. The first

output is the degree, the second is the set of partitions corresponding to the irreducible characters of that



degree. For n at most 150 this is returned from a lookup table. Otherwise the result is calculated, which

will take a long time and definitely fail if you computer has less than 5TB of RAM.

2.2 Multiplicities of character degrees

These functions also use a lookup table up to n = 129. Above that there are hard limits in Magma about
the size of constructible sets that make things challenging, and the values of the functions below have not

been calculated.

MaximumMultiplicityOfSymmetricCharacterDegree(n: :RngIntElt) -> RngIntElt
Returns the largest multiplicity of an irreducible character degree for the symmetric group of degree n.
For low values of n this is returned from a lookup table. Above that we start hitting the limits of how big a

set Magma is capable of constructing, so values above that have not been found.

NumberOf IrreducibleSymmetricCharacterDegrees(n: :RngIntElt) -> RngIntElt
Returns the cardinality of the set of irreducible character degrees of the symmetric group of degree n.
For n up to 129 this is returned from a lookup table. Above that we start hitting the limits of how big a set

Magma is capable of constructing, so values above 129 have not yet been found.

AverageMultiplicityOfSymmetricCharacterDegree(n: :RngIntElt:AsRational) -> .

Returns the average multiplicity of an irreducible character degree of the symmetric group of degree n.
If the parameter AsRational is set to be true, a rational number is returned. Otherwise a real number is
returned. For n up to 129 this is returned from a lookup table. Above 129 we start hitting the limits of how

big a set Magma is capable of constructing, so values above 129 have not yet been found.

MaximumMultiplicityOfSymmetricCharacterDegreeExceeds(n: :RngIntElt,d: :RngIntElt:
IgnoreSelfConjugatePartitions) -> BoolElt

Returns true if the maximum multiplicity of an irreducible character degree of the symmetric group of
degree n exceeds d. This is checked with a lookup table for n at most 129 and by constructing enough
character degrees to decide on the truth of the question if n is larger.

If the parameter IgnoreSelfConjugatePartitions, default false, is set to true, only partitions that are

not self-conjugate are considered, for applications to alternating groups.

2.3 oo-partitions and partition clusters

This section deals with co-partitions and clusters of partitions. These are taken from the paper Symmetric
group character degrees and hook numbers from 2008, and are used to find collections of irreducible characters
of S, that all have the same hook lengths (clusters of partitions). We will not define the terms in this section,
as you will probably not need this unless you are familiar with that paper.

We give a new type, InfPart, which has a partition and a period as its inputs.

2.3.1 General commands

InfinityPartition(pa::SeqEnum[RngIntElt],p: :RngIntElt) -> InfPart



Given a partition pa of at most p parts, and an integer p, construct the corresponding infinity-partition.

MissingHookLengths (X: :InfPart) -> SetMulti
The missing hook lengths of the infinity-partition X.

SplinteredInfinityPartition(X::InfPart) -> InfPart

The splintered infinity-partition corresponding to X.

IsCluster (X::SetEnum[InfPart]) -> BoolElt
IsCluster (X::SeqEnum[InfPart]) -> BoolElt

Returns true if the set X of infinity-partitions all have the same missing hook lengths.

IsCluster (X::SeqEnum[SeqEnum]) -> BoolElt
IsCluster (X::SeqEnum[SeqEnum]) -> BoolElt
Checks whether all partitions in X have the same hook lengths.

IsPeriodicCluster(X::SeqEnum[SeqEnum [RngIntE1t]]) -> BoolElt,SetEnum
IsPeriodicCluster(X: :SetEnum[SeqEnum[RngIntE1t]]) -> BoolElt,SetEnum
Returns whether X is a cluster of partitions, and the set of integers p for which X forms a periodic cluster

of period p. If the cluster is not periodic, it will return false.

PeriodicClusterGenerator (X: :SetEnum[SeqEnum [RngIntE1t]],p:RngIntElt) -> SetEnum
Given a periodic cluster X with period p, returns the smallest periodic cluster in the same sequence as X,
with the condition that the conjugate partitions of the elements in the cluster are distinct from the cluster.

(The period must be specified as clusters may have more than one period.)

PeriodicClusterExtension(X::SetEnum[SeqEnum[RngIntE1t]],p: :RngIntElt,n: :RngIntElt) -> SetEnum
Given a periodic cluster X with period p, returns the periodic cluster obtained by extending this cluster
by n. Note that while n may be negative, it cannot reduce the size of the cluster below that of the generator

of the periodic cluster.

DetermineClustersOfPartitions(n::RngIntElt) -> SeqEnum,SeqEnum
Determines all clusters among the partitions of of size n. The function returns the clusters of partitions,
and also the hook lengths of each cluster. The function DetermineLargeClusters0fPartitions should be

used if one wants just the clusters of order at least 3, as it is faster.

DeterminelLargeClustersOfPartitions(n: :RngIntElt) -> SeqEnum
Determines all clusters of size at least 3 among the partitions of of size n. The function returns the clusters

of partitions, and also the hook lengths of each cluster. This method is faster than DetermineClustersOfPartitions.

MatchInfinityPartitionsToClusters(X::SeqEnum[SetEnum[InfPart]],R::SeqEnum[SetEnum[SeqEnum]])
-> SeqEnum[SetEnum[SeqEnum] ]

Given a collection X of clusters of infinity-partitions and a set R of clusters of partitions, finds all periodic



clusters with infinity-partition from X and remainder from R. At the moment, all clusters in X and R should
have cardinality 4 for this to work, as it is optimized to find periodic clusters of cardinality 8 (when taken

with their conjugates).

EnvelopingPartition(pa: :SeqEnum[RngIntElt]) -> SeqEnum
Returns the enveloping partition corresponding to the partition pa. If pa and pa2 have the same hook
lengths then so do their enveloping partitions. Furthermore, they form a periodic cluster. This is the central

construction in the 2008 paper of Craven.

2.3.2 Commands to access databases

InfinityPartitionClusters(p: :RngIntElt) -> SeqEnum
The known set of infinity-partition clusters of cardinality 4, small partition size and period at most 10.

If p > 10 then no clusters are stored. If p < 7 then there are no clusters.

PeriodicPartitionClusters(p: :RngIntElt) -> SeqEnum
The known set of periodic partition clusters of cardinality 4 (8 with conjugates), small partition size and

period at most 10. If p > 10 then no clusters are stored. If p < 7 then there are no clusters.

PartitionClusters() -> SeqEnum

Returns all clusters of size greater than 2 for partitions of size at most 60.

LargePartitionClusters(n: :RngIntElt) -> SeqEnum

Returns all clusters of size greater than 2 for partitions of size n for n between 61 and 90.

2.4 Characters for GL,(¢) and GU,(q)

This section gives some functions for computing the generic degrees of unipotent characters for GL,(¢q) and
GU,(q), using the standard formula. They are included here as the degrees are closely related to those of

the symmetric group, and use the hook formula.

LusztigaFunction(pa:: [RngIntE1t]) -> RngIntElt
Returns the Lusztig a-function associated to the partition pa, i.e., the sum over i of (i-1) times the size

of the ith part of pa.

LusztigAFunction(pa:: [RngIntE1t]) -> RngIntElt
Returns the Lusztig A-function associated to the partition pa, i.e., the degree of the generic degree of
the unipotent character, so the sum of the Lusztig a-function and n + 1 choose 2 minus the sum of the hook

lengths of pa.

GLGenericDegree(pa: : [RngIntE1t]) -> RngUPolElt

Computes the generic degree of the unipotent character of GL,,(¢) associated to the partition pa.

GUGenericDegree(pa:: [RngIntElt]) -> RngUPolElt



Computes the generic degree of the unipotent character of GU,(q) associated to the partition pa.
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Chapter 3

Restrictions of characters of Sylow

subgroups

These commands concern restricting characters to Sylow p-subgroups P of symmetric groups, and calculating
their inner products with linear characters of the symmetric groups. Since characters of S,, are constant on
cycle types, when restricting to a Sylow p-subgroup we only need understand the values of the character
on cycle types all of whose parts are powers of p. We then need to understand the distribution of those
cycle types among the conjugacy classes of P. If, however, we consider linear characters only, it suffices to
understand the cycle type structure among the cosets of the derived subgroup P’ of P, which is a soluble
problem. The matrix of this distribution has been computed for n = 4,8, 16, 32,64, 128, so calculations
can be made for these n when p = 2. For p odd this can in theory be done, but choices about the linear
characters, their labelling and so on need to be made, and I have not done so at this time. (For p odd, the
restrictions of characters of S,, cannot be used to distinguish between linear characters of P. One can see
this since characters of P have pth roots of unity and characters of S, are integer-valued. Thus it seems
reasonable to bundle together all Galois orbits of linear characters for P.)

Some of the commands below take the prime p as a parameter as well, because they have been written

in a characteristic-free manner.

PartitionToGroupElement (pa: :SeqEnum[RngIntE1t]) -> GrpPermElt
A permutation of a symmetric group with cycle type pa. Although the name suggests that pa must be

a partition, any composition will work.
SymmetricCharacterValue(pa: :SeqEnum[RngIntE1lt] ,pe: :SeqEnum[RngIntE1t]) -> RngIntElt
Returns the irreducible character value for the character labelled by the partition pa on a permutation
of a symmetric group with cycle type the composition pe.
SymmetricCharacterValues(pa: :SeqEnum[RngIntElt],cy: :SeqEnum[SeqEnum [RngIntE1t]]) -> SeqEnum
The values of the irreducible character labelled by the partition pa evaluated at the cycle types given by

cy. Note that cy is a list of partitions/compositions, and not a list of group elements.

SymmetricSylowCycleTypes(n: :RngIntElt,p: :RngIntElt) -> SeqEnum

11



A list of all possible cycle types of elements in a Sylow p-subgroup of a symmetric group of degree n.

SymmetricSylow2LinearCharacters(n: :RngIntElt) -> Mtrx

The linear characters of a Sylow 2-subgroup of the symmetric group of degree n, given as a (square)
matrix. Note that n must be a power of 2. This function has a certain labelling of the rows and columns.
The labelling of the columns is based on the structure of the Sylow subgroup of the symmetric group, and

the labelling of the rows is arbitrary.

SymmetricCharacterSylowRestriction(pa: :SeqEnum[RngIntE1t],p: :RngIntElt) -> SeqEnum

Returns the restriction of the irreducible character labelled by the partition pa to a Sylow p-subgroup of
the symmetric group. The ordering on the elements of a Sylow p-subgroup of the symmetric group is given
by the function SymmetricSylowCycleTypes. For hook partitions restricted to the Sylow p-subgroup, use

the function SymmetricCharacterHookRestrictions.

SymmetricCharacterHookRestrictions(n: :RngIntElt,p: :RngIntElt) -> SeqEnum
Computes (quickly) the restrictions of characters associated to all hook partitions to a Sylow p-subgroup

of the symmetric group of degree n.

SymmetricSylowConjugateCharacter(ch: :SeqEnum[RngIntElt] ,n: :RngIntElt) -> SeqEnum
Given a character of a symmetric group of degree n restricted to a Sylow 2-subgroup, returns the con-
jugate character, i.e., the tensor product of ch with the sign character. (This function is not needed if p is

odd, as there are no conjugate characters of a Sylow p-subgroup.)

SymmetricSylowRestrictionInnerProducts(ch: :SeqEnum[RngIntElt] ,n: :RngIntElt) -> SeqEnum

Returns the list of inner products of the restricted character ch of the symmetric group of degree n with
the linear characters according to the labelling by hook partitions. This method currently only works for n
in {4,8,16,32,64,128}.

SymmetricSylowRestrictionInnerProducts (X::SeqEnum[SeqEnum[RngIntE1t]] ,n: :RngIntElt) -> SeqEnum
Returns the list of inner products of the collection X of restricted characters of the symmetric group of

degree n with the linear characters according to the labelling by hook partitions. This method currently

only works for n in {4, 8,16, 32,64, 128}.
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Chapter 4

Changes since original

Changes in V1.4

o Maximum multiplicities and character degree set lookup tables increased to 129.

o Increased LargePartitionClusters up to n at most 90.

Changes in V1.3

o New function PartitionToIndex, which is much faster than the Magma inbuilt function IndexOfPartition

for larger partitions, over around size 80.
o Increased LargePartitionClusters up to n at most 87.

o Maximal character degree values increased to 150.

Changes in V1.2

o Fixed a bug in InfinityPartition constructor.

e Added commands PrintReducedFormPartition, NumberOfPartitionsWithAtMostParts,
NumberOfPartitionsWithExactlyParts, SelfConjugateEndoskeleton, SelfConjugateExoskeleton,
IndexToPartition, NumberOfSymmetricConjugacyClassSizes EnvelopingPartition,
LargePartitionClusters, DeterminelargeClustersOfPartitions, LusztigaFunction, LusztigAFunction,

GLGenericDegree and GUGenericDegree.
e Functions in Sylow restrictions section upgraded to deal with n = 128.
e Maximum multiplicities and character degree set lookup tables increased to 115.

e Maximal character degree values increased to 135.

Changes in V1.1

e Improved some help wording.
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