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Abstract. We study coarse grainings of discrete time dynamical systems on
Rn. In particular we are interested in state space (or dimensional) aggre-
gations. We give a complete characterisation of compatible aggregations for
analytic maps on Rn. We show how our results apply to artificial chemistries,
Random Heuristic Search models, and related finite population models. We
also show that deciding whether a Markov chain has a non-trivial aggregation
is NP-complete.

1. Introduction

Modelling real life dynamical systems is a challenging problem. Whether we
are exploring social dynamics on a large scale, or trying to understand biological
interactions in a cell at the molecular level, the number of variables involved to
describe these processes is often too large for any meaningful computer simulation
or analysis to take place in a reasonable amount of time. One then has to resort to
various techniques of simplifying the underlying model, thus reducing its dimension
and enabling computation.

One typical approach is that of coarse graining. Given a (continuous) map
T : Rn → Rn, the map Ξ: Rn → Rm is a coarse graining of T provided the following
diagram commutes.

Rn Rn

Rm Rm

T

Ξ Ξ

S

The point here is that the dynamics are preserved by Ξ in the sense that Ξ
(
T k(x)

)
=

Sk
(
Ξ(x)

)
for any k (in topological dynamics, such a Ξ is called a semi-conjugacy).

Typically, of course, in practical applications one wants m to be very much smaller
than n.

In this paper we look at a systematic approach for finding those coarse grainings
which are a result of aggregating or lumping dimensions. Our approach stems
from analysing state space aggregations in the Random Heuristic Search framework
developed by Vose [20], but extends to provide a complete characterization of such
coarse grainings for discrete time Markov processes and analytic maps on Rn. The
theory provides an algorithm for determining such coarse grainings. However, we
also show that the problem of deciding whether a Markov chain has a non-trivial
state space aggregation is NP-complete.

Consider the following problem from evolutionary biology. Suppose that for a set
of n states, which we might call genotypes, G (for simplicity we frequently assume
that G = {1, 2, . . . , n} = [n]) we are given a set of rules that determines which
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genotype is dominant in any given pair, i.e. the genotype inherited by the offspring.
Equivalently, the rules specify an orientation for each edge of the complete graph
over the set of n vertices G. We write k → i to mean that mating between k and
i produces an offspring of type i. One would then like to predict how a population
of individuals with these genotypes evolves over time.

The first problem one faces is how to model this evolution. One common
approach is to assume that the population is large and well-mixed. This leads
to a model whose dynamics is given by a quadratic polynomial T : Rn → Rn,
T = (T1, . . . , Tn), where

(1) Ti(p) = Ti(p1, . . . , pn) = pi

(
pi + 2

∑
k→i

pk

)
, for any 1 ≤ i ≤ n,

and where the sum runs over all the genotypes k which are dominated by i. The
function T is the heuristic in the aforementioned Random Heuristic Search frame-
work, but we shall often say that T is a continuous, or infinite population model.
The interpretation is as follows: suppose that we start with a population in which
the proportions of different genotypes are given by p = (p1, . . . , pn), then Ti(p) gives
the probability that the offspring of two individuals chosen at random has geno-
type i. In particular, note that the non-negative portion (p ≥ 0) of the hyperplane
p1 + · · ·+pn = 1 is invariant under T . We remark that this construction generalises
binary tournaments given in [16,17].

Another approach is to consider finite population models. Assume that our
population is of fixed size r and that this total number does not change over time.
Let N0 denote the set of non-negative integers and let Xn

r be the set of all vectors in
Nn0 whose terms sum to r, so that v = (v1, . . . , vn) ∈ Xn

r represents a population of
r individuals vi of whom have genotype i, for each i ≤ n. ClearlyXn

r has cardinality
C(n, r) :=

(
r+n−1

r

)
. We then define a discrete-time Markov chain with the state

space Xn
r where the transition probabilities are given by

(2) P [v → w] = r!
w1! · · ·wn! (T1(v/r))w1 · · · (Tn(v/r))wn = r!

w! (T (v/r))w ,

where T is as in (1). The equation above implies that, starting from a population
v ∈ Xn

r , the transition probabilities are given by a multinomial random variable
with the expectation T (v/r) and the parameter r. In other words, if we start
with the population v, in order to obtain the generation in the next time step we
first compute T (v/r), this represents the proportions of different labels in an urn
from which we draw r of them independently with replacement to form the new
generation w.

Alternatively, one can think of this Markov chain purely in algorithmic terms.
Starting with a population represented by v ∈ Xn

r , one randomly chooses two in-
dividuals from it with replacement. They then produce an offspring which inherits
the dominant genotype of the parents (if the parents have the same genotype or if
the same parent is chosen twice, then the offspring inherits that same genotype).
This ‘mating’ process is repeated r times and results in a new generation of r off-
spring represented by w. It was shown in [20] that this leads to the same transition
probabilities as given in (2).

Once a particular model has been chosen, one might try to reduce the state space
in order to facilitate computations. This clustering of portions of the state space
should be done in such a way that the dynamics on these ‘higher level’ states is
still well-defined. In the present article we shall be interested only in reductions
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that work across the range of derived models we mentioned above. In Section 2
we argue that the only simplifications to be considered under this requirement are
state space aggregations that correspond to the changes of variables of the form
Pi = pi1 + · · · + pik where each of the variables pj occurs exactly once in exactly
one of Pi’s. This effectively gives a partition of the set of variables. It was shown
by Vose in [20] that for aggregations of this type it suffices to find those that are
compatible with the continuous model as they naturally extend to aggregations for
the derived models described above. We further show that they are also compatible
with the dynamics of derived models from a larger class (Theorem 2.1) reinforcing
the view that it is only aggregations of the continuous model that matter.

It turns out that for the map T as in (1) it is possible to characterise all the valid
aggregations efficiently using the notion of contiguous partitions. We say that an
equivalence relation (or the corresponding partition) ≡ on the set G is contiguous
with respect to an orientation → on G if for all i, j, k ∈ G we have

i ≡ j ≡ k whenever i ≡ k and k → j → i.

In words, any two genotypes i and k that are in the same block of the partition
must for each individual j from any other block either both dominate or both be
dominated by it. In Section 3 we prove

Theorem 3.1. Let T be a heuristic as in (1). An equivalence relation on G is
compatible (i.e. gives a coarse graining) with T if and only if it is contiguous with
respect to →.

This can be seen as an extension of the well-known condition for lumping states
of a Markov chain (see e.g. [9]) which says that any two states that are lumped
together must have exactly the same outgoing transition probabilities towards any
of the blocks in the partition. Theorem 3.1 itself can further be seen as a Corollary
of Theorem 6.1 where, more generally, we give a criterion for finding compatible
aggregations in terms of the Taylor coefficients of an analytic map.

Section 4 is about the computational complexity of our problem and there we
show that even for Markov chains the problem of deciding whether a non-trivial
aggregation of the system exists is NP-hard (Theorem 4.1). It is then perhaps some-
what surprising to learn that in that same section we give a polynomial algorithm
deciding the very same question in the class of weighted binary tournaments. The-
orem 3.1 above and its analogue, Theorem 3.2, play a decisive role in constructing
this algorithm.

In Section 5 we show how the systems we are studying can be interpreted in the
context of artificial chemistries. Indeed, the techniques developed here have been
used to model the synchronization of kinetochore spindles across the cell during
mitosis [14]. And lastly Section 6 deals with aggregations of analytic maps. This
can be seen as a general model encompassing all those discussed in the sections
preceding it. The contiguity criterion manifests itself there as a condition on certain
Taylor series coefficients, see (8).

Coarse graining has been previously studied by Vose and his collaborators and
some useful criteria have been devised that guarantee existence of coarse grainings in
certain cases [1,15–17]. Other authors, most prominently Rabitz and collaborators
[10–12], and more recently Jacobi [6], and Tomlin et al. [19] explored the coarse
grainings of continuous systems given by differential equations. It is not hard to
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see that the theory of linear coarse grainings coincides in both the discrete and
continuous systems.

We would like to stress that there are other approaches to simplifying the dy-
namics of iterated dynamical systems. These model reduction techniques include,
most notably, singular value decomposition and variants thereof (see, for example,
[5,7]). However, in general these do not preserve the inner dynamics of the system,
which is our primary concern.

Markov/
Linear maps

Binary Tournaments/
Oriented complete graphs

P Selections

Chemistries of degree 2/Quadratic T

. . .

Analytic T

Figure 1. Maps for which we characterise aggregations

2. Different models

In this section we describe a general method for generating finite population
Markov chain models akin to those we discussed in the introduction. Our starting
point is an infinite model given by a map T : Rn → Rn. We further assume that T
maps the unit simplex ∆n = {p ∈ Rn |

∑n
i=1 pi = 1 and pi ≥ 0} into itself.

Let {
Zk,iα , Y k,iβ | k, i ∈ N and α, β ∈ ∆n

}
be a family of independent random variables where

Zk,iα ∼
(

1 2 . . . n
α1 α2 . . . αn

)
and Y k,iβ ∼

(
1 2 . . . n
β1 β2 . . . βn

)
.

Let r ∈ N, the population size, be fixed and recall that for our purposes G =
{1, 2, . . . , n} = [n]. The family above acts as a stock of independent random vari-
ables we use to define a Markov chain (Sk : k ∈ N) over the state space Xn

r . The
evolution of this chain is prescribed by a transition function

F : Xn
r × [n]∞ × [n]∞ → Xn

r ,

and the rule
Sk+1 = F (Sk;Zk,1T (Sk/r), Z

k,2
T (Sk/r), . . . ;Y

k,1
Sk/r

, Y k,2Sk/r
, . . . ).

The idea is that by varying F one can emulate the effect of changing the simulation
algorithm by means of which the finite population model evolves. This will better
be understood on an example.
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If we let F be

F1(v; i1, i2, . . . ; j1, j2, . . . ) =
r∑
l=1

eil ,

where ei is the ith vector of the canonical basis in Rn, then the chain (Sk : k ∈ N)
satisfies the following transition rule

Sk+1 =
r∑
l=1

eZk,l
T (Sk/r)

.

In particular, this is precisely the same chain as the one described in the introduc-
tion. Each new generation Sk+1 is formed by drawing r genes with replacement
from an urn in which the distribution of different genes is given by T (Sk/r).

Another useful choice is taking
F2(v; i1, . . . ; j1, . . . ) = v + ei1 − ej1 .

In this case our chain (Sk : k ∈ N) will satisfy
Sk+1 = Sk + eZk,1

T (Sk/r)
− eY k,1

Sk/r

and the next generation Sk+1 is produced by throwing out one individual uniformly
chosen from the current population (the third term accounts for this) in order to
free up one space for another individual carrying a gene randomly chosen from
[n] with weights T (Sk/r) (the second term). When T is quadratic as in (1) this
evolution can, perhaps more naturally, be explained by saying that in each step
a couple1 is chosen that produces an offspring with the gene inherited from the
dominant parent while at the same time, independently, one individual dies.

Clearly F1 and F2 represent two extreme approaches to modelling this system.
The first is generational, as all the individuals get replaced at each step, while the
other represents one change at a time evolution. There are various other possibilities
in between which can be modelled by choosing a different F .

We now wish to show that any aggregation of genes that coarse grains the dy-
namics of T also works for the models induced by F1 and F2. Indeed in Theorem
2.1 below we give a sufficient condition on F for this to happen.

Recall that an aggregation is a partition of the set G = [n]. By choosing some
ordering on the blocks of the partition we can identify this with a function π : [n]→
[m] where m ≤ n. We set Ξπ to be an m× n matrix associated to this aggregation
where

Ξπ(i, j) =
{

1, if π(j) = i,

0, otherwise.
Thus, matrix Ξπ is the change of variable transformation corresponding to the
aggregation π. Asking that π is compatible with a map T : Rn → Rn amounts to
asking that there exists map T̃ : Rm → Rm such that Ξπ semi-conjugates T and T̃ ,
i.e.

Ξπ ◦ T = T̃ ◦ Ξπ.
Note that π aggregates G = {1, 2, . . . , n} but the induced models we now wish

to consider have Xn
r for the state space. There is, however, a natural partition on

Xn
r that π induces and it is given by Ξπ. In particular Ξπ maps Xn

r to Xm
r .

1As mentioned before, it could happen that a couple is in fact the same parent chosen twice.
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Theorem 2.1. Let F : Xn
r × [n]∞ × [n]∞ → Xn

r be a modelling scheme which is
compatible with any aggregation, i.e. such that for any m ≤ n and any π : [n]→ [m]
the map F̃ : Xm

r × [m]∞ × [m]∞ → Xm
r is well-defined by the formula

F̃ (Ξπ(v);π(i1), . . . ;π(j1), . . . ) = Ξπ(F (v; i1, . . . ; j1, . . . )).
Then given any system T : Rn → Rn all the aggregations compatible with T induce
coarse grainings of the Markov model (Sk : k ∈ N) obtained via F .

Proof. Let π : [n] → [m] be an aggregation compatible with T . Employing the
usual criteria for matching outgoing probabilities, it suffices to see that for any
three states v, u, w ∈ Xn

r the equation
P [Ξπ(Sk+1) = Ξπ(w) | Sk = v] = P [Ξπ(Sk+1) = Ξπ(w) | Sk = u]

holds as soon as Ξπ(v) = Ξπ(u). The LHS of this expression is

P [Ξπ(Sk+1) = Ξπ(w) | Sk = v] =

= P
[
Ξπ
(
F
(
Sk;ZkT (Sk/r);Y

k
Sk/r

))
= Ξπ(w) | Sk = v

]
=

= P
[
F̃
(

Ξπ(Sk);π
(
ZkT (Sk/r)

)
;π
(
Y kSk/r

))
= Ξπ(w) | Sk = v

]
=

= P
[
F̃
(

Ξπ(v);π
(
ZkT (v/r)

)
;π
(
Y kv/r

))
= Ξπ(w)

]
=

= P
[
F̃
(

Ξπ(v);ZkΞπ(T (v/r));Y kΞπ(v)/r

)
= Ξπ(w)

]
.

It remains to notice that the last expression above will not change if we substitute
u instead of v. This is because Ξπ(v) = Ξπ(u), and hence also by assumption
Ξπ(T (v/r)) = Ξπ(T (u/r)). Now backtracking the same steps we get the RHS. �

It is easy to check that both F1 and F2, regardless of the population size r,
satisfy the hypothesis of the theorem above. Thus, we have just shown that the
aggregations that work for the heuristic T , also coarse grain two associated infinite
families of Markov chains. This justifies our primary concern of coarse graining
heuristics.

At the end of this section we provide a simple example showing that even linear
coarse grainings that are not induced by an aggregation of variables need not lead
to a coarse graining of finite population models.

Example 2.2. Consider a map T : R3 → R3 given by T (p1, p2, p3) = (p1, p3, p2).
The projection map Ξ(p1, p3, p2) = p2 − p3 is clearly a coarse graining albeit
not induced by an equivalence relation. The transition matrix2 of the associ-
ated Markov chain constructed via F2 with r = 2 over the state space X3

2 =
{(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1)} is

1 · · 1/4 1/4 ·
· · 1 · 1/4 1/4
· 1 · 1/4 · 1/4
· · · · 1/2 ·
· · · 1/2 · ·
· · · · · 1/2

 .

2The dots stand for zeros.
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This matrix is clearly not compatible with the induced aggregation that merges the
states (0, 1, 1) and (2, 0, 0). /

3. Aggregating Weighted Binary Tournaments

In the previous section we argued why we are interested only in aggregations of
the infinite model T . Here, we seek to characterise these aggregations for the case
when T is modelling a Binary Tournament of the form (1).

We start by orienting the complete graph Kn over G = [n] and define a map
T : Rn → Rn, T = (T1, . . . , Tn) as in (1) by setting

Ti(p) = Ti(p1, . . . , pn) = pi

(
pi + 2

∑
k→i

pk

)
, for any 1 ≤ i ≤ n.

Recall that an equivalence relation ≡ on G is contiguous with respect to the orien-
tation → if for all i, j, k ∈ G we have
(3) i ≡ j ≡ k whenever i ≡ k and k → j → i.

Note that i and k in the definition above are distinct as we cannot have j → i and
at the same time i→ j. Also, in general, the relation→ need not be transitive. An
example of a non-transitive rule is the game ‘Rock, paper, scissors’ and extensions
thereof. We can now state our characterisation of compatible aggregations for these
systems. Its proof is omitted as it follows from more general Theorem 3.2 we prove
below.

Theorem 3.1. Let T be a heuristic as in (1). An equivalence relation on G is
compatible (i.e. gives a coarse graining) with T if and only if it is contiguous with
respect to →.

Suppose that it is not an orientation that is given onKn but let P : G2 → [0, 1] be
a function such that P (i, j) = 1−P (j, i) for all i, j ∈ G. We call such a P a selection
map. The interpretation is that in a clash between i and j, gene i dominates with
probability P (i, j) and hence j dominates with the probability 1−P (i, j) = P (j, i).
Note that this forces P (i, i) = 1/2 for all i ∈ G.

If P (i, j) ∈ {0, 1} whenever i 6= j then this reduces to the previous case as
P (i, j) = 1 can be interpreted as orienting the edge connecting i and j by choosing
j → i. It turns out that there is a characterisation of admissible aggregations that is
the same as the one given in Theorem 3.1. Of course, the definition of a contiguous
partition requires some amendments.

An equivalence relation ≡ on G is contiguous with respect to a selection map P
if for all i, j, k ∈ G we have

i ≡ j ≡ k whenever i ≡ k and P (i, j) 6= P (k, j).(4)
We remark that this reduces to (3) when P maps off-diagonal pairs to {0, 1}.

If we denote by π : [n]→ [m] the partition induced by the classes of ≡ then the
condition above amounts to requiring that for any two blocks π−1(s) and π−1(t),
with s 6= t, and for any i, k ∈ π−1(s) and j ∈ π−1(t) we have P (i, j) = P (k, j).

If we let l be any other element in π−1(t), the same condition now applied with
the roles of π−1(s) and π−1(t) swapped gives P (j, k) = P (l, k). But since P is a
selection this implies P (k, j) = P (k, l) and hence P (i, j) = P (k, l).

This shows that for a contiguous partition there is a well defined selection map
P : [m]2 → [0, 1] such that P (s, t) + P (t, s) = 1 for all s, t ∈ [m], and for every
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i ∈ π−1(s) and j ∈ π−1(t) we have P (s, t) = P (i, j). Although these are two
different maps, we shall keep the same notation.

How does the heuristic map look in this more general setting? Let us compute
the probability that the winning gene in a random pairing is of type i.

Ti(p1, . . . , pn) = p2
i +

∑
k∈[n]\{i}

2pipkP (i, k) = 2pi
n∑
k=1

P (i, k)pk,(5)

where we noted that P (i, i) = 1/2. This again reduces to (1) if the range of P is
{0, 1} on the off-diagonal pairs. We are now ready to prove our characterisation.

Theorem 3.2. Let P be a selection map on G, and let the heuristic T be as in
(5). An equivalence relation on G is compatible (i.e. gives a coarse graining) with
T if and only if it is contiguous with respect to P .

Proof. Let π : [n]→ [m] be the map associated to the partition of G = [n] induced
by a contiguous equivalence relation, and let Ξπ be the associated aggregation.
Take s ∈ [m] and calculate

((Ξπ ◦ T )(p))s =
∑
π(i)=s

Ti(p) =
∑
π(i)=s

2pi

(
n∑
k=1

P (i, k)pk

)
=

= 2
∑
π(i)=s

pi

 m∑
t=1

∑
π(k)=t

P (i, k)pk

 = 2
∑
π(i)=s

pi

 m∑
t=1

P (s, t)
∑
π(k)=t

pk


= 2(Ξπ(p))s

m∑
t=1

P (s, t)(Ξπ(p))t = T̃s(Ξπ(p)) = (T̃s ◦ Ξπ)(p).

Thus Ξπ ◦ T = T̃ ◦ Ξπ, where T̃ = (T̃1, . . . , T̃m). This shows that Ξ is a coarse
graining of the system and, moreover, we see that the coarse grained map T̃ is
in the same form as the original one. It expresses the rule of transformation for
meta-genes that are given by the blocks of the partition π.

Conversely, suppose that π : [n] → [m] is a partition of [n] whose associated
aggregation Ξπ coarse grains T . We need to prove that the equivalence relation
that it induces is contiguous with respect to P . To that end, take s, t ∈ [m],
s 6= t. Following the discussion after (4) above, it suffices to prove that for any
i, k ∈ π−1(s) and j ∈ π−1(t) we have P (i, j) = P (k, j). For the sake of getting a
contradiction assume that i, k and j are chosen such that P (i, j) < P (k, j).

To simplify the notation we can, without loss of generality, assume that i = 1,
k = 2, j = 3. Take vectors v = (1/2, 0, 1/2, 0, . . . , 0) and w = (0, 1/2, 1/2, 0, . . . , 0)
and note that

Ξπ(v) = Ξπ(w)
and since Ξπ is a coarse graining we must also have

(Ξπ ◦ T )(v) = (Ξπ ◦ T )(w)

and hence also

((Ξπ ◦ T )(v))π(1) =
∑

π(k)=π(1)

Tk(v) = T1(v) = 1
2(P (1, 1) + P (1, 3))
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is equal to

((Ξπ ◦ T )(w))π(1) =
∑

π(k)=π(1)

Tk(w) = T2(w) = 1
2(P (2, 2) + P (2, 3)).

As P (1, 1) = P (2, 2) = 1/2, we get P (1, 3) = P (2, 3), which contradicts the initial
assumption P (1, 3) < P (2, 3). This finishes the proof of the other implication. �

4. Intermezzo: On complexity

In this section we present a result showing that even for linear maps, i.e. Markov
Chains, finding aggregations is a difficult task in general. More precisely we show

Theorem 4.1. Deciding if there exists a non-trivial aggregation for a Markov chain
is NP-complete.

Recall that a Markov chain defined by a stochastic n× n matrix M possesses a
non-trivial aggregation if there exist a (non-trivial) surjective partitioning function
π : [n]→ [m] where 1 < m < n, and an m×m matrix R such that

ΞM = RΞ
where Ξ = Ξπ is the change of variable transformation associated to π.

In order for this decision problem to be well defined we clearly need to restrict the
entries of transition matrices to be in a countable domain, say in Q. Note however
that by multiplying each entry of the matrix M by a sufficiently large number we
can obtain a matrix with integer entries and constant column sums which clearly
has a non-trivially aggregation if and only if M does.

Further note that this problem is indeed in NP as given M , Ξ, and R verifying
if this is a solution amounts to multiplying and comparing matrices. It will thus
suffice to show that some well-know NP-complete problem, say the subset sum
problem (SSP), is polynomially reducible to the problem of deciding if an integer
matrix with constant column sums has a non-trivial aggregation. For more details
on these notions we refer the reader to any textbook dealing with complexity, e.g.
[18].

Recall that SSP (originally KNAPSACK problem in Karp’s list [8]) is an NP-
complete decision problem that given a set of positive integers {a1, . . . , an} and an
integer 0 < K <

∑n
i=1 ai asks if there exists a subset I ⊆ [n] such that

∑
i∈I ai = K.

Proof of Theorem 4.1. Let an input for SSP ({a1, . . . , an},K) be given. Set L =∑n
i=1 ai −K and let M be an (n+ 2)× (n+ 2) matrix as below

M =



a1 2a1 3a1 . . . (n+ 2)a1
a2 2a2 3a1 . . . (n+ 2)a2
...

...
...

. . .
...

an 2an 3a1 . . . (n+ 2)an
(n+ 2)K (n+ 1)K na1 . . . K
(n+ 2)L (n+ 1)L na1 . . . L


.

Note that 0 < L <
∑n
i=1 ai. We claim that M has a non-trivial aggregation if and

only if the given SSP instance has a solution. This will be enough to finish the
proof as this reduction is clearly polynomial in the size of the input.

First assume that I ⊆ [n] solves the SSP, i.e.
∑
i∈I ai = K. Let Ic denote the

complement of I in [n]. Thus
∑
i∈Ic ai = L.
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Define π : [n+ 2]→ [2] by

π(i) =
{

1, if i ∈ I or i = n+ 1,
2, otherwise,

and let Ξ = Ξπ be the associated change of variables transformation. One readily
checks that

ΞM = RΞ,

where

R =
[
(n+ 3)K (n+ 3)K
(n+ 3)L (n+ 3)L

]
and thus M has a non-trivial aggregation.

Conversely, assume that π : [n+2]→ [m] is a non-trivial aggregation compatible
with M , where 1 < m < n+ 2. Let Ξ = Ξπ and R be such that

(6) ΞM = RΞ

holds. By the pigeon-hole principle and because of non-triviality there must exist
k ∈ [m] such that 1 < |π−1(k)| < n+2. Choose two different integers s, t ∈ π−1(k).
Inspecting the elements on positions (k, s) and (k, t) in matrices ΞM and RΞ and
using (6) we conclude that they are the same and they equal

s
∑
i∈I

ai + (n+ 3− s)(κK + λL) = t
∑
i∈I

ai + (n+ 3− t)(κK + λL) = R(k,k),

where I = π−1(k)∩ [n] and κ and λ are 0-1 indicators depending on whether (n+1)
and (n+ 2) respectively are in π−1(k). From here we get

(s− t)
∑
i∈I

ai = (s− t)(κK + λL)

and as s 6= t ∑
i∈I

ai = κK + λL.

The only possibilities are now:
• κ = λ = 1 and I = [n],
• κ = 1, λ = 0 and I ( [n],
• κ = 0, λ = 1 and I ( [n],
• κ = λ = 0 and I = ∅.

The first can be discarded as it would imply that π−1(k) = [n+ 2] and the aggre-
gation given by π is trivial. Similarly, the last is impossible as it would imply that
π−1(k) = ∅ contradictory to our choice of k ∈ [m]. If the second holds then I is
the subset solving our SSP

∑
i∈I ai = K, and in case the third one holds, the com-

plement Ic of I in [n] solves the SSP
∑
i∈Ic ai = K, as we know that

∑
i∈I ai = L.

This completes the proof of the theorem. �

To aid the understanding, we illustrate the proof above with an example.
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Example 4.2. Take two instances of SSP ({5, 6, 1, 8}, 12) and ({9, 4, 12, 1}, 15).
The construction from the proof gives matrices

M1 =


5 10 15 20 25 30
6 12 18 24 30 36
1 2 3 4 5 6
8 16 24 32 40 48
72 60 48 36 24 12
48 40 32 24 16 8

 , M2 =


9 18 27 36 45 54
4 8 12 16 20 24
12 24 36 48 60 72
1 2 3 4 5 6
90 75 60 45 30 15
66 55 44 33 22 11

 .

The first system has a valid aggregation {{1, 2, 3, 5}, {4, 6}} and one can check that
Ξ1M1 = R1Ξ1 where

Ξ1 =
[
1 1 1 0 1 0
0 0 0 1 0 1

]
, R1 =

[
84 84
56 56

]
.

This agrees with the fact that the first instance of SSP has a solution a1 + a2 +
a3 = 5 + 6 + 1 = 12. Here n = 4 and the set of indices giving the solution is
I = {1, 2, 3} = {1, 2, 3, 5} ∩ [4].

The other instance of SSP does not have a solution and the consequence is, as
we have proved, that the Markov chain defined via transition probabilities in the
normalised matrix 1

182M2 has no non-trivial aggregations. /

It is worth noting that the problem of finding a non-trivial aggregation can
be efficiently solved for certain classes of systems. For example, weighted binary
tournaments discussed in Section 3 form one such a class. The polynomial algorithm
that checks for non-trivial aggregations in that case is given below.

The algorithm relies heavily on the fact that we have an efficient way of checking
whether a partition gives a compatible aggregations by means of the contiguity
test (4), see also Theorem 3.2. In particular this means that given any non-trivial
compatible partition {S1, . . . , Sk} of [n], and assuming that |S1| > 1, the refined
partition {S1} ∪ {{i} | i ∈ [n] \ S1} is also a non-trivial aggregation for the same
weighted binary tournament. This reduces the number of aggregations we need to
check greatly, but still leaves exponentially many of them to be considered. The
final trick making this work in polynomial time is that by virtue of (4) at each step
we can either verify that the current lump S is a block of a compatible aggregation,
or we can increase it by at least one element S ←− S ∪ Q and be certain we are
not omitting any solutions by doing so.

Let us explain in plain words what this algorithm does. It starts by considering
all possible pairs s, t ∈ [n], s 6= t and then attempts to prove that there is a
compatible aggregation lumping those two variables together. S is the current
candidate for a block of a compatible aggregation. Using criterion (4) the algorithm
picks all the elements Q ⊆ [n]\S that falsify the contiguity property. If Q = ∅ then
we have a certificate of S being a lump of a non-trivial compatible aggregation,
otherwise S ∪ Q is taken to be a new candidate. If in the end this results with S
being everything (S=[n]) we conclude that no non-trivial aggregation lumps s and
t together. Should this be the case for all the pairs s and t, we have a proof that
no non-trivial aggregations exist.

This discussion thus proves

Theorem 4.3. Determining whether a non-trivial aggregation for a weighted binary
tournament exists is in P.
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input : Rational n× n matrix P satisfying Pij + Pji = 1 and Pii = 1/2
output: Yes if the tournament given by P has a non-trivial aggregation, No

otherwise
foreach s, t ∈ [n], s 6= t do

S ←− {s, t}
repeat

Q←− ∅
foreach j ∈ [n] \ S do

j_is_not_compatible←− No
foreach i, k ∈ S, i 6= k do

if Pij 6= Pkj then
j_is_not_compatible←− Yes

end
end
if j_is_not_compatible then

Q←− Q ∪ {j}
end

end
S ←− S ∪Q

until Q = ∅
if S 6= [n] then

return Yes
end

end
return No

5. Artificial Chemistries

We shall now show that the selection map model considered in Section 3 can
further be generalised to include even larger class of quadratic maps. A natural
way to interpret these is through artificial chemistries.

Example 5.1 (Chemical reactions of degree 2). Let each number in [n] represent
a different chemical. Assume that for each choice of two chemicals c1 and c2 (not
necessarily different) we are given a distribution τv = (τ1,v, τ2,v, . . . , τn,v) over [n]
whose entries are interpreted as the proportions of each of the chemicals produced
by a chemical reaction involving the particles c1 and c2 as reactants. The vector
v ∈ Xn

2 is, as before, used to represent the chosen pair by setting v = ec1 + ec2 . We
can also write this as a set of

(
n+1

2
)
equations of the form

c1 + c2 → τ1,v · 1 + τ2,v · 2 + · · ·+ τn,v · n.
The evolution of such a system (assuming the chemical solution contains a large

number of particles and is well-mixed) is given by T = (T1, . . . , Tn) : Rn → Rn
where

Ti(p) =
∑
v∈Xn2

2
v1! · · · vn!τi,vp

v1
1 · · · pvnn =

∑
v∈Xn2

2
v!τi,vp

v.

The factor 2/v! accounts for the number of different ways to choose the reactants
represented by v. Here it is either 2, if the reactants are different, or 1, if they are
not.
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One can show that for an aggregation Ξ to be compatible with this dynamics
Ξ(τ1,v, . . . , τn,v) = Ξ(τ1,w, . . . , τn,w) must hold true whenever Ξ(v) = Ξ(w). In other
words, taking the blocks of the partition associated with Ξ as meta-chemicals, the
distributions over these must be well-defined for all the pairings of meta-chemicals
as reactants. This is a direct consequence of Theorem 6.1 we prove later on. /

We could interpret any system given by a selection map as in (5), as a chemistry
of degree 2. But the chemistries are still more general since they also incorporate
systems as in the following example.

Example 5.2. Consider a second order chemistry on Zn = {0, 1, 2, . . . n− 1} with
the reaction rules

i+ j → 1 · (i+ j mod n), for all i, j ∈ Zn.

Following Example 5.1, a partition π : Zn → M will be a valid aggregation if and
only for any two of its blocks, it is well defined which block they produce. Let us
fix one of the blocks π−1(m) for m ∈ M . Then for any element d ∈ Zn the set
(π−1(m) + d mod n) must be contained within one block. From here it is not hard
to see that all the blocks are translates (or cosets) of the set {0, l, 2l, . . . , (n − l)},
where l is some positive divisor of n. Thus the range of π in M can be given a
group structure that makes it isomorphic to Zl.

This establishes a correspondence between the compatible aggregations and the
divisors of n. In fact, both the compatible aggregations and the set of divisors of
n come equipped with a natural partial order making them into lattices. It is not
hard to see that these lattices are isomorphic and the refinement relation in the
former corresponds to the relation ‘is divisible by’ in the latter. /

6. Aggregating analytic maps

In this section we give a general framework incorporating, amongst others, mod-
els from Sections 3 and 5. Our results in this section apply to maps that are given
by an absolutely convergent series T = (T1, . . . , Tn) : Rn → Rn

(7) Ti(p) =
∑

v1,...,vn∈N0

αi,v
v1! · · · vn!p

v1
1 · · · pvnn =

∑
v∈Nn0

αi,v
v! p

v

where αi,v ∈ R for 1 ≤ i ≤ n, v ∈ Nn0 is a family of parameters. Our goal is to
derive a sufficient and necessary condition for an aggregations π : [n] → [m] to be
compatible with T solely in terms of these parameters. Indeed, we prove

Theorem 6.1. Let T = (T1, . . . , Tn) : Rn → Rn be an absolutely convergent series
as in (7) defining an analytic function on Rn. An aggregation Ξ = Ξπ : Rn → Rm
(associated to π : [n]→ [m]) is a valid coarse graining if and only if

Ξ(α1,v, . . . , αn,v) = Ξ(α1,w, . . . , αn,w) whenever v, w ∈ Nn0 with Ξ(v) = Ξ(w).(8)

In particular, for all u ∈ Nm0 the coefficients (β1,u, . . . , βm,u) = Ξ(α1,v, . . . , αn,v),
where v ∈ Nn0 is chosen such that Ξ(v) = u, are well-defined and the coarse grained
system is a convergent series on Rm given by Q = (Q1, . . . , Qm) : Rm → Rm where

Qi(q) =
∑

u1,...,um∈N0

βi,u
u1! · · ·um!q

u1
1 · · · qumm =

∑
u∈Nm0

βi,u
u! q

u.
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Note the similarity between condition (8) above and (4). Indeed, it is not hard
to see that the former generalises the latter when T is a heuristic induced by a two
point selection, and hence the theorem above generalises Theorem 3.2.

Our proof of this result is elementary and relies on the well-known multi-variable
multinomial theorem and the fact that aggregations compatible with T must also
be compatible with any of the partial derivatives of T . We also use a criterion for
coarse grainings from [17] specialised for the case of linear maps, Proposition 6.3
below.

Recall that, as before p = (p1, . . . , pn) ∈ Rn, and ei is i-th vector of the canonical
basis in Rn. Variables v, w, etc. are reserved for labelling vectors in Nn0 and |v| :=
v1 +v2 + · · ·+vn. Following the multi index notation due to Schwartz, the factorial
function naturally extends over integral vectors via v! = v1! · · · vn! and so do integral
powers pv := pv1

1 p
v2
2 . . . pvnn . It is also convenient to introduce a shorthand C(n, r) :=(

r+n−1
r

)
, and for the space of (real) m× n matrices Mm×n. We also use vectors to

denote partial derivatives as in ∂vT (p) = d|v|

dp
v1
1 ...dpvnn

T (p1, . . . , pn).
Multinomial theorem is extremely easy to state using the introduced notation.

The proof is classical and is left to the reader.

Proposition 6.2 (The vector multinomial theorem). Let Ξ ∈Mm×n be a stochastic
0-1 matrix (m ≤ n) and π : [n] → [m] the associated aggregation, and let u ∈ Nm0 .
For any p ∈ Rn we have

(Ξp)u =
m∏
j=1

 ∑
π(i)=j

pi

uj

=
∑

y∈Nn0∩Ξ−1(u)

u!
y!p

y.

Proposition 6.3 ([17, Theorem 1]). Let T : Rn → Rn be a continuously differen-
tiable map and let Ξ: Rn → Rm, m ≤ n, be a linear transformation. Then Ξ is a
coarse graining of the system T if and only if the kernel of Ξ is invariant under the
differential of T at any point of the domain Rn, formally
(9) (DT )x · ker Ξ ⊆ ker Ξ for all x ∈ Rn.

Lemma 6.4. Let T : Rn → Rn be a smooth function of class Cd and let Ξ: Rn →
Rm be a linear map. If Ξ is a coarse graining of the system T then it coarse grains
∂vT : Rn → Rn for any v ∈ Nn0 for which |v| ≤ d.

Proof. It is enough to prove that ∂iT = ∂eiT = d
dpi
T is coarse grained via Ξ for

any 1 ≤ i ≤ n as the general result will then follow by induction. We denote the
coarse grained system by T̃ and calculate

Ξ d

dpi
T (p) = Ξ lim

h→0

1
h

(T (p+ hei)− T (p)) = lim
h→0

1
h

(ΞT (p+ hei)− ΞT (p)) =

= lim
h→0

1
h

(
T̃ (Ξp+ hΞei)− T̃ (Ξp)

)
= (DT̃ )ΞpΞei

which is a function of Ξp as can be seen from the formula. �

Note that the linearity of both the derivative and Ξ is crucial here as it has
allowed us to swap the operators ∂ei and Ξ. We also note in passing that the
calculation above proves that a surjective linear coarse graining of a smooth map
produces a system with the same degree of smoothness. In fact, as Tóth et al. prove
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in [19, Theorem 2.1], the Lipschitz property is also preserved in the coarse grained
system, and with the same order. We now proceed to prove the main result.

Proof of Theorem 6.1. To further simplify notation we write αv for the vector of
parameters (α1,v, . . . , αn,v) and similarly for αw. This allows us to full exploit the
vector notation and write (7) as

T (p) =
∑
v∈Nn0

αv
v! p

v.

Assume first that Ξ(v) = Ξ(w) implies Ξ(αv) = Ξ(αw). We need to show that
Ξ(T (p)) is a function of Ξ(p). We calculate

Ξ(T (p)) = Ξ

∑
v∈Nn0

1
v!αvp

v

 =
∑
v∈Nn0

1
v!Ξ(αv)pv =

∑
u∈Nm0

∑
v:Ξ(v)=u

1
v!Ξ(αv)pv =

=
∑
u∈Nm0

1
u!βu

∑
v : Ξ(v)=u

u!
v!p

v =
∑
u∈Nm0

1
u!βu(Ξp)u = Q(Ξp)

where we used the multinomial theorem.
Conversely, assume that the aggregation Ξ is a coarse graining of T . It suffices

to show that Ξ(v) = Ξ(w) implies Ξ(αv) = Ξ(αw) when v − w = ei − ej , i.e. when
the vectors v and w differ by 1 at exactly two coordinates. For any other choice
of an equivalent pair v and w we can construct a chain of intermediate equivalent
vectors transforming v to w by changing one coordinate at the time. Applying
the base case to each link in the chain will produce a chain of equalities giving
the general case. For example, if n = 4 and the aggregation corresponds to the
partition {{1, 2, 3}, {4}} then

(3, 0, 0, 1) (2, 1, 0, 1) (1, 2, 0, 1) (0, 2, 1, 1)

is a valid sequence of intermediate transformations.
Assume, therefore, that for some y, v, w ∈ Nn0 we have y = v − ei = w − ej ,

and Ξ(v) = Ξ(w). Using Lemma 6.4 we get that Ξ coarse grains ∂yT . Note that
ei− ej = v−w ∈ ker Ξ, and the necessary condition for coarse graining (9) implies
that

(D(∂yT ))(0,...,0)(ei − ej) = ∂ei∂yT (0, . . . , 0)− ∂ej∂yT (0, . . . , 0) =
= ∂vT (0, . . . , 0)− ∂wT (0, . . . , 0) ∈ ker Ξ.

Hence,

Ξ(∂vT (0, . . . , 0)) = Ξ(∂wT (0, . . . , 0)).

But the series for T is given as a Taylor series about (0, . . . , 0) and therefore
∂vT (0, . . . , 0) = αv for all v ∈ Nn0 . Thus Ξ(αv) = Ξ(αw), as required. �

Observation. Note that the proof works even if the series expansion for T is given
about a point other than 0. This allows to extend the result to any analytic function
T just by requiring that the condition (8) holds locally for a series expansion of T
about any point in the domain.
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Corollary 6.5. Let T = (T1, . . . , Tn) : Rn → Rn be an analytic function as in
(7). An aggregation Ξ: Rn → Rm is a valid coarse graining if and only if it coarse
grains each of the homogeneous components of T which are defined for each d ∈ N0
as the projection T (d) = (T (d)

1 , . . . , T
(d)
n ) : Rn → Rn on the space of homogeneous

polynomials of degree d where

T
(d)
i (p) =

∑
v1,...,vn∈N0
v1+···+vn=d

αi,v
v1! · · · vn!p

v1
1 · · · pvnn =

∑
v∈Nn0 :|v|=d

αi,v
v! p

v.

Proof. It suffices to note that |v| = |Ξ(v)| and similarly for w, and hence |v| = |w|
whenever Ξ(v) = Ξ(w). Applying Theorem 6.1 twice will now give the result. �

7. Concluding remarks

In the present paper we gave a criterion for an aggregation of variables to be
compatible with a map that is given by its series expansion; and showed how it can
be applied to artificial chemistries. Despite the attractive and deceptively simple
looking characterisations presented here, we also showed that the existence of a
non-trivial compatible aggregation is a difficult problem in general. This means
that for some systems, an algorithm searching for compatible aggregations cannot
essentially be better then the one that exhaustively tests all the partitions of the
set of variables.

For certain classes of problems, as we saw in the case of binary tournaments, it
is possible to give an efficient algorithm searching for aggregations. The ideas we
used here are somewhat similar in flavour to those used in other model reduction
algorithms for DTMCs, one of such being ‘partition minimisation’ introduced by
Paige and Tarjan in [13], and adapted to Markov chains in [2].

We also looked into different ways of modelling finite number particles systems.
Given an infinite population model, one possible way of simulating the system was
using Random Heuristic Search framework. The main characteristic of the RHS
approach is that it is generational. Each new generation, although dependent on
the previous one, consists of an entirely new collection of entities. Sometimes,
other approaches may be more appropriate. Indeed, if our algorithm is supposed
to simulate a real biological system, it is natural to allow the members of different
generations to coexist. Similarly, if we are to simulate a chemical process, we would
like to keep most of the particles for the new generation, and only those few that
bump into another particle with which they can react, will be replaced with a
product of the reaction in the next time step.

Artificial chemistries are a fruitful area and it is no surprise that different authors
(Fontana et al. [4], Tóth et al. [19], Dittrich et al. [3] to name a few) model chemical
reactions in different ways. What seems promising is that all of them incorporate
a polynomial model similar to the one we had above. This should mean that the
results on compatible aggregations can be easily transferred across the modelling
paradigms, and this is something we would like to explore in future.
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