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CHEMICAL FRONT PROPAGATION IN PERIODIC FLOWS:
FKPP VERSUS G⇤
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Abstract. We investigate the influence of steady periodic flows on the propagation of chemical
fronts in an infinite channel domain. We focus on the sharp front arising in Fisher–Kolmogorov–
Petrovskii–Piskunov (FKPP) type models in the limit of small molecular di↵usivity and fast reaction
(large Péclet and Damköhler numbers, Pe and Da) and on its heuristic approximation by the G
equation. We introduce a variational formulation that expresses the two front speeds in terms of
periodic trajectories minimizing the time of travel across the period of the flow, under a constraint
that di↵ers between the FKPP and G equations. This formulation makes it plain that the FKPP
front speed is greater than or equal to the G equation front speed. We study the two front speeds
for a class of cellular vortex flows used in experiments. Using a numerical implementation of the
variational formulation, we show that the di↵erences between the two front speeds are modest for a
broad range of parameters. However, large di↵erences appear when a strong mean flow opposes front
propagation; in particular, we identify a range of parameters for which FKPP fronts can propagate
against the flow while G fronts cannot. We verify our computations against closed-form expressions
derived for Da ⌧ Pe and for Da � Pe.

Key words. front propagation, large deviations, WKB, cellular flows, Hamilton–Jacobi, ho-
mogenization, variational principles
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1. Introduction. A classical model for the concentration ✓(x, t) of spreading
reacting chemicals is the FKPP equation, or FK equation for short, named after the
classical works by Fisher [18] and Kolmogorov, Petrovskii, and Piskunov [25] based on
logistic growth and di↵usion. Numerous environmental and engineering applications,
from the dynamics of ocean plankton to combustion [43, 33], motivate its extension to
include the e↵ect of an incompressible background steady flow u(x, y) = (u, v). The
FK equation considered here then takes the nondimensional form

(FK) @
t

✓ + u ·r✓ = Pe�1 �✓ +Da r(✓).

The reaction term r(✓) = ✓(1� ✓) or, more generally, any function r(✓) that satisfies
r(0) = r(1) = 0 with r(✓) > 0 for ✓ 2 (0, 1), r(✓) < 0 for ✓ /2 [0, 1], and r0(0) =
sup0<✓<1 r(✓)/✓ = 1. The nondimensional parameters are the Péclet and Damköhler
numbers

(1.1) Pe = V L/ and Da = L/(V ⌧),

where V and L are the characteristic speed and lengthscale of the flow,  the molecular
di↵usivity, and ⌧ the reaction time. Motivated by experiments, we focus on two-
dimensional channel domains with parallel, impenetrable walls where v = @

y

✓ = 0
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132 ALEXANDRA TZELLA AND JACQUES VANNESTE

and take the front-like initial and boundary conditions

✓(x, y, 0) =
x0, ✓ ! 1 as x ! �1, ✓ ! 0 as x ! 1,

where denotes the indicator function. In the absence of advection, (FK) admits
front solutions that propagate from the left to the right of the channel at the non-
dimensional “bare” speed

(1.2) c0 = 2
p

Da/Pe

corresponding to the dimensional speed c⇤0 = c0V . When the flow u(x, y) is spatially
periodic, front solutions persist as pulsating fronts [47, 48, 4], changing periodically
in time as they travel at a speed cFK, so that

(1.3) ✓ (x+ 2⇡, y, t+ 2⇡/cFK) = ✓(x, y, t),

where 2⇡ is the spatial period of the flow.
When reaction dominates over di↵usion, i.e., when

(1.4) PeDa � 1,

the front interface is sharp and can be approximated by a single curve (in two dimen-
sions, as assumed here) where all the reaction takes place. A distinguished regime
then arises for

(1.5) Da/Pe = c20/4 = O(1),

when advection and reaction–di↵usion both contribute to the front propagation at the
same order. In these conditions, a heuristic model is often used in place of (FK). In
this model, the front is the zero-level curve ✓(x, y, t) = 0, say, where ✓(x, y, t) satisfies
the Hamilton–Jacobi equation

(G) @
t

✓ + u ·r✓ = c0|r✓|,

termed the G equation [46] (see also [41, 23]). This model is popular in the combustion
science literature (see, e.g., [36] and references therein). For u = 0, the front speed
predicted by (G) is obviously c0, matching the speed predicted by (FK). For spatially
periodic u 6= 0, (G) predicts pulsating front solutions propagating with a speed cG
that in general di↵ers from cFK [49, 6]. The relation between the two speeds cFK and cG
(with dimensional equivalents c⇤FK = cFKV and c⇤G = cGV ) is the subject of this paper.

Majda and Souganidis [29] showed that in the limit (1.4) the leading-order cFK
can be deduced from the long-time solution of a certain Hamilton–Jacobi equation.
This long-time solution is obtained by applying the asymptotic procedure of homog-
enization [26, 16] which exploits spatial scale separation to express cFK in terms of
the eigenvalue of a nonlinear cell problem posed over a single period of the flow. A
similar procedure can be applied to (G), leading to a di↵erent nonlinear eigenvalue
cell problem for cG. The two nonlinear cell problems are significantly simplified for
the special case of shear flows [13, 50]. For more general flows and arbitrary c0, ex-
plicit analytical expressions are not available, and the two cell problems need to be
solved numerically. However, these computations can be rather challenging (see, e.g.,
[24] for the nonlinear cell problem related to cFK). Analytic work has focused on the
strong-flow limit corresponding to c0 ! 0 [12, 50, 51].
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FRONT PROPAGATION: FKPP VERSUS G 133

In this paper, we rely on the variational representation of the two front speeds cFK
and cG. For (FK), this approach was introduced by Freidlin and collaborators (see [21,
Chap. 10], [19, Chap. 6], and [20]) to establish an expression for cFK in terms of a single
trajectory that minimizes an action functional. This was subsequently exploited in
[44] to obtain explicit results for cellular flows by carrying out a minimization over
periodic trajectories. For (G), Fermat’s principle in a moving medium determines
cG. The variational formulations enable us to express cFK and cG in terms of periodic
trajectories with X(⌧) = X(0) + (2⇡, 0) that minimize the time of travel ⌧ across
the period of the flow, under a constraint that di↵ers between (FK) and (G). In both
cases, the constraint involves the di↵erence between the velocity of the minimizing
trajectory and the velocity of the flow. For (FK) the constraint is integral, in terms
of the L2-norm, given by

(1.6) ⌧�1

Z
⌧

0
|Ẋ(t)� u(X(t))|2 dt = c20,

while for (G) the constraint is pointwise and given by

(1.7) |Ẋ(t)� u(X(t))|2 = c20

for all t 2 [0, ⌧ ]. These formulations allow us to understand the di↵erence between
cFK and cG, to immediately deduce that cFK � cG (already established by [50] using a
di↵erent approach), and to compute cFK and cG for a large class of steady, periodic u.

We begin with the simple case of shear flows u = (u(y), 0) before examining in
detail a two-parameter family of periodic cellular flows, given by u = (�@

y

 , @
x

 )
with streamfunction

(1.8)  = �Uy � (sinx+A sin(2x)) sin y.

This is used as a test bed in numerous experimental studies of advection–di↵usion–
reaction (e.g., [38, 40, 3, 32, 27]). The classic cellular flow introduced in [39] corre-
sponds to a zero mean velocity U = 0 and to A = 0. When confined between walls
at y = 0 and ⇡, this flow consists of a one-dimensional infinite array of periodic cells
composed of two vortices of opposite circulation. These vortices are bounded by the
separatrix streamline  = 0 that connects a network of hyperbolic stagnation points
(see Figure 1.1(a)). All streamlines remain closed when A > 0 and U = 0, but the
symmetry (x, y) 7! (x + ⇡,⇡ � y) is broken. For A > 1/2, the number of hyper-
bolic stagnation points doubles, and the periodic cell consists of four vortices rotating
in alternatively clockwise and counterclockwise directions (see Figure 1.1(b)). The
topology of the streamlines changes drastically for a nonzero mean velocity U 6= 0: an
open channel, bounded by the separatrices  = 0 and  = �U⇡, traverses the domain,
splitting apart the row of closed vortices. As the value of |U | increases, the width of
the open channel increases (see Figures 1.1(c) for U > 0 and 1.1(d) for U < 0). For
|U | large enough, the hyperbolic stagnation points and closed streamlines disappear.

Our aim is to determine the e↵ect of flow structures on the value of the two front
speeds cFK and cG and on their di↵erence. To achieve this, we develop and implement
a highly accurate numerical method that is based on the e�cient discretization of a
pair of variational principles that we obtain. Computations of the two front speeds are
complemented by a set of explicit expressions derived by formal asymptotics methods
in the limit of small and large values of c0 and various values of A and U . Table 1.1
summarizes the expressions for the basic cellular flow for which A = U = 0. These are
in agreement with the rigorous bounds developed in [50] for small c0 (see also [1, 8]).
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134 ALEXANDRA TZELLA AND JACQUES VANNESTE

(a)

(b)

(c)

(d)

Fig. 1.1. Streamlines for the cellular flow with streamfunction (1.8) for (a) U = 0, A = 0, (b)
U = 0, A = 1, (c) U = 0.1, A = 0, and (d) U = �0.5, A = 0. For U = 0, all streamlines are closed.
When U 6= 0, there is a channel of open streamlines.

Table 1.1
Asymptotic expressions for the front speed of (FK) and (G) in the basic cellular flow ((1.8)

with A = U = 0) for small and large “bare” speed c
0

= 2
p

Da/Pe. The di↵erence between the two
front speeds is asymptotically small in both limits (see section 4.1 for details). All variables are
nondimensional.

Equation Front speed ⇠ Range of validity

(FK) ⇡/Wp(32c
�2

0

) c
0

⌧ 1

c
0

(1 + 3c�2

0

/4� 105c�4

0

/64) c
0

� 1

(G) �⇡/(2 log(⇡c
0

/8)) c
0

⌧ 1

c
0

(1 + 3c�2

0

/4� 109c�4

0

/64) c
0
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FRONT PROPAGATION: FKPP VERSUS G 135

The paper is organized as follows. In section 2, we provide a brief derivation of
the two nonlinear cell problems that determine cFK and cG. In section 3, we introduce
the alternative characterization in the form of a pair of variational principles with
constraints (1.6)–(1.7). The two principles greatly simplify for shear flows, in which
case cFK = cG. Section 4 is devoted to flows with streamfunction (1.8). The numerical
scheme employed for the computations is described in the appendix. The paper ends
with a discussion in section 5.

2. Front speed.

2.1. Equation (FK). Gärtner and Freidlin [22] showed that for initial condi-
tions su�ciently close to a step function, the speed of the front associated with (FK)
can be deduced by the long-time behavior of the solution near the front’s leading edge.
There 0 < ✓ ⌧ 1 and r(✓) ⇡ r0(0)✓ = ✓, so that (FK) becomes

(2.1) @
t

✓ + u ·r✓ = Pe�1 �✓ +Da ✓.

For Pe � 1 and Da/Pe = c20/4 = O(1), the solution can be sought in the WKBJ
(Wentzel–Kramers–Brillouin–Je↵reys) or geometric-optics form

(2.2) ✓(x, t) ⇣ e�PeI (x,t,c0).

Collecting the terms with the same powers in Pe, we find that at leading order
I (x, t, c0) satisfies the Hamilton–Jacobi equation

(2.3) @
t

I + HFK(rI ,x, c0) = 0 with HFK(p,x, c0) = |p|2 + u(x) · p+ c20/4

the Hamiltonian. The step-function initial conditions correspond to I (x, 0, c0) =
0 for x  0 and I (x, 0, c0) = 1 for x > 0, and the boundary conditions to
@
y

I (x, t, c0) = 0 at y = 0, ⇡. The front is then identified as the location where
(2.2) neither grows nor decays exponentially with time. It is therefore the level curve

(2.4) I (x, t, c0) = 0.

In the long-time limit, the solution to (2.3) converges to that of the homogenized
Hamilton–Jacobi equation

(2.5) @
t

Ī + H̄FK(@xĪ , c0) = 0.

The e↵ective Hamiltonian, H̄FK, may be derived from a nonlinear eigenvalue problem,
obtained by writing the solution to (2.3) as the multiscale expansion
(2.6)
I (x, t, c0) = t

�
G (c, c0) + t�1�(x, c, c0) +O(t�2)

�
, where t � 1 and c = x/t = O(1).

Here c is the slow variable describing the speed of a moving frame of reference, and x

is the fast variable. We emphasize the particular form of (2.6), with a leading-order
term that is independent of x and involves G (c, c0) that depends on c only.1 The next
order involves �(x, c, c0), where �(x+ 2⇡, y, c, c0) = �(x, y, c, c0), while the boundary
conditions at y = 0, ⇡ imply that there, @

y

� = 0. Substituting (2.6) into (2.3) and

1Note that G (c, c
0

) may be interpreted as the Freidlin–Wentzell (small-noise, large-Pe) large-
deviation rate function for the position of fluid particles that have been displaced by advection and
di↵usion to a distance ct in a time t � 1 (see [21], [19, Chap. 6], and [20] for rigorous treatments).
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136 ALEXANDRA TZELLA AND JACQUES VANNESTE

equating powers of t�1 yields at leading order O(1) the nonlinear eigenvalue problem

(2.7) HFK((p, 0) +r�,x, c0) = H̄FK(p, c0), where p = G 0(c, c0),

with the prime denoting the derivative with respect to the first argument. Here, p
can be treated as a parameter and

(2.8) H̄FK(p, c0) = cG 0(c, c0)� G (c, c0)

is the eigenvalue. It can be shown that H̄FK(p, c0) is unique, nonnegative, real, and
convex in p (see [26, 14] for proofs), and therefore H̄FK(p, c0) and G (c, c0) are related
via a Legendre transform

(2.9) G (c, c0) = sup
p

(p c� H̄FK(p, c0)) and H̄FK(p, c0) = sup
c

(p c� G (c, c0)).

Combining (2.4) with (2.6) gives the front speed cFK as the solution of

(2.10) G (cFK, c0) = 0,

with cFK > 0 corresponding to (FK) fronts that propagate from left to right. Using
(2.9) it can be expressed explicitly in terms of the e↵ective Hamiltonian H̄ (p) as

(2.11) cFK = inf
p

1

p
H̄FK(p, c0),

an expression first obtained in [29].

2.2. Equation (G). The long-time solution to equation (G) can be treated
similarly. It satisfies the homogenized Hamilton–Jacobi equation

(2.12) @
t

✓̄ + H̄G(@x✓̄, c0) = 0,

with an e↵ective Hamiltonian H̄G found as eigenvalue of the nonlinear cell problem

(2.13) HG((p, 0) +r�,x, c0) = H̄G(p, c0),

where

(2.14) HG(p,x, c0) = u(x) · p� c0|p|.

Note that the nonlinearity |p|2 in HFK is replaced here by |p|. Nevertheless, H̄G

is unique and convex (details and proofs can be found in [49, 7]). The solution of
(2.12) is then ✓̄ = tF (c, c0), where F (c, c0) and H̄G(p, c0) are related via a Legendre
transform analogous to (2.9). Since the front corresponds to ✓(x, t) = 0, in the
long-time limit, the speed cG of right-propagating (G) fronts is found as the positive
solution of F (cG, c0) = 0 or, equivalently, as

(2.15) cG = inf
p

1

p
H̄G(p, c0).

We now obtain alternative formulations to (2.11) and (2.15) that shed light on
the di↵erence between the two speeds, are amenable to straightforward numerical
computations, and yield explicit expressions in asymptotic limits.
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FRONT PROPAGATION: FKPP VERSUS G 137

3. Variational principles.

3.1. Equation (FK). It is well known (see, e.g., [15]) that the solution to (2.3)
may be written as a variational principle involving an action functional associated
with the Lagrangian

(3.1) L (Ẋ,X) =
1

4
|Ẋ � u(X)|2

that is dual to the Hamiltonian HFK in (2.3). For x > 0 the solution is given by

I (x, T, c0) =
1

4

 
inf
X(·)

Z
T

0
|Ẋ(t)� u(X(t))|2 dt� c20T

!
,(3.2)

subject to X(0) = (0, ·), X(T ) = x,(3.3)

where X(·) represents a family of smooth trajectories with Y (·) 2 [0,⇡]. From (2.6)
we have

(3.4) G (c, c0) = lim
T!1

I ((cT, y), T, c0)

T
,

where the dependence on the specific value of y drops out (see, e.g., [37]). Together
with (3.2) this determines the function G (c, c0).

Expression (3.4) can be simplified using the spatial periodicity of the background
velocity u [44]. Assuming that the minimizing trajectory inherits the same spatial
periodicity, we take T = n⌧ with ⌧ = 2⇡/c and n � 1 to reduce (3.4) to

G (c, c0) =
1

4

✓
1

⌧
inf
X(·)

Z
⌧

0
|Ẋ(t)� u(X(t))|2 dt� c20

◆
,(3.5)

subject to X(⌧) = X(0) + (2⇡, 0).

Expression (3.5) provides a direct way to compute the minimizing trajectory and,
from (2.10), the corresponding front speed cFK, both numerically and in asymptotic
limits. Such computations were carried out in [44] for the specific case of the cellular
flow with closed streamlines that we consider further in section 4. These compu-
tations were validated against the numerical evaluation of cFK for finite Péclet and
Damköhler numbers obtained from an advection–di↵usion eigenvalue problem and
direct numerical simulations of (FK) with r(✓) = ✓(1� ✓).

We now obtain an alternative variational characterization of cFK. Since cFK satisfies
G (cFK, c0) = 0, it can be written as extremum of the function

(3.6) S(�) = sup
⌧

2⇡

⌧
� �G

✓
2⇡

⌧
, c0

◆

for arbitrary variations of the Lagrange multiplier �. Here we use that G is convex
in c, so that a single ⌧ = ⌧FK satisfies the constraint G (2⇡/⌧, c0) = 0 enforced by �.
Using (3.5) and redefining � to absorb a factor 1/4, we can rewrite this as

S(�) = sup
⌧

sup
X(·)

✓
2⇡

⌧
� �

✓
1

⌧

Z
⌧

0
|Ẋ(t)� u(X(t))|2dt� c20

◆◆
,(3.7)

subject to X(⌧) = X(0) + (2⇡, 0).(3.8)

D
ow

nl
oa

de
d 

03
/0

5/
19

 to
 1

47
.1

88
.5

5.
77

. R
ed

ist
rib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls/
oj

sa
.p

hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

138 ALEXANDRA TZELLA AND JACQUES VANNESTE

This can be interpreted as the maximization of 2⇡/⌧ under a constraint enforced by the
Lagrange multiplier �. Therefore, the front speed predicted by (FK) for Pe, Da � 1,
c0 = O(1) is given as

cFK =
2⇡

⌧FK
, where ⌧FK = inf

X(·)
⌧, subject to X(⌧) = X(0) + (2⇡, 0)(3.9)

and
1

⌧

Z
⌧

0
|Ẋ(t)� u(X(t))|2dt = c20.

This variational characterization expresses cFK as the maximum mean velocity achiev-
able by periodic trajectories that are constrained to depart from passive-particle tra-
jectories in a prescribed way.

3.2. Equation (G). An analogous variational characterization describes the
front speed associated with (G). Taking the same initial conditions as for (FK), the
front propagates from its initial location at X(0) = (0, ·) along trajectories X(t) that
obey Fermat’s principle in a moving medium (see, e.g., [10, Vol. 1, sect. IV.1]). Thus
the front reaches location x after a travel time

T (x, c0) = inf
X(·)

T with X(0) = (0, ·), X(T ) = x,(3.10)

subject to |Ẋ(t)� u(X(t))|2 = c20 for t 2 [0, T ],

where again we assume that X(·) represents a family of smooth trajectories with
Y (·) 2 [0,⇡]. In the long-time limit, x is large and the front moves at a constant
speed given by

(3.11) cG = lim
x!1

x

T ((x, y), c0)
,

where once more the dependence on y drops out. This characterization is significantly
simplified if we apply the same strategy as before and assume that the minimizing
trajectory is periodic. Taking T = n⌧ with n � 1, we obtain that

cG =
2⇡

⌧G
, where ⌧G = inf

X(·)
⌧, subject to X(⌧) = X(0) + (2⇡, 0)(3.12)

and |Ẋ(t)� u(X(t))|2 = c20 for t 2 [0, ⌧ ].

This characterization of the front speed for (G) closely parallels the characterization
(3.9) of the front speed for (FK).

For practical computations, it is convenient to rewrite (3.12) taking x as the
independent variable, using

(3.13)
dt

dx
= T 0(x), with T (0) = 0,

where T (x) denotes the time it takes to reach the point (x, Y (x)). The minimal travel
time over a spatial period is then expressed as

cG =
2⇡

⌧G
, where ⌧G = inf

T (·),Y (·)

Z 2⇡

0
T 0(x)dx subject to Y (2⇡) = Y (0)(3.14)

and |T 0(x)�1(1, Y 0(x))� u(x, Y (x))|2 = c20 for x 2 [0, 2⇡],

and Y (·), T (·) are taken to be smooth.
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3.3. Comparison. We now compare the two variational characterizations (3.9)
and (3.12) for the (FK) and (G) equations. In both, the front speeds are expressed in
terms of the travel times ⌧FK and ⌧G, which are determined by the periodic trajectories
that traverse a spatial period of the flow in the least time. The only di↵erence is that
the pointwise constraint on the relative velocity in (3.12) is replaced by a slacker,
time-averaged constraint in (3.9). An immediate consequence is that

(3.15) cFK � cG.

The same result was obtained in [50] using a min-max formulation of (2.7) and (2.13).
While (3.9) and (3.12) are useful for comparisons of this type, for numerical

computations we found it convenient to use (3.5) and (3.14) instead. Equation (3.5)
is useful for (FK) when, as is the case in section 4, we are interested in computing cFK
for a range of values of c0: the simple dependence of G on c0 means that the condition
G (cFK, c0) = 0 gives an explicit variational formula for c0 as a function of cFK with the
endpoint condition as sole constraint.

The variational characterization (3.12) is also useful to establish a necessary con-
dition for the existence of right-propagating front solutions for the (G) equation. It
is easy to see from the constraint in (3.12) that

(3.16) cG > 0 implies c0 > �min
x

max
y

u(x, y).

For smaller c0, there are no right-propagating (G) fronts. From (3.15) we then expect
that, for a range of c0, there exist right-propagating fronts for (FK) but not for (G).
We provide explicit examples confirming this in section 4.3.

Shear flows. It is easy to show that for shear flows with velocity u(x) =
(u(y), 0), cFK = cG. For (FK), the Euler–Lagrange equations associated with the
functional in (3.5) can be written as

(3.17) Ẋ(t)� u(Y (t)) = A1,
1
2 Ẏ

2(t) +A1u(Y (t)) = A2,

where A1 and A2 are two constants. The minimum of the functional is then achieved
when Y (t) = Y0, where Y0 is a constant to be determined. It follows that Ẋ(t) =
const = c as imposed by the endpoint condition. The functional then reduces to
(c� u(Y0))2. Its minimum is nonzero for c > u+ = max

y

u(y), the maximum velocity
in the channel, and given by (c� u+)2 with Y0 = Y+ such that u(Y+) = u+. Thus,

(3.18) G (c, c0) =
�
(c� u+)

2 � c20
�
/4 for c > u+,

and solving (2.10) gives the front speed cFK = c0 + u+.
On the other hand, the pointwise constraint (3.12) of the velocity may be param-

eterized so that

(3.19) Ẋ(t) = u(Y (t)) + c0 cos⇥(t) and Ẏ (t) = c0 sin⇥(t),

where ⇥(t) has the same period as X(t). The minimum value of ⌧ is obtained by
maximizing Ẋ(t). This is achieved for Ẏ (t) = 0, ⇥(t) = 0, and Y = Y+, i.e., for
trajectories that follow the (straight) streamline associated with maximal flow velocity.
We deduce that

(3.20) cFK = cG = c0 + u+.
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We therefore conclude that (FK) and (G) are equivalent in describing the long-time
speed of propagation. This was previously argued to be the case in [2], can be inferred
from the analysis in [13], and was proved in [50]. It is clear that a right-propagating
front is obtained for both (FK) and (G), provided that c0 > �u+ and that the front
is stationary for c0 = �u+ > 0.

4. Front speeds for periodic flows. For more general flows, closed-form for-
mulas are not available. We use the variational problems (3.5) and (3.14) whose
solutions are easy to approximate numerically. We obtain numerical approximations
by discretizing the trajectories, action functional, and constraints and determining
the optimal solutions by minimization. The numerical procedure is detailed in Ap-
pendix A. We use this procedure to compute the front speeds for (FK) and (G) and
a range of two-dimensional periodic flows. We now describe the results.

4.1. Cellular flow. We first compute the solutions for the closed cellular flow
with streamfunction (1.8) and U = A = 0. Figure 4.1 shows characteristic examples
of minimizing trajectories obtained for three di↵erent values of c0. For large values of
c0, the periodic trajectories for (FK) and (G) are close to the straight line y = ⇡/2.
In this case, the two trajectories are practically indistinguishable. A larger di↵erence
is obtained for small values of c0, in which case both trajectories follow closely a
streamline near the separatrix  = 0. In all cases it is clear that the trajectories are
invariant under the transformations (x, y) 7! (�x,⇡ � y) and (x, y) 7! (x+ ⇡,⇡ � y).

Fig. 4.1. (Color online.) Streamlines (thin black lines) of the closed cellular flow with stream-
function (1.8) and U = A = 0, and corresponding periodic trajectories for (FK) (minimizing (3.9),
thick blue lines) and (G) (minimizing (3.12), thick red lines) obtained numerically for c

0

= 0.1,
c
0

= 1, and c
0

= 10. The trajectories become closer to the straight line y = ⇡/2 as c
0

increases.
For c

0

� 10 the di↵erence between the two sets of trajectories is minimal.

Figure 4.2 shows the behavior of the front speeds for (FK) and (G) as a function of
c0. Clearly, there is a di↵erence between cFK and cG which is more marked for smaller
values of c0. However, this di↵erence is small: (G) only slightly underpredicts the
front speed of (FK). The behavior of cFK and cG and their di↵erence can be captured
by explicit expressions obtained in two asymptotic limits.

4.1.1. Small-c0 asymptotics. The first asymptotic limit corresponds to c0 ⌧
1. This limit has been studied in [50], which rigorously derived tight bounds on cFK
and cG. We find an approximation to cFK by approximating G (c, c0) in (3.5) for c ⌧ 1.
We previously found [44] that the minimizing periodic trajectory in (3.5) may be
divided into two regions that we now describe. In region I, X(t) ⌧ 1, and therefore
we may seek a regular expansion in powers of c of the form

(4.1) X(t) = (0, Y0(t)) + c(X1(t), Y1(t)) + · · · ,
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-100

-10-1

-10-2
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Fig. 4.2. (Color online.) Comparison between numerical and asymptotic results of the front
speed c associated with equations (G) (in blue) and (FK) (in red). The numerical results are derived
from the minimization of (3.9) (solid blue line) and (3.12) (solid red line). These are juxtaposed
against (left) the small-c

0

approximations (4.6) (dashed blue line) and (4.11) (dashed red line) and
(right) the large-c

0

approximations (4.15) (dashed blue line) and (4.18) (dashed red line).

where, without loss of generality, we take X(0) = 0. In region II, Y (t) ⌧ 1, and so
we take

(4.2) X̄(t) = (X̄0(t), 0) + c(X̄1(t), Ȳ1(t)) + · · · ,

where X̄(⌧/4) = ⇡/2 with ⌧ = 2⇡/c. We then exploit the symmetries that character-
izes the streamfunction to extend the trajectory over the whole time period ⌧ .

Substituting (4.1) and (4.2) into (3.5) gives a sequence of integrals corresponding
to successive powers of c. Minimizing each yields

Ẏ0 = � sinY0, Ẍ1 = X1, Ẏ1 = �Y1 cosY0,(4.3a)

˙̄X0 = sin X̄0,
˙̄X1 = X̄1 cosX0,

˙̄Y1 = �Ȳ1 cos X̄0.(4.3b)

Thus at O(c) in region II, the minimizing trajectory follows exactly the stream-
lines. The two solutions can be matched in their common region of validity, given by
X(t), Y (t) ⌧ 1 (and corresponding to 1 ⌧ t ⌧ ⌧/4), to obtain

X1(t) = 4 e�⌧/4 sinh t /c, Y0(t) = 2 tan�1(e�t), Y1(t) = 0,(4.4a)

X̄0(t) = 2 tan�1(e�⌧/4+t), X̄1(t) = 0, Ȳ1(t) = 4 e�⌧/4 cosh(⌧/4� t) /c.(4.4b)

At this order, the only nonzero contribution to the integral in (3.5) comes from the
behavior in region I. We use (4.4a) to obtain that |Ẋ(t) � u(X(t))|2 ⇠ c2(Ẋ1(t) �
X1(t) cosY0(t))2 and thus

(4.5) G (c, c0) ⇠
1

4

✓
32

⇡
ce�⇡/c � c20

◆

since c = 2⇡/⌧ . Solving G (cFK, c0) = 0 finally gives the approximation

(4.6) cFK ⇠ ⇡

W
p

�
32c�2

0

� for c0 ⌧ 1.
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142 ALEXANDRA TZELLA AND JACQUES VANNESTE

Here, W
p

is the principal branch of the Lambert W function [34]. The above results
were previously derived in [44] and are included here for completeness. It is consistent
with the bounds of [50].

We obtain an approximation for cG in a similar way. The periodic trajectory
associated with the variational principle (3.12) is divided into the same two regions
as above. The regular expansions are this time more naturally expressed in powers of
c0 so that in region I, where X(t) ⌧ 1, we take

(4.7) X(t) = (0, Y0(t)) + c0(X1(t), Y1(t)) + · · · ,

where X(0) = 0. In region II, Y (t) ⌧ 1, and so we take

(4.8) X̄(t) = (X̄0(t), 0) + c0(X̄1(t), Ȳ1(t)) + · · · ,

where X̄(⌧/4) = ⇡/2, and once more extend the behavior over the whole ⌧ using
symmetry.

The periodic trajectory is now obtained by substituting (4.7) and (4.8) inside the
pointwise constraint in (3.12) from which we obtain equations for each power of c0.
This leads to two sets of equations,

Ẏ0 = � sinY0, Ẋ1 = X1 cosY0 + cos⇥0, Ẏ1 = �Y1 cosY0 + sin⇥0,(4.9a)

˙̄X0 = sin X̄0,
˙̄X1 = X̄1 cos X̄0 + cos ⇥̄0,

˙̄Y1 = �Ȳ1 cos X̄0 + sin ⇥̄0,(4.9b)

where ⇥0(t) and ⇥̄0(t) arise when parameterizing the constraint (3.12) in polar coor-
dinates. The minimum value of ⌧ , denoted by ⌧G, is obtained by maximizing Ẋ1(t),
˙̄X0(t), and

˙̄X1(t). This gives ⇥0(t) = ⇥̄0(t) = 0 and leads to

X1(t) = 2 cosh t tan�1(tanh(t/2)), Y0(t) = 2 tan�1(e�t), Y1(t) = 0,

(4.10a)

X̄0(t) = 2 tan�1(e�⌧G/4+t), X̄1(t) = � tanh(⌧G/4� t), Ȳ1(t) = ↵ cosh(⌧G/4� t),

(4.10b)

since cG = 2⇡/⌧G, where ↵ is a constant to be determined. Matching between the
solutions at O(c0) in their common region of validity, given by X(t), Y (t) ⌧ 1 (the
same cell corner as above), yields an expression for cG. Using (3.12), we deduce that

(4.11) cG = � ⇡

2 log (⇡c0/8)

�
1 +O(c20)

�
for c0 ⌧ 1

and ↵ = ⇡/2. The order of the error is estimated by matching the solutions at O(c20)
(calculations not shown). This is qualitatively similar to the expression obtained in
[1, 8] using a heuristic approach and consistent with the rigorous bounds of [50].

Figure 4.2 shows that expressions (4.6) and (4.11) are in excellent agreement with
our numerical solutions; the same is true for expressions (4.4) and (4.10) describing
the trajectories (not shown). We may use W

p

(x) = log(x)� log log(x) + o(1) as x !
1 to further approximate (4.6) as cFK ⇠ �⇡/

�
2 log(c0/

p
32)
�
. This approximation

highlights the leading-order di↵erence between (4.6) and (4.11). However, this is only
a rough approximation which cannot, for instance, capture the nonmonotonic behavior
of cFK � cG that arises for small c0 values (not shown). Note that both derivations
of (4.6) and (4.11) tacitly assume that Y0(0) = ⇡/2. This is easily shown to be the
case once the behavior of the trajectory over the whole (rather than a quarter) spatial
period of the flow is taken into account.
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4.1.2. Large-c0 asymptotics. A second asymptotic limit corresponds to c0 �
1. We extend the approach in [44] and take the minimizing trajectory associated
with the functional in (3.5) to be at leading order a straight line with higher order
corrections given by a regular expansion in c�1:

(4.12) X(t) = (ct, Y0)+c�1(X1, Y1)+c�2(X2, Y2)+c�3(X3, Y3)+c�4(X4, Y4)+ · · · ,

where X(0) = 0 and Y (0) = Y0. Here, Y0 is a constant and X
i

(ct) and Y
i

(ct)
are 2⇡-periodic functions (with zero mean). Substituting (4.12) into (3.5) gives a
sequence of integrals corresponding to successive powers of c�1, obtained using a
symbolic algebra package. These are in turn minimized up to O(c�2) with respect to
Y0, X1(ct), Y1(ct), X2(ct), and Y2(ct) (contributions from X3(ct), Y3(ct), X4(ct), and
Y4(ct) cancel) yielding

(4.13) Y0 = ⇡/2, X1 = Y2 = 0, Y1 = �2 sin(ct), X2 = �3

8
sin(2ct).

Introducing (4.13) into (3.5), we obtain

(4.14) G (c, c0) =
1

4

✓
c2 � 3

2
+

87

32
c�2 � c20

◆
+O(c�4)

after a few manipulations. This leads to the asymptotics of the speed

(4.15) cFK = c0

✓
1 +

3

4
c�2
0 � 105

64
c�4
0 +O(c�6

0 )

◆
for c0 � 1,

with the first two terms previously derived in [44].
In a similar manner, the minimizing trajectory associated with the variational

principle (3.12) for (G) is at leading order a straight line. Using the alternative
variational characterization (3.14), we write the trajectory in terms of x and take a
regular expansion in powers of c�1

0 :

T (x) = c�1
0 (x+ c�1

0 T1 + c�2
0 T2 + c�3

0 T3 + c�4
0 T4) + · · · ,(4.16a)

Y (x) = Y0 + c�1
0 Y1 + c�2

0 Y2 + c�3
0 Y3 + c�4

0 Y4 + · · · ,(4.16b)

where Y (0) = Y0. The Y
i

’s are 2⇡-periodic functions satisfying Y
i

(0) = 0 while
T
i

(0) = 0 for all i � 1. We substitute these inside the pointwise constraint in (3.14)
from which we obtain equations for each power of c�1

0 . This leads to expressions for

T 0
i

(x), which are in turn used to minimize
R 2⇡
0 T 0

i

dx. Up to O(c�2
0 ) and after a few

manipulations carried out with a symbolic algebra package, we obtain that

T1 = T3 = 0, T2 = �3x/4 + f(x), T4(x) = 145x/64 + g(x),(4.17a)

Y0 = ⇡/2, Y1 = �2 sinx, Y2 = 0,(4.17b)

where f(x) = 5 sin(2x)/8 and g(x) = �Y3(x) cosx � 143 sin(2x)/96 + 17 sin(4x)/768
are 2⇡-periodic and therefore do not contribute to the value of ⌧G. Note that the
di↵erence between the two trajectories obtained in (4.13) and (4.17) only appears at
O(c�2

0 ). We finally use (3.14) to deduce that

(4.18) cG = c0

✓
1 +

3

4
c�2
0 � 109

64
c�4
0 +O(c�6

0 )

◆
for c0 � 1.
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Comparing expressions (4.15) and (4.18) confirms that the di↵erence between the
front speeds for the (FK) and (G) equation is very small: equation (G) only slightly un-
derpredicts the front speed. This is confirmed in Figure 4.2, which focuses on verifying
(4.15) and (4.18). It is clear that the two approximations (4.15) and (4.18) are in excel-
lent agreement with the numerical results; however, they are too close to distinguish.

4.2. Perturbed cellular flow. We now investigate the e↵ect of perturbing the
basic cellular flow by taking A 6= 0 in the streamfunction (1.8), keeping U = 0. The
perturbation breaks a symmetry of the streamfunction. Characteristic examples of
trajectories associated with (FK) and (G) are shown in Figure 4.3 (top row) for two
values of A corresponding to distinctly di↵erent flow topologies. The trajectories
remain symmetric for the transformation (x, y) 7! (�x,⇡ � y). Qualitatively, they
are similar to those obtained for A = 0, following closely the straight line y = ⇡/2
when c0 is large and the separatrix when c0 is small. Despite the more complex flow
structure, the di↵erence between the (FK) and (G) trajectories remains small.

Figure 4.4 (top) shows the behavior of cFK as a function of c0. For 0 < A  1,
the value of cFK does not greatly di↵er from the corresponding value obtained for
A = 0. A significant di↵erence is obtained for A = 5. For large c0, cFK increases
quadratically with A. This can be shown by generalizing the asymptotic result (4.15)
to find, after a lengthy computation, that cFK = c0(1 + (12 + 9A2)c�2

0 /16 � 3(280 +
504A2 + 101A4)c�4

0 /512 + · · · ) for c0 � 1 and A = o(c0). Expansions (4.1) and (4.2)
can in principle also be generalized to provide an explicit expression for cFK when
c0 ⌧ 1. However, the computation becomes very involved, especially for A � 1/2
when the number of hyperbolic stagnation points is doubled; we have not attempted
this computation.

Figure 4.5 (top left) shows the di↵erence between the two front speeds cFK and
cG as a function of c0 and for a number of values of A. This varies nonmonotonically
with c0, with a peak whose location is not simply related to A. We observe that
for values of c0 as large as 1, there is no clear relation between this di↵erence and
the value of A. For larger values of c0, the di↵erence increases with A. This can be
shown using the generalizations of the asymptotic approximations (4.15) and (4.18),
which give (cFK � cG)/f(A) = (1+O(c�1

0 ))c�3
0 , where f(A) = (16+ 538A2 +A4)/256,

for c0 � 1 and A = o(c0). The relative di↵erence between the two front speeds is
shown in Figure 4.5 (top right). For the values of c0 considered here, the maximum
relative di↵erence between cFK and cG corresponds to 9%, achieved for A = 1/2 and
c0 = 0.05. This is not significantly di↵erent from the maximum relative di↵erence of
5.5% obtained for A = 0.

4.3. E↵ect of a mean flow. The behavior of the solutions is strongly a↵ected
by the presence of a constant mean flow, when the flow contains a mixture of open
and closed streamlines. We explore this by computing minimizing trajectories and
front speeds for U 6= 0 and A = 0. Figure 4.3 shows characteristic examples of
the minimizing trajectories obtained for di↵erent values of U > 0 (middle row) and
U < 0 (bottom row). These trajectories are clearly invariant under the transformation
(x, y) 7! (�x,⇡ � y).

For small values of c0 and U = O(1) > 0, the minimizing trajectories closely follow
the open streamline with the maximum average horizontal speed c+(U), say, situated
in the middle of the channel, which suggests that cFK ⇠ c+. It can be shown that

(4.19) c+(U) =
2⇡

⌧+(U)
, where ⌧+(U) = 4

Z
z+

0

dz

(cos2 z � U2z2)1/2

and 0  z+  ⇡/2 is the solution of cos z+ = Uz+. A comparison between cFK and
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(a) A = 0.5, U = 0 (b) A = 1, U = 0

(c) A = 0, U = 0.1 (d) A = 0, U = 0.5

(e) A = 0, U = �0.1 (f) A = 0, U = �0.5

Fig. 4.3. (Color online.) Streamlines (thin black lines) of the closed cellular flow with stream-
function (1.8) with A 6= 0 and U = 0 (top row) and with A = 0 and U 6= 0 (middle and bottom
rows), and corresponding periodic trajectories for (FK) (minimizing (3.9), thick blue lines) and (G)
(minimizing (3.12), thick red lines). For the top and middle rows, the minimizing trajectories are
plotted for c

0

= 0.1, 1, and 10 (cf. Figure 4.1 for A = U = 0). For panel (e), with U = �0.1, there is
no right-propagating (G) front for c

0

= 0.1, and the three values c
0

= 0.11, 1, and 10 have been used.
For panel (f), with U = �0.5, there are no right-propagating (FK) and (G) fronts for c

0

= 0.01, and
the values c

0

= 0.19, 1, and 10 have been used; there is no right-propagating (G) front for c
0

= 0.19.
Note that the (FK) and (G) trajectories are often indistinguishable for the larger values of c

0

.

c+ in Figure 4.4 (bottom left, inset) confirms the validity of this prediction, although
convergence as c0 ! 0 is slow. The prediction is not applicable when U = O(c0),
however. This is because the travel time along the fastest open streamline increases
(like 4 log(1/U)), and trajectories entering the closed streamlines (analogous to the
the optimal trajectories obtained for U = 0 as c0 ! 0) become more favorable.

For large values of c0, we can extend the asymptotic expansion (4.12) to account
for U > 0 to deduce that, at leading order, cFK is simply shifted by U compared with
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Fig. 4.4. (Color online.) Front speed cFK associated with equation (FK) plotted as a function
of the bare speed c

0

for the flow with streamfunction (1.8) for (top row) various values of A with
U = 0 and (bottom row) for various values of U with A = 0 (cFK is shifted by U). The insets focus
on the small-c

0

behavior of cFK (solid lines) and (left) how this compares with c+(U) obtained from
(4.19) (dashed lines).

its value when U = 0. Figure 4.4 (bottom left) confirms this behavior by showing
cFK � U as a function of c0 for di↵erent values of U (including U = 0) and exhibiting
the expected collapse of curves for large c0.

Figure 4.5 (middle row) compares the two front speeds cFK and cG for U > 0.
The di↵erence in speed decreases as U increases and is maximum for an intermediate
value of c0 for U 6= 0 as well as for U = 0. The relative di↵erence between the
two front speeds is very small: for the values of c0 considered here, the maximum
relative di↵erence between cFK and cG is approximately 4.5%, achieved for U = 0.01
and c0 = 0.05. For U & 0.2, the maximum relative di↵erence is for all values of c0
less than 1%. When U > 1, the flow is entirely composed of open streamlines and
therefore similar to a shear flow. As a result the two front speeds are nearly identical.

For U < 0 (bottom row of Figure 4.3), the mean flow opposes the right prop-
agation of the front, and the minimizing trajectories avoid regions of strong flow.
For small values of c0, they follow closely the cell boundary and di↵er markedly be-
tween the (FK) and (G) cases. For su�ciently small c0, the fronts cease to propagate
to the right. For (G), (3.16) indicates that there is no right-propagating front for
c0  �U � min

x

max
y

sinx cos y = �U . Our numerical results suggest that right-
propagating fronts do exist for all c0 > �U . Figure 4.3 (bottom left) shows the
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Fig. 4.5. (Color online.) E↵ect of the flow with streamfunction (1.8) on the (left column)
di↵erence and (right column) relative di↵erence between the front speed cFK associated with equation
(FK) and the front speed cG associated with equation (G). These are plotted as a function of the
bare speed c

0

for (top row) various values of A with U = 0 and (middle and bottom rows) various
values of U with A = 0. The values of cFK and cG are, respectively, derived from the numerical
minimization of the variational principles (3.9) and (3.12). As c

0

! �U > 0, cG ! 0+, so that the
relative di↵erence tends to 1� (bottom right).

behavior of the minimizing trajectory associated with equation (G) obtained near
the stationary (G) front limit for U = �0.1 and c0 = 0.11. This is characterized
by near-vertical segments at x = 0,±⇡ and y = ⇡/2, where u = (�U, 0) and the
pointwise constraint in (3.12) imposes that ẋ be small. For (FK), right-propagating
fronts are obtained for values of c0 smaller than �U . For instance, for U = �0.5,
we find a nearly stationary front, with very small (positive) cFK, for c0 = 0.19. The
corresponding minimizing trajectory is shown in Figure 4.3.
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A more complete description is provided by Figure 4.4 (bottom right) which shows
cFK for a wide range of values of c0, reaching close to stationary (FK) fronts as cFK ! 0
(inset). The large-c0 leading-order behavior of cFK is the same as for U > 0, shifted
by U compared with its value when U = 0. Figure 4.5 (bottom row) compares the
two front speeds cFK and cG. Unlike the previous cases, the di↵erence and relative
di↵erence vary monotonically with c0, with peak values as c0 ! �U when cG ! 0
while cFK remains finite.

5. Conclusion. In this paper, we focus on the e↵ect of spatially periodic flows
on the propagation of the sharp chemical fronts that arise in the (FK) model for
small di↵usion and fast reaction (large Péclet and Damköhler numbers) and on their
heuristic approximation by the (G) equation. We introduce a variational formulation
that expresses the long-time front speed in each model in terms of periodic trajectories
minimizing the time of travel across a period of the flow, thus providing an alternative
route to the homogenization of the corresponding Hamilton–Jacobi equations. In this
formulation, the di↵erence between the front speeds predicted by the two models
arises from a di↵erent constraint imposed on the minimizing trajectories. This makes
it easy to deduce that the (FK) front speed is greater than or equal to the (G) front
speed, with equality in the case of shear flows.

We examine the front speed for a two-parameter family of periodic cellular flows
in a channel, with both zero and nonzero mean velocity U , relying on a numerical
implementation of the variational representation. We find that for U � 0 the relative
di↵erence between the two front speeds is smaller than 10% for a broad range of
parameters, with the largest values obtained when the reactions and mean flow are
both relatively weak (Da & 1 number and U ⌧ 1). This is confirmed by the closed-
form expressions we obtain in the two asymptotic limits c0 = 2

p
Da/Pe ⌧ 1 and

c0 � 1. For U < 0, the relative di↵erence between the two front speeds increases
rapidly with decreasing c0. As c0 ! �U , the (G) front becomes stationary. There is
then a range of c0 < �U for which right-propagating fronts exist for (FK) but not for
(G). In this range (G) fails completely as a heuristic model for the (FK) front, even
at a qualitative level. The dramatic di↵erence between the two models can be traced
to the di↵erence between the pointwise and time-integrated constraints that appear
in the variational formulations (3.9) and (3.12).

A fundamental assumption that we make is that the minimizing trajectories that
control the two front speeds inherit the spatial periodicity of the background flow.
We have carefully tested the validity of this assumption for the two-parameter family
of periodic cellular flows considered here against computations over domains of length
two and three times the 2⇡-period of the flow and found that the minimizers are 2⇡-
periodic. These results confirm that the front speed is indeed controlled by trajectories
with the same periodicity as that of the flow. It would nonetheless be desirable to
establish this property rigorously. A proof would also clarify whether it is specific to
the class of flows considered here or holds more generally.

We have obtained the Hamilton–Jacobi (2.3) equation for (FK) under the formal
assumptions Pe � 1, Da � 1, and Da = O(Pe) (so that c0 = O(1)). Its range of
validity, and hence that of our results, is in fact much larger and includes small values
of Da. This is because it is only necessary for the WKBJ approximation leading to
(2.3) to hold that PerI—which involves a combination of Pe and Da—be large. For
shear flows, it follows from I = tG (x/t, c0) +O(1) and the form of G in (3.18) that
the condition is satisfied provided that Da � Pe�1, equivalent to the requirement that
the front thickness in the absence of shear be small. The situation is more complex
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for cellular flows because of the logarithmic dependence that arises (see (4.6)). For
standard cellular flows (with A = U = 0), we can refer the reader to [45], where
the asymptotic of the front speed is derived for Pe � 1 and arbitrary Da, based
on the computation of the principal eigenvalue of the relevant advection–di↵usion
eigenvalue problem [22, 19, 4]. It is found there that, as Da is reduced from large
values, the Hamilton–Jacobi regime gives way to a di↵erent regime characterized by
the scaling Da = (log Pe)�1 and requiring a delicate matched-asymptotics analysis.
This indicates that the results of the present paper apply for Da � (log Pe)�1. The
range of validity is presumably the same for A 6= 0, but not for U 6= 0: in the latter
case, since the small-Da, i.e., small-c0 limit, is controlled by the flow around the
(fastest) open streamlines, we expect the range of validity to be that of shear flows,
that is, Da � Pe�1. A complete analysis would require generalizing the results of
[45] to U 6= 0, and to deal with the subtleties that arise in the limit U ⌧ 1 (cf. the
e↵ective-di↵usivity computation in this regime in [42]).

We conclude by mentioning three possible extensions of our work. The first
concerns the shape of the front of the (FK) model, which can be determined from the
solution to Hamilton–Jacobi equation (2.3). Specifically, the front at time T is the
zero-level curve I (x, T, c0) = 0, with I (x, T, c0) defined by the variational formula
in (3.2). In this case, the minimizing trajectories are not periodic but satisfy the
end condition X(T ) = x. For large T , they stay close to the periodic trajectories
determining cFK for a long time interval before T , so the starting condition X(0) =
(0, ·) can be replaced by a more practical condition that X(T � t) be asymptotic to
the periodic trajectories as t ! 1. The second extension concerns cellular flows in
the entire plane, as opposed to the channel configuration considered in this paper. In
this case, the problem is enriched by the two-dimensional nature of the front speed
and the fact that minimizing trajectories corresponding to speeds with irrationally
related components cannot be periodic. Similarly, in the presence of a mean flow, the
front speed is likely to depend sensitively on whether the two components of the flow
velocity are rationally or irrationally related (the same is true for the components of
the e↵ective di↵usivity tensor; see [17, 28, 35]). It would be of interest to investigate
how these aspects a↵ect the di↵erences between cFK and cG. Finally, a third extension
concerns other types of cellular flows. While cFK remains close to cG in the strong-
flow regime c0 ⌧ 1 for the “cat’s eye” flow (obtained by a periodic variation to
the basic cellular flow [9]), the di↵erence can become significant for the (integrable)
three-dimensional Roberts cellular flow [51]. For more complex (nonintegrable) flows,
e.g., the time-periodic, two-dimensional cellular flows considered in [5] or the three-
dimensional Arnold–Beltrami–Childress flows [11], the situation is more challenging
[31]. These flows could be tackled by the analytic and numerical approaches employed
in this paper. We leave this for future work.

Appendix A. Numerical procedure. For (FK), we focus on the variational
expression (3.5) and approximate the periodic trajectory X(t) by a piecewise linear
function X

d

, defined on an evenly spaced time grid {t
l

= l�t}N
l=0, where tN = ⌧ . The

action functional in (3.5) is approximated by the sum

(A.1) G
d

({X
l

}N
l=0, c0) =

1

4

 
1

⌧

N�1X

l=0

L
d

(X
l

,X
l+1)� c20

!
,

where X

l

= X

d

(l�t) approximates X(t
l

),

(A.2) L
d

(X
l

,X
l+1) = �tL

✓
X

l+1 �X

l

�t
,
X

l

+X

l+1

2

◆
,
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with L as defined in (3.1), and we have used a midpoint rule to approximate the
integral. The symplectic nature of the midpoint rule (see, e.g., [30]) ensures that the
corresponding value of the Hamiltonian remains constant over time.

For (G), we focus on the variational expression (3.14). Calculations are easiest
taking ⇥(x) to parameterize the pointwise constraint in polar coordinates, yielding

T 0(x) =
1

(u(x, Y (x)) + c0 cos⇥(x))
,(A.3a)

Y 0(x) =
u(x, Y (x)) + c0 cos⇥(x)

v(x, Y (x)) + c0 sin⇥(x)
,(A.3b)

where ⇥(x + 2⇡) = ⇥(x). We now approximate Y (x), ⇥(x), and T (x) by piecewise
linear functions Y

d

, ⇥
d

, and T
d

, defined on an evenly spaced spatial grid {x
k

=
k�x}N

k=0, where x
N

= 2⇡. The total time period ⌧ may then be approximated as

(A.4a) ⌧
d

({Y
k

,⇥
k

}N
k=0) =

N�1X

k=0

T
k+1 � T

k

, where T
k+1 � T

k

⇡
Z (k+1)�x

k�x

T 0(x)dx

subject to the constraint

(A.4b) Y
k+1 � Y

k

⇡
Z (k+1)�x

k�x

Y 0(x)dx for k = 1, . . . , N.

Here, Y
k

= Y
d

(k�x), ⇥
k

= ⇥
d

(k�x), and T
k

= T
d

(k�x) are, respectively, an ap-
proximation to Y (x

k

), ⇥(x
k

), and T (x
k

). We use the midpoint rule to approximate
the integrals in (A.4) so that

T
k+1 � T

k

= �x
1

u
�
x
k

+ 1
2�x, 1

2 (Yk+1 + Y
k

)
�
+ c0 cos

�
1
2 (⇥k+1 +⇥

k

)
�(A.5a)

and

Y
k+1 � Y

k

= �x
u
�
x
k

+ 1
2�x, 1

2 (Yk+1 + Y
k

)
�
+ c0 cos

�
1
2 (⇥k+1 +⇥

k

)
�

v
�
x
k

+ 1
2�x, 1

2 (Yk+1 + Y
k

)
�
+ c0 sin

�
1
2 (⇥k+1 +⇥

k

)
� .(A.5b)

In both problems, we use MATLAB’s Symbolic Math Toolbox to express the
trajectories, action functional, and constraints in symbolic form. We then take �t =
⌧/200 and �x = ⇡/100 and use MATLAB’s Optimization Toolbox to find the optimal
trajectories that minimize the value of (i) T

d

({Y
k

,⇥
k

}N
k=0), from which we obtain ⌧G

as a function of c0, and (ii) G
d

({X
l

, Y
l

}N
l=0, c0), from which we solve G (c, c0). We

then use (2.10) to deduce c0 for a given cFK. The advantage of symbolic calculations
is that the gradient vectors of the discretized action functional and constraints can
readily be determined. These are necessary to increase the accuracy and e�ciency of
the optimization solver.

The computations need a good first guess to be initialized. For problem (3.12), we
use the large-c0 asymptotic behavior of the trajectory obtained for the basic cellular
flow with closed streamlines (A = U = 0) given by (4.18). We then iterate over a
range of values of c0 using the previously determined trajectory as an initial guess to
find the next minimizer. Similarly, for problem (3.9) we use the large-c asymptotic
behavior of the trajectory given by (4.15). The iteration this time takes place over a
range of values of cFK. The same solutions are used as first guess to obtain the optimal
solutions for a range of A and U values.
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