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The stationary-state spatial structure of reacting scalar fields, chaotically advected by a
two-dimensional large-scale flow, is examined for the case for which the reaction equations contain
delay terms. Previous theoretical investigations have shown that, in the absence of delay terms and
in a regime where diffusion can be neglected (large Péclet number), the emergent spatial structures
are filamental and characterized by a single scaling regime with a Holder exponent that depends on
the rate of convergence of the reactive processes and the strength of the stirring measured by the
average stretching rate. In the presence of delay terms, we show that for sufficiently small scales all
interacting fields should share the same spatial structure, as found in the absence of delay terms.
Depending on the strength of the stirring and the magnitude of the delay time, two further scaling
regimes that are unique to the delay system may appear at intermediate length scales. An expression
for the transition length scale dividing small-scale and intermediate-scale regimes is obtained and
the scaling behavior of the scalar field is explained. The theoretical results are illustrated by
numerical calculations for two types of reaction models, both based on delay differential equations,
coupled to a two-dimensional chaotic advection flow. The first corresponds to a single reactive
scalar and the second to a nonlinear biological model that includes nutrients, phytoplankton, and
zooplankton. As in the no delay case, the presence of asymmetrical couplings among the biological

species results in a nongeneric scaling behavior. © 2009 American Institute of Physics.

[DOLI: 10.1063/1.3210778]

I. INTRODUCTION

The transport and stirring of reactive scalars are prob-
lems that naturally arise in many environmental and geo-
physical situations as well as in engineering applications.
Important examples of reactive scalars may be found in oce-
anic ecosystems, e.g., interacting nutrient and plankton popu-
lations, in atmospheric chemistry, e.g., stratospheric ozone,
as well as in microfluidics and combustion. In all of these
examples, fine-scale strongly inhomogeneous structures, usu-
ally in the form of filaments, characterize the spatial structure
of the corresponding reactive scalar fields.' Understanding
the main mechanisms controlling the nature of these small-
scale structures is important as they can have a large-scale
impact, for instance, on the global ozone depletion7 or on the
total plankton production.8

It is now well known that small-scale filamentary struc-
tures arise naturally through chaotic advection in spatially
smooth (differentiable) and time-dependent velocity
fields,”™"! relevant to a broad set of applications ranging from
stably stratified flows in the atmosphere and the ocean'? to
microfluidic devices."® Scalar mixing is induced through the
continual stretching and folding of fluid elements by which
large-scale scalar variability is transferred into small scales
until it is dissipated by molecular diffusion. The rate at which
the scalar is mixed is insensitive to the details of the diffu-
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sion and depends primarily on the stirring strength of the
flow. A measure for the latter is given by the exponential rate
at which neighboring fluid parcel trajectories separate in
backward time. Following previous work™" on dynamical
systems theory applied to chaotic advection, we call this rate
the flow Lyapunov exponent. More precisely, it is the most
positive Lyapunov exponent associated with the backward
dynamics.

A nontrivial stationary-state spatial distribution is ob-
tained in the presence of a large-scale space-dependent
forcing.16 In the presence of reactions whose dynamics are
stable and for a spatially smooth force, the distribution is
filamental or smooth depending on whether the stirring of the
flow is stronger or weaker than the rate of convergence of the
reaction dynamics. The latter is measured by the set of
Lyapunov exponents associated with the reaction dynamics,
better known as the chemical Lyapunov exponents,17 whose
values depend on the reaction system and, to a lesser extent,
on the driving induced by chaotic advection. A useful way to
characterize the scaling behavior of the spatial distribution is
by investigating the scaling exponents of statistical quantities
such as structure functions. For closed chaotic flows
(bounded flow domain) and at scales for which diffusion can
be neglected, the small-scale structure of all the reactive sca-
lar fields is shared and characterized by a single scaling re-
gime (special conditions that give rise to exceptions will be
discussed later). The theoretical prediction for the Holder
exponent, the scaling exponent associated with the field’s
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first-order structure function, was found by Neufeld et al."’
to be determined by the ratio of the least negative chemical
Lyapunov exponent to the flow Lyapunov exponent (as de-
fined previously) (see also Ref. 18 for an extension to a
multispecies reaction model).

This theoretical prediction, deduced for reaction systems
that are based on ordinary differential equations (ODEs), was
found to be in contradiction with the numerical results that
Abraham' obtained for a reaction model that is based on
delay differential equations (DDEs). The latter is a model
that describes the biological interactions among nutrients,
phytoplankton, and zooplankton and is in this paper referred
to as the delay plankton model. The numerical results of
Abraham"’ suggested that introducing a delay time into the
reactions leads to the decoupling among the phytoplankton
and zooplankton distributions at all length scales. Moreover,
as the value of the delay time was increased, the zooplankton
distribution was found to become increasingly filamental, ul-
timately behaving like a passive, nonreactive scalar, in agree-
ment with most oceanic observations at the mesoscale
(~1-100 km).2*2

The relation between the numerical work of Abraham'
for the system with delay and the theoretical and numerical
work of Neufeld er al.'” and Herndndez-Garcia er al.'® for
the system without delay has recently been addressed by
Tzella and Haynes.23 Based on an alternative numerical
method that, in the absence of interpolation, permits the
study of smaller length scales at higher accuracy, a new set
of carefully performed numerical simulations (of higher res-
olution than in Ref. 19) revealed the existence of two scaling
regimes: For sufficiently small length scales, the phytoplank-
ton and zooplankton distributions share the same small-scale
structure, as would be expected in the absence of delay.
However, at scales larger than a transition length scale, a
second scaling regime appeared in which the scaling behav-
ior that Abraham'” observed was reproduced.

The main focus of this paper is to present a theory for
the spatial properties of reactive scalar fields whose reactions
explicitly contain a delay time and which are stirred by a
chaotic advection flow. One motivation is to better under-
stand the delay plankton model discussed above, but broader
motivation comes from the wide application of delay equa-
tions to model biological24 as well as chemical systems. In
the latter case, the use of DDEs may arise when needing to
simplify the description of a chemical system or to model a
delayed feedback arising, for example, in systems in which
reactions progress through intermediate compounds that
themselves do not react.”> By varying the delay time as well
as the stirring strength of the flow and the reactions, two
main issues are here investigated: first, the origin of the sec-
ond scaling regime and second, the parameters that control
the transition length scale and scaling behavior in each of
these two regimes. In order to obtain a theoretical under-
standing of such a system, models of increasing complexity
will be considered starting with a single linear delay reactive
scalar field and moving on to a system of nonlinearly inter-
acting scalar fields. Scalar fields evolving according to reac-
tion equations containing a delay time are in the following
referred to as delay reactive scalar fields. The theoretical
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development is accompanied by a set of numerical results
obtained for (i) a single linear delay reactive scalar and (ii)
the delay plankton model, both coupled to a two-
dimensional, unsteady, and incompressible flow via a large-
scale spatially smooth source.

This paper is organized into two parts. The first part,
Sec. II, is solely devoted to the theoretical development of a
single delay reactive scalar, complemented in the Appendix
for a system of such fields. A set of scaling laws is deduced
describing the Holder exponents associated within three scal-
ing regimes. The transition length scale dividing small-scale
and intermediate-scale regimes is found to depend on the
product of the delay time and the stirring strength of the flow.
The second part of the paper, Sec. III, consists of the numeri-
cal simulations to verify the theoretical results obtained in
Sec. II. The paper concludes with a summary and conclusion.

Il. THEORETICAL DEVELOPMENT
A. Reactive scalar evolution models

The spatial and temporal evolution of passively advected
reactive tracers is described by the advection diffusion reac-
tion equations. For the case of an incompressible velocity
field, v(x,z), and for >0, the typical form of these equa-
tions is

(%c(x,t)+v(x,t) -Ve(x,f) = F_.+DVe(x,1), (1)

where the fields ¢(x,1)=[c,(x,1),c,(x,1),...,c,(x,1)], n be-
ing the number of chemical species, are assumed to diffuse
independently from one another with the same constant dif-
fusivity D.

The interactions among these scalar fields, e.g., chemical
reactions or predator-prey interactions, are described by the
forcing term F_,= Flc(x,1),c(x,t—7),x] in which the ef-
fects of sources and sinks are also included. The main feature
of the forcing term is its dependence on a delay time 7 asso-
ciated with, e.g., the time it takes for a biological species to
mature. This way the rate of change in the species’ concen-
trations depends on the state of the system at a previous time.
Note that for Eq. (1) to be well defined, ¢(x,7) needs to be
initialized for ¢ € [-7,0].

The explicit dependence of the forcing term on the spa-
tial coordinate x accounts for the inhomogeneous distribu-
tions of these sources and sinks, e.g., due to a spatially vary-
ing nutrient field, or for the spatial dependence of the
reproduction and predation rates of biological species, e.g.,
due to a temperature dependence. If the forcing term does
not depend on the spatial coordinate, the reactions are not
coupled to the flow and any initial inhomogeneity in the
concentration fields is stirred down by advection and even-
tually smoothed out by diffusion.

We will here concentrate on a forcing term that in the
absence of advection has a single, stable, fixed point of equi-
librium. In this case, as it will be clear later, for a time ¢ that
is large enough, c¢(x,7) is assumed'’ to reach a statistical
equilibrium.

To tackle Eq. (1) one can either consider the fields in the
space domain the fluid is defined®*—the  Eulerian
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approach—or instead consider their evolution along the tra-
jectory traced by each fluid parcel that constitutes the fluid—
the Lagrangian approach. The approach we will adopt is the
Lagrangian one as (within certain limits) it provides a sim-
pler description of the problem.

For cases for which advective transport dominates diffu-
sion, i.e., large Péclet number, a natural approach is to set
D=0. The chemical evolution of a fluid parcel is then inde-
pendent of all such parcels and the partial differential equa-
tion (1) is reduced into a set of DDEs given by

0 —ix0.0, (2a)
dCy, (1)
= = F{Cx(0.X(0) (2b)

where X(7) denotes the fluid parcel’s trajectory and Cy,(t) is
a vector of its chemical concentration fields, satisfying
Cx()()=c[x=X(1),1]. The implication of the neglect of dif-
fusion is that any predictions concerning the spatial structure
apply only above a certain spatial cutoff scale whose value
approaches zero for smaller and smaller diffusivities (see
Ref. 27 where this argument is developed for a linearly de-
caying reactive scalar).

The principal aim here is to examine the small-scale
structure of the scalar fields once statistical equilibrium
has been attained and characterize this structure in terms
of Holder exponents. To do so, the concentration difference
between neighboring points, given by d&c(dx;x,1)
=c(x+dx,1)—c(x,1), needs to be investigated as a function
of & from where the Holder exponents y=(y;,¥2, ..., %)
defined by

|8c,(&xx,1)| ~ |x

7," |(Sx| _)0’ (3)

can de deduced. For a smooth field y,=1 at x while the range
0<,<1 corresponds to an irregular (e.g., filamental) field.
This concentration difference can be estimated by consider-
ing the concentration difference between two neighboring
fluid parcels X(¢) and X(r)+ 6X(r) with

&(&;x’t) = 5C6X(z);X(z)(t) = CX+5X([)(t) - CX(z)(t)~ (4)

In order to simplify the analysis, in the following we will
concentrate on the following simple example:

%C(r):—aC(t)—bC(t— 7) + Co[X(1)], (5)

where a, b, and 7 are constants with a,7>0 and Cyo[X(?)] is
a spatially smooth source that introduces variability at some
large scale denoted by L, The more general case (2b) is
considered in the Appendix. We will only consider two-
dimensional flows; however, the theory presented is readily
extendable to large-scale flows in higher dimensions.
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B. Key properties of forced linear delay equations

To understand the role that a delay time plays on the
fields’ scaling behavior, the general properties of forced lin-
ear DDEs need to be considered. An overview of those is
now presented. A simple example of a DDE is examined in
Ref. 28, p. 354. For more complete treatments see Refs.
29-31.

Take the one-dimensional forced, linear DDE

y==ay(t) -by(t -7 +fQ), (6)

where a, b, and 7 are the same as before and f is a real
continuous function. In order for y(7) to be uniquely deter-
mined, it is necessary to prescribe an initial function on the
interval [—7,0]. Denoting this function by ¢(z), it follows
that

y()=¢(t) for t e [-7,0], (7a)

y(1) = e " $(0) + f e = by(1' — 7) + f(¢')]dr’
0

for t>0, (7b)

where Eq. (7b) is easily deduced using the well-known varia-
tion of constant (or parameters) formula. Based on Eq. (6),
an expression for y(z) for 1[0, 7] is readily determined.
Substituting this expression into Eq. (7b), y(¢) can be calcu-
lated for t €[7,27] and so on for larger time intervals. This
method is called the method of steps.

In a similar way to ODEs, the characteristic equation for
the homogeneous part of Eq. (6) is obtained by looking for
solutions of the form ceM, where ¢ is a constant and \ is
complex. The scalar equation

y=—ay(t)=by(t—1) (®)
has a nontrivial solution, ce™’, if and only if
hN) =N+a+be*"=0. 9)

Equation (9) is transcendental and thus the number of roots
is infinite. At the same time, because A(\) is an entire func-
tion, the number of roots is finite within any compact region
in the complex plane. Because a, b, and 7 are real, the roots
must come in complex conjugate pairs. It can be shown™!
that the real part of each root is bounded. Moreover, for
a>>|b| and for all 7>0, Re A <0. The latter is the necessary
condition for the solution to Eq. (8) to be stable.

The solution to the forced delay equation (6) is closely
dependent on a particularly initialized solution of the homo-
geneous delay equation (8), called the fundamental solution.
This function, denoted by Y(7), is defined as the solution of
Eq. (8) which satisfies the following initial condition:

<0,

0,
Y(t)={1 120 (10)

For 0=t¢= 7, an exact expression for Y(z) may be obtained
using the method of steps. Substituting into Eq. (7b) the
initial conditions given by Eq. (10) and setting f=0 gives
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FIG. 1. The fundamental solution, Y(7), plotted as a function of #/ 7 (solid black line). Also plotted are Y (z) (dashed gray line) and Y5(7) (dashed-dotted gray

line) [see Eq. (15b)]. In both parameter sets Re A; =—-0.68.

Y()=e™. (11)

For > 7, an expression for Y(7), obtained using the method
of steps, is no longer useful. This is because the expression
involves terms in powers of ¢ and thus for large values of 7 it
is difficult to extract any insight into the behavior of Y(z).
Using Laplace transforms, it is possible to express Y(7) in
terms of an infinite sum of eigenfunctions. Taking the
Laplace transform of Eq. (8) with initial conditions given by
Eq. (10) leads to

©

— | oMy ——
L) = JO NV (Odi= 5, (12)

where L stands for Laplace transform. Employing the inver-
sion theorem,

Nt

=), i’

N, >0, (13)

where [, =limy_..(1/2mi)[7"] with y>max{Re \:h(\)
=0}. Using the Cauchy residue theorem to integrate e™/h(\)
along a suitably chosen contour, Y(¢) can be expressed as an

infinite series of eigenfunctions,

At

e
Y(£) = D, Res ,
i1 a=x (V)

t>0, (14)

where Res is short for residue, that is uniformly convergent
in ¢ (see Ref. 32 for proof). Since the roots are either real
or come in complex conjugate pairs, Eq. (14) can be rewrit-
ten as

Y(¢) = lim Yp(r), >0, (15a)
N—oo

with Yy(¢) defined by

N
Yy(t) = 2
j=1

{x_j.':lm =0}

Pi(AL RN 1> 0, (15b)

where )\}r represents a root of Eq. (9) with a positive or zero

imaginary part satisfying Re )\;T>Re )\;H for all j with

Pj(\%1) = 2710 Neos(Im Nt — ¢5h)|A' ()] (15¢)
and
Im h'(\T
¢+=tan—‘(&+ﬁ). (15d)
J Re /(X))
‘H(x) is defined as
) 1 if x>0, (150
Y=o ifx=o0. ¢

Note that by a suitable choice of parameters, all roots of Eq.
(9) are distinct and thus ¢'/#(\) only has simple poles.

It follows that for sufficiently large values of 7, Y(z) is
dominated by its slowest decaying eigenfunction and thus

Y() ~ (7). (16)

Y(#) is numerically determined and plotted for two sets of
parameters (a,b,7) in Fig. 1. Both sets share the same
Re \; =-0.68; the difference is that \; is real in Fig. 1(a)
and imaginary in Fig. 1(b). Also plotted in Fig. 1 are the
functions Y () and Ys(¢). The roots of the characteristic
equation are determined using the DDE-BIFTOOL.™ In both
cases, Y,(7) is found to be in good agreement with Y(z) for
t= 7. This indicates that within this period, the remaining
eigenfunctions have decayed sufficiently for Y,(r) to domi-
nate the behavior of Y(r). However, for 0=t= 7, its domi-
nant behavior depends on the contribution of many eigen-
functions, the number of which increases as r— 0. Instead,
one needs to refer to Eq. (11).

The above can be summarized into the following expres-
sion for the fundamental solution:
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FIG. 2. Same as Fig. 1 but this time the fundamental solution is compared to expression (17). Y,(z) is plotted (dashed gray line) for 1> 7 and ¢~ for 0

=t=r (dashed gray line).

O=t=r,

Y(t):{~ Y0, 1>

The validity of expression (17) is clearly depicted in Fig. 2
where it is plotted and compared to Y(z) for the two sets of
parameters already shown in Fig. 1.

Notice the central difference between the fundamental
solution of an ODE and a DDE. While in the former case, the
behavior of the fundamental solution remains unaltered at all
times, in the latter case, a distinct transition takes place at
t=7. At the same time, for 1= 7, the fundamental solution of
a DDE is identical to the fundamental solution of the ODE
that is obtained by omitting from the DDE the terms that
contain a delay time, i.e., equivalent to setting b=0 in
Eq. (8).

The reason for which so much attention is given to the
fundamental solution is that the general solution to the forced
delay equation (6) can be expressed in terms of it. To see
this, consider the Laplace transform of Eq. (6) with initial
conditions given by Eq. (7a). Provided that the forcing f(z) is
exponentially bounded,

(17)

0
hNLYIN) = $(0) = be™7 f eMe(0)do

+ f e Nf(t)dt.

0

(18)

Use of the convolution and inversion theorems leads to the
following expression for the general solution:

t

y(.N)(1) =y(,0)(r) + j Y(t—1")f(t")ar’,

0

(19a)

where y(¢,0)(z) represents the solution to the (unforced) ho-
mogeneous delay equation (8) and is given by

0
¥(,0)(1) =Y(1) $(0) - bf Y(t-60-7)p(0)d6.  (19b)

Because of its similarity to ODEs, the representation of
v(¢,f)(¢) in this form is often referred to as the variation of
constant formula.®! Using this representation, it is easily de-
duced that the solution of any, either homogeneous or forced,
linear delay equation is governed by its fundamental solution
with the roots of the characteristic equation controlling its
asymptotic behavior.

C. Scaling behavior

Having presented some basic properties concerning lin-
ear DDEs, the next objective is to consider their coupling to
a chaotic advection flow. For a chemical system satisfying
Eq. (5), the evolution of the chemical difference between a
pair of fluid parcels X(7) and X(r)+ 8X(¢) can be obtained by
simultaneously linearizing the chemical [Eq. (5)] and trajec-
tory [Eq. (2a)] evolution equations around a fluid parcel.

Using the variation of constant formula (19),

0
S8C(1) = Y(1)5C(0) —bf Y(t— 6-16C(0)do

+ f Y(t—1")8yCo(t")dt', (20)
0

where OyCy(t')=Co[X (') + 5X(t')]-Cy[X(¢')] is the force
term. Note that {6X(z);X(r)}, the label on the concentration
difference in Eq. (4), has been suppressed for brevity. For
te[-7,0], 8C(t)=d(t) where ¢(r) is a prescribed initial
function.

To analyze the scaling behavior of the delay scalar field
at statistical equilibrium, the long-time limit of Eq. (20)
needs to be considered. A useful property for Y(z) is that it is
bounded with |Y(#)| <K exp[Re \¢] where K>0 (see Ref.
34). We impose that a > |b|, thus ensuring that Re \; <0 for
all 7>0 (see Sec. II B). It follows that in the long-time limit,
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the first two terms that describe the evolution of the initial
conditions vanish. Note that this is not the case for either
marginally stable (Re A;=0) or unstable (Re A;>0) chemi-
cal dynamics.

At the same time, since the source depends smoothly
on space, its spatial derivatives do not increase or decrease
in a systematic way. Thus, for [6X(#')|<Lc,, where L,
is the characteristic length scale of the source, the evolution
of |8xCy(t')| is closely related to the evolution of the
separation between the pair of fluid parcels, i.e., dyCy(t")
=(dCy/X)- 8X(t")~|8X(t')|. To obtain an expression for
[6X(t")| in terms of |8X(1)| for |6X(¢')| <Ly, with Ly being
the characteristic length scale of the flow, Eq. (2a) can be
linearized around X(¢') from where we deduce that for
1>t

oX(t")=N(t',1)6X (1), (21a)

with

NG |:jt' &Ud ]
,1) = exp —ds |.
). ¢

Consequently, the evolution of |6X(¢')| is dictated by
NTN(¢',t) once calculated along the fluid parcel trajectory in
backward time. Because NN is a real, non-negative sym-
metric matrix, its eigenvalues are positive. Therefore, de-
pending on its orientation at time ¢, as time ¢’ decreases,
|6X(#")| increases or decreases exponentially according to a
set of rates whose number equals the dimension of the flow
and whose values depend on the eigenvalues of N’N. In
what follows we take Lp=Lc,=1.

In the limit of r—¢' — o, these rates are defined as the
Lyapunov exponents.m’15 For a two-dimensional, incom-
pressible flow that is both ergodic and hyperbolic, all trajec-
tories share the same set of Lyapunov exponents {/.,,—h..}
with h,,> 0. It follows that for almost all orientations at time
t, the typical separation between a pair of neighboring fluid
parcels increases exponentially in backward time at a rate
given by the flow Lyapunov exponent h, with |6X(¢")]
~|8X(1)|explh(1—1")].

The exponential increase in |X(#')| can only be valid for
|6X(¢")| < 1. This is because for larger length scales (=0.1),
linearizing the trajectory equation (2a) is no longer valid and
finite-size effects become important. At the same time, at
these scales, the fluid parcel separation is of the same order
as the variation scale of the source, and thus the value of the
SxCo(t') saturates. The time it takes for |8X(¢')| to exit the
exponential regime and thus for 8yC (') to saturate is here
referred to as the stir-down time and is denoted by Tsy. By
choosing |8X(7)| to be sufficiently small, an approximate ex-
pression for Tsy is given by

(21b)

1
Tsy= h—log(1/|5X|) for |8X| < 1. (22)

It follows that qualitatively, the forcing difference between
two neighboring fluid parcels can be divided into two parts:
the first one corresponding to the period that it exponentially
increases and the second one to the rest of the time during
which its value remains saturated at 1. Therefore,
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SX(D|e"=t") for 0 <t—1 =T,
5XC0(I’) . | ( )|€ X
for r—1t" > Tgy.

(23)

The asymptotic behavior of the chemical difference between
any two fluid parcels, and thus from Eq. (4) between any two
neighboring points, may be deduced by substituting expres-
sion (23) into Eq. (20) (replacing X with x and 8X with &x).
After making a change in variables from ¢’ to A¢z=¢—¢" and
taking the limit of — o, the small-scale behavior (|dx <1])
is given by

dc.(&x) ~ f Y(Ar)min{| 8x|e=*, 1}dAt, (24)

0

where a number of space and time factors are omitted since
they do not affect the scaling laws. Note that within the
approximation made here, the rate of exponential increase in
the separation between fluid parcels, 4., is taken to be inde-
pendent of the individual trajectories and therefore the de-
pendence of dc,, on x is dropped. In reality, this rate will
depend on the trajectory, thus modifying the average scaling
behavior of the field. (See Ref. 34 for discussion of the im-
plication of this for a linearly decaying reactive scalar. The
extension of this discussion for the delay case is left for
future work.)

1. Transition length scale

An expression equivalent to Eq. (24) was obtained in
Refs. 17 and 18 in the context of an ordinary reactive scalar
whose reactions involve no delay time. In both cases, delay
and ordinary, the asymptotic behavior of the concentration
field is governed by the convolution in time of the funda-
mental solution associated with the chemical subsystem with
the separation between fluid parcels. However, a fundamen-
tal difference between the delay reactive scalar and the ordi-
nary reactive scalar will significantly affect the asymptotic
scaling behavior of the delay scalar field and modify it with
respect to the scaling behavior of the ordinary reactive scalar.
This difference lies in the fundamental solution.

As discussed in Sec. II B, the behavior of Y(¢) associated
with a linear DDE is distinctly different depending on
whether ¢/ 7 is larger than or less than 1. It follows that the
asymptotic behavior of Jc..(d) must differ according to
whether T,/ 7 is larger than or less than 1. Since the value of
Ts, depends on |&x|, this transition must occur at a certain
length scale, denoted by dx. here named the transition
length scale. An approximate expression for dx. may be ob-
tained by considering the value of || for which

T!;x ~ T, (25)

c

from where it can be deduced that &x. must then approxi-
mately be equal to

Ox, ~ e, (26)
Thus, the magnitude of the transition length scale is con-

trolled by the product of the delay time with the flow
Lyapunov exponent while it is independent of the parameter
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details of the reactions. Expression (26) represents the first
key theoretical result of the paper.

2. Scaling regimes

The scaling behavior of the field is now separately ex-
amined for length scales less than and larger than the transi-
tion length scale. A good way to gain insight into this behav-
ior is to consider the absolute value of the integrand of Eq.
(24). The first function has an exponential decay (perhaps
oscillatory) while the second function initially increases ex-
ponentially and then saturates. Thus the absolute value of the
integrand has a distinct maximum and the dominant contri-
bution to the integral comes from the neighborhood of this
maximum. The corresponding dependence of the integral on
the value of &x=|d| implies up to three possible scaling
regimes (depending on &x and on the other parameters in the
problem).

3. Regime I: |6x| < éx,

The first scaling regime, regime I, concerns length scales
that are smaller than dx.. For these length scales, the stir-
down times are larger than the delay time and thus the
chemical dynamics converge at a rate which, for the linear
case considered here, is exactly given by —Re \, [see expres-
sions (15b) and (17) where the “+” sign is omitted since
Re \;=Re A\]]. In analogy to the flow Lyapunov exponent
that controls the strength of the flow dynamics, this rate is
called the chemical Lyapunov exponent.17

It therefore follows that within this regime, the scaling
behavior of the delay reactive scalar field is no different to
the scaling behavior of an ordinary reactive scalar. For both
delay and ordinary scalars, the small-scale structure is con-
trolled by the relative strength of the chemical to the flow
dynamics: If —Re \;/h,,<1, the chemical processes are too
slow to forget the different spatial histories experienced by
the fluid parcels. In this case, the maximum of
|Y(£)min{| &x|e”=', 1}| occurs at t=T}, [see Fig. 3(a)] and its
value depends on |&x|Re¢M/= Thus, the field’s spatial struc-
ture is filamental, i.e., nondifferentiable in every direction
except the direction along which the filaments grow.17 On
the other hand, for —Re N;/h,>1 the chemical pro-
cesses converge faster to their equilibrium value than the
trajectories diverge from each other. The maximum of
|Y(£)min{| &x|e”~, 1}| occurs at t=0 from where it can be
deduced that the field’s structure is everywhere smooth.
Thus, the Holder exponent within regime I is equal to
vi=min{-Re \/h,,1}.

4. Regimes Il and IlI: | 6x|> 6x,

Consider now length scales that are larger than dx,.. The
corresponding stir-down times are smaller than the delay
time and thus the chemical dynamics converge at a rate given
by —a, i.e., the decay rate obtained once the delay term is
ignored [see expression (17)].

There exist two local maxima for |Y(¢)min{|dx|e"=, 1}];
the first one depends on scale; the second one does not [see
Figs. 3(b) and 3(c)]. The value of the first local maximum
is given by max,|e™® min{|&x|e=, 1}|=|8x|miMe/h=1} where
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FIG. 3. (a) |Y(¢)min{dxe",1}| plotted for X=10"4(Tg~=47) for the two
sets of parameters (a,b,7) previously considered in Fig. 1: (1,-0.16,1)
(black line) and (1,0.9,1) (gray line). (b) The same as (a) this time
(1,0.05,10) (black line) and (1,0.1,10) (gray line) with 8X=10""! so that
Tsx=7/2. (c) The same as (b) this time (1,0.3,10) (black line), (1, 0.5, 10)
(dark gray line), and (1, 0.75, 10) (light gray line).

Y(t=7)=e™ was employed [see expression (17)]. It there-
fore follows that if this first local maximum is a global maxi-
mum, the field’s scaling behavior is described by a Holder
exponent that satisfies y,=min{a/h..,1}. This scaling regime
is denoted by regime II. Now focus on the second local
maximum which is given by max|Y(t= 7)|. Since this is scale
independent, a flat scaling regime will ensue if the second
local maximum is larger than the first local maximum. This
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scaling regime is denoted by regime IIIl. However, if the
second local maximum is smaller than the first local maxi-
mum, regime III does not appear.

To investigate the range of length scales for which re-
gime III appears, consider in more detail max|Y(t= 7)|. Now
|Y(=17)| has a maximum at either r=7 or at some r=r*,
where " is defined as the value of ¢ for which dY(r)/dt is first
equal to O and thus aY(t*)=—bY(t—r"). First consider the
local maximum of |Y(t=7)| to occur for 7<r*=2r.
Within this time period and using the method of steps
(see Sec. II B), Y(r) can be exactly expressed as Y(¢r)=e ™
—b(t—7)e =7, Combining this expression with expres-
sion (11) for Y(r) for 0<r=7, " must satisfy e
—b(t*—T)e‘“(’*‘f)=—b/ae‘”(’*‘7) from where we can deduce
that a local maximum of |Y(t=7)| occurs if 0<1/a
+1/be™* < 7. In this case, max|Y(r>7)|=|b|/ae” '~
Now consider “>27. In this case Y(r=27) is monotonically
decreasing and thus max|Y(7=r=27)|=¢". Since |Y ()|
=|b|/a|Y(t-t")|, max|Y(t=27)|=<|b|/ae ", and therefore
max|Y(t=7)|=e™". Finally, if no r* exists, then again
max|Y (1= 7)|=¢". All three cases can be summarized by

b -ar
max|Y(t = 7)| = max{ e“”,ue_l_”/be } ) (27)
a

Comparing the value of the first local maximum,
| &c|mimte/hee1} - with the value of the second local maximum,
given by Eq. (27), we are able to obtain the following
estimate for Ox,, the length scale that separates regimes II
and III:

Sxy ~ max|Y(r = 7)|maxthaal} (28)
The following points can be noted:

(1) If |b|/(ae)< bx,, Ox,<éx,, and thus there appears no
regime III.

(2) If ||/ (ae) ~ 1, &x,> dx,, and thus regime IIT will ensue
at all length scales larger than Ox..

5. Holder exponents

To summarize, the following set of scaling laws de-
scribes the spatial structure of the stationary-state delay re-
active scalar field as |dx| varies:

|&x|"1 for|dx| < dx,,

|6c..(ox)| ~ | flat  for Sx. < |d| < max{dx,,dx.},
|&x|”2 for| x| > max{dx,, dx},
(29a)
where the Holder exponents y; and 7y, are given by
v, =min{l,— Re \/h..}, (29b)
v, =min{1,a/h.}. (29¢)

Therefore, regime II occurs for |&x|> &x, and regime III for
&x,>|&x|> &x... It happens that regime III will not be present
if dx, and Ox,. are not well separated. Similarly, regime II
will not be present if dx, is not sufficiently small.

Phys. Fluids 21, 087101 (2009)

Expression (29) represents the second key theoretical re-
sult of this paper. The more general case for which several
interacting chemical species are present is shown in the Ap-
pendix to be a slight variant of this expression. Special cases
for which the species are not symmetrically coupled with
each other may give rise to structures that are characterized
by different Holder exponents for different species. Such a
case is the delay plankton model whose behavior is exam-
ined in Sec. III B.

lll. NUMERICAL RESULTS: TWO EXAMPLES

To complement the theoretical results obtained in Sec. II,
a set of numerical simulations is here performed, first for the
single linear delay reactive scalar whose evolution within a
fluid parcel was introduced in Eq. (5) and second for the
delay plankton model that Abraham'? first used in his nu-
merical investigations. This model, shortly to be described,
serves not only as a test bench of the theory presented in Sec.
IT but also as an interesting application of it.

In both examples, the fluid parcels are advected by a
model strain flow whose velocity field is given by

2
- }H(T/Z —t mod T)cos(2my + ¢)
v(x,1) = . (30)
- }H(t mod T — T/2)cos(2mx + 6)

where H(¢) is the Heaviside step function defined to be equal
to unity for t=0 and zero otherwise and x and y are the
domain’s horizontal and vertical axes, respectively. The
phase angles 6 and ¢ change randomly at each period 7,
varying the directions of expansion and contraction and
hence ensuring that all parts of the flow are equally
mixed."*¥ Variation of T has an effect on the magnitude of
the flow Lyapunov exponent &, without changing the shape
in the trajectories and the spatial structure of the flow. It may
be shown that &, is inversely proportional to 7 with

h., = 2.33/T, (31)

where the constant is numerically determined.
A large-scale inhomogeneity is injected into the system
by introducing a spatially smooth forcing,

Colx)=1-1/2 cos[2m(x +y)], (32)

oriented along the diagonal of the domain to avoid having
the same preferred alignment to the flow. The space depen-
dence of the force couples the reaction dynamics with the
flow dynamics and results in the formation of complex spa-
tial patterns.

A statistical steady state is reached after approximately
20T. To reconstruct the stationary distributions of the corre-
sponding reactive scalars, an ensemble of fluid parcels whose
final positions are fixed onto a grid is followed. Using Eq.
(30), the parcels are tracked backwards in time up to a point
when their initial concentrations are known. Thereafter,
knowing their trajectory, their final concentration is deter-
mined by integrating the reaction equations forward in time
using a second-order Runge—Kutta method. This way, to ob-
tain the concentration fields along a one-dimensional
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transect, it is not necessary to determine the whole two-
dimensional field. The absence of interpolation permits
greater accuracy at smaller length scales. The initial concen-
trations are chosen to be equal to their mean equilibrium
values, though as long as the reaction dynamics are stable,
the final result should be independent of this choice.

The stationary distributions of a linearly decaying reac-
tive scalar and a linear delay reactive scalar, with reactions
evolving according to Eq. (5), are depicted, respectively, in
Figs. 4(a) and 4(b). Notice the distinct difference between
the two distributions: Fig. 4(a) contains no delay term
whereas Fig. 4(b) contains a delay term and it is this delay
term that is responsible for the filamental behavior of the
concentration field. This difference is more easily observed
in the corresponding one-dimensional transects shown in
Fig. 4(c).

The most common method to characterize the scaling
behavior of the distributions is to consider their Fourier
power spectra. An alternative method is to consider the con-
centration difference between points separated by a fixed dis-
tance. The latter is called the structure function®® and it is the
method we employ here since it allows an easy comparison
between the theoretical results of Sec. II with the numerical
results of this section. The first-order structure function as-
sociated with the field c(x,7) is defined as

S(&x) = (|dc(ox;x,0)|) ~ ox?, (33)

where (---) denotes averaging over different values of x.
Recall that 6c(8x;x,t)= Sc(x+ & ,1)— Sc(x,t). For the time
being we assume that the y appearing in Eq. (33) is precisely
the Holder exponent as predicted by previous theoretical
arguments.

For both the delay reactive scalar and the delay plankton
model, the parameters are chosen in such a way that all three
scaling regimes, described by expression (29), emerge within
the range of length scales considered. To control this range,
the magnitude of the characteristic length scale that separates
regime I from regimes II and III, denoted by dx,, needs to be
considered. Substituting expression (31) into Eq. (26), the
expression for &x, for the model strain flow [Eq. (30)]
becomes

Ox, = exp(-2.337/7). (34)

Thus, the value of dx, is modified by varying the value of
7/T (see Table I where the value of &, is calculated for
some key values of 7/7).

A. The linear delay reactive scalar

We now examine the scaling behavior of the delay reac-
tive scalar distribution as the value of 7/T varies. In each
case, the first-order structure function is calculated over ten
evenly spaced intersections. The scaling exponent is obtained
from the slope of the first-order structure function and it is
then compared to the set of scaling laws in Eq. (29).

Phys. Fluids 21, 087101 (2009)
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FIG. 4. (Color online) Snapshots of reactive scalar distributions whose re-
actions evolve according to Eq. (5) at statistical equilibrium (r=207). The
two cases depict (a) a linearly decaying reactive scalar (a=3, b=0) for
which no delay time is present and (b) a linear delay reactive scalar
(a=3, b=1, 7=1). The period T=1 such that h,~2.33 with a>h,,. The
smoothly varying force is diagonally oriented given by Eq. (32). The bars on
the right give the concentration values. (c) One-dimensional transects
(y=0.5) for the linearly decaying reactive scalar (black line) and the delay
reactive scalar (gray line).
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TABLE I. An estimate for the characteristic length scale, calculated for the
model strain flow (30) for L=1 using expression (34).

/T 1 2 3 4
8x. ~10"! ~107? ~1073 ~10™
1. Regime |

Initially, 7/T=<1 so that &x,= 0.1 (see Table I). This way
only regime I will appear within the range of length scales
considered (recall that finite-size effects become important
for 6x>0.1). The validity of —Re \,/h.,, the ratio associated
with the Holder exponent within regime I [see Eq. (29b)], is
tested. Three different aspects are examined: the first aspect
investigates the impact that the imaginary part of A; may
have on the scalar field. Recall that \| denotes the root of the
characteristic equation (9) that has the least negative real
part. According to expression (29b), Im \; does not contrib-
ute to the field’s scaling behavior. This is confirmed in the
numerical results that are shown in Fig. 5(a). There, the first-
order structure functions obtained from two parameter sets,
chosen so that both share the same Re A\ but different Im A\,
are found to share the same scaling exponent (their slopes are
equal). In particular, for the first set of parameters, \, is real
while for the second, \; is complex.

The second aspect investigates how the scaling behavior
varies as the value of T (and therefore h.,) varies. We con-
sider the same set of parameters as the ones in Fig. 5(a),
where this time 7=2, thus leading to a larger value for the
Holder exponent (double than before). The corresponding
scaling exponents are in good agreement with the theoretical
prediction (29b) [see Fig. 5(b)]. Finally, the third aspect ex-
plores larger values for both 7 and 7. For two sets of param-
eters, both of which share the same Re \ |, the scaling expo-
nents are in good agreement with the theoretical prediction
(29b).

2. Regimes | and Il

The coexistence of regimes I and II is now investigated
by setting 7/7=2 so that &,~1072. At the same time,
&x,~|b|/(ae) is chosen to be of the same order of magnitude
as ox.. This way, regime III, whose appearance depends on
the value of Ox, relative to dx, [see Eq. (28)] is limited. Note
that because —Re \, increases as |b|/a increases [to verify
consider Eq. (9)], a smaller value of |b|/(ae) results in a
larger value for the Holder exponent within regime I. There-
fore, to obtain an interesting change in behavior from regime
I to regime II, we are limited on how small we can choose
|b|/(ae) to be.

To test the validity of the set of scaling laws in Eq. (29),
we examine the structure functions obtained from two sets of
parameters, with different value for |b, shown in Fig. 6(a)
[see also Fig. 3(b) for comparison with theory]. For the first
parameter set the value of |b| is smaller than for the second
parameter set which implies that the first parameter set has a
larger —Re \; than the second parameter set. Thus within
regime I, the first parameter set has a larger Holder exponent.

Phys. Fluids 21, 087101 (2009)
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FIG. 5. (a) First-order structure functions for the linear delay reactive scalar
(5) averaged over ten evenly spaced transects (parallel to the x-axis). These
are calculated at statistical equilibrium (¢=207) for the two sets of param-
eters (a,b,7) that were considered in Fig. 1, both with Re \;=-0.68 but
different Im \;: for (1,-0.16,1) (gray solid line) \; is real while for
(1,0.9,1) (black solid line) \; is complex. Flow constant is 7=1. The theo-
retical prediction is depicted by the dotted line. (b) Same as (a) but 7=2. (c)
Same as (a) but this time Re \;=-0.03 with different 5 and 7 and T:
(1,0.92,5) (gray solid line) and (1,0.7,0) (black solid line) and 7=20. In all
cases, 7/T=1. Black dotted lines correspond to theoretical prediction (29b).
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FIG. 6. Same as Fig. 5 but this time &x.~0.01(7/T=2). The sets of parameters (a,b,7) are as follows: (a) (1,0.05,10) (black line) with Sx,~0.02 and
(1,0.1,10) (dark gray line) with &x,=~0.04. (b) (1,0.3,10) (black line) with &x,=~0.11, (1,0.5,10) (dark gray line) with 8x,~0.18 and (1,0.75,10) (light gray
line) &x,~0.27. In all cases T=5 which leads to a > h.,.. Also shown are the predictions for the Holder exponents (black dashed lines), dx,. (black dotted line),
and &x,, based on the estimate given by Eq. (28) (dashed-dotted line with different shades for each parameter set).

At the same time, a/h..>1 for both parameter sets and thus
the Holder exponent within regime II is equal to 1.

Comparing the theory to the numerics, we can deduce
that there is good agreement. x, captures sufficiently well
the transition between regimes I and II. This transition occurs
for slightly larger length scales for the second parameter set
since it possesses a larger value of dx,. Within regime I, the
field’s scaling exponent is close enough to its theoretical
value, though this agreement is expected to become better
for smaller length scales (see, e.g., Fig. 5). Within regime II,
the scaling exponent is, as expected, equal to 1.

A flatter structure than predicted by theory appears for
the intermediate length scales (1073 < dx<<1072) for which
regime I should continue to hold. It appears that this inter-
mediate structure can be explained by noticing that the rate
of exponential increase in the separation between neighbor-
ing fluid parcels is distributed. A complete development of
this argument is left for future work.

3. Regimes I and Il

The coexistence of regimes I and III is now investigated
by keeping 7/7T=2 while increasing the value of dx,
~|b|/(ae) by an order of magnitude larger than &x,. This is
achieved by considering the same set of parameters as in Fig.
6(a) but increasing the value of |b|. This increase results in an
increase in the value of dx, and a decrease in the value of
—Re \; (the value for Sx. remains the same).

The structure functions corresponding to three sets of
parameters, shown in Fig. 6(b) [see also Fig. 3(c) for com-
parison with theory], are now examined. As expected, regime
IIT appears within a wide range of length scales, whose range
increases as the value of |b| increases. The value of dx, pro-
vides a good estimate for the length scale separating regime
II from regime III. When |b| ~0.75, 8x,~0.27 in which case
regime III appears for all length scales larger than dx,., thus
displacing regime II. Similarly to the numerical results

shown in Fig. 6(a), a good agreement between theory and
numerics is obtained within regime I, the agreement being
better for smaller length scales (the flat regime also appear-
ing here). As before, the field’s scaling behavior within re-
gime II is smooth.

B. The delay plankton model

Having investigated the scaling behavior of the linear
delay reactive scalar field, the focus now turns to the delay
plankton model. This is a typical nutrient-predator-prey
system24 where the effect of the former is parametrized by
the prey carrying capacity, denoted by C. The interactions
among the biological species are given by the following set
of nonlinear DDEs:

‘Z—f = a(Cy(x) - C), (35a)
ar _ P(1-P/IC) - PZ, (35b)
dt

2 -2t - o2, (35¢)

dt

where P stands for phytoplankton and Z for zooplankton, 7 is
a dimensionless time scaled to the phytoplankton production
rate r (¢/r is the real time), and « denotes the rate at which
the carrying capacity relaxes to the background source Cy(x).
The phytoplankton growth is logistic and grazing takes place
according to a simple PZ term. Zooplankton death occurs at
a rate 6 and is described by a quadratic in Z term, represent-
ing grazing due to higher trophic levels. The key feature of
this model is the introduction of the time 7 that represents the
time it takes for the zooplankton to mature (7/r in real time).
Although it is reasonable to assume an instantaneous change
in the prey population once prey and predator are encoun-

Downloaded 25 Aug 2009 to 129.199.72.86. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



087101-12

A. Tzella and P. H. Haynes

1 1.1
1
0.8
0.9
0.6F ' 7™ 0.8
> ' 0.7
0.4
0.6
0.2 0.5
0.4
0.2 0.4 0.6 0.8 1
(b) T
0.42
0.4
0.8 0.38
0.36
0.6 0.34
i 0.32
0.4 0.3
0.28
0.2 0.26
0.24

(c)

FIG. 7. (Color online) Snapshots of the biological distributions at statistical
equilibrium (#=207) for the delay plankton model (35) stirred by the model
strain flow (30) with 7=20, @=0.25, =2, and T=20. As before the force is
diagonally oriented, described by Eq. (32).

tered, it is not reasonable to assume an instantaneous change
in the predator population.

The stationary distributions for C, P, and Z, attained
when coupled to the strain model flow [Eq. (30)], are de-
picted for a particular set of parameters in Fig. 7. Before
analyzing any numerical simulations, the particular plankton
dynamics need first to be examined. While the scaling be-

Phys. Fluids 21, 087101 (2009)

havior of a general system of delay reactive scalar fields has
been set out in the Appendix, certain nongeneric features are
easier to address for each model in question.

For the delay plankton model, the nongeneric feature is
the existence of asymmetrical couplings between the phy-
toplankton’s carrying capacity and the subsystem comprising
of the phytoplankton and the zooplankton. The case of a zero
delay time was considered by Herndndez-Garcia et al."® who
deduced that the phytoplankton and zooplankton should al-
ways share the same small-scale structure. The numerical
results that Tzella and Haynes23 obtained show that the same
holds for a nonzero delay time, provided the length scales
remain sufficiently small. However, on larger scales, a sec-
ond scaling regime appears in which the zooplankton struc-
ture is flat while the phytoplankton has a structure similar to
its carrying capacity. Although the appearance of a second
scaling regime is inherent to any system of delay reactive
scalar fields, the decoupling among the species is particular
to the delay plankton model.

To fully explain the scaling behavior of the delay plank-
ton model, the theory of Sec. I must be extended in order to
accommodate the particularities of this model. In the absence
of advection and within a certain range of parameters, the
delay plankton model has a single fixed point of equilibrium,
given by

C*=Cyx), and Z*=P*/6.

(36)

P*=8C*/(5+ C*),

This point is stable for 7=0. For 0.5=Cy(x)=1.5 and §=2,
as in the simulations performed here, this point remains
stable for any 7>0. Linearizing the delay plankton model
around this point of equilibrium results in the following ex-
pressions for the matrices A and B:

o 0 0
A=|-(PC"?* PYC* P* (37a)
0 0 2P
and
0 0 O
B=-pP 0 0 0], (37b)
0 1/6 1

where A and B are the matricial equivalents of a and b for
the one-dimensional linear delay reactive scalar (5) (for fur-
ther details see the Appendix, first subsection). Certain ma-
trix coefficients [i.e., —(P*/C*)?,P*/C*2P*] were simplified
using Eq. (36).

From Eq. (A3), the characteristic matrix is given by
H(\)=N+A+Be™". Thus, using Eq. (37),

AN+ a 0 0
H(\)=|-(P*C*)? N+ P*IC* P*
0 — NP8 N—Pe M+ 2P

(38)

It follows that the characteristic equation corresponding to
the linearized delay plankton model satisfies [see Eq. (A3)]
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FIG. 8. (a) The value of Re \,, associated with the rate of the slowest decaying eigenfunction of the linearized phytoplankton-zooplankton subsystem,
calculated and plotted as a function of 7 for Cy=1 (black solid line), C;=0.5 (gray dashed line), and Cy=1.5 (gray dashed-dotted line) (5=2). Its value is
determined by considering the roots of the characteristic equation (39). (b) The value of min{—Re \,/h,,, 1}, the theoretical value for the Holder exponent
shared between the phytoplankton and the zooplankton, plotted as a function of 7 for ,,~0.117 (T=20) and Cy=1 (black solid line), Cy=0.5 (gray dashed

line), and Cy=1.5 (gray dashed-dotted line).

h(\) =det HN) = (A + a@)g(\) =0, (39a)

where g(\)=0 is the characteristic equation associated with
the phytoplankton-zooplankton subsystem,

N+ P C* P*

\) = . 39b
SN=1_ niprys n—pree2p (39)

As in the one-dimensional case, the number of roots are in-
finite for g(A\)=0 [and therefore for h(\)=0]. At the same
time, the magnitude of Re A, the root with the least negative
real part, decreases as 7 increases with Re A} —0 as 7— .
Its value is determined for fixed C and & and plotted in Fig.
8(a) as a function of 7for §=2 and three key values of Cy(x):
1, 1.5, and 0.5, i.e., its average, maximum, and minimum
[see Eq. (32)]. Notice that the difference between the Re \,
calculated for these three values of Cy(x) is minor. It is there-
fore expected that the value for the least negative chemical
Lyapunov exponent associated with the nonlinear dynamics
of the delay plankton model is close to —Re \;.

In the theoretical considerations made in Sec. II, the
scaling behavior of a linear delay reactive scalar was de-
scribed by the set of scaling laws (29). A similar set of scal-
ing laws holds for a system of nonlinearly interacting scalars
(see the Appendix, second subsection): the Holder exponent
within regime I is governed by the ratio of the least negative
chemical Lyapunov exponent, —Re A4, to the flow Lyapunov
exponent h..; within regime II, the Holder exponent is gov-
erned by —a,/h., where a; is the slowest decay rate associ-
ated with the reduced system that is obtained once all delay
terms are ignored. As for the single delay reactive scalar, the
appearance of a flat scaling regime, regime III, depends on
whether dx,, the length scale associated with this regime, is
larger than Ox,, the transition length scale. Note that the
value of dx, is not necessarily the same for each species (see
the Appendix, second subsection).

This set of scaling laws was deduced for the general case
in which the product of the fundamental matrix [defined in
Eq. (A4)], the matricial equivalent of the fundamental solu-
tion, with the direction of the forcing in the chemical space

has nonzero entries (see the Appendix). If that is not the case,
the set of scaling laws (29) may need to be modified and
different regimes for different species are expected. Note,
however, that in all cases the value of dx, is not affected as
its value only depends on 7 and not on the particular chemi-
cal dynamics.

To examine the existence of zero entries for the linear-
ized delay plankton model, consider first the form of the
eigenfunctions that comprise its fundamental matrix. This
matrix, denoted by My(), can be written as an infinite sum
of eigenfunctions, each proportional to e adj H(\;), where
adj is short for adjoint [see Eq. (A6)]. In the delay plankton
model, the forcing is given by the source Cy(x). Since this is
applied only to the carrying capacity, the product of
adj H(\;) with the forcing direction is given by

1 g()\i)
adj H\) -| 0 |=| m;(\) |, (40)
0 mz()\i)
with
mi(\) = (N, = P[e™M7 = 2])(P*/CY)?, (41a)
my(\;) = e™NTP*3(5C%) 7!, (41b)

where to deduce the above, Egs. (38) and (39) were
employed.

Examining the behavior of Eq. (40) as a function of \;
where h(\;)=0and i=1, ..., it can be deduced that as long
as these are distinct (achieved by appropriately choosing the
parameter range), the only \; for which g(\;) #0 is \;=—a.
Therefore, a single eigenfunction governs the scaling
behavior of C from where it can be inferred that a single
Holder exponent characterizes its spatial structure. Its value
is given by

ye=min{l,a/h.}. (42)

This result is hardly surprising as it is easy to observe that
the carrying capacity evolves independent of the rest of the
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species and as the much studied linearly decaying scalar with
chemical Lyapunov exponent equal to —a.

On the other hand m(\;),m,(\;) #0 for all \;, where
i=1,...,% and thus no special considerations are necessary
for the phytoplankton and zooplankton; their scaling behav-
ior within regime I is shared and governed by the least nega-
tive chemical Lyapunov exponent, Re \;.

However, within regime II a different scenario takes
place. The fundamental matrix corresponding to this regime
may be exactly written as My(r) =exp[-At] (see the Appen-
dix, first subsection). Using a singular value decomposition,
My(#) can be rewritten in terms of d,e%d; where d; and d;
correspond to the normalized right and left eigenvectors of A
with eigenvalue a; where i=1,...,3. To understand the scal-
ing behavior of the phytoplankton and zooplankton, it is nec-
essary to consider for each i the product of d;e%'d; with the

forcing direction. The eigenvalues of A are given by

{a,,ay,a5} ={- a,— P*IC*,— 2P"}, (43a)

while the product of éie“i’d; with the forcing direction is
given by

1 . 0 0
de a1 0 |=e | e I P N
0 0 0 0
(43b)

where (-) indicates that the dependence on (nonzero) con-
stants has been suppressed for brevity as their magnitude
does not increase or decrease in a systematic way and there-
fore they do not contribute to the fields’ scaling laws.

It follows that, within regime II, two terms that are de-
caying exponentially with rates —a and A\p=—P"/C* contrib-
ute to the scaling behavior of the phytoplankton. The term
that corresponds to the smallest decay rate will dominate the
scaling behavior of the phytoplankton (see the Appendix,
second subsection). Note that in all the simulations per-
formed here, o< P*/C* where the value of P*/C* is calcu-
lated for 0.5 = Cy(x)=1.5, the range of values of Cy(x) [see
Eqgs. (32) and (36)]. It is therefore expected that the scaling
behavior of the phytoplankton is dominated by —«, the same
rate that determines its carrying capacity. Conversely, none
of these terms contribute to the scaling behavior of the zoop-
lankton, implying that within regime II, the zooplankton is
decoupled from the biological forcing and thus evolves like a
passive tracer. Therefore, within this regime, its spatial struc-
ture is flat.

As a consequence regime III appears in the scaling be-
havior of the phytoplankton only. The value for dx, separat-
ing regimes II and III may be estimated using Eq. (A21). In
all numerical simulations performed here, dx, =< dx. and
therefore this flat regime is not prevalent in the scaling be-
havior of the phytoplankton.

The following set of expressions for the Holder expo-
nents associated with the phytoplankton, yp, and the zoop-
lankton, <, describe the distributions scaling behavior
within the two regimes.

Phys. Fluids 21, 087101 (2009)

For regime I,

Ypz=Yp=Yz=min{yc,— Re N /h.}. (44a)
For regime 11,
Yp # vz with yp=min{yc,~ Np/h..},

(44b)

Yz = 0.

To summarize, within regime I, P and Z share the same
small-scale structure characterized by the Holder exponent
vpz. This structure is either shared by C, ie., ypy=7¢
[see Eq. (42) for yc], or is more filamental than C, i.e.,
vpz<yc. Within regime II, the small-scale structure of Z is
flat (zero Holder exponent) while that of P is either shared
with C or is more filamental than C.

The numerical results obtained from a set of simulations
performed first for a varying value of 7 and second for a
varying value of 7 are now analyzed.

1. Variation in +

In the set of numerical results shown in Fig. 9, the evo-
lution of the concentration fields (calculated over an intersec-
tion) and their first-order structure functions (calculated over
500 evenly spaced horizontal intersections) corresponding to
the zooplankton and phytoplankton and its carrying capacity
are examined as a function of 7. Note that the structure func-
tions have been offset to emphasize that for small 7 all spe-
cies share the same behavior at all length scales. For larger 7,
the phytoplankton and zooplankton share the same structure
at small length scales while at larger length scales the phy-
toplankton shares the same structure as its carrying capacity.

Starting from a small value for 7 for which only regime
I appears and in which all the planktonic distributions are
smooth [Fig. 9(a)], the behavior of both the phytoplankton
and the zooplankton becomes increasingly filamental as the
value of 7 increases [Figs. 9(b)-9(d)]. This behavior is in
agreement with the prediction that the magnitude of their
shared chemical Lyapunov exponent decreases as 7 in-
creases, approaching zero for large values of 7 [see Fig.
8(a)]. A comparison between theory and numerics within re-
gime I may be made by consulting Fig. 8(b) where the
Holder exponent, given by min{—Re \,/h.,, 1}, is calculated
and plotted as a function of 7. As a reference, a line of the
same slope as the theoretical value for the Holder exponent is
drawn for each case depicted in Figs. 9(a)-9(d). The agree-
ment between theory and numerics is very close.

At the same time as the value of 7 increases, the value of
the transition length scale decreases according to the theoret-
ical expression (34). This leads to the appearance of regime
II. Within the latter regime, the theoretical prediction is con-
firmed: the distribution of the phytoplankton is smooth and
similar to the distribution of its carrying capacity while that
of the zooplankton is flat, equivalent to the distribution of a
passive (nonreactive) tracer. The theoretical value for ox,
predicts sufficiently well the transition between the first and
second scaling regimes.

For Figs. 9(a)-9(c), &x, < dx,, thus explaining why no
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regime III is observed for the phytoplankton [where to esti-
mate 8x,, Eq. (A21) was used]. The only exception is shown
in Fig. 9(d) for which 7=30. For this case &x,~ &x, and thus
within a short region of length scales, a flat regime is pre-
dicted to appear for the phytoplankton. Indeed a flat regime
is observed but as in the case of the single delay scalar (see

Sec. III A), this flat regime is extended to length scales that
lie within regime I (though still close to &x.). A larger value
of dx, is obtained by further increasing the value of 7. This is
clearly depicted in Fig. 10(a) where regime III appears for a
substantial range of length scales. For scales larger than dx,,
regime I appears.
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Varying T
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2. Variation in T

The evolution of the concentration fields and their first-
order structure functions are now examined as a function of
the stirring strength of the flow, the latter parametrized by the
value of T and shown in Fig. 10. Starting from Fig. 10(a), as
the value of T increases, so does the value for dx, [see Eq.
(34)] along with the range of length scales for which regime
I appears. Again, the agreement between theory and numer-
ics is close with dx. providing a good prediction for when
the transition from regime I to either regime III [see Fig.
10(a)] or regime II [see Figs. 10(b) and 10(c)] occurs.

IV. SUMMARY AND CONCLUSIONS

This paper considered the spatial properties of chaoti-
cally advected delay reactive scalar fields, i.e., scalar fields
whose reactions explicitly contain a delay time. The investi-
gation was motivated by the need for a theoretical explana-
tion for previous numerical results obtained for a delay
plankton model'®? but the results are relevant to other
chemical and biological syste:ms.24’25

ox

The system considered has stable reaction dynamics in
which spatial inhomogeneity is forced by a spatially smooth
source and in which the reacting species are advected by a
two-dimensional, unsteady, and incompressible flow. The
case of reactions described by a single linear delay equation
is considered in detail as a simple prototype and the results
are then extended to a reaction described by a system of
nonlinearly interacting delay equations. Two main conclu-
sions are drawn concerning the scaling behavior of the delay
reactive scalar fields. The first is that, no matter how large
the value of the delay time, at sufficiently small length scales
the scaling behavior is characterized by a Holder exponent
whose value depends on the ratio of the slowest decay rate
associated with the reaction dynamics, i.e., the least negative
chemical Lyapunov exponent, to the flow Lyapunov expo-
nent. Thus, within this scaling regime, denoted as regime I,
the introduction of a delay time into the reactions results in a
scaling behavior that is a straightforward generalization of
that for which there is no delay time. For the particular case
of the delay plankton model, this implies that the phy-
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toplankton and zooplankton share the same scaling behavior
at small scales.

On the other hand, when the stirring of the flow is suf-
ficiently strong or the delay time is sufficiently large, the
scaling behavior undergoes a change beyond a transition
length scale. The expression for the transition length scale is
deduced to depend on both the stirring strength and the delay
time, exponentially decreasing as a function of their product.
This change in behavior is inherent to the delay system and
may be described by three different scenarios: The first sce-
nario occurs when a second scaling regime, denoted as re-
gime II, is created to accompany the first scaling regime.
This new scaling regime appears at all small scales that are
larger than the transition length scale. The scaling behavior
within this second regime is essentially captured by a re-
duced reaction system in which all reaction terms that con-
tain a delay time are ignored. The value of the corresponding
Holder exponent depends on the ratio of the slowest decay
rate associated with the reduced reactive processes to the
flow Lyapunov exponent. For the particular case of the delay
plankton model, this result explains why the zooplankton
assumes a similar distribution to a passive (nonreactive) sca-
lar while the phytoplankton assumes a different less-
filamental distribution. A second scenario occurs when the
second scaling regime is preceded by a flat scaling regime,
denoted as regime III. In this case there are three scaling
regimes present: regimes I, II, and III. For this to happen, the
transition length scale needs to be small compared to the
ratio of the reaction terms that contain a delay time to those
terms that do not. As this ratio increases, so does the range of
length scales for which regime III appears. When this ratio
reaches the order of unity, a last scenario occurs in which
regime III appears at all small scales that are larger than the
transition length scale. In this case regime II does not appear.

In retrospect, drawing on the analysis presented above,
we are now able to explain the results obtained by
Abraham.' In particular, we can understand why for a suf-
ficiently small delay time Abraham'” obtained similar expo-
nents from the power spectra of the phytoplankton and
zooplankton while for a larger delay time, the zooplankton
spectra had a flatter exponent than the phytoplankton. We
now know that regime II is necessarily preceded by regime I.
Therefore, a single exponent characterization of the corre-
sponding spectra is invalid and is the reason why Abraham'
did not observe a coexistence of different scaling regimes.

We believe that the investigation presented here resolves
the main issues concerning the small-scale spatial structure
of chaotically advected delay reactive scalar fields. Although
the models under consideration are highly simplified, they
can be readily extended to include any number of interacting
species or space-dependent productivity and death rates. As
long as the reactions are stable, the above conclusions re-
main unchanged. While we have concentrated on the case for
which the characteristic length scale of the source, Le,, is
similar to the characteristic length scale of the velocity field,
Ly, this analysis can be extended to the case for which Le,
>Lp, a case relevant to oceanographic flows. To do so it
suffices to modify expression (23) for the forcing difference
between two neighboring fluid parcels in order to include a
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period for which the parcel pair distance, |6X ()|, is growing
algebraically in time (see, e.g., Chap. 10 in Ref. 37 and re-
view in Ref. 38) before it reaches the scale Lc, at which
point the value of the forcing difference saturates. From a
preliminary analysis it appears to be significant only for re-
gime III which, instead of being flat, will vary weakly with
|6x| as a power of log|dx|.

This paper has avoided the implications of a distribution
of finite-time flow and chemical Lyapunov exponents. Some
of the implications of a distribution of finite-time flow
Lyapunov exponents have been addressed in Ref. 34. The
implications of a distribution of finite-time chemical
Lyapunov exponents, avoided in this paper by basing discus-
sion on solutions of model chemical systems with constant
coefficients, could be incorporated in a similar way. It is
believed that including these effects may give a better de-
scription of the fields’ scaling behavior within regime I for
length scales close to the transition length scale.

The primary theoretical predictions of this paper are the
parameter dependence of the scaling behavior in three differ-
ent regimes and the transition length scales between those
regimes. This makes it possible to develop a quantitative
evaluation of the theory, for example, as applied to observa-
tions of ocean plankton distributions at the mesoscale, one of
the principal motivations for the line of investigation in this
paper. Depending on the time it takes for the zooplankton to
mature and the stirring induced by the straining activity of
the mesoscale eddies, three, instead of one, scaling regimes
may characterize the plankton distributions.

Given the differing spatial distributions exhibited by the
plankton at the open mesoscale ocean,”**** it is worth tak-
ing into account the existence of these two new scaling re-
gimes when trying to interpret oceanic measurements at a
large range of length scales. The simple dependence of the
transition length scale on quantities that are relatively easy to
calculate makes the theory easy to implement. Measurements
of stirring rates in the surface ocean suggest that the average
stretching rate lies between ~0.05 and 0.1 day~' at the me-
soscale (e.g., Refs. 1 and 40), though of course precise val-
ues will vary from one part of the ocean to another and
indeed within different flow structures (e.g., Ref. 41). The
maturation time of zooplankton such as copepods is typically
25 days.42 Using the dimensionless expression for the tran-
sition length scale [see Eq. (26)], we can deduce that its
value varies roughly between ~0.08 and 0.29. To apply this
value on ocean flows, we need to take into account the char-
acteristic length scale of the velocity field. The latter is given
by the typical length scale of a mesoscale eddy that at mid-
latitudes lies between ~50 and 100 km (see, e.g., Ref. 43).
Based on the above estimates, we can deduce that the tran-
sition length scale varies between ~4 and 29 km. This range
of values is consistent with both Ref. 19 and Refs. 20 and 21
whose experiments and observations indicate a transition in
the scaling properties of the zooplankton and phytoplankton
at ~10 km. Below 10 km the two species become nega-
tively correlated implying that at these scales they share
similar scaling properties.

Note that our prediction for the transition length scale
can only hold for length scales that are larger than the length
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scale for which diffusive mixing, induced by the combined
action of small-scale three-dimensional turbulence and mo-
lecular diffusion, becomes effective. This is because for
length scales smaller than the mixing scale, the fluid parcel
may no more be considered to evolve independently of its
surroundings. Abraham et al." estimated the mixing scale to
be ~4 km. This estimate was based on the observed equi-
librium thickness of a filament of a plankton bloom induced
by an iron fertilization experiment. Other observations of
filamentary structures (see, e.g., Ref. 4) clearly show fila-
mental thicknesses, i.e., mixing scales, of at most a few ki-
lometers. A degree of care should be taken, however, as the
ocean is highly complex and the presence of small-scale
forcing is ubiquitous in the ocean, reflecting not only the
individual zooplankton behavior but also the presence of
strong localized upwelling. Because the impact that these
processes has on larger scales may be significant (see Refs. 8
and 44 and review in Ref. 45), it is important to build the
complexity of the idealized models considered here by in-
cluding both more realistic dynamics, in which vertical ef-
fects and frontal circulation are taken into account, as well as
some of the characteristics of the individual zooplankton be-
havior such as diurnal vertical migration.

Finally, the distinct role that a delay time plays on the
formation of structures in reactive scalar distributions is ex-
pected to prompt further research on the subject. But it
should be emphasized that the results presented in this paper
have potential application beyond the field of ocean sciences,
to any system involving fluid flow and chemical or biological
interactions. An outstanding question is to determine whether
intermediate scaling regimes can also appear for a system
described by a set of ODEs. Given the close correspondence
established between ODEs and DDEs in Ref. 25 the appear-
ance of intermediate scaling regimes may be possible for a
set of ODEs that involve both slow and fast interaction
terms. Such investigations could provide interesting exten-
sions to the work provided in this paper.
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APPENDIX: SYSTEM OF DELAY REACTIVE SCALARS

In this appendix we extend the theoretical results ob-
tained in Sec. II for a single delay reactive scalar to a system
of such fields.

1. Key properties of a system of forced linear
delay equations
Consider a system of forced, linear DDEs,

y=-Ay(t) - By(t— 1) +f(1),

where A,B € R"*" and y.f € R". Retracing the same steps as
for the single case (6), the characteristic equation that corre-

(A1)
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sponds to the homogeneous part of Eq. (A1),

y=-Ay(t) -By(i- 1), (A2)
is obtained by looking for solutions of the form ce™', where
¢ € R" and \ € C. The form of the characteristic equation is
given by

h(\) =det HN) = |\ +A + Be™"| =0, (A3)

where H(\) is defined as the characteristic matrix.
The fundamental matrix is defined as the matricial solu-
tion to Eq. (A2) with initial conditions

0, r<O0,
My(1) ={ (A4)

I, t=0.

For 0=7= 7, an exact expression for My(z) can be obtained
using the method of steps (see Sec. Il B). For t> 7 it is
more useful to take the Laplace transform of My(¢), from
where

My(t) = f MNHT'(N)dN, >0, (AS)
(y)

where y>max{Re \:#(\)=0}. The inverse of H(\), H™'(\),
can be written in terms of its matrix of cofactors, adj H(\),
and its determinant i(\). Integrating eMH~'(\) along a suit-
ably chosen contour results in

- adj H(\
My(t) = > Res e)"J—()

, t>0,
j=0 A=\, h(\)

(A6)

where Res is short for residue and Adj is short for adjoint.
Similarly to the single delay case, the infinite series (A6) is
proved32 to be uniformly convergent in 7. Because A and B
are real, the roots of Eq. (A3) are either real or come in
complex conjugate pairs. For parameters chosen so that all
roots are distinct, eMH~'(\) only has simple poles. By com-
bining the contributions from each complex conjugate pair,
Eq. (A6) becomes

My(t) = lim MYN(I), t> 0, (A7a)
N—x©
where M yN(t) is equal to
My (1) = RNTH(ND), (ATb)

-1

~

{x}':lm A;=0}

with Re )\;’ >Re '

Jne H (A} ,1) is a real matrix equal to

adj H(\") ) (A7)

A\, 1) = 2Mm ) Re( oM AT i
(D) o

with H(x) previously defined in Eq. (15¢). Hence, for suffi-
ciently large ¢, the behavior of MYN(I) is dominated by
My (7). Therefore, My, (1) satisfies the following approxi-
mate expression:
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w={ < 0==n (A8)
My(t) = A8
Y ~ Myl(t), t>T.

Thus, similarly to the fundamental solution corresponding to
a single DDE [see Eq. (17)], the behavior of the fundamental
matrix of a system of linear DDEs is distinctly different to
the behavior of the fundamental matrix of a system of linear
ODEs. At the same time, for ¢t= 7, the fundamental matrix
obtained by setting B=0 in Eq. (6) is identical to My(z).

The general solution to Eq. (A1) depends on My(r). Let
this solution be denoted by y(¢,f)(¢), where ¢p(z) represents
the initial conditions given by

y(t)= (1), te[-70].

Provided that the forcing, f(r), is exponentially bounded,
y(¢h.f)(2) is obtained by considering the Laplace transform
of Eq. (A1). This leads to

(A9)

0
H\NLy)(N) = ¢p(0) —e™B - J eMep(6)do

+ f: eMf(1)dt, (A10)
from where it can be deduced that
y(¢f)(t):y(¢,0)(t)+forMy(t—t’) S)dt',  (Alla)
with y(¢,0)(7) the solution to Eq. (A2),
y(,0)(t) = My(t) - $(0)
—fo My(t-0-7)-B-p(6)d6.  (Allb)

Representation (All) corresponds to the variation of con-
stants formula for a system of forced linear DDEs.

2. Scaling behavior

Consider the chemical activity within a fluid parcel to be
given by Eq. (2b) repeated now,

iCX(t)(f) = f_T[CX(t)(t)’X(t)]s

7 (A12)

where once again, Cy,(r) represents the fluid parcel’s
chemical concentration at a time ¢, with the fluid parcel tra-
jectory evolving according to Eq. (2a).

The evolution of the chemical difference between a pair
of fluid parcels may be obtained by linearizing Eq. (A12)
around a fluid parcel. This gives

-7 -7

J
- 8C(1) +

d d
—6C(1) =
(1) e

dt oC

-8C(t—17)

-7

0X

+ - 8X (1), (A13)

where again {5X(r),X(7)}, the label on the fluid parcel con-
centration difference in Eq. (4), is suppressed for brevity of
notation. The gradient matrices dF_,/dC,dF_,/ dC_.e R""
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while dF_,/dX € R"*?, where d is the system’s spatial
dimension.

To analyze the scaling behavior of the fields, we first
consider that both matrices dF_./dC and dF_./dC_, are con-
stant such that expression (A13) assumes a similar form to
Eq. (Al), with

=T

d%&C(t) =—A-8C(t)-B-8C(t—17)+ i - 0C(1),

aC
(A14)

where A=—9F_./dC and B=—dF_./dC_,. (The nonconstant
case is discussed later.)

Using the variation of constant formula (All), the
chemical difference may be expressed in terms of the funda-
mental matrix, My(t—t'), as

0
8C(1) = My (1) - 5C(0) - f My(t-6-7)-B- $(0)do

J[M ' (af” X ’)d’ Al5
+0 yt—1')- X (¢") |dt', (A15)

where for t € [-7,0], 8C(1)=¢(z). In the long-time limit and
for Re \; <0, where Re \;=max{Re \:h(\)=0}, the first
two terms in Eq. (A15) describing the evolution of the initial
conditions vanish. Substituting the exact expression (A7) for
My(r) into Eq. (A15), the long-time chemical difference of
the ith chemical species is given by

wm%2<

J=1

t
feReV("")fI()\T,ty5X}"_,(t’)dt’), 1>t
0 i

(A16)

Since for 0=t=17, My(r)=exp[-At], Eq. (A16) becomes

OC (1) = 2 (

-7
f RN\ p) - 5X}'_T(t’)dt’>
Jj=1

0

l

t
(@, =d] - sy F_(¢dt', 1>,

-7

+2
k=1
(A17)

where d; and ti,t are, respectively, the right and left eigenvec-
tors of A that correspond to the eigenvalue a;, normalized so
that dZd: 1. Because F_, depends smoothly on space, its
spatial derivatives do not increase or decrease in a systematic
way, and therefore

H\LD) - 8y F_ (') ~ ¢ 8X (1)) (A18a)

and

ddy - SxF_1') ~ ¢} X (1)

, (A18b)

where ¢ j,c,i e C" are constant vectors.

The dominant behavior of 8C,(t) is determined by the
slowest decaying eigenfunction within each integral. Thus,
Eq. (A17) approximately becomes
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-7
5Ci(t)~J (@)€M= 85X ()| e
0

t
+ f (E{)ie‘Re“1("”)|5X(t’)|dt, (A19a)
-7
where
Re a, = max{Re a:det(A — al) =0} (A19b)
and
Re \; = max{Re \:det H(\) = 0}, (A19c)

with €},¢] € R" related to ¢; and c¢,.

In the limit of t— o and for Ar=r—¢', the chemical dif-
ference between a pair of fluid parcels and thus from Eq. (4),
the fields” small-scale behavior may be captured by

e}

(&i)w(dx)~f Yy (Ar)min{&xe=A 1}dAr  for |ox| <1,
0

(A20a)

where the evolution of a typical line element stirred by cha-
otic advection flow [see Eq. (22)] was taken into account.
The term Y,,(Ar) represents the exponential part of the slow-
est decaying eigenfunction and is defined as

ceReal for 0=r=r,

YMl(t) = ,c.;eRe Y

(A20Db)
for t> 7.

Expression (A20) is essentially equivalent to expression (24)
(with a=Re a;). Thus, the same conclusions obtained for a
single delay reactive scalar also apply for a system of such
scalars and thus the same set of scaling laws as Eq. (29)
characterize the small-scale structure of the fields. Namely,
for the general case considered here, the fields’ stationary-
state spatial structure is a priori shared and can be classified
into two scaling regimes: the first regime, regime I, is gov-
erned by the least negative chemical Lyapunov exponent that
corresponds to the full delay system. Regimes II and III ap-
pear at length scales larger than the transition length scale.
The expression for the latter, denoted by dx., remains un-
changed and is given by Eq. (26). The scaling behavior
within regime II is governed by the slowest decay rate that
corresponds to the reduced system obtained once all terms
that involve a delay time are ignored. The appearance of a
flat regime III that is sandwiched between regimes I and II
depends on the value of the length scale (dx,); associated
with this regime. Its value can be estimated using

(8xy); ~ max|My(r) - flime /e ), (A21)

where f corresponds to the forcing direction in the chemical
space. If (Ox,); is sufficiently large, regime III occupies all
length scales larger than ox.,.

Note that to deduce the set of Eq. (A20) the general case
for which ¢; and ¢; have no zero entries was considered.
Asymmetrical couplings may result in either ¢; or ¢| having
zero entries. For these zero entries subdominant eigenfunc-
tions need to be considered in which case expression (A20b)
for Yy,(7) needs to be modified in order to represent the ex-
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ponential behavior of these subdominant eigenfunctions. A
case for which either ¢; or ¢| have zero entries is the delay
plankton model considered in Sec. III B.

The theoretical analysis above has assumed that both
matrices dF_,/dC and dF_./JC_, are constant. The analysis
may be extended to a system for which the reactions are
nonlinear and therefore the matrices are not constant. In this
case the rates of convergence of the reaction processes will
depend on the trajectory of the fluid parcel. For large enough
trajectory times and in a flow that is uniformly chaotic, these
rates are expected to be independent of the fluid parcel tra-
jectory. In the infinite-time limit these rates, defined as
chemical Lyapunov exponents,17 may be expected to con-
verge to a fixed value.
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