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Abstract. A recent paper of Balogh, Li and Treglown [3] initiated the study of Dirac-type prob-
lems for ordered graphs. In this paper we prove a number of results in this area. In particular, we
determine asymptotically the minimum degree threshold for forcing

(i) a perfect H-tiling in an ordered graph, for any fixed ordered graph H of interval chromatic
number at least 3;

(ii) an H-tiling in an ordered graph G covering a fixed proportion of the vertices of G (for any
fixed ordered graph H);

(iii) an H-cover in an ordered graph (for any fixed ordered graph H).
The first two of these results resolve questions of Balogh, Li and Treglown whilst (iii) resolves a
question of Falgas-Ravry. Note that (i) combined with a result from [3] completely determines the
asymptotic minimum degree threshold for forcing a perfect H-tiling. Additionally, we prove a result
that combined with a theorem of Balogh, Li and Treglown, asymptotically determines the minimum
degree threshold for forcing an almost perfect H-tiling in an ordered graph (for any fixed ordered
graph H). Our work therefore provides ordered graph analogues of the seminal tiling theorems of
Kühn and Osthus [Combinatorica 2009] and of Komlós [Combinatorica 2000]. Each of our results
exhibits some curious, and perhaps unexpected, behaviour. Our solution to (i) makes use of a novel
absorbing argument.

1. Introduction

In recent years there has been a significant effort to develop both Turán and Ramsey theories in
the setting of vertex ordered graphs. A (vertex) ordered graph or labelled graph H on h vertices is a
graph whose vertices have been labelled with [h] := {1, . . . , h}. An ordered graph G with vertex set
[n] contains an ordered graph H on [h] if (i) there is an injection φ : [h]→ [n] such that φ(i) < φ(j)
for all 1 ≤ i < j ≤ h and (ii) φ(i)φ(j) is an edge in G whenever ij is an edge in H.

Turán-type problems concern edge density conditions that force a fixed graph H as a subgraph in
a host graph G. Whilst the Erdős–Stone–Simonovits theorem [8, 9] determines, up to a quadratic
error term, the number of edges in the densest H-free n-vertex graph, there is still active interest
in the Turán problem for bipartite H. Indeed, for bipartite H the error term in the Erdős–Stone–
Simonovits theorem is in fact the dominant term, so more refined results are sought. Similarly, a
result of Pach and Tardos [24] determines asymptotically the number of edges an ordered graph
requires to force a copy of a fixed ordered graph H with so-called interval chromatic number χ<(H)
at least 3. Therefore, again there is significant interest in the ‘bipartite’ case of this problem (i.e.,
when χ<(H) = 2); see Tardos [28] for a recent survey on such results.

The study of Ramsey theory for ordered graphs has also gained significant traction. For example,
results of Conlon, Fox, Lee and Sudakov [5], and of Balko, Cibulka, Král and Kynčl [2] demonstrate
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that there are ordered graphs H for which the behaviour of the Ramsey number is vastly different
to their underlying unordered graph.

Other than Turán and Ramsey problems, another central branch of extremal graph theory con-
cerns Dirac-type results; that is, minimum degree conditions that force fixed (spanning) structures
in graphs. In a recent paper, Balogh, Li and the second author [3] initiated the study of Dirac-type
results for ordered graphs. Their main focus was on perfect H-tilings, though they also raised other
Dirac-type problems (see [3, Section 8]). In both the ordered and unordered settings, an H-tiling
in a graph G is a collection of vertex-disjoint copies of H contained in G. An H-tiling is perfect
if it covers all the vertices of G. Perfect H-tilings are also often referred to as H-factors, perfect
H-packings or perfect H-matchings. H-tilings can be viewed as generalisations of both the notion
of a matching (which corresponds to the case when H is a single edge) and the Turán problem
(i.e., a copy of H in G is simply an H-tiling of size one).

Balogh, Li and Treglown [3] raised the following question.

Problem 1.1. [3] Given any ordered graph H and any n ∈ N divisible by |H|, determine the
smallest integer δ<(H,n) such that every n-vertex ordered graph G with δ(G) ≥ δ<(H,n) contains
a perfect H-tiling.

The analogous problem in the (unordered) graph setting had been studied since the 1960s (see,
e.g., [1, 6, 13, 17, 20, 21]) and forty-five years later a complete solution, up to an additive constant
term, was obtained via a theorem of Kühn and Osthus [21]. We will discuss this result further
when comparing this problem with Problem 1.1.

In [3, Theorem 1.9], Balogh, Li and Treglown asymptotically resolved Problem 1.1 for H with
χ<(H) = 2. Further, they developed approaches to the absorbing and regularity methods for
ordered graphs, including providing general absorbing and almost perfect tiling lemmas. In this
paper we build on their results to asymptotically resolve Problem 1.1 in all remaining cases (i.e.,
for all H with interval chromatic number at least 3). Our main result shows that Problem 1.1 does
exhibit a somewhat different behaviour when χ<(H) ≥ 3 compared to when χ<(H) = 2; we discuss
this further in Section 1.3.

In addition to this result, we also resolve the Dirac-type problems for H-covers in ordered graphs
(see Section 1.2) and H-tilings covering a fixed proportion x of the vertices of an ordered graph for
x ∈ (0, 1) (see Section 1.4).

1.1. A Dirac-type theorem for perfect H-tilings. In this subsection we state Theorem 1.8,
which asymptotically resolves Problem 1.1 when χ<(H) ≥ 3. This result will depend on several
definitions and parameters which we now introduce.

Definition 1.2 (Interval chromatic number). Given r ∈ N, an interval r-colouring of an ordered
graph H is a partition of the vertex set [h] of H into r intervals so that no two vertices belonging
to the same interval are adjacent in H. The interval chromatic number χ<(H) of an ordered graph
H is the smallest r ∈ N such that there exits an interval r-colouring of H.

One can think of the interval chromatic number as the natural ordered analogue of the chromatic
number of a graph. Moreover, whilst the Erdős–Stone–Simonovits theorem [8, 9] asserts that
1 − 1/(χ(H) − 1) + o(1) is the edge density threshold for ensuring a copy of a graph H in G,
the Erdős–Stone–Simonovits theorem for ordered graphs due to Pach and Tardos [24] asserts the
corresponding threshold in the ordered graph setting is 1− 1/(χ<(H)− 1) + o(1).

The next definition is the relevant parameter for studying almost perfect H-tilings in graphs.

Definition 1.3 (Critical chromatic number). The critical chromatic number χcr(F ) of an un-
ordered graph F is defined as

χcr(F ) := (χ(F )− 1)
|F |

|F | − σ(F )
,
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where σ(F ) denotes the size of the smallest possible colour class in any χ(F )-colouring of F .

Note that χ(H) − 1 < χcr(H) ≤ χ(H) for all graphs H, and χcr(H) = χ(H) precisely when
every χ(H)-colouring of H has colour classes of equal size.

We informally refer to an H-tiling in an n-vertex (ordered) graph G as an almost perfect H-tiling
if it covers all but at most o(n) vertices of G. Komlós [16] proved that (1 − 1/χcr(H))n is the
minimum degree threshold for forcing an almost perfect H-tiling in an n-vertex graph G. In fact,
it was later shown [26] that such graphs G contain H-tilings covering all but a constant number of
the vertices in G. In the setting of ordered graphs, a related parameter χ∗cr(H) turns out to be the
relevant parameter for forcing an almost perfect H-tiling. To introduce this parameter we need the
following definitions.

For two subsets X,Y of [n], we write X < Y if x < y for all x ∈ X and y ∈ Y . Let B be a
complete k-partite unordered graph with parts U1, . . . , Uk, and σ be a permutation of the set [k].
An interval labelling of B with respect to σ is a bijection φ : V (B)→ [|B|] such that φ(Ui) < φ(Uj)
if σ(i) < σ(j); that is,

φ(Uσ−1(1)) < · · · < φ(Uσ−1(k)).

For brevity, we will usually drop φ and just write Uσ−1(1) < · · · < Uσ−1(k). Given t ∈ N, write B(t)
for the blow-up of B with vertex set

⋃
x∈V (B) Vx, where the Vx’s are sets of t independent vertices;

so there are all possible edges between Vx and Vy in B(t) if xy ∈ E(B). Let (B(t), φ) be the ordered
graph obtained from B(t) by equipping V (B(t)) with a vertex ordering, satisfying Vx < Vy for every
x, y ∈ V (B) with φ(x) < φ(y). We refer to (B(t), φ) as an ordered blow-up of B.

Definition 1.4 (Bottlegraph). For an ordered graph H, we say that a complete k-partite unordered
graph B is a bottlegraph of H, if for every permutation σ of [k] and every interval labelling φ of B
with respect to σ, there exists a constant t = t(B,H, φ) such that the ordered blow-up (B(t), φ)
contains a perfect H-tiling. We say that B is a simple bottlegraph of H if for any choice of σ and
φ we can take t = 1.

Note that in Definition 1.4 we did not impose any restriction on the size of the parts of a
bottlegraph. However, as we will see in Proposition 5.1 below, it suffices to consider bottlegraphs
B′ where all parts are of the same size except for perhaps one smaller part. More precisely, given any
bottlegraph B of H, there is another bottlegraph B′ with this structure such that χcr(B

′) = χcr(B).
This bottle-like structure is where the name bottlegraph is derived, and was first use by Komlós [16]
in the setting of unordered graphs.

Definition 1.5 (Ordered critical chromatic number). The ordered critical chromatic number χ∗cr(F )
of an ordered graph F is defined as

χ∗cr(F ) := inf{χcr(B) : B is a bottlegraph of F}.

We say a bottlegraph B of F is optimal if χcr(B) = χ∗cr(F ).

Notice that χ<(H) − 1 ≤ χ∗cr(H) for all ordered graphs H as each bottlegraph B of H must
have chromatic number at least χ<(H) and so χ<(H) − 1 < χcr(B). In fact, Proposition 2.6 in
Section 2 yields a stronger lower bound on χ∗cr(H). On the other hand, (in contrast to χcr(F ) for
unordered graphs F ) we will also see examples of ordered graphs where χ∗cr(H) is much larger than
χ<(H). Note though that χ∗cr(H) ≤ h for any ordered graph H on [h] as Kh is a bottlegraph of
H. In fact, this upper bound is attained when H is such that 1 and 2 are adjacent or h − 1 and
h are adjacent; this is an immediate consequence of Proposition 11.1 below. To aid the reader’s
intuition, in Section 3.3 we give examples of ordered graphs H where we compute χ∗cr(H). Various
bounds on χ∗cr(H) are given in Section 11.
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The next result, a simple corollary of [3, Theorem 4.3], shows that χ∗cr(H) is a relevant parameter
for forcing an almost perfect H-tiling in an ordered graph.1

Theorem 1.6 (Balogh, Li and Treglown [3]). Let H be an ordered graph. Then for every η > 0,
there exists an integer n0 = n0(H, η) so that every ordered graph G on n ≥ n0 vertices with

δ(G) ≥
(

1− 1

χ∗cr(H)

)
n

contains an H-tiling covering all but at most ηn vertices.

At first sight it is not clear if the minimum degree threshold in Theorem 1.6 is best possible.
However, Theorem 12.1 in Section 12 shows that Theorem 1.6 is best possible in the sense that
one cannot replace the 1 − 1/χ∗cr(H) term in the minimum degree condition with any other fixed
constant term a < 1 − 1/χ∗cr(H). Thus, Theorem 12.1 and Theorem 1.6 provide an analogue of
Komlós’ theorem in the ordered setting.

Unusually, in the proof of Theorem 12.1, for most ordered graphs H we do not simply produce
an explicit extremal example. Indeed, if one has not explicitly computed the value of χ∗cr(H) and
the ‘reason’ why it takes this value, then it seems difficult to produce such an explicit extremal
example. Instead, the proof splits into a few cases and uses various tools and results that we
introduce in the paper.

At this point the reader may wonder if the conclusion of Theorem 1.6 can be strengthened to
ensure a perfect H-tiling. For some ordered graphs H this is possible. However, for other ordered
graphs one will require a significantly higher minimum degree condition. The following definition
is the critical concept for articulating this dichotomy for H with χ<(H) ≥ 3.

Definition 1.7 (Local barrier). Let H be an ordered graph on [h] with r := χ<(H) ≥ 2. We say
that H has a local barrier if for some fixed i 6= j ∈ [r+ 1] the following condition holds. Given any
interval (r+ 1)-colouring of H with colour classes V1 < · · · < Vr+1 such that Vi = {v} is a singleton
class, there is at least one edge between v and Vj in H.

Note that in this definition we may have that a colour class Vk is empty. If H is the ordered
complete graph on r vertices then H does not have a local barrier; it is also easy to check that
χ∗cr(H) = χ<(H) = r. Given r ≥ 2, let H ′ be any complete r-partite (unordered) graph with at
least 2 vertices in each colour class. Let H be any ordered graph obtained from H ′ by assigning
an interval labelling to H ′; so χ<(H) = r. Then one can check that H has a local barrier with
parameters i = 1 and j = r + 1 as in Definition 1.7.

We are now able to state our main result which resolves Problem 1.1 for all ordered graphs H
with χ<(H) ≥ 3.

Theorem 1.8. Let H be an ordered graph with χ<(H) ≥ 3. Given any η > 0, there exists an
integer n0 = n0(H, η) so that if n ≥ n0 and |H| divides n then

(i)
(

1− 1
χ∗cr(H)

)
n ≤ δ<(H,n) ≤

(
1− 1

χ∗cr(H) + η
)
n if χ∗cr(H) ≥ χ<(H);

(ii)
(

1− 1
χ<(H)

)
n < δ<(H,n) ≤

(
1− 1

χ<(H) + η
)
n if χ∗cr(H) < χ<(H) and H has a local

barrier;

(iii)
(

1− 1
χ∗cr(H)

)
n ≤ δ<(H,n) ≤

(
1− 1

χ∗cr(H) + η
)
n if χ∗cr(H) < χ<(H) and H has no local

barrier.

1The reader may not immediately see why Theorem 1.6 is a corollary of Theorem 4.3 from [3] as there is an
error term in the minimum degree condition in the latter theorem. However, a standard trick (see, e.g., the proof of
Corollary 6.6 in [7]) always allows one to omit an error term in a minimum degree condition that forces an almost
perfect H-tiling.
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Therefore Problem 1.1 is now asymptotically resolved. The reader might find it hard to see why
the value of δ<(H,n) behaves as in Theorem 1.8, and indeed, it took the authors quite some time
to discover the correct behaviour of this problem. In Section 1.3 we give further intuition on this
result. In Section 3 we give examples of H in each case (i)–(iii) of the theorem. In Section 2 we
give the extremal constructions for Theorem 1.8. In particular, in cases (i) and (iii) the extremal
examples are ‘bottlegraphs’ – complete multipartite ordered graphs where each part has the same
size except at most one smaller part; in Section 11 we explicitly compute the value of χ∗cr(H)
for a range of H, and thus the minimum degree threshold in Theorem 1.8 also. The explanation
for why these extremal ‘bottlegraphs’ do not have perfect H-tilings revolve around ‘space barrier’
constraints, (i.e., one runs out of space in some subset of vertices in the extremal bottlegraph).2

However, the ‘reason’ for obtaining a space barrier can be somewhat involved (and unlike any other
space barrier extremal example we have ever seen before); we discuss this in Section 3.1.

The proof of Theorem 1.8 applies an absorbing theorem from [3, Theorem 4.1] and Theorem 1.6
above. The main novelty is to prove an absorbing theorem for ordered graphs H as in Theo-
rem 1.8(iii). Whilst our argument makes use of a lemma of Lo and Markström [23], and seems
rather natural, it is different to any absorbing proof we have previously seen (in particular, we do
not use local-global absorbing as in [3]). See Section 9 for an overview of our absorbing strategy.

1.2. A Dirac-type theorem for vertex covers. Given (ordered) graphs H and G, we say that
G has an H-cover if every vertex in G lies in a copy of H. Note that the notion of an H-cover is
an ‘intermediate’ between seeking a single copy of H and a perfect H-tiling; in particular, a perfect
H-tiling in G is itself an H-cover. Given any n ∈ N and any (ordered) graph H, let δcov(H,n)
denote the smallest integer k such that every n-vertex (ordered) graph G with δ(G) ≥ k contains
an H-cover. As noted in [22], an easy application of Szemerédi’s regularity lemma asymptotically
determines δcov(H,n) for all graphs H.

Proposition 1.9. [22, Proposition 6] For every graph H and every η > 0, there exists an integer
n0 = n0(H, η) so that if n ≥ n0 then(

1− 1

χ(H)− 1

)
n− 1 ≤ δcov(H,n) ≤

(
1− 1

χ(H)− 1
+ η

)
n.

Proposition 1.9 implies that, asymptotically, the minimum degree threshold for ensuring an H-
cover in a graph G is the same as the minimum degree threshold for ensuring a single copy of H
in G. In [22, Theorem 5], Kühn, Osthus and Treglown asymptotically determined the Ore-type
degree condition that forces an H-cover for any fixed graph H. There has also been several recent
papers concerning minimum `-degree conditions that force H-covers in k-uniform hypergraphs; see,
e.g., [11, 12, 14].

Falgas-Ravry [10] raised the question of determining δcov(H,n) for all ordered graphs H. Our
next result asymptotically answers this question.

Theorem 1.10. Let H be an ordered graph and η > 0. Then there exists an integer n0 = n0(H, η)
so that if n ≥ n0 then

(i)
(

1− 1
χ<(H)−1

)
n < δcov(H,n) ≤

(
1− 1

χ<(H)−1 + η
)
n if H has no local barrier;

(ii)
(

1− 1
χ<(H)

)
n < δcov(H,n) ≤

(
1− 1

χ<(H) + η
)
n if H has a local barrier.

Theorem 1.10 is a direct consequence of some of the auxiliary results we use in the proof of
Theorem 1.8. Note that the behaviour of the threshold in Theorem 1.10 is perhaps unexpected.
Indeed, unlike in the unordered setting, Theorem 1.10 and the Erdős–Stone–Simonovits theorem

2See [15] for a discussion on space barriers.
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for ordered graphs imply that the asymptotic minimum degree thresholds for forcing a copy of H
and an H-cover are different if H has a local barrier.

Furthermore, a key moral of the Erdős–Stone–Simonovits theorem (and Proposition 1.9) is that
once a graph G is dense enough (or has large enough minimum degree) so as to ensure a copy
of Kr (or a Kr-cover) then G must contain every fixed graph H (or an H-cover) for every H of
chromatic number r. An intuition for this comes from Szemerédi’s regularity lemma. However, the
analogous moral is not true for H-covers in ordered graphs. Indeed, if H is an ordered complete
graph on r vertices (so χ<(H) = r and H has no local barrier) then Theorem 1.10 tells us the
minimum degree threshold for forcing an H-cover in an n-vertex ordered graph is (1− 1

r−1 + o(1))n

whilst the corresponding threshold for any ‘blow-up’ H ′ of H (so χ<(H ′) = χ<(H) = r and H
has a local barrier) is significantly higher, namely (1− 1

r + o(1))n. This should hint to the reader
that the regularity method behaves differently in the ordered setting; in particular, if H has a local
barrier this provides an obstruction when applying the regularity lemma. More discussion on the
regularity method for ordered graphs can be found in [3, Section 3.1].

1.3. Intuition behind the threshold in Theorem 1.8. In this subsection we build up further
intuition behind the threshold in Theorem 1.8. For this it will be useful to first take a step back and
consider perfect H-tilings in unordered graphs. In this setting the Dirac-type threshold is governed
by two factors:

(C1) The minimum degree needs to be large enough to force an almost perfect H-tiling.
(C2) The minimum degree must be large enough to prevent ‘divisibility’ barriers within the host

graph that constrain us from turning an almost perfect H-tiling into a perfect H-tiling.

This is made precise by the following theorem of Kühn and Osthus [21].

Theorem 1.11 (Kühn and Osthus [21]). Let δ(H,n) denote the smallest integer k such that every
graph G whose order n is divisible by |H| and with δ(G) ≥ k contains a perfect H-tiling. For every
unordered graph H,

δ(H,n) =

(
1− 1

χ∗(H)

)
n+O(1),

where χ∗(H) := χcr(H) if hcf(H) = 1 and χ∗(H) := χ(H) otherwise.

Recall that every graph H satisfies χcr(H) ≤ χ(H). So by Komlós’ aforementioned almost
perfect tiling theorem [16], the minimum degree condition in Theorem 1.11 is enough to ensure
(C1) holds. Meanwhile those graphs H with hcf(H) = 1 are precisely the graphs for which, at
the almost perfect tiling threshold, (C2) is satisfied. Furthermore, for graphs H with hcf(H) 6= 1,
(C2) is only guaranteed to be satisfied once the n-vertex host graph has minimum degree around
(1− 1/χ(H))n.

We do not state the precise definition of hcf(H) = 1 here; see [21, Section 1.2]. However, the
following example is instructive. Let H be any connected bipartite graph and let n ∈ N be divisible
by |H|. Consider the n-vertex graph G that consists of two disjoint cliques whose sizes are as
equal as possible so that neither is divisible by |H|. Then whilst G contains an almost perfect
H-tiling, the divisibility constraint on the clique sizes prevents a perfect H-tiling. Thus all such H
are examples of graphs with hcf(H) 6= 1. In particular, δ(G) = n/2−O(1) = (1−1/χ(H))n−O(1),
so G is an extremal example for Theorem 1.11 in this case.

As mentioned earlier, another necessary condition for a Dirac-type threshold for perfect H-tilings
is the following:

(C3) The minimum degree needs to be large enough to force an H-cover.

Condition (C3), however, does not factor into the statement of Theorem 1.11 as Proposition 1.9
shows that one can ensure an H-cover ‘earlier’ than an almost perfect H-tiling (recall that χ(H)−
1 < χcr(H)).
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Interestingly, the opposite is true in the ordered graph setting when H has a local barrier and
χ<(H) ≥ 3 is such that χ<(H) > χ∗cr(H). Indeed, in this case, Theorem 1.8(ii) essentially states
that the H-cover condition is the ‘last’ of conditions (C1)–(C3) to be satisfied. In particular,
Extremal Example 1 in Section 2 shows that for every H satisfying Definition 1.7, there are n-
vertex ordered graphs with δ(G) > (1− 1/χ<(H))n− 1 for which a certain vertex does not lie in a
copy of H.

In all other cases when χ<(H) ≥ 3, Theorem 1.8 essentially states that the almost perfect tiling
condition is the ‘last’ of conditions (C1)–(C3) to be satisfied. Therefore, surprisingly (at least to
the authors!), divisibility barriers play no role in Problem 1.1 for H with χ<(H) ≥ 3. In contrast,
Theorem 1.9 in [3] shows that in the case when χ<(H) = 2, each of (C1), (C2) and (C3) can be
the condition that governs the Dirac-type threshold for perfect H-tiling, depending on the choice
of H.

1.4. A Dirac-type theorem for H-tilings. In addition to determining the Dirac-type threshold
for almost perfect tilings in unordered graphs, Komlós [16] provided a best-possible minimum degree
condition for forcing an H-tiling covering a certain proportion of the vertices in a graph G.

Definition 1.12 ((x,H)-tilings). Let G and H be (ordered) graphs and x ∈ [0, 1]. An (x,H)-tiling
in G is an H-tiling covering at least x|G| vertices. So a (1, H)-tiling is simply a perfect H-tiling.

Theorem 1.13 (Komlós [16]). Let H be a graph and x ∈ (0, 1). Define

g(x,H) :=

(
1− 1

χ(H)− 1

)
(1− x) +

(
1− 1

χcr(H)

)
x.

Given any η > 0, there exists some n0 = n0(x,H, η) ∈ N such that if G is a graph on n vertices
where n ≥ n0 and δ(G) ≥ g(x,H) · n then there exists an (x− η,H)-tiling in G.

Note that the minimum degree condition in Theorem 1.13 is best possible in the sense that given
any fixed H and x ∈ (0, 1), one cannot replace g(x,H) with any fixed g′(x,H) < g(x,H) (see [16,
Theorem 7] for a proof of this).

The function g(x,H) is quite well-behaved. Indeed, for fixed H, g(x,H) grows linearly in x.
Note that g(0, H) · n and g(1, H) · n are the asymptotic minimum degree thresholds for ensuring
an n-vertex graph contains a copy of H and an almost perfect H-tiling respectively. From this
prospective, the function g(x,H) can be viewed as a linear interpolation of these two thresholds.

The question of obtaining an ordered graph analogue of Theorem 1.13 was raised in [3, Ques-
tion 8.2]. We provide an answer to this problem; for this we require the following definitions.

Definition 1.14 (x-bottlegraphs). Let H be an ordered graph and x ∈ (0, 1]. An unordered graph
B is an x-bottlegraph of H if it satisfies the following properties:

(i) B is a complete k-partite graph with parts U1, U2, . . . , Uk, for some k ∈ N.
(ii) There exists some m ∈ N such that |U1| ≤ m and |Ui| = m for every i > 1.

(iii) Given any permutation σ of [k] and any interval labelling of B with respect to σ, the
resulting ordered graph contains an (x,H)-tiling.

Definition 1.15. Let H be an ordered graph and x ∈ (0, 1]. We define χ∗cr(x,H) as

χ∗cr(x,H) := inf{χcr(B) : B is an x-bottlegraph of H}.

Given any ordered graph H, if B is an x-bottlegraph of H then χ(B) ≥ χ<(H). This implies
that χcr(B) > χ<(H)− 1 and so

χ∗cr(x,H) ≥ χ<(H)− 1.(1)

An application of Theorem 1.13 together with a tool from [3, Lemma 6.2] yields the following
minimum degree condition for the existence of (x,H)-tilings in ordered graphs.
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Theorem 1.16. Let H be an ordered graph, x ∈ (0, 1) and define

f(x,H) :=

(
1− 1

χ∗cr(x,H)

)
.

Given any η > 0, there exists some n0 = n0(x,H, η) ∈ N such that if G is an ordered graph on n
vertices with n ≥ n0 and δ(G) ≥ (f(x,H) + η)n then G contains an (x,H)-tiling.

The minimum degree condition in Theorem 1.16 is best possible in the following sense. Let H and
x ∈ (0, 1) be fixed. Given any 0 < a < 1 − 1/χ∗cr(x,H), and any sufficiently large n ∈ N, consider
any n-vertex graph B that satisfies (i) and (ii) of Definition 1.14 for some choice of k,m ∈ N and
where

an < δ(B) = n−m =

(
1− 1

χcr(B)

)
n < f(x,H) · n.

So χcr(B) < χ∗cr(x,H). (Note such a graph B exists for any choice of 0 < a < 1 − 1/χ∗cr(x,H).)
Then by definition of χ∗cr(x,H) there is a permutation σ of [k] and an interval labelling φ of B with
respect to σ, such the resulting ordered graph (B,φ) does not contain an (x,H)-tiling.

A draw-back of Theorem 1.16 is that it seems hard to compute χ∗cr(x,H) in general. However,
in Section 14 we describe the behaviour of the function f(x,H) for some fixed ordered graphs H.
In particular, akin to Theorem 1.13, if H has χ<(H) = 2 then f(x,H) is linear in x. Perhaps
surprisingly though, there are ordered graphs where f(x,H) is only piecewise linear. We also
compute f(x,H) for every ordered graph H and every x that is not too big.

1.5. Organisation of the paper. The paper is organised as follows. In Section 2 we give the
extremal constructions for Theorems 1.8 and 1.10. In Section 3 we give some examples of ordered
graphs H that fall into each of the three cases of Theorem 1.8. In Section 4 we state a new
absorbing theorem (Theorem 4.2) and an absorbing theorem from [3] and combine them with
Theorem 1.6 to prove Theorem 1.8. The subsequent sections therefore build up tools for the proof
of Theorem 4.2: in Section 5 we state a couple of useful properties of bottlegraphs; in Section 6
we introduce Szemerédi’s regularity lemma and related useful results; some tools for absorbing are
given in Section 7; Section 8 contains several results which give flexibility in how one can interval
colour certain ordered graphs H.

In Section 9 we give a sketch of the proof of Theorem 4.2 before proving it and Theorem 1.10
in Section 10. In Section 11 we give general upper and lower bounds on χ∗cr(H) and also compute
χ∗cr(H) for a few general classes of ordered graphs H.

In Section 12 we prove that the minimum degree condition in Theorem 1.6 is best possible. The
proof of Theorem 1.16 is given in Section 13; in the subsequent section we describe the behaviour
of the function f(x,H) for some choices of H. We conclude the paper with some open problems in
Section 15.

1.6. Notation. Given n ∈ N, let [n] := {1, . . . , n}. A nearly balanced interval partition of [n] is
a partition of [n] into intervals W1 < · · · < Wt where ||Wi| − |Wj || ≤ 1 for every 1 ≤ i, j ≤ t.
Similarly, a t-partite graph with vertex classes V1, . . . , Vt is nearly balanced if ||Vi| − |Vj || ≤ 1 for
every 1 ≤ i, j ≤ t.

If G is an (ordered) graph, |G| denotes the size of its vertex set, and e(G) denotes the number
of edges in G. Given A ⊆ V (G), the induced subgraph G[A] is the subgraph of G whose vertex
set is A and whose edge set consists of all of the edges of G with both endpoints in A. We define
G\A := G[V (G)\A]. For two disjoint subsets A,B ⊆ V (G), the induced bipartite subgraph G[A,B]
is the subgraph of G whose vertex set is A∪B and whose edge set consists of all of the edges of G
with one endpoint in A and the other endpoint in B. We write e(A,B) := e(G[A,B]).

For an (ordered) graph G and a vertex x ∈ V (G), we define NG(x) as the set of neighbours of x
in G and dG(x) := |NG(x)|. For X ⊆ V (G) we define dG(x,X) := |NG(x) ∩X|. Given (ordered)
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graphs G and H and X ⊆ V (G) we say that G[X] spans a copy of H in G if H is a spanning
subgraph of G[X].

Given an ordered graph G we say that V1 < · · · < Vr is an interval r-colouring of G to mean that
there is an interval r-colouring of G with colour classes V1 < · · · < Vr. We say that an ordered graph
G is complete r-partite if there exists an interval r-colouring V1 < · · · < Vr such that xy ∈ E(G)
for every x ∈ Vi and y ∈ Vj with i 6= j. We refer to the Vi’s as the parts of G.

Given an unordered graph G and a positive integer t, let G(t) be the graph obtained from G by
replacing every vertex x ∈ V (G) by a set Vx of t vertices spanning an independent set, and joining
u ∈ Vx to v ∈ Vy precisely when xy is an edge in G; that is, we replace the edges of G by copies of
Kt,t. We will refer to G(t) as a blown-up copy of G. If Ui is a vertex class in G then we write Ui(t)
for the corresponding vertex class in G(t). We use analogous notation when considering blown-up
copies of complete k-partite ordered graphs. In particular, given a complete k-partite ordered graph
B with parts B1 < · · · < Bk, the ordered blow-up B(t) of B consists of parts B1(t) < · · · < Bk(t)
where |Bi(t)| = t|Bi| for all i ∈ [k].

Throughout the paper, we omit all floor and ceiling signs whenever these are not crucial. The
constants in the hierarchies used to state our results are chosen from right to left. For example, if
we claim that a result holds whenever 0 < a� b� c ≤ 1, then there are non-decreasing functions
f : (0, 1]→ (0, 1] and g : (0, 1]→ (0, 1] such that the result holds for all 0 < a, b, c ≤ 1 with b ≤ f(c)
and a ≤ g(b). Note that a� b implies that we may assume in the proof that, e.g., a < b or a < b2.

2. Extremal constructions

In this section we provide the extremal examples for Theorems 1.8 and 1.10. First, consider
the case when H has a local barrier. We now construct an n-vertex ordered graph which does
not contain an H-cover (and thus no perfect H-tiling), and whose minimum degree is more than
(1− 1/χ<(H))n− 1, thereby giving the lower bounds in Theorem 1.8(ii) and Theorem 1.10(ii).

Extremal Example 1. Let n, r ∈ N and i, j ∈ [r + 1] with i 6= j. Let F1(n, r, i, j) be an n-vertex
ordered graph consisting of vertex classes U1 < · · · < Ur+1 which satisfy the following conditions:

• Ui = {u} is a singleton class while the remaining vertex classes are as equally sized as
possible, and in particular, |Uj | =

⌊
n−1
r

⌋
;

• F1(n, r, i, j)\{u} is a complete r-partite ordered graph with parts U1, . . . , Ui−1, Ui+1, . . . Ur+1;
• u is adjacent to all other vertices except those in Uj.

Note that

δ(F1(n, r, i, j)) = n− 1− |Uj | = n− 1−
⌊
n− 1

r

⌋
>

(
1− 1

r

)
n− 1.(2)

Furthermore, we now prove that F1(n, r, i, j) does not contain an H-cover (nor a perfect H-tiling)
provided that χ<(H) = r and H has a local barrier with respect to parameters i, j ∈ [r + 1].

Lemma 2.1. Let H be an ordered graph, let r := χ<(H) and let n ∈ N. If H has a local barrier
then there exist i, j ∈ N, with i 6= j, and a vertex u ∈ F1(n, r, i, j) such that there is no copy of H
in F1(n, r, i, j) covering the vertex u. In particular, F1(n, r, i, j) does not contain an H-cover nor
a perfect H-tiling.

Proof. Suppose H has a local barrier with respect to i 6= j ∈ [r+1], as defined in Definition 1.7. Let
u be the vertex in the singleton class Ui of F1(n, r, i, j). Suppose there is a copy of H in F1(n, r, i, j)
covering the vertex u. Then the interval (r + 1)-colouring U1 < · · · < Ur+1 of F1(n, r, i, j) induces
an interval (r + 1)-colouring V1 < · · · < Vr+1 of H such that Vi = {v} is a singleton class and
there is no edge between v and Vj . This contradicts the assumption that H has a local barrier with
respect to i, j; thus, there is no copy of H in F1(n, r, i, j) covering the vertex u. �
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We immediately obtain the following corollary of Lemma 2.1 and (2).

Corollary 2.2. Let H be an ordered graph and let n ∈ N. If H has a local barrier then

δcov(H,n) >

(
1− 1

χ<(H)

)
n

and, if |H| divides n

δ<(H,n) >

(
1− 1

χ<(H)

)
n.

�

Next we prove a general lower bound on δ<(H,n) which is asymptotically sharp if the ordered
graph H does not have a local barrier. Similarly to before, we construct an n-vertex ordered graph
which does not contain a perfect H-tiling and whose minimum degree is at least (1−1/χ∗cr(H))n−1,
thereby giving the lower bound in cases (i) and (iii) of Theorem 1.8.

Extremal Example 2. Let H be an ordered graph and n ∈ N. Set ` :=
⌊

n
χ∗cr(H) + 1

⌋
. Define

F2(H,n) to be the unordered complete dn/`e-partite graph on n vertices such that all classes have
size ` except for one class of size at most `.

It is easy to check that the minimum degree of F2(H,n) is

δ(F2(H,n)) = n− ` = n−
⌊

n

χ∗cr(H)
+ 1

⌋
≥
(

1− 1

χ∗cr(H)

)
n− 1.(3)

Additionally, there exists a certain ordering of the vertices of F2(H,n) such that the resulting
ordered graph does not contain a perfect H-tiling:

Lemma 2.3. Let H be an ordered graph and n ∈ N such that |H| divides n. There exists an
interval labelling φ of F2(H,n) such that the ordered graph (F2(H,n), φ) does not contain a perfect
H-tiling.

Proof. The critical chromatic number of F2(H,n) is

χcr(F2(H,n)) =
n

`
<

n

n/χ∗cr(H)
= χ∗cr(H).

It follows that F2(H,n) is not a bottlegraph of H. Hence, by definition, there exists a permutation
σ of [dn/`e] and an interval labelling φ of F2(H,n) with respect to σ such that (F2(H,n), φ) does
not contain a perfect H-tiling. �

Lemma 2.3 and (3) immediately imply the following corollary.

Corollary 2.4. Let H be an ordered graph. Then given any n ∈ N divisible by |H|,

δ<(H,n) ≥ δ(F2(H,n)) + 1 ≥
(

1− 1

χ∗cr(H)

)
n.

�

Next we give a general lower bound for δcov(H,n) which is asymptotically sharp if the ordered
graph H does not have a local barrier, thereby giving the lower bound in Theorem 1.10(i).

Extremal Example 3. Let H be an ordered graph and n ∈ N. Let F3(H,n) be the complete
(χ<(H)− 1)-partite ordered graph on n vertices with parts of size as equal as possible.
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It is easy to check that the minimum degree of F3(H,n) is

δ(F3(H,n)) = n−
⌈

n

χ<(H)− 1

⌉
>

(
1− 1

χ<(H)− 1

)
n− 1.

As χ<(F3(H,n)) < χ<(H), F3(H,n) does not contain a copy of H and thus does not contain an
H-cover. We therefore obtain the following result.

Lemma 2.5. Let H be an ordered graph and n ∈ N. Then

δcov(H,n) ≥ δ(F3(H,n)) + 1 >

(
1− 1

χ<(H)− 1

)
n.

�

For n divisible by χ<(H) − 1, F3(H,n) also shows that the minimum degree threshold that
ensures an almost perfect H-tiling in an n-vertex ordered graph is more than (1−1/(χ<(H)−1))n.
Thus, combined with Theorem 1.6 this immediately implies that, for all ordered graphs H,

χ<(H)− 1 < χ∗cr(H).(4)

Actually, we close the section by proving an even stronger lower bound on χ∗cr(H).

Proposition 2.6 (A lower bound for χ∗cr(H)). Let H be an ordered graph on h vertices and
r := χ∗cr(H). Then,

χ∗cr(H) ≥ (r − 1) +
r − 1

h− 1
.

Proof. Let B be an arbitrary bottlegraph of H. It suffices to show that χcr(B) ≥ (r− 1) + r−1
h−1 . If

χcr(B) ≥ r then we are done (since h ≥ r), so for the rest of the proof we assume that χcr(B) < r.
In particular, B has exactly r parts. Let B1 denote the part of B of smallest size. Pick any interval
labelling φ of B; then there exists some t ∈ N such that the ordered blow-up (B(t), φ) contains
a perfect H-tiling H. Since B has exactly r parts, it follows that every copy of H in (B(t), φ)
intersects all parts of B. Hence,

|B1(t)| ≥ |H| = |B(t)|
|H|

= t|B|/h =⇒ |B1| ≥ |B|/h,

and so

χcr(B) = (r − 1)
|B|

|B| − |B1|
≥ (r − 1)

|B|
|B| − |B|/h

= (r − 1) +
r − 1

h− 1
.

�

In Section 3.3 we give a family of ordered graphs H for which the lower bound on χ∗cr(H) in
Proposition 2.6 is tight.

3. Motivating examples

3.1. An example for Theorem 1.8(i). Recall that Extremal Example 2 yields the lower bound
in cases (i) and (iii) of Theorem 1.8. The argument in Lemma 2.3 is rather straightforward.
This is because of the definition of χ∗cr(H); if one takes a complete multipartite graph G with
χcr(G) < χ∗cr(H), then by definition there is a vertex labelling of G so that the resulting ordered
graph does not contain a perfect H-tiling.

Therefore, if one provides an argument that justifies why a bottlegraph of H is optimal, this
equivalently can be translated into an argument which explains why an ordered graph is an extremal
example for cases (i) and (iii) of Theorem 1.8. In this way, one can view χ∗cr(H) as ‘encoding’
properties of the extremal example.
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In Section 11 we will compute χ∗cr(H) for various classes of ordered graphs H. Often these
arguments will be somewhat involved; thus, in these cases the reason why the extremal example for
Theorem 1.8 does not contain a perfect H-tiling is also ‘involved’. That is, in general the reason
why extremal examples do not contain perfect H-tilings is not as immediate as Lemma 2.3 might
suggest. We illustrate this point through the following example.

Example 3.1 (An example for Theorem 1.8(i)). Let ` ≥ 2 and let H be the complete 3-partite
ordered graph with parts H1 < H2 < H3 of size `, 1, ` respectively.

For H as in Example 3.1, we have that χ∗cr(H) = (4`2 − 1)/`2 > 3 = χ<(H). (In fact, in
Proposition 11.5 below we compute χ∗cr(F ) for all complete 3-partite ordered graphs F .) Thus, for
such H we are in case (i) of Theorem 1.8 and so

δ<(H,n) =

(
1− `2

4`2 − 1
+ o(1)

)
n.

We now describe an extremal example for Theorem 1.8 for such H. Let n ∈ N such that |H|
divides n and n ≥ 20. Let G be the complete 4-partite ordered graph on n vertices with parts
G1 < G2 < G3 < G4 where

|G1| = |G2| = |G3| =
⌊

n`2

4`2 − 1

⌋
+ 1 and |G4| = n− 3

⌊
n`2

4`2 − 1

⌋
− 3.

Note that G4 is the smallest part since |Gi| ≥ n/4 for i = 1, 2, 3 and |G4| ≤ n/4. In particular,

δ(G) = n−
⌊

n`2

4`2 − 1

⌋
− 1 ≥ n− n`2

4`2 − 1
− 1 =

(
1− `2

4`2 − 1

)
n− 1.

Suppose for a contradiction that G contains a perfect H-tiling H. Let A ⊆ H be the set of copies
of H in H which have exactly ` vertices in G1 and set B := H \ A. This immediately implies

|G1| ≥ `|A|.(5)

Note that if H ′ ∈ A then H ′ has at most `+ 1 vertices in G1 ∪G2 while if H ′ ∈ B then H ′ has at
most ` vertices in G1 ∪G2. It follows that

|G1|+ |G2| ≤ (`+ 1)|A|+ `|B|.(6)

Combining (5) and (6) yields the following:

|A|+ |B|
(6)

≥ |G1|+ |G2| − |A|
`

(5)

≥ `|G1|+ `|G2| − |G1|
`2

=
2`− 1

`2

(⌊
n`2

4`2 − 1

⌋
+ 1

)
>

2`− 1

`2

(
n`2

4`2 − 1

)
=

n

2`+ 1
.

The above is a contradiction since

|A|+ |B| = |H| = |G|
|H|

=
n

2`+ 1
.

Hence, G does not contain a perfect H-tiling.

Note that G is a ‘space barrier’ construction as our argument tells us that G1∪G2 is ‘too big’ to
ensure a perfect H-tiling in G; moreover, the reason why G1 ∪G2 is ‘too big’, whilst not difficult,
is not at first sight, obvious (i.e., we needed to consider how two types of copies of H intersect
G1 ∪G2).

Space barrier constructions occur in many other settings too (e.g., the Kühn–Osthus perfect
tiling theorem [20]). However, all previous graph space barrier constructions we are aware of have
a different flavour to the above space barrier G. Indeed, previously known examples fail to contain
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the desired substructure due to some very immediate property that means one vertex class is ‘too
small’ or ‘too big’.

In Section 11 we compute χ∗cr(H) precisely for several classes of ordered graphs. In particular,
we give other ordered graphs H that fall into case (i) of Theorem 1.8, namely all complete 3-partite
ordered graphs and all complete r-partite ordered graphs whose smallest part is the first or last
part (see Propositions 11.3 and 11.5).

3.2. An example for Theorem 1.8(ii). The next example provides a family of ordered graphs
that fall into case (ii) of Theorem 1.8.

Example 3.2 (An example for Theorem 1.8(ii)). Let r, k ≥ 3 and let H be the ordered graph with
vertex set V (H) = [(r− 1)k+ 2] and edge set E(H) = {(1, (r− 1)k+ 2)} ∪ {((s− 1)k+ 2, sk+ 2) :
s ∈ [r − 1]} (see Figure 1). So χ<(H) = r.

1 2 3 4 5 6 7 8 9 10 11

Figure 1. The ordered graph H as in Example 3.2 for r = 4 and k = 3.

Let B the complete r-partite graph with parts B1, . . . , Br where |Bi| = k for i ∈ [r − 1] and
|Br| = 2. Observe that χcr(B) = (r − 1) + 2/k. It is straightforward to check that for any
permutation σ of [r] and any interval labelling φ of B with respect to σ, the ordered graph (B,φ)
contains a spanning copy of H; hence B is a simple bottlegraph of H. It follows that

χ∗cr(H) ≤ χcr(B) = (r − 1) +
2

k
< r = χ<(H).

Furthermore, H has a local barrier: for any interval (r+ 1)-colouring {1} < V1 < · · · < Vr of H we
have that (r − 1)k + 2 ∈ Vr and thus there is one edge between {1} and Vr.

3.3. An example for Theorem 1.8(iii). Next we consider a family of ordered graphs which fall
into case (iii) of Theorem 1.8.

Example 3.3 (An example for Theorem 1.8(iii)). Let r, k ≥ 2 and let H be the ordered graph with
vertex set V (H) = [(r − 1)k + 1] and edge set E(H) = {((s− 1)k + 1, sk + 1) : s ∈ [r − 1]}. So H
is the path (1)(k + 1)(2k + 1) . . . ((r − 1)k + 1) and χ<(H) = r (see Figure 2).

1 2 3 4 5 6 7

Figure 2. The ordered graph H as in Example 3.3 for r = 4 and k = 2.

We will explicitly compute χ∗cr(H). In particular, we prove that χ∗cr(H) < χ<(H) and that H
does not have a local barrier. We first construct a bottlegraph of H. Let B denote the complete
r-partite graph with parts B1, . . . , Br where |Bi| = k for i ∈ [r − 1] and |Br| = 1. Observe that
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χcr(B) = (r − 1) + 1/k. It is straightforward to check that for any permutation σ of [r] and any
interval labelling φ of B with respect to σ, the ordered graph (B,φ) contains a spanning copy of
H. Thus, B is a simple bottlegraph of H and so χ∗cr(H) ≤ χcr(B) = (r − 1) + 1/k. Moreover,
Proposition 2.6 implies that in fact χ∗cr(H) = (r − 1) + 1/k.

Finally, we show that H does not have a local barrier. Let i 6= j ∈ [r+ 1]. If i 6∈ {1, r+ 1}, there
exists an interval (r + 1)-colouring V1 < · · · < Vr+1 of H such that Vi = {x} with x 6= (s− 1)k + 1
for every s ∈ [r]. Then x is isolated in H and so clearly there is no edge between x and Vj . If
i = 1, there exists an interval (r + 1)-colouring V1 < · · · < Vr+1 of H such that Vi = {1} and
Vj = ∅; so again, there is no edge between Vi and Vj . The case i = r + 1 is analogous; we take
Vi = {(r − 1)k + 1} and Vj = ∅.

4. Proof of Theorem 1.8

In this section we present some intermediate results and explain how they imply Theorem 1.8.
Crucial to our approach will be the use of the absorbing method, a technique that was introduced sys-
tematically by Rödl, Ruciński and Szemerédi [25], but that has roots in earlier work (see, e.g., [19]).
Given ordered graphs G,H and a set W ⊆ V (G), a set S ⊆ V (G) is called an H-absorbing set for
W if both G[S] and G[W ∪ S] contain perfect H-tilings. In [3, Theorem 4.1], Balogh, Li and the
second author provided a minimum degree condition that ensures an ordered graph G contains a
set Abs that is an H-absorbing set for every not too large set W ⊆ V (G) \Abs.

Theorem 4.1 (Balogh, Li and Treglown [3]). Let H be an ordered graph on h vertices and let
η > 0. Then there exists an n0 ∈ N and 0 < ν � η so that the following holds. Suppose that G is
an ordered graph on n ≥ n0 vertices and

δ(G) ≥
(

1− 1

χ<(H)
+ η

)
n.

Then V (G) = [n] contains a set Abs so that

• |Abs| ≤ νn;
• Abs is an H-absorbing set for every W ⊆ V (G) \Abs such that |W | ∈ hN and |W | ≤ ν3n.

Theorems 1.6 and 4.1 can be combined to yield a minimum degree condition that forces a perfect
H-tiling. Indeed, let G and H be ordered graphs and suppose that

δ(G) ≥
(

1− 1

max{χ<(H), χ∗cr(H)}
+ o(1)

)
n.

We first invoke Theorem 4.1 to find a set Abs ⊆ V (G) which is an H-absorbing set for any not
too large set W ⊆ V (G) \ Abs. Then we apply Theorem 1.6 to G \ Abs to find an H-tiling M1

which covers all but a small proportion of vertices in G\Abs. Let W denote the set of such vertices
in G \ Abs. Since W is relatively small, Abs is an H-absorbing set for W , and thus G[W ∪ Abs]
contains a perfect H-tiling M2. Finally, observe that M1 ∪M2 is a perfect H-tiling in G.

Thus we have proven that

δ<(H,n) ≤
(

1− 1

max{χ<(H), χ∗cr(H)}
+ o(1)

)
n.

In particular, this is asymptotically sharp if χ∗cr(H) ≥ χ<(H) (by Corollary 2.4) or if χ∗cr(H) <
χ<(H) and H has a local barrier (by Corollary 2.2), therefore proving cases (i) and (ii) of The-
orem 1.8. However, if χ∗cr(H) < χ<(H) and H does not have a local barrier then this minimum
degree condition can be substantially lowered. To achieve this, we need a new absorbing result:

Theorem 4.2 (Absorbing theorem for non-local barriers). Let H be an ordered graph on h vertices
with χ<(H) ≥ 3 and let η > 0. If H does not have a local barrier and χ∗cr(H) < χ<(H), then there
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exists an n0 ∈ N and 0 < ν � η so that the following holds. Suppose that G is an ordered graph on
n ≥ n0 vertices and

δ(G) ≥
(

1− 1

χ<(H)− 1
+ η

)
n.

Then V (G) = [n] contains a set Abs so that

• |Abs| ≤ νn;
• Abs is an H-absorbing set for every W ⊆ V (G) \Abs such that |W | ∈ hN and |W | ≤ ν3n.

Note that the statement of Theorem 4.2 is false if one allows χ<(H) = 2; indeed, the conclusion
of the theorem fails for so-called divisibility barriers H.3 However, one can adapt our proof and
relax the hypothesis of Theorem 4.2 to χ<(H) ≥ 2 if one additionally assumes H is not a divisibility
barrier. We will not do this in this paper, however, as [3, Theorem 1.9] already resolves the perfect
H-tiling problem for ordered graphs H with χ<(H) = 2.

We postpone the proof of Theorem 4.2 to Section 10. With Theorem 4.2 at hand, we can now
give the proof of Theorem 1.8.

Proof of Theorem 1.8. First note that the lower bounds in parts (i)–(iii) of the theorem follow
immediately from Corollary 2.4 (for (i) and (iii)) and Corollary 2.2 (for (ii)). Thus it remains to
prove the upper bounds.

Let H be an ordered graph with χ<(H) ≥ 3 and let η > 0. Let n ∈ N be sufficiently large and
such that |H| divides n. Let G be an ordered graph on n vertices with minimum degree so that

(i) δ(G) ≥
(

1− 1
χ∗cr(H) + η

)
n if χ∗cr(H) ≥ χ<(H);

(ii) δ(G) ≥
(

1− 1
χ<(H) + η

)
n if χ∗cr(H) < χ<(H) and H has a local barrier;

(iii) δ(G) ≥
(

1− 1
χ∗cr(H) + η

)
n if χ∗cr(H) < χ<(H) and H has no local barrier.

Recall that χ∗cr(H) > χ<(H) − 1. Thus, by Theorem 4.1 (for cases (i) and (ii)) and Theorem 4.2
(for case (iii)), there exists some 0 < ν � η and a set Abs ⊆ V (G) such that

• |Abs| ≤ νn;
• Abs is an H-absorbing set for every W ⊆ V (G)\Abs such that |W | ∈ |H|N and |W | ≤ ν3n.

Let G′ := G \Abs. In all cases we have that δ(G′) ≥ (1− 1/χ∗cr(H))|G′|.
Since n was chosen to be sufficiently large, by Theorem 1.6 there exists an H-tiling M1 in G′

covering all but at most ν3n vertices. Let W ⊆ V (G′) denote the set of vertices which are not
covered by M1. Since |H| divides n, |V (M1)| and |Abs| we have that |H| divides |W | too. Also,
|W | ≤ ν3n, hence G′[W ∪ Abs] contains a perfect H-tiling M2. Finally, observe that M1 ∪M2 is
a perfect H-tiling of G, as desired. �

5. Bottlegraphs

In the following proposition we show that it suffices to consider bottlegraphs where all parts are
of the same size except for perhaps one smaller part.

Proposition 5.1. Let H be an ordered graph and B be a bottlegraph of H. There exists a bottlegraph
B′ of H and an integer m ∈ N such that χcr(B

′) = χcr(B) and all parts of B′ have size m except
for one part with size at most m.

3More precisely, here divisibility barrier means an ordered graph H with χ<(H) = 2 that satisfies Property B as
defined in [3, Page 3].
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Proof. Let B be a bottlegraph of H; so B is a complete k-partite unordered graph with parts
B1, . . . , Bk for some k ∈ N. Without loss of generality, we may assume that |B1| ≤ |Bi| for every
i > 1. Let B′ be the complete k-partite unordered graph with parts B′1, . . . , B

′
k where

|B′i| =

{
(k − 1)|B1| if i = 1

|B| − |B1| otherwise.

So |B′| = (k − 1)|B|. Furthermore, we have

|B′1| = (k − 1)|B1| = k|B1| − |B1| ≤ |B| − |B1| = |B′i|

for every i > 1. It follows that

χcr(B
′) =

(k − 1)|B′|
|B′| − |B′1|

=
(k − 1)2|B|

(k − 1)|B| − (k − 1)|B1|
=

(k − 1)|B|
|B| − |B1|

= χcr(B).

It remains to show that B′ is a bottlegraph of H. Observe that the vertices in B′1 can be partitioned
into (k − 1) sets of size |B1| while the vertices in B′i can be partitioned into (k − 1) sets of sizes
|B2|, . . . , |Bk| respectively, for every i > 1. This implies that B′ contains a perfect B-tiling consisting
of (k − 1) copies of B.

Let {C1, . . . , Ck−1} be a perfect B-tiling in B′ (i.e., each Ci is a copy of B in B′). Let σ be a
permutation of [k] and let φ be an interval labelling of B′ with respect to σ. For every Ci, φ induces
an interval labelling φi of Ci with respect to some permutation σi of [k]. Since B is a bottlegraph,
given any i ∈ [k − 1], there exists some ti ∈ N such that the ordered blow-up (Ci(ti), φi) contains
a perfect H-tiling. Set t := t1t2 . . . tk−1. Then the ordered blow-up (Ci(t), φi) contains a perfect
H-tiling Mi, for each i ∈ [k − 1].

Finally,M1 ∪ · · · ∪Mk−1 is a perfect H-tiling of the ordered blow-up (B′(t), φ). Since σ, φ were
arbitrary, B′ is a bottlegraph of H. �

Note that the notion of a bottlegraph of H (Definition 1.4) and 1-bottlegraph (Definition 1.14)
are not quite the same. However, the next result implies that χ∗cr(H) = χ∗cr(1, H).

Proposition 5.2. Let H be an ordered graph. Then χ∗cr(H) = χ∗cr(1, H).

Proof. Let X := {χcr(B) : B is a bottlegraph of H} and X1 := {χcr(B) : B is a 1-bottlegraph of H}.
Thus, inf X = χ∗cr(H) and inf X1 = χ∗cr(1, H). By definition of a bottlegraph and 1-bottlegraph we
have that X1 ⊆ X ; so to prove the proposition it suffices to show that X ⊆ X1.

Given any bottlegraph B of H, let B′ be the bottlegraph of H obtained by applying Propo-
sition 5.1. So B′ satisfies conditions (i) and (ii) in the definition of a 1-bottlegraph of H and
χcr(B

′) = χcr(B). As B′ is a bottlegraph of H, there is some t ∈ N so that B′(t) satisfies con-
dition (iii) of the definition of a 1-bottlegraph of H. Then B′(t) is a 1-bottlegraph of H with
χcr(B

′(t)) = χcr(B
′) = χcr(B). Thus, X ⊆ X1, as desired.

�

6. The regularity lemma

In the proof of Theorem 4.2 we will make use of the regularity method. In this section we state
a multipartite version of Szemerédi’s regularity lemma and some other related tools. First, we
introduce some basic notation.

The density of an (ordered) bipartite graph with vertex classes A and B is defined to be

d(A,B) :=
e(A,B)

|A||B|
.
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Given ε > 0, a graph G and two disjoint sets A,B ⊂ V (G), we say that the pair (A,B)G (or simply
(A,B) when the underlying graph is clear) is ε-regular if for all sets X ⊆ A and Y ⊆ B with
|X| ≥ ε|A| and |Y | ≥ ε|B|, we have |d(A,B) − d(X,Y )| < ε. Given d ∈ [0, 1], the pair (A,B)G is
(ε, d)-regular if G is ε-regular, and d(A,B) ≥ d.

We now state some well-known properties of ε-regular pairs. The first (see, e.g., [18, Fact 1.5])
implies that one can delete many vertices from an (ε, d)-regular pair and still retain such a regularity
property.

Lemma 6.1 (Slicing lemma). Let (A,B)G be an ε-regular pair of density d, and for some α > ε,
let A′ ⊆ A, B′ ⊆ B with |A′| ≥ α|A| and |B′| ≥ α|B|. Then (A′, B′)G is (ε′, d − ε)-regular with
ε′ := max{ε/α, 2ε}.

The following theorem is a multipartite version of Szemerédi’s regularity lemma [27] (presented,
e.g., as Lemma 5.5 in [3]).

Theorem 6.2 (Multipartite regularity lemma). Given any integer t ≥ 2, any ε > 0 and any `0 ∈ N
there exists L0 = L0(ε, t, `0) ∈ N such that for every d ∈ (0, 1] and for every nearly balanced t-partite
graph G = (W1, . . . ,Wt) on n ≥ L0 vertices, there exists an ` ∈ N, a partition W 0

i ,W
1
i , . . . ,W

`
i of

Wi for each i ∈ [t] and a spanning subgraph G′ of G, such that the following conditions hold:

(1) `0 ≤ ` ≤ L0;
(2) dG′(x) ≥ dG(x)− (d+ ε)n for every x ∈ V (G);
(3) |W 0

i | ≤ εn/t for every i ∈ [t];

(4) |W j
i | = |W

j′

i′ | for every i, i′ ∈ [t] and j, j′ ∈ [`];

(5) for every i, i′ ∈ [t] and j, j′ ∈ [`] either (W j
i ,W

j′

i′ )G′ is an (ε, d)-regular pair or G′[W j
i ,W

j′

i′ ]
is empty.

We call the W j
i clusters, the W 0

i the exceptional sets and the vertices in the W 0
i exceptional

vertices. We refer to G′ as the pure graph. The reduced graph R of G with parameters ε, d and `0
is the graph whose vertices are the W j

i (where i ∈ [t] and j ∈ [`]) and in which W j
iW

j′

i′ is an edge

precisely when (W j
i ,W

j′

i′ )G′ is (ε, d)-regular. The following well-known corollary of the regularity
lemma shows that the reduced graph almost inherits the minimum degree of the original graph.

Proposition 6.3. Let 0 < ε, d, k < 1 and let G be an n-vertex graph with δ(G) ≥ kn. If R is
the reduced graph of G obtained by applying Theorem 6.2 with parameters ε, d, `0, then δ(R) ≥
(k − 2ε− d)|R|.

A useful tool to embed subgraphs into G using the reduced graph R is the so-called key lemma.

Lemma 6.4 (Key lemma [18]). Let 0 < ε < d and q, t ∈ N. Let R be a graph with V (R) =
{v1, . . . , vk}. We construct a graph G as follows: replace every vertex vi ∈ V (R) with a set Vi of q
vertices and replace each edge of R with an (ε, d)-regular pair. For each vi ∈ V (R), let Ui denote
the set of t vertices in R(t) corresponding to vi. Let H be a subgraph of R(t) on h vertices with
maximum degree ∆. Set δ := d− ε and ε0 := δ∆/(2 + ∆). If ε ≤ ε0 and t− 1 ≤ ε0q then there are
at least (ε0q)

h labelled copies of H in G so that if x ∈ V (H) lies in Ui in R(t), then x is embedded
into Vi in G.

As in [3], some of our applications of Lemma 6.4 will take the following form: suppose within an
ordered graph G we have vertex classes V1 < . . . < Vk so that each pair (Vi, Vj)G is (ε, d)-regular.
Then Lemma 6.4 tells us G contains many copies of any fixed size ordered graph H with χ<(H) = k,
where the ith vertex class of each such copy of H is embedded into Vi.
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7. Absorbing tools

In this section we state a couple of results which are useful for proving the existence of H-
absorbing sets. The first result is the following crucial lemma of Lo and Markström [23]; we present
the ordered version of their result which appeared as Lemma 7.1 in [3].

Lemma 7.1 (Lo and Markström [23]). Let h, s ∈ N and ξ > 0. Suppose that H is an ordered
graph on h vertices. Then there exists an n0 ∈ N such that the following holds. Suppose that G
is an ordered graph on n ≥ n0 vertices so that, for any x, y ∈ V (G), there are at least ξnsh−1

(sh− 1)-sets X ⊆ V (G) such that both G[X ∪{x}] and G[X ∪{y}] contain perfect H-tilings. Then
V (G) contains a set M so that

• |M | ≤ (ξ/2)hn/4;
• M is an H-absorbing set for any W ⊆ V (G) \ M such that |W | ∈ hN and |W | ≤

(ξ/2)2hn/(32s2h3).

Informally, we will sometimes refer to a set X satisfying the assumptions of Lemma 7.1 as a
chain of size |X| between vertices x and y. The next lemma states that it is in some sense possible
to concatenate chains.

Lemma 7.2. Let H be an (ordered) graph on h vertices, let α, β, γ > 0 and s1, s2, n ∈ N where

0 < 1/n� γ � α, β, 1/h, 1/s1, 1/s2.

Let G be an (ordered) graph on n vertices, x, y ∈ V (G) and A ⊆ V (G) \ {x, y} where |A| ≥ αn.
Suppose that for every z ∈ A there exist at least βns1h−1 (s1h − 1)-sets X ⊆ V (G) such that both
G[X ∪ {x}] and G[X ∪ {z}] contain perfect H-tilings and similarly there exist at least βns2h−1

(s2h− 1)-sets Y ⊆ V (G) such that both G[Y ∪{y}] and G[Y ∪{z}] contain perfect H-tilings. Then

there exist at least γn(s1+s2)h−1 ((s1 + s2)h − 1)-sets Z ⊆ V (G) such that both G[Z ∪ {x}] and
G[Z ∪ {y}] contain perfect H-tilings.

Proof. Let z ∈ A and let X,Y be an (s1h − 1)-set and an (s2h − 1)-set respectively which satisfy
the above properties, with X,Y disjoint so that y 6∈ X and x 6∈ Y . Then X ∪ {z} ∪ Y is an
((s1 + s2)h− 1)-set and both G[(X ∪ {z} ∪ Y ) ∪ {x}] and G[(X ∪ {z} ∪ Y ) ∪ {y}] contain perfect
H-tilings. Thus, it is enough to lower bound the number of such triples (z,X, Y ). There are at
least αn choices for z. Given a fixed choice of z there are at least βns1h−1 − ns1h−2 ≥ βns1h−1/2
suitable choices for X. For a fixed X there are at least βns2h−1 − s1hn

s2h−2 ≥ βns2h−1/2 choices
for Y . Therefore, in total there are at least

(αn) · (βns1h−1/2) · (βns2h−1/2)

((s1 + s2)h− 1)!
≥ γn(s1+s2)h−1

choices for Z, where the denominator here is because different choices of the triple (z,X, Y ) can
yield the same set Z. �

8. Flexible colouring

In this section we prove several auxiliary results which will be particularly important for the
proofs of Theorem 4.2 and Theorem 12.1. We start with the following definition.

Definition 8.1. Let H be an ordered graph and let r := χ<(H). We say that H is flexible if, for
every i ∈ [r − 1], there exists an interval (r + 1)-colouring

V1 < · · · < Vi < {x} < Vi+1 < · · · < Vr

of H such that both V1 < · · · < Vi∪{x} < Vi+1 < · · · < Vr and V1 < · · · < Vi < Vi+1∪{x} < · · · < Vr
are interval r-colourings of H.
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In the next lemma we show that given a flexible ordered graph H, there exists a complete χ<(H)-
partite ordered graph F such that F contains a perfect H-tiling and any complete r-partite ordered
graph F ′, whose parts have approximately the same sizes as the corresponding parts in F , contains
a perfect H-tiling too.

Lemma 8.2. Let H be an ordered graph on h vertices and let r := χ<(H). If H is flexible then the
following holds. For every i ∈ [r − 1], let V i

1 < · · · < V i
i < {xi} < V i

i+1 < · · · < V i
r be an interval

(r+ 1)-colouring of H as described in Definition 8.1. Let F be the complete r-partite ordered graph
with parts F1 < · · · < Fr such that

|Fk| =


rh+ 2rh ·

r−1∑
i=1
|V i
k | for k ∈ {1, r};

2rh+ 2rh ·
r−1∑
i=1
|V i
k | otherwise.

Thus, |F | = 2r(r−1)h2. Let s1, . . . , sr ∈ Z such that s1 + · · ·+sr = 0 and |si| ≤ h for every i ∈ [r].
Let F ′ be the complete r-partite ordered graph with parts F ′1 < · · · < F ′r such that |F ′k| = |Fk| + sk
for every k ∈ [r]. Then both F and F ′ contain perfect H-tilings.

Proof. First, we explicitly construct a perfect H-tiling in F . For every i ∈ [r − 1], consider rh
copies of the interval r-colouring V i

1 < · · · < V i
i ∪ {xi} < V i

i+1 < · · · < V i
r of H and rh copies

of the interval r-colouring V i
1 < · · · < V i

i < V i
i+1 ∪ {xi} < · · · < V i

r of H. For every k ∈ [r] we
take the union of all the kth colour classes from the interval r-colourings above to obtain r new
classes. It is easy to check that the size of the new kth class is exactly the size of Fk, so we have
just constructed a perfect H-tiling in F . In particular, as there are 2r(r − 1)h copies of H in this
tiling, |F | = 2r(r − 1)h2.

Note that for every pair of consecutive classes (Fk, Fk+1) we could independently move rh vertices
from Fk to Fk+1 to yield a new complete r-partite ordered graph which still contains a perfect H-
tiling; similarly, we could move rh vertices from Fk+1 to Fk (these 2rh vertices fulfill the role of xk
in their respective interval r-colourings of H). We are going to use this observation to construct a
perfect H-tiling in F ′.

Set tk := s1 + · · · + sk for k ∈ [r] and t0 := 0. For every pair of consecutive classes (Fk, Fk+1),
if tk ≥ 0 move tk vertices from Fk+1 to Fk, otherwise move −tk vertices from Fk to Fk+1. This is
possible since |tk| ≤ |s1|+ · · ·+ |sr| ≤ rh by assumption. Note that the size of the new kth class is
|Fk|+ tk − tk−1 = |Fk|+ sk = |F ′k|, hence we just constructed a perfect H-tiling in F ′. �

Observe that the ordered graphs F and F ′ in Lemma 8.2 have the same number of vertices. In
the next corollary we ease this restriction and allow F ′ to have a few more vertices than F .

Corollary 8.3. Let H be an ordered graph on h vertices and let r := χ<(H). If H is flexible then
the following holds. Let F be the complete r-partite ordered graph with parts F1 < · · · < Fr as in
Lemma 8.2 and let t ∈ N. For any s1, . . . , sr, ` ∈ N ∪ {0} such that s1 + · · · + sr = `h ≤ th and
any complete r-partite ordered graph F ′ with parts F ′1 < · · · < F ′r of size |F ′k| = t|Fk|+ sk for every
k ∈ [r], both F (t) and F ′ contain perfect H-tilings.

Proof. By Lemma 8.2, F contains a perfect H-tiling and thus clearly the ordered blow-up F (t)
contains a perfect H-tiling too.

We prove that F ′ contains a perfect H-tiling by induction on `. If ` = 0 then F ′ = F (t) and so
F ′ contains a perfect H-tiling.

Assume ` > 0. For every k ∈ [r], let s′k ∈ N ∪ {0} such that s′k ≤ sk and s′1 + · · · + s′r = h. Let
Q1 < · · · < Qr be an interval r-colouring of H. Notice that V (F ′) can be partitioned into four sets
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X,Y,W,Z such that

|X∩F ′k| = (t−`)|Fk|, |Y ∩F ′k| = (`−1)|Fk|+(sk−s′k), |W ∩F ′k| = |Qk|, |Z| = |Fk|+s′k−|Qk|,
for every k ∈ [r]. Observe that

• If non-empty then F ′[X] is a copy of F (t− `), thus F ′[X] contains a perfect H-tiling.
• If ` = 1 then s′k = sk for every k ∈ [r] and so F ′[Y ] is the empty graph. Otherwise, F ′[Y ]

contains a perfectH-tiling by the inductive hypothesis since (s1−s′1)+· · ·+(sr−s′r) = (`−1)h
and sk − s′k ≥ 0 for every k ∈ [r].
• F ′[W ] spans a copy of H.
• F ′[Z] contains a perfect H-tiling by Lemma 8.2 since

r∑
k=1

(s′k − |Qk|) = h− h = 0

and |s′k − |Qk|| ≤ h for every k ∈ [r].

Altogether this clearly implies F ′ contains a perfect H-tiling. �

Our goal now is to show that if χ∗cr(H) < χ<(H) then H is flexible. This property is crucial for
the proof of Theorem 4.2, and is a corollary of the following lemma.

Lemma 8.4. Let H be an ordered graph with vertex set [h] and let r := χ<(H). If H is not flexible,
there exist some i ∈ [r−1] such that the number of vertices lying in the first i intervals of any given
interval r-colouring of H is fixed.

Proof. Since H is not flexible, there exist some i ∈ [r − 1] such that there is no interval (r + 1)-
colouring V1 < · · · < Vi < {x} < Vi+1 < · · · < Vr of H such that both V1 < · · · < Vi ∪{x} < Vi+1 <
· · · < Vr and V1 < · · · < Vi < Vi+1 ∪ {x} < · · · < Vr are interval r-colourings of H.

Let U1 < · · · < Ur be an interval r-colouring of H. Let y be the largest vertex in Ui and let z be
the smallest vertex in Ui+1; so z = y + 1. Note that y must be adjacent to some vertex in Ui+1, as
otherwise the interval (r + 1)-colouring U1 < · · · < Ui \ {y} < {y} < Ui+1 < · · · < Ur satisfies the
flexibility property, a contradiction. Let y′ be the smallest vertex in Ui+1 adjacent to y. Similarly,
let z′ be the largest vertex in Ui adjacent to z.

Claim 8.5. Given any r-colouring Q1 < · · · < Qr of H, y ∈ Qi and z ∈ Qi+1.

Fix an arbitrary interval r-colouring Q1 < · · · < Qr of H; say that z′ lies in the kth interval Qk.
Note that Q1 < · · · < Qk ∩ [z′] < (Ui \ [z′]) < Ui+1 < · · · < Ur is an interval colouring of H. If (i)
k < i− 1 or (ii) k = i− 1 and z′ = y then χ<(H) < r, a contradiction. If k = i− 1 and z′ 6= y then
the interval (r + 1)-colouring Q1 < · · · < Qi−1 ∩ [z′] < (Ui \ [z′]) < {z} < Ui+1 \ {z} < · · · < Ur
satisfies the flexibility property, a contradiction to our initial assumption in the proof. Thus, k ≥ i,
which implies that z is contained in the (i+1)th interval Qi+1 or above since z and z′ are adjacent.
Similarly, we can show that y is contained in the ith interval Qi or below. This implies that, since
y, z are consecutive vertices in H, y lies in Qi and z in Qi+1. This completes the proof of the claim.

By the claim above, the number of vertices in the first i intervals of any given interval r-colouring
of H is exactly y, yielding the required result. �

Corollary 8.6. Let H be an ordered graph with vertex set [h]. If χ∗cr(H) < χ<(H), then H is
flexible.

Proof. Let r := χ<(H). Suppose for a contradiction that H is not flexible. By Lemma 8.4, there
exist some i ∈ [r − 1] such that the number of vertices lying in the first i intervals of any given
interval r-colouring of H is, say, y for some fixed y ∈ N. Consider a bottlegraph B of H with
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χcr(B) < r (which exists by definition of χ∗cr(H) and as χ∗cr(H) < r); note that B must consist of
precisely r parts. By Proposition 5.1 we may assume that B has parts B1, . . . , Br where |B1| < m
and |Bi| = m for some m ∈ N. Let σ be a permutation of [r] and φ be an interval labelling of B
with respect to σ. Recall that the ordered graph (B,φ) has parts Bσ−1(1) < · · · < Bσ−1(r). Then,
there exists some t ∈ N such that the ordered blow-up (B(t), φ) contains a perfect H-tiling. In
particular, this perfect H-tiling consists of t|B|/h copies of H. By assumption, each copy of H has
exactly y vertices lying in the first i parts of (B(t), φ) which implies that the first i parts contain
exactly yt|B|/h vertices; that is, the total number of vertices in these parts is independent of the
choice of σ. This is clearly a contradiction as if we pick σ such that σ−1(1) = 1 then there are
fewer than itm vertices in the first i parts of (B(t), φ), while if σ−1(r) = 1 then there are precisely
itm vertices in the first i parts of (B(t), φ). �

Note that one does really require χ∗cr(H) < χ<(H) in the statement of Corollary 8.6; consider,
e.g., when H is a complete balanced r-partite ordered graph with parts of size at least 2.

9. Proof sketch of Theorem 4.2

In this section we briefly present the main ideas behind the proof of Theorem 4.2 before giving
a rigorous argument in Section 10.1. Throughout this section we set r := χ<(H) ≥ 3.

Let H be an ordered graph such that χ∗cr(H) < χ<(H) = r and H has no local barrier. Let G
be an n-vertex graph with n sufficiently large and minimum degree

δ(G) ≥
(

1− 1

r − 1
+ o(1)

)
n.

Our ultimate goal is to construct many chains between any given pair of vertices x, y ∈ V (G); then
Lemma 7.1 will conclude the proof.

To achieve this, we first divide [n] into many nearly balanced intervals, remove all edges in G
which lie completely in some interval and then apply the multipartite version of the regularity
lemma to obtain a reduced graph R. This preconditioning process will make it convenient to work
with cliques in the reduced graph: if two clusters W and W ′ are adjacent in R then by construction
either W < W ′ or W > W ′.

We then show that given an arbitrary pair of clusters W and W ′ in R, for almost every pair of
vertices x ∈ W and y ∈ W ′ we can find many chains between x and y. We achieve this gradually
through various steps:

• Given a copy T of Kr in the reduced graph R and an arbitrary cluster W in T , we prove
that for almost every pair of vertices x, y ∈ W we can find many chains between x and y.
This is quite straightforward and the only property of H we use is that χ<(H) = r.
• Given a copy T of Kr in the reduced graph R and two arbitrary clusters W,W ′ in T , we

prove that for almost every pair of vertices x ∈ W and y ∈ W ′ we can find many chains
between x and y. The “flexibility” guaranteed by the condition χ<(H) < χ∗cr(H), formally
stated in Corollary 8.6, will be the main ingredient here.
• Finally, we show that given any two arbitrary clusters W and W ′, for almost every pair of

vertices x ∈ W and y ∈ W ′ we can find many chains between x and y. Since r ≥ 3, this
fairly straightforwardly follows from the minimum degree of R and the previous point.

Next, given an arbitrary vertex x ∈ V (G), we use the minimum degree condition to find a particular
structure L in G containing x and resembling an extremal construction for graphs which have a
local barrier, namely Extremal Example 1; in particular, the vertex classes of Extremal Example 1
are replaced by some of the clusters in R. Assuming H does not have a local barrier, and using
Corollary 8.3, we find many chains between x and almost every vertex lying in a certain cluster W
in L.
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Analogously, given an arbitrary y ∈ V (G)\{x}, we find many chains between y and almost every
vertex lying in a certain cluster W ′. By the previous steps, there exist many chains between almost
every vertex in W and almost every vertex in W ′. By concatenation, this ensures many chains
between x and y and so the hypothesis of Lemma 7.1 is satisfied, thereby yielding Theorem 4.2.

10. Proof of Theorem 4.2 and Theorem 1.10

10.1. Proof of Theorem 4.2. LetH be an ordered graph on h vertices such that χ∗cr(H) < χ<(H),
χ<(H) ≥ 3 and H has no local barrier. Set r := χ<(H).

Given any η > 0, define additional constants d, ε1, ε2, ε3 ∈ R and `0 ∈ N so that

0 < 1/`0 � ε1 � ε2 � ε3 � d� η, 1/(rh).(7)

Set t := d4/ηe and let L0 = L0(ε1, t, `0) ≥ `0 be as in Theorem 6.2. Additionally, let ξ1, ξ2, ξ3, ξ4, ξ5 ∈
R and n ∈ N so that

0 < 1/n� ξ5 � ξ4 � ξ3 � ξ2 � ξ1 � 1/L0.(8)

Define ν := (ξ5/2)h/4 and s := 2r(r − 1)h+ 1.
Let G be an ordered graph on n ≥ L0 vertices with minimum degree

δ(G) ≥
(

1− 1

r − 1
+ η

)
n.

Let W1 < · · · < Wt be a nearly balanced interval partition of [n]. Let G′ be the ordered graph
obtained by deleting all edges lying in each Wi from G. As t = d4/ηe we have that |Wi| ≤ dηn/4e
for all i ∈ [t] and so

δ(G′) ≥
(

1− 1

r − 1
+
η

2

)
n.(9)

Apply Theorem 6.2 to G′ with parameters ε1, t, `0 and d to obtain a pure graph G′′ and a partition

W 0
i , . . . ,W

`
i for every Wi, where `0 ≤ ` ≤ L0. All non-exceptional clusters W j

i have size m where

m ≥ 1

`

(⌊n
t

⌋
− ε1n

t

)
≥ ηn

5L0
.(10)

Let R be the corresponding reduced graph of G′. By (9), Proposition 6.3 implies that

δ(R) ≥
(

1− 1

r − 1
+
η

3

)
|R|.(11)

Crucially, observe that if W j
iW

j′

i′ is an edge in R then, by construction of G′, i 6= i′ and so either

W j
i < W j′

i′ or W j
i > W j′

i′ .
First, we prove that given a copy T of Kr in R and an arbitrary cluster W in T , for almost every

pair of vertices x, y ∈W there exist many chains between x and y.

Claim 10.1. Let T1 < · · · < Tr be r clusters which form a copy of Kr in R. Given any i ∈ [r],
there exists a set Ai ⊆ Ti of size |Ai| ≥ (1− ε1r)|Ti| such that the following holds: for every x ∈ Ai
there exists a set Cx ⊆ Ti of size |Cx| ≥ (1− 2ε2r)|Ti| such that for every y ∈ Cx there are at least
ξ1n

h−1 (h− 1)-sets X ⊆ V (G) so that both G[X ∪ {x}] and G[X ∪ {y}] contain a copy of H.

Proof. Fix i ∈ [r]. For every k 6= i, let

Lk := {v ∈ Ti : dG′′(v, Tk) ≤ (d− ε1)|Tk|}.
Observe that dG′′(Lk, Tk) ≤ d − ε1 for every k 6= i. Suppose |Lk0 | ≥ ε|Ti| for some k0 6= i. Since
(Ti, Tk0)G′′ is (ε1, d)-regular then

|dG′′(Lk0 , Tk0)− dG′′(Ti, Tk0)| < ε1
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and so dG′′(Lk0 , Tk0) > d− ε1, a contradiction. Thus |Lk| < ε1|Ti| for every k 6= i. In particular,

|L1 ∪ · · · ∪ Lr| < ε1(r − 1)|Ti| < ε1r|Ti|.
Let Ai := Ti \ (L1 ∪ · · · ∪ Lr). It follows from the previous inequality that

|Ai| ≥ (1− ε1r)|Ti|.
Let x ∈ Ai. Define T ′k := Tk ∩NG′′(x) for every k 6= i and T ′i := Ti \ {x}. By the slicing lemma

(Lemma 6.1), the pair (T ′a, T
′
b)G′′ is (ε2, d/2)-regular for every a 6= b ∈ [r]. For every k 6= i, let

L′k := {v ∈ T ′i : dG′′(v, T
′
k) ≤ (d/2− ε2)|T ′k|}.

By the same argument as before,

|L′1 ∪ · · · ∪ L′r| < ε2r|T ′i |.
Let Cx := T ′i \ (L′1 ∪ · · · ∪ L′r). The above inequality implies that

|Cx| ≥ (1− ε2r)|T ′i | ≥ (1− 2ε2r)|Ti|.
Let y ∈ Cx. Define T ′′k := T ′k ∩ NG′′(y) = Tk ∩ NG′′(x) ∩ NG′′(y) for every k 6= i and T ′′i :=

T ′i \ {y} = Ti \ {x, y}. By the slicing lemma, the pair (T ′′a , T
′′
b )G′′ is (ε3, d/3)-regular for every

a 6= b ∈ [r]. Furthermore, by construction, x and y are adjacent to all vertices in T ′′k for every k 6= i.
Let V1 < · · · < Vr be an interval r-colouring of H. Pick any v ∈ Vi and let H ′ be the complete

r-partite ordered graph with parts V1 < · · · < Vi \ {v} < · · · < Vr. Using (7), (8) and (10), the key
lemma (Lemma 6.4) implies that there exist at least ξ1n

h−1 vertex sets X in G so that G[X] spans
a copy of H ′ where Vk ⊆ T ′′k for every k 6= i and Vi \ {v} ⊆ T ′′i . Because x and y are adjacent to all
vertices in T ′′k for every k 6= i, both G[X ∪ {x}] and G[X ∪ {y}] are spanned by a copy of H. �

We now prove that given a copy T of Kr in the reduced graph R and two arbitrary clusters W
and W ′ in T , for almost every pair of vertices x ∈W and y ∈W ′ there exist many chains between
x and y. Recall s = 2r(r − 1)h+ 1.

Claim 10.2. Let T1 < · · · < Tr be r clusters which form a copy of Kr in R. For every i, j ∈ [r],
there exist sets Ai ⊆ Ti and Aj ⊆ Tj of size |Ai| ≥ (1− ε1r)|Ti| and |Aj | ≥ (1− ε1r)|Tj | such that

for every x ∈ Ai and y ∈ Aj there are at least ξ2n
sh−1 (sh − 1)-sets X ⊆ V (G) for which both

G[X ∪ {x}] and G[X ∪ {y}] contain perfect H-tilings.

Proof. Fix i, j ∈ [r]. As in the proof of Claim 10.1, for every k 6= i, we define

Lk := {v ∈ Ti : dG′′(v, Tk) ≤ (d− ε1)|Tk|}
and set Ai := Ti \ (L1 ∪ · · · ∪ Lr). In the proof of Claim 10.1 we saw that

|L1 ∪ · · · ∪ Lr| < ε1(r − 1)|Ti| < ε1r|Ti| and thus |Ai| ≥ (1− ε1r)|Ti|.
Let x ∈ Ai. As in the proof of Claim 10.1, we define T ′k := Tk ∩ NG′′(x) for every k 6= i and

T ′i := Ti \ {x}. The pair (T ′a, T
′
b)G′′ is (ε2, d/2)-regular for every a 6= b ∈ [r].

For every k 6= j, let
L′k := {v ∈ T ′j : dG′′(v, T

′
k) ≤ (d/2− ε2)|T ′k|}.

Note that L′k is not quite the same as the corresponding set given in the proof of Claim 10.1 (it is
defined it terms of j not i); however, as in the proof of Claim 10.1 we have that

|L′1 ∪ · · · ∪ L′r| < ε2r|T ′j |.

Let C := T ′j \ (L′1 ∪ · · · ∪ L′r). The previous inequality implies that

|C| ≥ (1− ε2r)|T ′j | ≥ (1− ε2r)(d− ε1)|Tj |
(7)

≥ d

2
|Tj |.(12)
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Let z ∈ C. Define T ′′k := T ′k ∩ NG′′(z) for every k 6= j and T ′′j := T ′j \ {z}. By the slicing

lemma and (7), the pair (T ′′a , T
′′
b )G′′ is (ε3, d/3)-regular for every pair a 6= b ∈ [r]. Furthermore, by

construction, x is adjacent to all vertices in T ′′k for every k 6= i while z is adjacent to all vertices in
T ′′k for every k 6= j.

Since χ∗cr(H) < χ<(H), by Corollary 8.6 H is flexible. Let F be the complete r-partite ordered
graph with parts F1 < · · · < Fr as defined in Lemma 8.2. Recall that |F | = 2r(r− 1)h2 = (s− 1)h.
Pick any v ∈ Fi and let F ∗ be the ordered graph obtained by removing the vertex v from F . In
particular, F ∗ is a complete r-partite ordered graph with parts F1 < · · · < Fi \ {v} < · · · < Fr. By

(7), (8) and (10), the key lemma (Lemma 6.4) implies that there exist at least ξ1n
|F |−1 vertex sets

Y in G so that G[Y ] spans a copy of F ∗ where Fk ⊆ T ′′k for every k 6= i and Fi \ {v} ⊆ T ′′i .
Given any such set Y , since x is adjacent to all vertices in T ′′k (for all k 6= i) then G[Y ∪ {x}] is

spanned by a copy of F and thus it contains a perfect H-tiling. Similarly, since z is adjacent to all
vertices in T ′′k (for all k 6= j) then G[Y ∪ {z}] is spanned by a complete r-partite ordered graph F ′

on |F | vertices where each part of F ′ differs in size by at most one compared to the corresponding
part in F . Thus, Lemma 8.2 implies G[Y ∪ {z}] contains a perfect H-tiling.

Let Aj ⊆ Tj be as in the statement of Claim 10.1; so |Aj | ≥ (1 − ε1r)|Tj |. Let y ∈ Aj . By
Claim 10.1, there exists a set Cy ⊆ Tj of size

|Cy| ≥ (1− 2ε2r)|Tj |(13)

such that for any z ∈ Cy there exist at least ξ1n
h−1 (h− 1)-sets Z ⊆ V (G) so that both G[Z ∪{y}]

and G[Z ∪ {z}] contain spanning copies of H.
In summary, given any x ∈ Ai and y ∈ Aj , we have shown that for every z ∈ C ∩ Cy there

exist at least ξ1n
|F |−1 (|F | − 1)-sets Y such that both G[Y ∪ {x}] and G[Y ∪ {z}] contain perfect

H-tilings and similarly there exist at least ξ1n
h−1 (h − 1)-sets Z such that both G[Z ∪ {y}] and

G[Z ∪ {z}] contain perfect H-tilings. Furthermore, as C,Cy ⊆ Tj note that

|C ∩ Cy| = |C|+ |Cy| − |C ∪ Cy| ≥ |C|+ |Cy| − |Tj |
(7),(12),(13)

≥ ε1|Tj | = ε1m
(10)

≥ ε1ηn

5L0
.

Applying Lemma 7.2 with C ∩Cy, ε1η/(5L0), ξ1, ξ2 playing the roles of A,α, β, γ, we conclude that

there exist at least ξ2n
|F |+h−1 = ξ2n

sh−1 (sh − 1)-sets X ⊆ V (G) such that both G[X ∪ {x}] and
G[X ∪ {y}] contain perfect H-tilings, as desired. �

In the next claim we show that given any arbitrary pair of clusters W and W ′ in the reduced
graph R, for almost every pair of vertices x ∈ W and y ∈ W ′ there exist many chains between x
and y. The assumption r ≥ 3 is crucial here.

Claim 10.3. For every pair of clusters W and W ′ in R, there exist sets A ⊆ W and A′ ⊆ W ′ of
size |A| ≥ (1− ε1r)|W | and |A′| ≥ (1− ε1r)|W ′| satisfying the following: for every pair of vertices
x ∈ A and y ∈ A′ there are at least ξ3n

2sh−1 (2sh− 1)-sets X ⊆ V (G), such that both G[X ∪ {x}]
and G[X ∪ {y}] contain perfect H-tilings.

Proof. Recall the reduced graph R has minimum degree

δ(R) ≥
(

1− 1

r − 1
+
η

3

)
|R|.

Using the above minimum degree condition, given any two adjacent clusters in R, one can greedily
construct a copy of Kr in R containing them both.

Since r ≥ 3, δ(R) > |R|/2 and so the clusters W and W ′ have a common neighbour U in R. Let
K and K ′ be two copies of Kr in R containing W,U and W ′, U respectively.

Apply Claim 10.2 with K, W , U playing the roles of Kr, Ti and Tj to obtain sets A ⊆ W and
D ⊆ U with |A| ≥ (1− ε1r)|W | and |D| ≥ (1− ε1r)|U |. Similarly, apply Claim 10.2 with K ′, W ′,
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U playing the roles of Kr, Ti and Tj to obtain sets A′ ⊆ W ′ and D′ ⊆ U with |A′| ≥ (1− ε1r)|W |
and |D′| ≥ (1− ε1r)|U |.

By Claim 10.2, for any x ∈ A, y ∈ A′ and z ∈ D ∩ D′, there exist at least ξ2n
sh−1 (sh − 1)-

sets Y ⊆ V (G) such that both G[Y ∪ {x}] and G[Y ∪ {z}] contain perfect H-tilings and ξ2n
sh−1

(sh− 1)-sets Z ⊆ V (G) such that both G[Z ∪ {y}] and G[Z ∪ {z}] contain perfect H-tilings.
Furthermore, since D,D′ ⊆ U then

|D ∩D′| ≥ |D|+ |D′| − |U | ≥ (1− 2ε1r)|U | = (1− 2ε1r)m
(10)

≥ ηn

6L0
.

Applying Lemma 7.2 with D∩D′, η/(6L0), ξ2, ξ3 playing the roles of A,α, β, γ, we conclude that
there exist at least ξ3n

2sh−1 (2sh− 1)-sets X ⊆ V (G) such that both G[X ∪ {x}] and G[X ∪ {y}]
contain perfect H-tilings, as desired. �

In the next claim we use the minimum degree condition of the reduced graph R to find a structure
L containing an arbitrary vertex x and resembling the extremal construction for an ordered graph
which has a local barrier. Furthermore, we prove that there exist many chains between x and
almost every vertex in some cluster in L.

Claim 10.4. Let x ∈ V (G). There exists some cluster W ∈ V (R) and a set A ⊆ W of size
|A| ≥ (1−ε2r)|W | satisfying the following: for every y ∈ A there exist at least ξ1n

sh−1 (sh−1)-sets
X ⊆ V (G) such that both G[X ∪ {x}] and G[X ∪ {y}] contain perfect H-tilings.

Proof. Let x ∈ V (G) and define

N∗(x) := {W i
j ∈ V (R) : dG′(x,W

i
j ) ≥ η|W i

j |/100}.

Recall that every non-exceptional cluster W has size m. Hence, if W ∈ N∗(x) then there are at
most m neighbours of x in W , while if W 6∈ N∗(x) then there are at most ηm/100 neighbours of x
in W . Finally, there are at most ε1n vertices lying in exceptional clusters. Therefore,(

1− 1

r − 1
+
η

2

)
n

(9)

≤ dG′(x) ≤ m · |N∗(x)|+ ηn/100 + ε1n.

and thus

(14)

(
1− 1

r − 1
+
η

3

)
|R| ≤ |N∗(x)|.

Using (11) and (14), we can greedily find r clusters T1, . . . , Tr in R such that

• the Tk’s span a copy of Kr in R;
• Tk ∈ N∗(x) for every k ∈ [r − 1];
• if x ∈Wk0 with k0 ∈ [t] then Tk 6⊆Wk0 for all k ∈ [r].

By the properties above, we may relabel indices so that there is an i ∈ [r+ 1] and j ∈ [r] for which

T1 < · · · < Ti−1 < x < Ti < · · · < Tr

and Tk ∈ N∗(x) for every k 6= j.
Define T ′k := Tk ∩ NG′(x) for k 6= j and T ′j := Tj . By construction, |T ′k| ≥ ηm/100 for every

k ∈ [r]. Thus, by the slicing lemma (Lemma 6.1), (T ′a, T
′
b)G′′ is (ε2, d/2)-regular for every a 6= b ∈ [r].

We will show that the cluster W := Tj is as desired for the claim. For every k 6= j, let

Lk := {v ∈ T ′j : dG′′(v, T
′
k) ≤ (d/2− ε2)|T ′k|}.

It is easy to show that |Lk| < ε2|T ′j |. Let A := T ′j \ (L1 ∪ · · · ∪ Lr), then

|A| ≥ (1− ε2r)|T ′j | = (1− ε2r)|Tj |.
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Let y ∈ A. Define T ′′k := T ′k ∩NG′′(y) for every k 6= j and T ′′j = T ′j \ {y}. By the slicing lemma,

(T ′′a , T
′′
b )G′′ is (ε3, d/3)-regular for every a 6= b ∈ [r]. Furthermore, x and y are adjacent to all

vertices in T ′′k for every k 6= j (see Figure 3).

T1 \ {y}

y

T ′′2

x

T ′′3

Figure 3. In this picture, we take r = 3, T1 < T2 < x < T3 and j = 1. Note
that (T1 \ {y}, T ′′2 ), (T1 \ {y}, T ′′3 ) and (T ′′2 , T

′
3) are regular pairs, while x and y are

adjacent to all vertices in T ′′2 and T ′′3 .

Since H has no local barrier, there exists an interval (r + 1)-colouring

V1 < · · · < Vi−1 < {v} < Vi < · · · < Vr

of H such that there is no edge between v and Vj . Furthermore, as χ∗cr(H) < χ<(H), H is flexible
by Corollary 8.6. Let F be the complete r-partite ordered graph with parts F1 < · · · < Fr as
defined in Lemma 8.2 and let F ′ be the complete r-partite ordered graph with parts F ′1 < · · · < F ′r
where

|F ′k| =

{
|Fk|+ |Vk|+ 1 if k = j,

|Fk|+ |Vk| otherwise.

Note that

1 +
r∑

k=1

|Vk| = 1 + (h− 1) = h

thus, both F and F ′ contain perfect H-tilings by Corollary 8.3.
Pick any u ∈ F ′j . Note that F ′ \ {u} is the complete r-partite ordered graph such that the kth

part has size |Fk|+ |Vk| for every k ∈ [r] and |F ′ \ {u}| = |F |+ h− 1 = sh− 1. By the key lemma
(Lemma 6.4), there exist at least ξ1n

sh−1 (sh− 1)-sets X ⊆ V (G) such that G[X] spans a copy of
F ′ \ {u} with F ′k ⊆ T ′′k for every k 6= j and F ′j \ {u} ⊆ T ′′j . It remains to show that both G[X ∪{x}]
and G[X ∪ {y}] contain perfect H-tilings.

First, we consider G[X ∪{x}]. Since G[X] spans a copy of F ′ \{u} with F ′k ⊆ T ′′k for every k 6= j
and F ′j \ {u} ⊆ T ′′j , then X can be partitioned into two sets Y, Z such that

|Y ∩ T ′′k | = |Vk| and |Z ∩ T ′′k | = |Fk|
for every k ∈ [r]. Note that G[Z] spans a copy of F , thus G[Z] contains a perfect H-tiling. On the
other hand, G[Y ] spans a copy of H \ {v}. Recall that x is adjacent to all vertices in T ′′k for every
k 6= j and T ′′i−1 < x < T ′′i . Thus, G[Y ∪ {x}] spans a copy of H in G where x plays the role of v.
It follows that G[X ∪ {x}] contains a perfect H-tiling.

Next, we consider G[X ∪{y}]. Since y ∈ Tj and y is adjacent to all vertices in T ′′k for k 6= j, then
G[X ∪ {y}] spans a copy of F ′ and so G[X ∪ {y}] contains a perfect H-tiling. �
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Remark 10.5. Note that Claim 10.4 holds even if we relax the hypothesis of Theorem 4.2 to allow
χ<(H) ≥ 2; that is, we did not use the condition that r ≥ 3 anywhere in the proof of this claim.
This fact will be useful in the proof of Theorem 10.7 in the next subsection.

Our final claim states that given arbitrary vertices x, y ∈ V (G) there exist many chains of
bounded size between x and y.

Claim 10.6. Let x, y ∈ V (G). There exist at least ξ5n
4sh−1 (4sh − 1)-sets X ⊆ V (G) such that

both G[X ∪ {x}] and G[X ∪ {y}] contain perfect H-tilings.

Proof. By Claim 10.4 there exist clusters W,W ′ ∈ V (R) and sets A ⊆ W , A′ ⊆ W ′ of size
|A| ≥ (1 − ε2r)|W | and |A′| ≥ (1 − ε2r)|W ′| such that for every z ∈ A and z′ ∈ A′ there exist at
least ξ1n

sh−1 (sh − 1)-sets Y ⊆ V (G) such that both G[Y ∪ {x}] and G[Y ∪ {z}] contain perfect
H-tilings and at least ξ1n

sh−1 (sh− 1)-sets Y ′ ⊆ V (G) such that both G[Y ′ ∪{y}] and G[Y ′ ∪{z′}]
contain perfect H-tilings.

Furthermore, by Claim 10.3 there exist sets D ⊆ W , D′ ⊆ W ′ of size |D| ≥ (1 − ε1r)|W | and
|D′| ≥ (1−ε1r)|W ′| such that for every z ∈ D and z′ ∈ D′ there exist at least ξ3n

2sh−1 (2sh−1)-sets
Z ⊆ V (G) such that both G[Z ∪ {z}] and G[Z ∪ {z′}] contain perfect H-tilings. Note that

|A ∩D| ≥ (1− 2ε2r)|W | = (1− 2ε2r)m
(10)

≥ ηn

6L0
,

|A′ ∩D′| ≥ (1− 2ε2r)|W ′| = (1− 2ε2r)m
(10)

≥ ηn

6L0
.

Apply Lemma 7.2 to y and any z ∈ A∩D with A′∩D′, η/(6L0), ξ3, ξ4 playing the roles of A,α, β, γ;
we conclude that there are at least ξ4n

3sh−1 (3sh− 1)-sets X ′ ⊆ V (G) such that both G[X ′ ∪ {z}]
and G[X ′ ∪ {y}] contain perfect H-tilings.

Next apply Lemma 7.2 to x and y, with A∩D, η/(6L0), ξ4, ξ5 playing the roles of A,α, β, γ; this
yields at least ξ5n

4sh−1 (4sh−1)-sets X ⊆ V (G) such that both G[X ∪{x}] and G[X ∪{y}] contain
perfect H-tilings, as desired. �

Observe that, by Claim 10.6, the hypothesis of Theorem 7.1 is satisfied with 4s and ξ5 playing
the roles of s and ξ. Thus, V (G) contains a set Abs so that

• |Abs| ≤ (ξ5/2)hn/4;
• Abs is an H-absorbing set for any W ⊆ V (G) \ Abs such that |W | ∈ hN and |W | ≤

(ξ5/2)2hn/(512s2h3).

Recall that ν = (ξ5/2)h/4. Therefore we have that |Abs| ≤ νn and by (7) and (8) we have that
ν3 < (ξ5/2)2h/(512s2h3); so Abs is as desired. �

10.2. Proof of Theorem 1.10. By arguing as in Claim 10.4, we obtain the following result.

Theorem 10.7. Let H be an ordered graph that does not have a local barrier and let η > 0. There
exists an n0 ∈ N so that the following holds. If G is an ordered graph on n ≥ n0 vertices with

δ(G) ≥
(

1− 1

χ<(H)− 1
+ η

)
n,

then for any vertex x ∈ V (G) there exists a copy of H in G covering the vertex x.

Proof. Let r := χ<(H). Given such an ordered graph G, define constants as in (7) and (8).
As in the proof of Theorem 4.2, apply the regularity lemma, and then argue as in the proof of
Claim 10.4 to obtain the following: given any x ∈ V (G), there are disjoint T ′1, . . . , T

′
r ⊆ V (G)

where |T ′k| ≥ η2n/(500L0) and i ∈ [r + 1], j ∈ [r] such that

T ′1 < · · · < T ′i−1 < x < T ′i < · · · < T ′r;
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(T ′a, T
′
b) is (ε2, d/2)-regular for every a 6= b ∈ [r]; x is adjacent to all vertices in T ′k for any k 6= j.

As H does not have a local barrier, there exists an interval (r + 1)-colouring

V1 < · · · < Vi−1 < {v} < Vi < · · · < Vr

of H such that there is no edge between v and Vj . By the key lemma, there exists some set
X ⊆ V (G) such that G[X] spans a copy of H \ {v} with Vk ⊆ T ′k for every k ∈ [r]. Since x is
adjacent to all vertices in T ′k for every k 6= j, G[X ∪ {x}] spans a copy of H in G, as desired. �

We are now ready to prove Theorem 1.10 using Theorem 4.1 and Theorem 10.7.

Proof of Theorem 1.10. Note that the lower bounds stated in Theorem 1.10 follow immediately
from Corollary 2.2 and Lemma 2.5. It remains to prove the upper bounds.

Let H be an ordered graph and η > 0. Let G be an ordered graph on n vertices with n sufficiently
large and minimum degree

(i) δ(G) ≥
(

1− 1
χ<(H) + η

)
n if H has a local barrier;

(ii) δ(G) ≥
(

1− 1
χ<(H)−1 + η

)
n if H does not have a local barrier.

In case (ii) we obtain an H-cover by Theorem 10.7. In case (i), consider any x ∈ V (H). Let
y ∈ V (G) \ {x}. By Theorem 4.1 there exists a set X ⊆ V (G) such that both G[X ∪ {x}] and
G[X ∪{y}] contain perfect H-tilings. In particular, there exists a copy of H in G covering x. Thus,
G has an H-cover, as desired. �

11. Properties of χ∗cr(H)

In this section, we provide various bounds on the parameter χ∗cr(H). We start by showing some
natural upper and lower bounds.

Proposition 11.1. Let H be an ordered graph on h vertices and let r := χ<(H). Let C denote the
set of interval r-colourings of H. Define

`−(H) := max
(H1<···<Hr)∈C

|H1| and `∗−(H) := max
(H1<···<Hr)∈C

|Hr|.

Then χ∗cr(H) ≥ h/`−(H) and χ∗cr(H) ≥ h/`∗−(H).

Proof. We only prove that χ∗cr(H) ≥ h/`−(H) as the proof that χ∗cr(H) ≥ h/`∗−(H) is analogous.
Let B be a bottlegraph of H with parts B1, . . . , Bk for some k ∈ N. Our aim is to show that
χcr(B) ≥ h/`−(H). By Proposition 5.1, we may assume there exists some m ∈ N such that

|Bk| ≤ m and |Bi| = m

for every i ∈ [k − 1]. Let φ be an interval labelling of B such that the ordered graph (B,φ) has
parts B1 < · · · < Bk. Since B is a bottlegraph, there exists a t ∈ N so that (B(t), φ) contains a
perfect H-tiling H. Note H consists of |B|t/h copies of H and every copy of H has at most `−(H)
vertices in B1, thus

mt = |B1|t ≤ `−(H)|H| = `−(H)|B|t/h.

Since χcr(B) = |B|/m, the above implies χcr(B) ≥ h/`−(H) and so χ∗cr(H) ≥ h/`−(H). �
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Proposition 11.2. Let H be an ordered graph on h vertices and let r := χ<(H). Let C denote the
set of interval r-colourings of H. Define

`+(H) := max
(H1<···<Hr)∈C

{
min
i∈[r]
|Hi|

}
.

Then χ∗cr(H) ≤ h/`+(H).

Proof. Let H1 < · · · < Hr be an interval r-colouring of H such that

`+(H) = min
i∈[r]
|Hi|.

Let k := bh/`+(H)c and let B be the complete (k + 1)-partite unordered graph with parts
B1, . . . , Bk+1 such that

|Bk+1| = (h− k`+(H)) · (h!) and |Bs| = `+(H) · (h!)

for every s ∈ [k]. Note that Bk+1 is the smallest part and may be empty. We have that |B| = h ·h!
and χcr(B) = h/`+(H).

We will now prove that B is a simple bottlegraph of H. Let σ be a permutation of [k + 1] and
let φ be an interval labelling of B with respect to σ. Note that V ((B,φ)) = [h · (h!)]. Set t0 := 0
and

ti := (|H1|+ · · ·+ |Hi|) · (h!)

for every i ∈ [r]. For every j ∈ [h!] and i ∈ [r], let

T ij := [ti−1 + j|Hi|] \ [ti−1 + (j − 1)|Hi|].

Observe that the set of intervals {T ij}j∈[h!] is a partition of [ti] \ [ti−1] and in particular the set of

all intervals T ij is a partition of [h · (h!)].

Relabel the parts of (B,φ) by B′1, . . . , B
′
k+1 so that B′1 < · · · < B′k+1. Suppose that T ij intersects

both B′s and B′s+1 for some i ∈ [r], j ∈ [h!] and s ∈ [k]. Since |T ij′ | = |Hi| for every j′ ∈ [h!], it
follows that

|(B′1 ∪ · · · ∪B′s) \ [ti−1]|

is not divisible by |Hi|, as otherwise no T ij′ would intersect both B′s and B′s+1 for any j′ ∈ [h!],

and in particular for j′ = j, contradicting our assumption. However, |B′1 ∪ · · · ∪ B′s| and ti−1 are
both divisible by h! and thus |(B′1 ∪ · · · ∪B′s) \ [ti−1]| is divisible by |Hi|, reaching a contradiction.
Therefore, every T ij is a subset of some B′s.

Suppose T ij and T i+1
j are both subsets of some B′s, then

|B′s| ≥ (ti + j|Hi+1|)− (ti−1 + (j − 1)|Hi|) = (h!− j + 1)|Hi|+ j|Hi+1| ≥ (h! + 1) · `+(H),

again reaching a contradiction. It follows that the ordered graph Tj spanned by T 1
j < · · · < T rj is

a complete r-partite ordered subgraph of (B,φ). Since |T ij | = |Hi| then Tj spans a copy of H in

(B,φ) for every j ∈ [h!]. The Tj ’s are disjoint and cover all the vertices of (B,φ), thus they yield
a perfect H-tiling. Since σ, φ are arbitrary, B is a simple bottlegraph of H. In particular,

χ∗cr(H) ≤ χcr(B) = h/`+(H).

�
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The next result follows easily from the previous bounds.

Proposition 11.3. Let H be a complete r-partite ordered graph on h vertices with parts H1 <
· · · < Hr such that (i) |H1| ≤ |Hi| for every i ∈ [r] or (ii) |Hr| ≤ |Hi| for every i ∈ [r]. Then
χ∗cr(H) = h/|H1| ≥ χ<(H) in case (i) and χ∗cr(H) = h/|Hr| ≥ χ<(H) in case (ii).

Proof. For case (i), let `−(H) and `+(H) be as in Proposition 11.1 and Proposition 11.2 respectively.
Note that `−(H) = `+(H) = |H1|, hence Propositions 11.1 and 11.2 imply that χ∗cr(H) = h/|H1|.
Case (ii) follows similarly. �

In [3], Balogh, Li and the second author (implicitly) computed χ∗cr(H) for any H such that
χ<(H) = 2. Their result can be easily recovered using Propositions 11.1 and 11.2.

Proposition 11.4 (Balogh, Li and Treglown [3]). Let H be an ordered graph with vertex set [h]
such that χ<(H) = 2. Define α+(H) to be the largest integer t ∈ [h] so that [1, t] is an independent
set in H; α−(H) to be the largest integer t ∈ [h] so that [h− t + 1, h] is an independent set in H;
α(H) := min{α+(H), α−(H)}. Then

χ∗cr(H) =
h

α(H)
.

Proof. Let `−(H), `∗−(H), `+(H) be as in Propositions 11.1 and 11.2.
Observe that both [1, α+(H)] < [α+(H) + 1, h] and [1, h − α−(H)] < [h − α−(H) + 1, h] are

interval 2-colourings of H. In particular,

`−(H) = α+(H) and `∗−(H) = α−(H),

and so χ∗cr(H) ≥ h/α(H) by Proposition 11.1. It remains to show that χ∗cr(H) ≤ h/α(H). If
α(H) ≤ h/2 then `+(H) ≥ α(H)4 and so χ∗cr(H) ≤ h/α(H) by Proposition 11.2. If α(H) > h/2,
then both [1, α(H)] < [α(H)+1, h] and [1, h−α(H)] < [h−α(H)+1, h] are interval 2-colourings of
H. Therefore the complete bipartite graph B with parts U, V of size |U | = α(H) and |V | = h−α(H)
is a simple bottlegraph of H. We have χcr(B) = h/α(H) and thus χ∗cr(H) ≤ h/α(H). �

If χ<(H) = 3, finding a closed formula for χ∗cr(H) already proves challenging. In the next result
we determine χ∗cr(H) for any complete 3-partite ordered graph H.

Proposition 11.5. Let H be a complete 3-partite ordered graph on h vertices with parts H1 <
H2 < H3 of size h1, h2, h3 respectively and let

g(H) :=

(
2− min{h1, h2, h3}

min{h1, h3}

)
· h

min{h1, h3}
.

Then χ∗cr(H) = g(H).

Proof. We may assume that h1 ≤ h3; the case h1 ≥ h3 follows by the symmetry of the argument.
If h1 ≤ h2 then χ∗cr(H) = h/h1 by Proposition 11.3 and the result follows. So for the rest of the
proof we assume h2 < h1 ≤ h3. Under these assumptions, g(H) = (2− h2/h1)h/h1 > 3.

Claim 11.6. χ∗cr(H) ≥ g(H).

Let B be a bottlegraph of H with parts B1, . . . , Bk for some k ∈ N. Note that k ≥ 3 since H is
3-partite. Our aim is to show that χcr(B) ≥ g(H). By Proposition 5.1, we may assume that there
exists some m ∈ N such that

|Bk| ≤ m and |Bi| = m

4In fact, if α(H) ≤ h/2 then `+(H) = α(H).
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for every i ∈ [k− 1]. Pick an interval labelling φ of B such that the ordered graph (B,φ) has parts
B1 < B2 < · · · < Bk. By definition there exists some t ∈ N such that the ordered blow-up (B(t), φ)
contains a perfect H-tilingM. Recall that we denote the parts of (B(t), φ) by B1(t) < · · · < Bk(t).

Let M1 be the set of copies of H ∈ M whose first part H1 lies completely in B1(t) and let
M2 := M\M1. Note that every copy of H ∈ M1 has exactly h1 vertices in B1(t) and at most
h1+h2 vertices in B1(t)∪B2(t), while every copy of H ∈M2 has at most h1 vertices in B1(t)∪B2(t).
Since |B1(t)| = |B2(t)| = mt, it follows that

mt ≥ h1 · |M1| and 2mt ≤ (h1 + h2) · |M1|+ h1 · |M2|.
The above implies that

|M| = |M1|+ |M2| ≥
(

2− h2

h1

)
mt

h1
.

Since χcr(B) = |B|/m = |M|h/(mt) then χcr(B) ≥ g(H), proving the claim.

Claim 11.7. If h1 = h3 then there exists a simple bottlegraph B of H with four parts such that
three parts of B have size h2

1; one part has size h2
1 − h2

2; χcr(B) = g(H).

Suppose h1 = h3. Then

g(H) =

(
2− h2

h1

)
h

h1
= 4−

(
h2

h1

)2

and so 3 < g(H) < 4. Let B be the complete 4-partite graph with parts B1, B2, B3, B4 where

|B1| = h2
1 − h2

2 and |Bi| = h2
1

for every i = 2, 3, 4. Note that χcr(B) = |B|/h2
1 = g(H). It remains to show that B is a simple

bottlegraph of H.
Let σ be a permutation of [4] and φ an interval labelling of B with respect to σ. Recall that the

ordered graph (B,φ) has parts Bσ−1(1) < Bσ−1(2) < Bσ−1(3) < Bσ−1(4). Either σ−1(1), σ−1(2) 6= 1

or σ−1(3), σ−1(4) 6= 1. We will now deal with the former case.
Observe that V (B) can be partitioned into two sets X,Y of size |X| = h1(2h1 + h2) and |Y | =

(h1 − h2)(2h1 + h2) such that

|Y ∩Bσ−1(i)| =


0 if i = 1,

h1(h1 − h2) if i = 2,

h2(h1 − h2) if i = 3,

h1(h1 − h2) if i = 4,

and

|X ∩Bσ−1(i)| =


h2

1 if i = 1,

h1h2 if i = 2,

|Bσ−1(3)| − h1h2 + h2
2 if i = 3,

and all remaining vertices of X lie in Bσ−1(4).

In particular, (i) |X ∩ Bσ−1(1)| = h2
1; |X ∩ Bσ−1(2)| = h1h2; |X ∩ Bσ−1(3)| = h2

1 − h1h2 + h2
2;

|X∩Bσ−1(4)| = h1h2−h2
2 or (ii) |X∩Bσ−1(1)| = h2

1; |X∩Bσ−1(2)| = h1h2; |X∩Bσ−1(3)| = h2
1−h1h2;

|X ∩ Bσ−1(4)| = h1h2. Thus, we have that (B,φ)[X] contains a perfect H-tiling consisting of h1

copies of H where the first and second parts H1, H2 of every such copy of H lie in Bσ−1(1) and
Bσ−1(2) respectively. Further, (B,φ)[Y ] contains a perfect H-tiling consisting of h1 − h2 copies of
H. The union of these two H-tilings yields a perfect H-tiling in (B,φ).

The only remaining case is when σ−1(3), σ−1(4) 6= 1. However, since h1 = h3, this case will
follow by a symmetric argument to that of the previous case. Thus B is a simple bottlegraph of H.
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Claim 11.8. If g(H) is an integer then there exists a simple bottlegraph B of H such that χcr(B) =
g(H) (i.e., B has g(H) parts) and all parts of B have size h2

1.

Set k := g(H). Recall that k > 3 and so k ≥ 4 since k ∈ N. Let B be the complete k-partite
graph with parts B1, . . . , Bk all of size h2

1. Notice χcr(B) = k, so it remains to show that B is a
simple bottlegraph of H.

Let σ be a permutation of [k] and φ an interval labelling of B with respect to σ. Recall that the
ordered graph (B,φ) has parts Bσ−1(1) < · · · < Bσ−1(k). Let X ⊆ V (B) be a set of size 4h2

1 − h2
2

such that

|X ∩Bσ−1(i)| =

{
h2

1 if i = 1, 2, 3,

h2
1 − h2

2 if i = 4.

Let H ′ be the complete 3-partite ordered graph with parts H ′1 < H ′2 < H ′3 of size h1, h2, h1

respectively. By Claim 11.7, (B,φ)[X] contains a perfect H ′-tiling consisting of 2h1 − h2 copies of
H ′. Observe that by definition of k,

|V (B) \X| = kh2
1 − (4h2

1 − h2
2) = (2h1 − h2)(h3 − h1).

Thus we can partition V (B)\X into 2h1−h2 sets of size h3−h1 and assign each set to a copy of H ′.
Notice that every copy of H ′ together with its assigned set forms a copy of H; so we constructed a
perfect H-tiling in (B,φ). Since σ and φ are arbitrary, B is a simple bottlegraph of H.

Claim 11.9. There exists a simple bottlegraph B of H such that χcr(B) = g(H).

Recall that h2 < h1 ≤ h3. We may assume that g(H) is not an integer as otherwise we are done
by Claim 11.8. Given t ∈ N and ` ∈ N ∪ {0}, let H(t, `) be the complete 3-partite ordered graph
with parts H ′1 < H ′2 < H ′3 of size th1, th2, th3 − ` respectively.

Set k := bg(H)c. We define t, `, s and B as follows:

• If g(H) ≥ 4, there exist t, ` ∈ N such that

`

t
=

(g(H)− k)h1

(2− h2/h1)
,

since the right hand side of the above inequality is a positive rational number. Thus,

k = g(H)−
(

2− h2

h1

)
`/t

h1
=

(
2− h2

h1

)
h− `/t
h1

=

(
2− th2

th1

)
th1 + th2 + th3 − `

th1
.(15)

Furthermore, we have

k ≥ 4 > 4−
(
h2

h1

)2

=

(
2− th2

th1

)
th1 + th2 + th1

th1
.(16)

Equations (15) and (16) imply that th3 − ` > th1. Hence th2 < th1 < th3 − ` and so

g(H(t, `)) =

(
2− th2

th1

)
th1 + th2 + th3 − `

th1
= k.

Let B be the simple bottlegraph of H(t, `) as in Claim 11.8 and set s := 0.
• If 3 < g(H) < 4, let t := 1 and ` := h3 − h1. Observe that the parts H ′1 < H ′2 < H ′3 of
H(t, `) have size h1, h2, h1 respectively. Let B be the simple bottlegraph of H(t, `) as in
Claim 11.7. Set s := h2

1 − h2
2.

Note that in both cases, B is a complete (k + 1)-partite graph where each part has size (th1)2

except one smaller part of size t2s (which is empty if g(H) ≥ 4).
Observe that g(H)− k is a rational number and

s

h2
1

≤ g(H)− k < 1.(17)
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Indeed, the lower bound is trivial if g(H) ≥ 4; if 3 < g(H) < 4 then s = h2
1 − h2

2 and k = 3, so
g(H)− k ≥ (2− h2/h1)(2h1 + h2)/h1 − k = 4− (h2/h1)2 − 3 = 1− (h2/h1)2 = s/h2

1.
Thus, by (17), there exist a, b ∈ N ∪ {0} such that (a, b) 6= (0, 0) and

a(1− g(H) + k) = b(g(H)− k − s/h2
1) =⇒ a+ b

s

h2
1

= (a+ b)(g(H)− k)

=⇒ a(th1)2 + bt2s = (a+ b)(th1)2(g(H)− k).(18)

Let B′ be the complete (k + 1)-partite graph with parts B′1, . . . , B
′
k+1 where

|B′1| = (a+ b)(th1)2(g(H)− k) and |B′i| = (a+ b)(th1)2

for every i > 1. Notice χcr(B
′) = g(H), so it remains to show that B′ is a simple bottlegraph of H.

Let σ be a permutation of [k+1] and let φ be an interval labelling of B′ with respect to σ. Recall
that the ordered graph (B′, φ) has parts B′σ−1(1) < · · · < B′σ−1(k+1). Let X,Y be two disjoint sets

in V (B′) of size a|B| and b|B| respectively such that

|X ∩B′σ−1(i)| =

{
a(th1)2 if i < k + 1,

a(t2s) if i = k + 1,

and

|Y ∩B′σ−1(i)| =

{
b(th1)2 if σ−1(i) 6= 1,

b(t2s) if σ−1(i) = 1.

Notice that by (18) and the choice of the sizes of the parts of B′, all vertices in B′σ−1(i) are in X ∪Y
for i ≤ k; as s ≤ h2

1 it may be that some vertices in B′σ−1(k+1) are not in X ∪ Y .

Note that (B′, φ)[X] is a copy of (B(a), φ′) for some interval labelling φ′. So as B is a simple
bottlegraph of H(t, `), (B(a), φ′) contains a perfect H(t, `)-tiling M1 consisting of

a|B|
|H(t, `)|

=
a(th1)2g(H(t, `))

|H(t, `)|
= a(th1)2

(
2− h2

h1

)
h− `/t
h1

1

th− `
= a(2h1 − h2)t(19)

copies of H(t, `). Similarly, (B′, φ)[Y ] is a copy of (B(b), φ′′) for some interval labelling φ′′ and it
contains a perfect H(t, `)-tiling M2 consisting of

b|B|
|H(t, `)|

= b(2h1 − h2)t(20)

copies of H(t, `). Note that the vertices in V (B′) \ (X ∪ Y ) lie in B′σ−1(k+1). Moreover, as g(H) =

(2− h2/h1)h/h1,

|V (B′) \ (X ∪ Y )| = |B′| − (a+ b)|B| = (a+ b)(th1)2g(H)− (a+ b)|B|
(19),(20)

= (a+ b)
(
(2h1 − h2)ht2 − (2h1 − h2)(th− `)t

)
= (a+ b)(2h1 − h2)`t.

Thus, we can divide V (B′) \ (X ∪ Y ) into (a+ b)(2h1 − h2)t sets of size ` and assign each set to a
copy of H(t, `) in M1 ∪M2. Note that each copy of H(t, `) together with its assigned set forms a
copy of H(t, 0). Thus we constructed a perfect H(t, 0)-tiling in (B′, φ). Since H(t, 0) = H(t), this
yields a perfect H-tiling in (B′, φ), proving that B′ is indeed a simple bottlegraph of H.

Claim 11.9 implies that χ∗cr(H) ≤ g(H). Together with Claim 11.6, this concludes the proof.
�
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Observe that Propositions 11.3 and 11.5 combined with Theorem 1.8 yield the following result
which makes the threshold in Theorem 1.8 explicit for all complete 3-partite ordered graphs.

Theorem 11.10. Let H be a complete r-partite ordered graph on h vertices with parts H1 < · · · <
Hr where |Hi| = hi for every i ∈ [r].

• If h1 ≤ hi for every i > 1, then δ<(H,n) =
(

1− h1
h + o(1)

)
n.

• If hr ≤ hi for every i ∈ [r − 1], then δ<(H,n) =
(
1− hr

h + o(1)
)
n.

• If r = 3 and h2 ≤ h1 ≤ h3 then δ<(H,n) =
(

1− h21
(2h1−h2)h + o(1)

)
n.

• If r = 3 and h2 ≤ h3 ≤ h1 then δ<(H,n) =
(

1− h23
(2h3−h2)h + o(1)

)
n.

12. The tightness of Theorem 1.6

In this section we show that the minimum degree condition in Theorem 1.6 is best possible.
Given an ordered graph H, let c<(H) denote the smallest non-negative number which satisfies the
following: for every η > 0, there exists an integer n0 ∈ N such that if G is an ordered graph on
n ≥ n0 vertices and with minimum degree δ(G) ≥ c<(H)n then G contains an H-tiling covering all
but at most ηn vertices. Observe Theorem 1.6 immediately implies that

c<(H) ≤
(

1− 1

χ∗cr(H)

)
.(21)

In fact, we will show that equality holds.

Theorem 12.1. Let H be an ordered graph on h vertices. Then

c<(H) =

(
1− 1

χ∗cr(H)

)
.

Proof. By (21) it remains to prove that c<(H) ≥ (1 − 1/χ∗cr(H)). Throughout the proof, we let
c := c<(H) and r := χ<(H). Suppose for a contradiction that c < (1 − 1/χ∗cr(H)). We split the
proof into three different cases.

Case 1: χ∗cr(H) > r.
Let η > 0 be sufficiently small and define c′ such that

c′ := max

{(
1− 1

r

)
, c

}
+ η < 1− 1

χ∗cr(H)
.(22)

Let 0 < ν � η and let n ∈ N be sufficiently large and divisible by h.
Let G be any ordered graph on n vertices with minimum degree

δ(G) ≥ c′n
(22)

≥
(

1− 1

r
+ η

)
n.

By Theorem 4.1, there exists a set Abs ⊆ V (G) such that |Abs| ≤ νn and Abs is an H-absorbing
set for every W ⊆ V (G) \Abs such that |W | ∈ hN and |W | ≤ ν3n. Let G′ := G \Abs. Note that

δ(G′) ≥
(
c′ − η

)
n

(22)

≥ cn.

By the definition of c, and as n is sufficiently large, there exists an H-tiling M1 covering all but
at most ν3n vertices in G′. Let W ⊆ V (G′) be the set of vertices not covered by M1. Since
|W | ≤ ν3n and h divides |W | (as h divides n, |Abs|, |V (M1)|), there exists a perfect H-tiling M2
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in G[Abs ∪W ]. Thus, M1 ∪M2 is a perfect H-tiling in G. Recall that G is an arbitrary ordered
graph on n vertices with δ(G) ≥ c′n, hence

δ<(H,n) ≤ c′n <
(

1− 1

χ∗cr(H)

)
n.

This contradicts Corollary 2.4. Therefore, the initial assumption that c < (1 − 1/χ∗cr(H)) is false
and the result follows in this case.

Case 2: χ∗cr(H) ≤ r and H is flexible.
As H is flexible, there exists a complete r-partite ordered graph F with parts F1 < · · · < Fr as

in Lemma 8.2. Pick η > 0 sufficiently small so that

c+ η + η|F | ≤ 1− 1

χ∗cr(H)
(23)

and

r − 1

1− η|F |
<

χ∗cr(H)

1 + ηχ∗cr(H)
.(24)

Let n ∈ N be sufficiently large and divisible by h; we may choose η and n so that ηn ∈ N.
Recall that by (4), r − 1 < χ∗cr(H) ≤ r. Thus, it is not difficult to show that there exist a

complete r-partite unordered graph B on n vertices with parts B1, . . . , Br such that all parts have
the same size, except one smaller part, and

χ∗cr(H)

1 + ηχ∗cr(H)
≤ χcr(B) < χ∗cr(H).(25)

Note that

δ(B) =

(
1− 1

χcr(B)

)
n

(25)

≥
(

1− 1

χ∗cr(H)
− η
)
n.

Pick any permutation σ of [r] and any interval labelling φ of B with respect to σ. Up to relabelling,
we may assume that the complete r-partite ordered graph (B,φ) has parts B1 < · · · < Br.

Notice that (24) and (25) imply |Bk| ≥ η|F |n for all k ∈ [r]. Let X ⊆ V (B) such that |X∩Bk| =
η|Fk|n for every k ∈ [r]. Clearly, (B,φ)[X] is a copy of the ordered blow-up F (ηn). Let B′ be
the ordered graph obtained from (B,φ) by deleting the vertices in X; so B′ is a complete r-partite
ordered graph with parts B′1 < · · · < B′r where B′k ⊆ Bk for every k ∈ [r]. Note that

δ(B′) ≥ δ(B)− ηn|F | ≥
(

1− 1

χ∗cr(H)
− η − η|F |

)
n

(23)

≥ cn.

By the definition of c, there exists an H-tiling M1 in B′ covering all but at most (ηh)n vertices.
Let W ⊆ V (B′) be the set of vertices not covered byM1. Furthermore, let sk := |W ∩B′k| for every
k ∈ [r]. Note that (B,φ)[X ∪W ] is a complete r-partite ordered graph with parts L1 < · · · < Lr
such that |Lk| = ηn|Fk| + sk. Since s1 + · · · + sr = |W | ≤ (ηn)h and h divides |W |, then by
Corollary 8.3 there exists a perfect H-tilingM2 in (B,φ)[X ∪W ]. Finally, note thatM1∪M2 is a
perfect H-tiling in (B,φ). Since σ, φ are arbitrary, this implies that B is a simple bottlegraph of H.
This is a contradiction since χcr(B) < χ∗cr(H). Thus, the initial assumption that c < (1−1/χ∗cr(H))
is false and the result follows in this case.

Case 3: χ∗cr(H) ≤ r and H is not flexible.
Note that if χ∗cr(H) < r then H is flexible by Corollary 8.6, a contradiction. Thus, χ∗cr(H) = r.

In this case we actually produce an explicit extremal example to show that c ≥ 1− 1/r.
Since H is not flexible, by Lemma 8.4 there exist some i ∈ [r−1] such that the number of vertices

in the first i intervals of any given interval r-colouring of H is fixed. Clearly, this implies that the
number of vertices in the last (r − i) intervals of any given interval r-colouring of H is also fixed.
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Since H has h vertices, the number of vertices in the first i intervals is at least ih/r or the number
of vertices in the last (r − i) intervals is at least (r − i)h/r. Without loss of generality we may
assume the former.

Fix 0 < η < 1 and n ∈ N such that n/r and ηn/r are integers. Let G be the complete r-partite
ordered graph on n vertices with parts G1 < · · · < Gr of size

|Gj | =

{
n
r (1− η) if j < r,
n
r (1 + (r − 1)η) if j = r.

Observe that

δ(G) = n− n

r
(1 + (r − 1)η) =

(
1− 1

r
− (r − 1)η

r

)
n.

By assumption, a copy of H in G has at least ih/r vertices in G1 ∪ · · · ∪ Gi. Suppose M is an
H-tiling in G, then the number of copies of H in M is at most

|G1 ∪ · · · ∪Gi|
(ih/r)

=
n(1− η)

h
.

In particular, there are at least ηn vertices in G which are not covered by M.
In summary what we have shown is that, given any c′ < 1−1/r, we can choose η > 0 sufficiently

small so that for an infinite number of choices of n ∈ N, we can produce an n-vertex ordered graph
G with δ(G) ≥ c′n and so that G does not contain an H-tiling covering more than (1−η)n vertices.
So by definition c ≥ 1− 1/r, as desired. �

13. Proof of Theorem 1.16

This section is devoted to the proof of Theorem 1.16. We will need the following result from [3,
Lemma 6.2] which itself is a special case of a lemma of Bárány and Valtr [4].

Lemma 13.1 (Balogh, Li and Treglown [3]). For n ≥ k ≥ 2, let A1, A2, . . . , Ak be nonempty
disjoint subsets of [n]. Then there exist sets S1, S2, . . . , Sk, where Si ⊆ Ai, and a permutation
σ = (σ(1), σ(2), . . . , σ(k)) of the set [k], such that the following conditions hold for all i, j ∈ [k]:

• |Si| ≥ b|Ai|/kc;
• Si < Sj if σ(i) < σ(j).

Proof of Theorem 1.16. Let H be an ordered graph on h vertices and let x ∈ (0, 1). Throughout
the proof we set r := χ<(H). If r = 1 the statement of the theorem holds trivially, so we may
assume that r ≥ 2. Observe that it suffices to prove that the theorem holds for any η > 0 sufficiently
small. Fix constants 0 < η � 1/χ∗cr(x,H) and

0 < ε� (1− x)η/(xh).(26)

By definition of χ∗cr(x,H) there is an x-bottlegraph B of H with

χ∗cr(x,H) ≤ χcr(B) <
χ∗cr(x,H)

1− (η/12)χ∗cr(x,H)
.(27)

Let k := χ(B) ≥ r and let B1, . . . , Bk be the parts of B. Fix t ∈ N such that k/t < ε.
Let n ∈ N be sufficiently large and let G be an ordered graph on n vertices with minimum degree

δ(G) ≥
(

1− 1

χ∗cr(x,H)
+ η

)
n.

Recall by (1), χ∗cr(x,H) ≥ r − 1; so δ(G) ≥ (1− 1/(r − 1) + η)n. By the Erdős–Stone–Simonovits
theorem for ordered graphs [24] there exists a copy of H in G. We remove the vertices of H from
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G and repeat the same process until we obtain a set W ⊆ V (G) such that G[W ] contains a perfect
H-tiling W and |W | =

⌊ηn
2h

⌋
h. Let G′ := G \W . Observe that

δ(G′) ≥
(

1− 1

χ∗cr(x,H)
+
η

3

)
|G′|

(27)

≥
(

1− 1

χcr(B)
+
η

4

)
|G′|.

Since χcr(B(t)) = χcr(B) (and ignoring the ordering of V (G′)), Theorem 1.13 implies there exists
a B(t)-tiling B in G′ which covers all but at most ε|G′| vertices.

Consider a fixed copy of B(t) ∈ B whose parts are A1, . . . , Ak with |Ai| = t|Bi| for every i ∈ [k].
By Lemma 13.1, there exist sets Si ⊆ Ai for every i ∈ [k] such that |Si| ≥ b|Ai|/kc ≥ |Bi| and a
permutation σ of [k] such that Si < Sj if σ(i) < σ(j). By discarding some vertices if necessary, we
may assume that |Si| = |Bi| for every i ∈ [k]. Note that the sets S1, . . . , Sk span a copy of B and
the ordering of V (G′) induces an interval labelling of B with respect to σ.

Crucially, |Ai \Si| = (t− 1)|Bi|, so we can repeatedly apply Lemma 13.1 to find a B-tiling in G′

covering all but at most

k|B| = (k/t)|B(t)|
vertices in our fixed B(t) ∈ B. Furthermore, by Lemma 13.1, the ordering of V (G′) induces an
interval labelling on each of these copies of B. Since B is an x-bottlegraph, each of these copies
contains an (x,H)-tiling. Repeat this process for all B(t) ∈ B and denote the union of all these
(x,H)-tilings as M. The number of vertices in G covered by M∪W is at least

x(1− k/t)(1− ε)|G′|+ |W | ≥ x(1− ε)2(n− |W |) + |W |

≥ xn− 2xεn− x|W |+ |W |
(26)

≥ xn.

Hence M∪W is an (x,H)-tiling in G, as desired. �

14. Computing the threshold in Theorem 1.16 for some choices of H

In this section we investigate the behaviour of the function f(x,H) as defined in Theorem 1.16.
Recall that for an unordered graph H, the analogous function g(x,H) (defined in Theorem 1.13)
is linear in x. On the other hand, for a vertex-ordered graph H, the function f(x,H) can behave
rather differently. However, we first give an instance where f(x,H) does grow linearly in x.

Proposition 14.1. Let H be an ordered graph with vertex set [h] such that χ<(H) = 2. De-
fine α+(H) to be the largest integer t ∈ [h] such that [1, t] is an independent set in H; α−(H)
to be the largest integer t ∈ [h] such that [h − t + 1, h] is an independent set in H; α(H) :=
min{α+(H), α−(H)}. For any x ∈ (0, 1), we have

f(x,H) =
x(h− α(H))

h
.

Proof. Let H be an ordered graph with vertex set [h] so that χ<(H) = 2, and let x ∈ (0, 1).
Additionally, fix constants 0 < 1/N � η < 1 where N ∈ N. We first prove that f(x,H) ≤
x(h− α(H))/h.

By the definition of α+(H) and α−(H) and the fact that χ<(H) = 2, [1, α+(H)] < [α+(H) +
1, h] and [1, h − α−(H)] < [h − α−(H) + 1, h] are interval 2-colourings of H. The maximality of
α+(H) implies α+(H) ≥ h − α−(H), i.e., α+(H) + α−(H) − h ≥ 0. Furthermore, the previous
observations imply that the vertices in [h− α−(H) + 1, α+(H)] are isolated in H and in particular
[1, h − α−(H)] < [h − α−(H) + 1, α+(H)] < [α+(H) + 1, h] is an interval 3-colouring of H. (Note
that [h− α−(H) + 1, α+(H)] may be empty.)

Let H ′ be an ordered graph such that:

• V (H ′) = [h′] with h′ := Nh+ b(1− x)Nh/xc;
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• V (H ′) can be partitioned into four intervals D1 < D2 < D3 < D4 where

|D1| = (h− α−(H))N, |D2| = (α+(H) + α−(H)− h)N,

|D3| = b(1− x)Nh/xc, |D4| = (h− α+(H))N,

such that H ′[D1, D4] is a complete 2-partite ordered graph and all vertices in D2 ∪D3 are
isolated in H ′.

As [1, h− α−(H)] < [h− α−(H) + 1, α+(H)] < [α+(H) + 1, h] is an interval 3-colouring of H and
[h − α−(H) + 1, α+(H)] is a set of isolated vertices, we have that H ′[D1 ∪ D2 ∪ D4] contains N
disjoint copies of H. These copies form an (x,H)-tiling in H ′ since Nh ≥ xh′.

Notice α+(H ′) = |D1|+ |D2|+ |D3| and α−(H ′) = |D2|+ |D3|+ |D4|, thus

α(H ′) = h′ −max{|D1|, |D4|} = h′ −N(h− α(H)).(28)

As χ<(H ′) = 2, Proposition 11.4 implies that

χ∗cr(H
′) =

h′

α(H ′)
.(29)

Since H ′ contains an (x,H)-tiling, it follows that every 1-bottlegraph of H ′ is an x-bottlegraph of
H and so χ∗cr(x,H) ≤ χ∗cr(1, H ′). Proposition 5.2 implies that χ∗cr(1, H

′) = χ∗cr(H
′), so

f(x,H) =

(
1− 1

χ∗cr(x,H)

)
≤
(

1− 1

χ∗cr(H
′)

)
(29)
=

(
1− α(H ′)

h′

)
(28)
=

(
1− h′ −N(h− α(H))

h′

)
=
x(h− α(H))

xh′/N
.

Since N is arbitrarily large and xh′/N → h as N →∞, the above implies f(x,H) ≤ x(h−α(H))/h.

Next we prove that f(x,H) ≥ x(h− α(H))/h. Without loss of generality, we may assume that
α(H) = α+(H). Let G be the ordered graph obtained by taking the complete 2-partite ordered
graph with classes U < V where

|U | = Nα+(H) +

⌈
1− x
x

Nh

⌉
+ 1 and |V | = N(h− α+(H))− 1,

and adding all possible edges to V . Suppose G contains an (x,H)-tiling H. Since |G| = Nh +⌈
1−x
x Nh

⌉
then H covers at least xNh+ (1−x)Nh = Nh vertices of G. Let H′ ⊆ H where H′ is an

H-tiling consisting of exactly N copies of H in G. Every copy of H has at most α+(H) vertices in
U . Furthermore, there are precisely

⌈
1−x
x Nh

⌉
vertices in G which are not covered by H′, thus

|U | ≤ Nα+(H) +

⌈
1− x
x

Nh

⌉
< |U |,

a contradiction. Therefore, the assumption that G contains an (x,H)-tiling is false. It follows from
Theorem 1.16 that

δ(G) < (f(x,H) + η)|G|.
Finally, we have

f(x,H) + η >
δ(G)

|G|
=
N(h− α+(H))− 1

Nh+
⌈

1−x
x Nh

⌉ ≥ N(h− α+(H))− 1

Nh+ 1−x
x Nh+ 1

=
x(h− α+(H))− x/N

h+ x/N
.

AsN can be chosen arbitrarily large and η arbitrarily small, it follows that f(x,H) ≥ x(h−α(H))/h.
�
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In general, for any ordered graph H, if x is not too big then the function f(x,H) is linear in x.

Proposition 14.2. Let H be an ordered graph on h vertices and r := χ<(H). Let C be the set of
interval r-colourings of H. Additionally, set

T := max
1≤i≤r

{
min

(H1<···<Hr)∈C
|Hi|

}
, J := max

1≤i≤r

{
max

(H1<···<Hr)∈C
|Hi|

}
and x0 := h

(r−1)J+T . Then for any x ∈ (0, x0] where x < 1,

f(x,H) = 1− h− xT
h(r − 1)

.

Proof. Let H be an ordered graph on h vertices with r := χ<(H) and x ∈ (0, x0] where x < 1. Fix
constants 0 < 1/N � η < 1 where N ∈ N. We first show that f(x,H) ≤ 1− (h− xT )/(h(r − 1)).

Let B be the complete r-partite unordered graph with parts B1, . . . , Br where

|B1| = NT and |Bi| =
⌊

N

r − 1

(
h

x
− T

)⌋
for every i 6= 1. We now prove that B is an x-bottlegraph of H. Note that for every i 6= 1,

|Bi| ≥
⌊

N

r − 1

(
h

x0
− T

)⌋
= NJ ≥ NT = |B1|.(30)

Let σ be a permutation of [r] and φ be an interval labelling of B with respect to σ. Recall that
the ordered graph (B,φ) has parts Bσ−1(1) < · · · < Bσ−1(r). Let H1 < · · · < Hr be an interval
r-colouring of H which minimises |Hσ(1)|. By the definition of T we have that

|B1| = NT ≥ N |Hσ(1)|.
Furthermore, by the definition of J we have that for every i 6= 1,

|Bi|
(30)

≥ NJ ≥ N |Hσ(i)|.

Hence, the ordered graph (B,φ) contains an H-tiling H consisting of N disjoint copies of H. These
copies cover exactly Nh vertices of (B,φ). In particular

x|B| ≤ xNT + xN

(
h

x
− T

)
= Nh,

therefore, H is an (x,H)-tiling in (B,φ). Since σ, φ are arbitrary, B is indeed an x-bottlegraph of
H and thus χ∗cr(x,H) ≤ χcr(B). Note that

χcr(B) =
|B|
|B2|

=
NT + (r − 1)

⌊
N
r−1

(
h
x − T

)⌋⌊
N
r−1

(
h
x − T

)⌋ <
NT +N

(
h
x − T

)
N
r−1

(
h
x − T

)
− 1

=
h(r − 1)

(h− xT )− x(r−1)
N

and so

f(x,H) = 1− 1

χ∗cr(x,H)
≤ 1− 1

χcr(B)
< 1−

(h− xT )− x(r−1)
N

h(r − 1)
.

As N is arbitrarily large, the above implies f(x,H) ≤ 1− (h− xT )/(h(r − 1)).

Next we show that f(x,H) ≥ 1 − (h − xT )/(h(r − 1)). Suppose the value of T is achieved for
some interval r-colouring H∗1 < · · · < H∗r of H and i∗ ∈ [r]; that is, T = |H∗i∗ |. Let G be the
complete r-partite ordered graph with parts G1 < · · · < Gr of where

|Gi∗ | = NT and |Gi| =
⌈

N

r − 1

(
h

x
− T

)⌉
+ 1
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for every i 6= i∗. Notice that |Gi| ≥ |Gi∗ | for every i ∈ [r] since x ≤ x0. Suppose there exists an
(x,H)-tiling H in G. By definition of T , every copy of H ∈ H has at least T vertices in Gi∗ , thus

|H| ≤ |Gi
∗ |

T
= N.

Hence, H covers at most Nh vertices of G. However,

|G| > NT +N

(
h

x
− T

)
=
Nh

x
=⇒ x|G| > Nh,

contradicting the assumption that H is an (x,H)-tiling. In particular, G does not contain an
(x,H)-tiling and so Theorem 1.16 implies

δ(G) < (f(x,H) + η)|G|.

Let i 6= i∗. We have that

f(x,H) + η >
δ(G)

|G|
=
|G| − |Gi|
|G|

=

1−

⌈
N
r−1

(
h
x − T

)⌉
+ 1

NT + (r − 1)
⌈
N
r−1

(
h
x − T

)⌉
+ r − 1


≥

(
1−

N
r−1

(
h
x − T

)
+ 2

NT +N
(
h
x − T

)) = 1−
(h− xT ) + 2x(r−1)

N

h(r − 1)
.

As N can be chosen arbitrarily large and η arbitrarily small, it follows that f(x,H) ≥ 1 − (h −
xT )/(h(r − 1)). �

The following result states that f(x,H) is piecewise linear for certain types of H. These different
behaviours already suggest that computing f(x,H) is likely to be a difficult task in general.

Proposition 14.3. Let `1 ≤ · · · ≤ `r be positive integers and x ∈ (0, 1]. Let H be a complete
r-partite ordered graph on h vertices with parts H1 < · · · < Hr where |Hi| = `i for every i ∈ [r].

• If t`t −
t∑
i=1

`i ≤ 1−x
x h < (t+ 1)`t+1 −

t+1∑
i=1

`i for some t ∈ [1, r − 1] then

f(x,H) = 1− 1

ht

(
(1− x)h+ x

t∑
i=1

`i

)
.

• If (1−x)h
x ≥ r`r −

r∑
i=1

`i then

f(x,H) = 1− h− x`r
h(r − 1)

.5

In particular, for H fixed, f(x,H) is continuous and piecewise linear in x with r′ pieces where r′

is the number of strict inequalities in `1 ≤ · · · ≤ `r.

Proof. If x = 1, then the result follows from Propositions 5.2 and 11.3; so assume that x < 1. Let
T, J, x0 be as in Proposition 14.2. For our choice of H, we have T = J = `r and x0 = h/(r`r). Note
that if

(1− x)h

x
≥ r`r −

r∑
i=1

`i,

5Observe that this value of f(x,H) coincides with the value of f(x,H) in the previous case when t = r − 1.
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then x ≤ x0. It follows from Proposition 14.2 that

f(x,H) = 1− h− xT
h(r − 1)

= 1− h− x`r
h(r − 1)

.

Throughout the rest of the proof, we assume that

t`t −
t∑
i=1

`i ≤
1− x
x

h < (t+ 1)`t+1 −
t+1∑
i=1

`i(31)

for some t ∈ [1, r − 1]. Fix constants 0 < 1/N � η � 1 where N ∈ N. We first prove that
f(x,H) is at most the claimed value. Let H ′ be the complete r-partite ordered graph with parts
H ′1 < · · · < H ′r such that the following holds:

• for every i ≤ t,

|H ′i| =

⌊
N

t

(
1− x
x

h+
t∑
i=1

`i

)⌋
and so N`t ≤ |H ′i| < N`t+1 by (31);
• for every i ≥ t+ 1,

|H ′i| = N`i.

As N`i ≤ |H ′i| for every i ∈ [r], there exists an H-tiling H in H ′ consisting of exactly N copies of
H. Note that H covers exactly Nh vertices in H ′ and

x|H ′| ≤ xN

(
1− x
x

h+
t∑
i=1

`i

)
+ xN

r∑
i=t+1

`i = xN

(
1− x
x

h+ h

)
= Nh.

Thus, H is an (x,H)-tiling in H ′. Since H ′ contains an (x,H)-tiling, every 1-bottlegraph of H ′ is
an x-bottlegraph of H, therefore χ∗cr(x,H) ≤ χ∗cr(H ′).

Since |H ′1| ≤ · · · ≤ |H ′r|, Proposition 11.3 implies χ∗cr(H
′) = |H ′|/|H ′1|. Therefore,

f(x,H) =

(
1− 1

χ∗cr(x,H)

)
≤
(

1− 1

χ∗cr(H
′)

)
= 1− |H

′
1|

|H ′|
= 1−

⌊
N
t

(
1−x
x h+

t∑
i=1

`i

)⌋
t

⌊
N
t

(
1−x
x h+

t∑
i=1

`i

)⌋
+N

r∑
i=t+1

`i

< 1−

N
t

(
1−x
x h+

t∑
i=1

`i

)
− 1

N

(
1−x
x h+

t∑
i=1

`i

)
+N

r∑
i=t+1

`i

= 1− 1

ht

(
(1− x)h+ x

t∑
i=1

`i

)
+

x

Nh
.

Since N can be chosen arbitrarily large, the above implies

f(x,H) ≤ 1− 1

ht

(
(1− x)h+ x

t∑
i=1

`i

)
.

Next we prove that f(x,H) is at least the claimed value. Let G be the ordered graph obtained
by taking the complete (t+ 1)-partite ordered graph with parts G1 < · · · < Gt+1 where

|Gt+1| = N

(
h−

t∑
i=1

`i

)
− t and |Gi| =

⌈
N

t

(
1− x
x

h+

t∑
i=1

`i

)⌉
+ 1
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for every i ≤ t, and adding all missing edges to Gt+1. Suppose G contains an (x,H)-tiling H.
Observe that

|G| ≥ N

(
1− x
x

h+

t∑
i=1

`i

)
+ t+N

(
h−

t∑
i=1

`i

)
− t =

Nh

x
=⇒ x|G| ≥ Nh.

Hence, H covers at least Nh vertices in G. Let H′ ⊆ H be an H-tiling consisting of exactly N

copies of H. Each copy of H has at most
t∑
i=1

`i vertices in G1 ∪ · · · ∪Gt. Also,

|G| < N

(
1− x
x

h+
t∑
i=1

`i

)
+ 2t+N

(
h−

t∑
i=1

`i

)
− t =

Nh

x
+ t,

and so there are fewer than 1−x
x Nh+ t vertices in G which are not covered by H′. This implies

|G1 ∪ · · · ∪Gt| < N
t∑
i=1

`i +
(1− x)Nh

x
+ t = N

(
1− x
x

h+
t∑
i=1

`i

)
+ t ≤ |G1 ∪ · · · ∪Gt|,

which is a contradiction; hence G does not contain an (x,H)-tiling. Therefore, Theorem 1.16
implies that δ(G) < (f(x,H) + η)|G| and so

f(x,H) + η >
δ(G)

|G|
=
|G| − |G1|
|G|

= 1−

⌈
N
t

(
1−x
x h+

t∑
i=1

`i

)⌉
+ 1

t

⌈
N
t

(
1−x
x h+

t∑
i=1

`i

)⌉
+ t+N

(
h−

t∑
i=1

`i

)
− t

≥ 1−

N
t

(
1−x
x h+

t∑
i=1

`i

)
+ 2

N

(
1−x
x h+

t∑
i=1

`i

)
+N

(
h−

t∑
i=1

`i

) = 1− 1

ht

(
(1− x)h+ x

t∑
i=1

`i

)
+

2x

Nh
.

Since η can be chosen arbitrarily small and N arbitrarily large, the above implies that

f(x,H) ≥ 1− 1

ht

(
(1− x)h+ x

t∑
i=1

`i

)
.

�

We conclude this section with the following result.

Proposition 14.4. Let H be an ordered graph, then

lim
x→1

χ∗cr(x,H) = χ∗cr(H) and lim
x→0

χ∗cr(x,H) = χ<(H)− 1.

Proof. Let T, J, x0 be as in Proposition 14.2. If x ∈ (0, x0) then Proposition 14.2 implies

f(x,H) = 1− h− xT
h(χ<(H)− 1)

=⇒ lim
x→0

f(x,H) = 1− 1

χ<(H)− 1
.

Since f(x,H) = 1− 1/χ∗cr(x,H), it follows from the above that

lim
x→0

χ∗cr(x,H) = χ<(H)− 1.

Let y, z ∈ (0, 1] with y < z. Let B be a z-bottlegraph of H. Clearly every z-bottlegraph of H is a
y-bottlegraph of H, so χ∗cr(y,H) ≤ χ∗cr(z,H). It follows that, for x ∈ (0, 1], the function χ∗cr(x,H)
is non-decreasing. In particular,

χ∗cr(x,H) ≤ χ∗cr(1, H) = χ∗cr(H)
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for every x ∈ (0, 1]. The monotone convergence theorem implies that the limit ` := limx→1 χ
∗
cr(x,H)

exists and ` ≤ χ∗cr(H). Fix arbitrary constants 0 < η, ε < 1. Pick n ∈ N sufficiently large and let
G be an ordered graph on n vertices with minimum degree

δ(G) ≥
(

1− 1

`
+ ε

)
n ≥

(
1− 1

χ∗cr(1− η,H)
+ ε

)
n.

By Theorem 1.16, G contains a (1 − η,H)-tiling, i.e., an H-tiling covering all but at most ηn
vertices. Recall the definition of c<(H) given at the beginning of Section 12: c<(H) denotes the
smallest non-negative number such that for every η > 0, there exists an integer n0 ∈ N so that if G
is an ordered graph on n ≥ n0 vertices and with minimum degree δ(G) ≥ c<(H)n then G contains
an H-tiling covering all but at most ηn vertices.

It follows that c<(H) ≤ 1 − 1/` + ε, and so c<(H) ≤ 1 − 1/` since ε > 0 is arbitrary. By
Theorem 12.1, c<(H) = 1− 1/χ∗cr(H) and thus χ∗cr(H) ≤ `. In particular, χ∗cr(H) = `.

�

15. Concluding remarks and open problems

Theorem 1.8 together with [3, Theorem 1.9] asymptotically determine the minimum degree
threshold for forcing a perfect H-tiling in an ordered graph, for any fixed ordered graph H. De-
pending on the structure of H, this threshold depends on one of three factors: (C1) the existence
of an almost perfect H-tiling; (C2) the avoidance of divisibility barriers; (C3) the existence of an
H-cover. Analogous factors govern the threshold for other perfect H-tiling problems in a range of
settings too.

Therefore, it would be extremely interesting to find a natural ‘local’ density condition (e.g.,
minimum degree, Ore-type, degree sequence) for an (ordered) graph, directed graph or hypergraph
for which the corresponding perfect H-tiling threshold depends on another factor. We suspect
no such problem exists. An alternative way to think about this question is as follows: are there
barriers, other than local and divisibility barriers, that prevent absorbing for a perfect H-tiling
problem?

Other than this general ‘meta problem’, it would be interesting to establish the Ore-type degree
threshold that forces a perfect H-tiling in an ordered graph G (and compare this threshold to the
corresponding Ore-type degree threshold for unordered graphs [22]).

In light of Theorem 1.6 it is natural to raise the following ordered graph analogue of the theorem
of Shokoufandeh and Zhao [26].

Conjecture 15.1. Let H be an ordered graph. Then there is a constant C = C(H) ∈ N so that
the following holds. If G is an n-vertex ordered graph with

δ(G) ≥
(

1− 1

χ∗cr(H)

)
n

then G contains an H-tiling covering all but at most C vertices.

Finally, whilst we have obtained some understanding of the function f(x,H), it would be inter-
esting to obtain a more complete understanding of how this function can behave in general. In
particular, is it true that for any fixed ordered graph H, f(x,H) is piecewise linear?
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[9] P. Erdős and A.H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087–1091.

[10] V. Falgas-Ravry, personal communication.
[11] V. Falgas-Ravry, K. Markström and Y. Zhao, Triangle-degrees in graphs and tetrahedron coverings in 3-graphs,

Combin. Probab. Comput. 30 (2021), 175–199.
[12] V. Falgas-Ravry and Y. Zhao, Codegree thresholds for covering 3-uniform hypergraphs, SIAM J. Discr. Math.

30 (2016), 1899–1917.
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[17] J. Komlós, G.N. Sárközy and E. Szemerédi, Proof of the Alon–Yuster conjecture, Discrete Math. 235 (2001),

255–269.
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