The Absorbing Method: Lecture 5

Andrew Treglown

25th May 2023

Andrew Treglown The Absorbing Method: Lecture 5

Lemma (Szemerédi's Regularity Lemma: Degree Form)

 $\forall \varepsilon > 0 \text{ and } \ell_0 \in \mathbb{N} \text{ there exists } L_0 = L_0(\varepsilon, \ell_0) \text{ s.t. for every}$ $d \in [0, 1] \text{ and for every graph } G \text{ on } n \ge L_0 \text{ vertices there exists a}$ partition V_0, V_1, \ldots, V_ℓ of V(G) and a spanning subgraph G' of G, s.t. the following conditions hold:

(i)
$$\ell_0 \le \ell \le L_0$$
;
(ii) $d_{\Omega'}(x) \ge d_{\Omega'}(x) - (d + \varepsilon)n$ for every $x \in V(G)$:

(ii)
$$u_G'(x) \ge u_G'(x) = (u + \varepsilon)ii$$
 for every $x \in V(G)$.

(iii) the subgraph $G'[V_i]$ is empty for all $1 \leq i \leq \ell$;

(iv)
$$|V_0| \leq \varepsilon n$$

(v)
$$|V_1| = |V_2| = \ldots = |V_\ell|;$$

(vi) for all
$$1 \le i < j \le \ell$$
 we have that $(V_i, V_j)_{G'}$ is an ε -regular pair with density > d or 0.

The reduced graph R of G with parameters ε , d is the graph whose vertices are V_1, \ldots, V_ℓ and in which $V_i V_j$ is an edge precisely when $(V_i, V_j)_{G'}$ is ε -regular with density > d.