The Absorbing Method: Lecture 4

Andrew Treglown

24th May 2023

Andrew Treglown The Absorbing Method: Lecture 4

A general approach to absorbing for H-factors

Let *H* be a graph. Given a graph *G*, a set $S \subseteq V(G)$ is an *H*-absorbing set for $Q \subseteq V(G)$, if both G[S] and $G[S \cup Q]$ contain *H*-factors.

Lemma (Lo and Markström, 2015)

Let $h, s \in \mathbb{N}$ and $\xi > 0$. Suppose that H is a graph on h vertices. $\exists n_0 \in \mathbb{N}$ s.t. the following holds. Suppose G graph on $n \ge n_0$ vertices so that, for any $x, y \in V(G)$, there are at least ξn^{sh-1} (sh - 1)-sets $X \subseteq V(G)$ such that both $G[X \cup \{x\}]$ and $G[X \cup \{y\}]$ contain H-factors. Then V(G) contains a set M so that

• $|M| \le (\xi/2)^h n/4;$

• *M* is an *H*-absorbing set for any $W \subseteq V(G) \setminus M$ such that $|W| \leq (\xi/2)^{2h} n/(32s^2h^3)$ and $|W| \in h\mathbb{N}$.

ヘロト ヘロト ヘビト ヘビト

A general approach to absorbing for H-factors

Let *H* be a graph. Given a graph *G*, a set $S \subseteq V(G)$ is an *H*-absorbing set for $Q \subseteq V(G)$, if both G[S] and $G[S \cup Q]$ contain *H*-factors.

Lemma (Lo and Markström, 2015)

Let $h, s \in \mathbb{N}$ and $\xi > 0$. Suppose that H is a graph on h vertices. $\exists n_0 \in \mathbb{N} \text{ s.t.}$ the following holds. Suppose G graph on $n \ge n_0$ vertices so that, for any $x, y \in V(G)$, there are at least ξn^{sh-1} (sh-1)-sets $X \subseteq V(G)$ such that both $G[X \cup \{x\}]$ and $G[X \cup \{y\}]$ contain H-factors. Then V(G) contains a set M so that

- $|M| \leq (\xi/2)^h n/4;$
- *M* is an *H*-absorbing set for any $W \subseteq V(G) \setminus M$ such that $|W| \leq (\xi/2)^{2h} n/(32s^2h^3)$ and $|W| \in h\mathbb{N}$.

(日) (四) (三) (三) (三)