## Cycles of every length and orientation in randomly perturbed digraphs

Andrew Treglown<br>University of Birmingham

1st September 2023

Joint work with Igor Araujo, József Balogh, Robert Krueger and Simón Piga

## Introduction

## Theorem (Dirac 1952)

G n-vertex graph, $\delta(G) \geq n / 2 \Longrightarrow G$ contains a Hamilton cycle.

- The minimum degree condition here is tight.
- Also natural to look at analogous question for digraphs.
- A digraph has at most two edges between every pair of vertices; at most one oriented in each direction.



## Introduction

- In the setting of digraphs there are different types of Hamilton cycle and also more than one notion of minimum degree.
- Consistently oriented Hamilton cycle: edges oriented cyclically



## The extremal problem

- Given a digraph $G$, the minimum total degree $\delta(G)$ is the minimum number of edges incident to a vertex.
- The minimum semi-degree $\delta^{0}(G)$ is the minimum of the minimum in- and outdegrees.


## Theorem (Ghouila-Houri 1960)

$G$ n-vertex strongly connected digraph, $\delta(G) \geq n \Longrightarrow G$ contains a consistently oriented Hamilton cycle.

## Corollary

$\delta^{0}(G) \geq n / 2 \Longrightarrow G$ contains a consistently oriented Hamilton cycle.

- Degree conditions here are tight.


## The extremal problem

- Antidirected Hamilton cycle: edges alternate direction.



## Theorem (DeBiasio and Molla, 2015)

$G$ sufficiently large $2 m$-vertex digraph, $\delta^{0}(G) \geq m+1 \Longrightarrow G$ contains an antidirected Hamilton cycle.

- Minimum semi-degree condition here tight.


## The extremal problem

## Theorem (DeBiasio, Kühn, Molla, Osthus and Taylor, 2015)

$G$ sufficiently large $n$-vertex digraph, $\delta^{0}(G) \geq n / 2 \Longrightarrow G$ contains every orientation of a Hamilton cycle except perhaps the antidirected Hamilton cycle.

- Minimum semi-degree condition here tight.


## The random digraph problem

- binomial random digraph $D(n, p)$ : digraph with vertex set $[n]$, where each of the $n(n-1)$ possible directed edges is present with probability $p$, independently of all other edges.


## Theorem (Frieze, 1988)

If $p=(\log n+\omega(1)) / n$ then asymptotically almost surely (a.a.s.) $D(n, p)$ contains a consistently oriented Hamilton cycle.

- If $p=(\log n-\omega(1)) / n$ then a.a.s. $D(n, p)$ contains a vertex with no in-neighbour or no out-neighbour.


## Theorem (Montgomery, 2021+)

Determined threshold for $D(n, p)$ containing a given orientation of a Hamilton cycle. Threshold can vary from $p=\log n / 2 n$ to $p=\log n / n$.

## Randomly perturbed digraphs

- The model of randomly perturbed (di)graphs was introduced in 2003 by Bohman, Frieze and Martin.
- Given a dense (di)graph $G$, how many random edges does one need to add to $G$ so that, asymptotically almost surely, the resulting (di)graph has a given property?
- This model has been studied for a range of properties including Hamilton cycles; spanning trees; H -factors; Ramsey properties.


## Randomly perturbed digraphs

## Theorem (Bohman, Frieze and Martin, 2003)

$\forall \alpha>0, \exists C=C(\alpha)$ s.t. if $G$ n-vertex digraph with $\delta^{0}(G) \geq \alpha n$, then $G \cup D(n, C / n)$ a.a.s. contains a consistently oriented Hamilton cycle.

- Cannot lower the probability here.

The following provides a pancyclicity version of this result

## Theorem (Krivelevich, Kwan, and Sudakov, 2016)

$\forall \alpha>0, \exists C=C(n)$ s.t if $G$ n-vertex digraph with $\delta^{0}(G) \geq a n$, then $G \cup D(n, C / n)$ a.a.s. contains a consistently oriented cycle of every length between 2 and $n$.

## Randomly perturbed digraphs

## Theorem (Bohman, Frieze and Martin, 2003)

$$
\begin{aligned}
& \forall \alpha>0, \exists C=C(\alpha) \text { s.t. if } G \text { n-vertex digraph with } \delta^{0}(G) \geq \alpha n \text {, } \\
& \text { then } G \cup D(n, C / n) \text { a.a.s. contains a consistently oriented } \\
& \text { Hamilton cycle. }
\end{aligned}
$$

- Cannot lower the probability here.

The following provides a pancyclicity version of this result.

## Theorem (Krivelevich, Kwan, and Sudakov, 2016)

$\forall \alpha>0, \exists C=C(\alpha)$ s.t. if $G$ n-vertex digraph with $\delta^{0}(G) \geq \alpha n$, then $G \cup D(n, C / n)$ a.a.s. contains a consistently oriented cycle of every length between 2 and $n$.

## Main result

> Theorem (Araujo, Balogh, Krueger, Piga and T., 2022+)
> $\forall \alpha>0, \exists C=C(\alpha)$ s.t. if $G$ n-vertex digraph with $\delta^{0}(G) \geq \alpha n$, then $G \cup D(n, C / n)$ a.a.s. contains every orientation of a cycle of every possible length.

- Note this is a universality result.
- Proofs of Bohman-Frieze-Martin and

Krivelevich-Kwan-Sudakov use rotation-extension type arguments.

- This method not so applicable for arbitrary orientations of Hamilton cycles.
- Instead we apply the absorbing method (which comes with its own challenges for arbitrary orientations)


## Main result

> Theorem (Araujo, Balogh, Krueger, Piga and T., 2022+)
> $\forall \alpha>0, \exists C=C(\alpha)$ s.t. if $G$ n-vertex digraph with $\delta^{0}(G) \geq \alpha n$, then $G \cup D(n, C / n)$ a.a.s. contains every orientation of a cycle of every possible length.

- Note this is a universality result.
- Proofs of Bohman-Frieze-Martin and

Krivelevich-Kwan-Sudakov use rotation-extension type arguments.

- This method not so applicable for arbitrary orientations of Hamilton cycles.
- Instead we apply the absorbing method (which comes with its own challenges for arbitrary orientations).


## Final remarks

We relaxed the minimum semi-degree in our result to a minimum total degree, for most orientations of a cycle.

> Theorem (Araujo, Balogh, Krueger, Piga and T., 2022+)
> $\forall \alpha, \eta>0, \exists C=C(\alpha, \eta)$ s.t. if $G n$-vertex digraph with
> $\delta(G) \geq 2 \alpha n$, then $G \cup D(n, C / n)$ a.a.s. contains every orientation of a cycle of every possible length that contains at most $(1-\eta) n$ vertices of indegree 1.

- It would be interesting to obtain other minimum total degree results in the setting of randomly perturbed digraphs
- For example, for the $T_{k}$-factor problem where $T_{k}$ is the transitive tournament on $k$ vertices.

