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ABSTRACT. We prove the following results (via a unified approach) for all
sufficiently large n:

(i) [1-factorization conjecture] Suppose that n is even and D≥ 2dn/4e−1.
Then every D-regular graph G on n vertices has a decomposition into
perfect matchings. Equivalently, χ ′(G) = D.

(ii) [Hamilton decomposition conjecture] Suppose that D ≥ bn/2c. Then
every D-regular graph G on n vertices has a decomposition into Hamil-
ton cycles and at most one perfect matching.

(iii) [Optimal packings of Hamilton cycles] Suppose that G is a graph on
n vertices with minimum degree δ ≥ n/2. Then G contains at least
(n−2)/8 edge-disjoint Hamilton cycles.

According to Dirac, (i) was first raised in the 1950’s. (ii) and (iii) answer
questions of Nash-Williams from 1970. All of the above bounds are best
possible.

1. INTRODUCTION

In a sequence of four papers [5, 6, 11, 12], we provide a unified ap-
proach towards proving three long-standing conjectures for all sufficiently
large graphs. Firstly, the 1-factorization conjecture, which can be formulated
as an edge-colouring problem; secondly, the Hamilton decomposition con-
jecture, which provides a far-reaching generalization of Walecki’s result [15]
that every complete graph of odd order has a Hamilton decomposition and
thirdly, a best possible result on packing edge-disjoint Hamilton cycles in
Dirac graphs. The latter two were raised by Nash-Williams [17, 18, 19]
in 1970. A key tool is the recent result of Kühn and Osthus [13] that every
dense even-regular robustly expanding graph has a Hamilton decomposition.

1.1. The 1-factorization conjecture. Vizing’s theorem states that for any
graph G of maximum degree ∆, its edge-chromatic number χ ′(G) is either
∆ or ∆+ 1. In general, it is a very difficult problem to determine which
graphs G attain the (trivial) lower bound ∆ – much of the recent book [22]
is devoted to the subject. For regular graphs G, χ ′(G) = ∆(G) is equivalent
to the existence of a 1-factorization: a 1-factorization of a graph G consists
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of a set of edge-disjoint perfect matchings covering all edges of G. The
long-standing 1-factorization conjecture states that every regular graph of
sufficiently high degree has a 1-factorization. It was first stated explicitly by
Chetwynd and Hilton [1, 3] (who also proved partial results). However, they
state that according to Dirac, it was already discussed in the 1950’s.

Theorem 1.1. There exists an n0 ∈ N such that the following holds. Let
n,D ∈ N be such that n ≥ n0 is even and D ≥ 2dn/4e− 1. Then every D-
regular graph G on n vertices has a 1-factorization. Equivalently, χ ′(G) =
D.

The bound on the degree in Theorem 1.1 is best possible. To see this,
suppose first that n = 2 (mod 4). Consider the graph which is the disjoint
union of two cliques of order n/2 (which is odd). If n = 0 (mod 4), consider
the graph obtained from the disjoint union of cliques of orders n/2− 1 and
n/2+1 (both odd) by deleting a Hamilton cycle in the larger clique.

Note that Theorem 1.1 implies that for every regular graph G on an even
number of vertices, either G or its complement has a 1-factorization. Also,
Theorem 1.1 has an interpretation in terms of scheduling round-robin tour-
naments (where n players play all of each other in n− 1 rounds): one can
schedule the first half of the rounds arbitrarily before one needs to plan the
remainder of the tournament.

The best previous result towards Theorem 1.1 is due to Perkovic and
Reed [20], who proved an approximate version, i.e. they assumed that D ≥
n/2+ εn. This was generalized by Vaughan [23] to multigraphs of bounded
multiplicity. Indeed, he proved an approximate version of the following
multigraph version of the 1-factorization conjecture which was raised by
Plantholt and Tipnis [21]: Let G be a regular multigraph of even order n
with multiplicity at most r. If the degree of G is at least rn/2 then G is
1-factorizable.

In 1986, Chetwynd and Hilton [2] made the following ‘overfull subgraph’
conjecture, which also generalizes the 1-factorization conjecture. Roughly
speaking, this says that a dense graph satisfies χ ′(G) = ∆(G) unless there is
a trivial obstruction in the form of a dense subgraph H on an odd number
of vertices. Formally, we say that a subgraph H of G is overfull if e(H) >
∆(G)b|H|/2c (note this requires |H| to be odd).

Conjecture 1.2. A graph G on n vertices with ∆(G)≥ n/3 satisfies χ ′(G) =
∆(G) if and only if G contains no overfull subgraph.

This conjecture is still wide open – partial results are discussed in [22],
which also discusses further results and questions related to the 1-factorization
conjecture.

1.2. The Hamilton decomposition conjecture. Rather than asking for a 1-
factorization, Nash-Williams [17, 19] raised the more difficult problem of
finding a Hamilton decomposition in an even-regular graph. Here, a Hamil-
ton decomposition of a graph G consists of a set of edge-disjoint Hamilton
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cycles covering all edges of G. A natural extension of this to regular graphs
G of odd degree is to ask for a decomposition into Hamilton cycles and one
perfect matching (i.e. one perfect matching M in G together with a Hamil-
ton decomposition of G−M). The following result solves the problem of
Nash-Williams for all large graphs.

Theorem 1.3. There exists an n0 ∈ N such that the following holds. Let
n,D ∈ N be such that n ≥ n0 and D ≥ bn/2c. Then every D-regular graph
G on n vertices has a decomposition into Hamilton cycles and at most one
perfect matching.

Again, the bound on the degree in Theorem 1.3 is best possible. Previ-
ous results include the following: Nash-Williams [16] showed that the de-
gree bound in Theorem 1.3 ensures a single Hamilton cycle. Jackson [8]
showed that one can ensure close to D/2− n/6 edge-disjoint Hamilton cy-
cles. Christofides, Kühn and Osthus [4] obtained an approximate decompo-
sition under the assumption that D≥ n/2+εn. Under the same assumption,
Kühn and Osthus [14] obtained an exact decomposition (as a consequence of
their main result in [13] on Hamilton decompositions of robustly expanding
graphs).

Note that Theorem 1.3 does not quite imply Theorem 1.1, as the degree
threshold in the former result is slightly higher.

A natural question is whether one can extend Theorem 1.3 to sparser
(quasi)-random graphs. Indeed, for random regular graphs of bounded de-
gree this was proved by Kim and Wormald [9] and for (quasi-)random reg-
ular graphs of linear degree this was proved in [14] as a consequence of the
main result in [13]. However, the intermediate range remains open.

1.3. Packing Hamilton cycles in graphs of large minimum degree. Al-
though Dirac’s theorem is best possible in the sense that the minimum degree
condition δ ≥ n/2 is best possible, the conclusion can be strengthened con-
siderably: a remarkable result of Nash-Williams [18] states that every graph
G on n vertices with minimum degree δ (G)≥ n/2 contains b5n/224c edge-
disjoint Hamilton cycles. He raised the question of finding the best possible
bound, which we answer below for all large graphs.

Theorem 1.4. There exists an n0 ∈N such that the following holds. Suppose
that G is a graph on n≥ n0 vertices with minimum degree δ ≥ n/2. Then G
contains at least (n−2)/8 edge-disjoint Hamilton cycles.

The following construction (which is based on a construction of Babai,
see [17]) shows that the bound is best possible for n = 8k+2, where k ∈ N.
Consider the graph G consisting of one empty vertex class A of size 4k, one
vertex class B of size 4k + 2 containing a perfect matching and no other
edges, and all possible edges between A and B. Thus G has order n = 8k+2
and minimum degree 4k+1= n/2. Any Hamilton cycle in G must contain at
least two edges of the perfect matching in B, so G contains at most b|B|/4c=
k = (n−2)/8 edge-disjoint Hamilton cycles.
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A more general question is to ask for the number of edge-disjoint Hamil-
ton cycles one can guarantee in a graph G of minimum degree δ . This num-
ber has been determined exactly by Kühn, Lapinskas and Osthus [10] unless
G is close to one of the extremal graphs for Dirac’s theorem (i.e. unless G
is close to the complete balanced bipartite graph or close to the union of
two disjoint copies of a clique). In particular, the number of edge-disjoint
Hamilton cycles one can guarantee is known exactly whenever δ ≥ n/2+εn.
This improves earlier results of Christofides, Kühn and Osthus [4] as well as
Hartke and Seacrest [7]. Actually, our proof of Theorem 1.4 also settles
the cases when G is close to the extremal graphs for Dirac’s theorem. So
altogether this solves the problem for all values of δ .

2. OVERVIEW OF THE PROOFS OF THEOREMS 1.1 AND 1.3

The proofs develop methods established by Kühn and Osthus [13], who
proved a generalization of Kelly’s conjecture that every regular tournament
has a Hamilton decomposition (for large tournaments). For all three of our
main results, we split the argument according to the structure of the graph G
under consideration:

(i) G is close to the complete balanced bipartite graph Kn/2,n/2;
(ii) G is close to the union of two disjoint copies of a clique Kn/2;

(iii) G is a ‘robust expander’.
Informally, a graph G is a robust expander if for every set S⊆V (G) which is
not too large or too small, its neighbourhood is substantially larger than |S|,
even if we delete a small proportion of the edges of G. In other words, G is an
expander graph which is ‘locally resilient’. The main result of [13] states that
every dense regular robust expander has a Hamilton decomposition. This
immediately implies Theorems 1.1 and 1.3 in Case (iii).

Suppose we are going to prove Theorem 1.3 in the case when D is even.
So our aim is to decompose G into D/2 edge-disjoint Hamilton cycles. As
mentioned above, we may assume that G is in either Case (i) or Case (ii).
In [6], we find an approximate Hamilton decomposition of G in both cases,
i.e. a set of edge-disjoint Hamilton cycles covering almost all edges of G.
However, one does not have any control over the ‘leftover’ graph H, which
makes a complete decomposition seem infeasible. This problem was over-
come in [13] by introducing the concept of a ‘robustly decomposable graph’
Grob. Roughly speaking, this is a sparse regular graph with the following
property: given any very sparse regular graph H with V (H)=V (Grob) which
is edge-disjoint from Grob, one can guarantee that Grob ∪H has a Hamilton
decomposition. This leads to a natural (and very general) strategy to obtain
a decomposition of G:

(1) find a (sparse) robustly decomposable graph Grob in G and let G′

denote the leftover;
(2) find an approximate Hamilton decomposition of G′ and let H denote

the (very sparse) leftover;
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(3) find a Hamilton decomposition of Grob∪H.
It is of course far from clear that one can always find such a graph Grob,
especially in Case (ii) where G is close to being disconnected. In [5], we
find Grob for Case (i). In [11, 12], we find Grob for Case (ii).
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[10] D. Kühn, J. Lapinskas and D. Osthus, Optimal packings of Hamilton cycles in graphs of high

minimum degree, Combin. Probab. Comput., 22 (2013), 394–416.
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