
7. Lecture 7

Exercise 7.1. Prove that if G = G(n, p), then α(G) ≤ 3 lnn
p + 1 with high probability. In particular, if

ω( lnn
n ) = p = o(1) we have α(G) = o(n) and e(G) = o(n2) with high probability.

We will present a proof of the following result. The proof of the relevant absorbing lemma follows the
argument of Nenadov & Pehova in [3] and is significantly simpler than the argument originally given in [1].

Lemma 7.1 (Balogh, Sharifzadeh, & Molla [1]). Let 1
n � β � γ. If 3 | n, δ(G) ≥

(
1
2 + γ

)
n, and

α(G) ≤ βn, then G has a K3-factor.

Example 7.2. Let G be a graph on n vertices consisting of two disjoint cliques of size b(n− 1)/2c and
d(n+ 1)/2e. We have δ(G) ≥ n−3

2 and α(G) ≤ 2, but G has no K3-factor.

Lemma 7.3. Let 1
n � β � σ � γ. If δ(G) ≥

(
1
2 + γ

)
n, and α(G) ≤ βn, then G has a K3-tiling that covers

all but at most σn vertices.

Proof sketch.

• Let ε, d be such that
β � ε� d, σ � γ � 1.

• There exists a ε-regular partition V0, V1, . . . , Vk for G.
• We can assume β � 1/k and that k is even.
• Let m := |V1| = · · · |Vk|.
• Let R be the reduced graph on V1, . . . , Vk with parameter d.
• We have δ(R) ≥ k/2, so R has a perfect matching M .
• Let ViVj ∈M and let H = G[Vi, Vj ], so H is ε-regular with density at least d.
• We will now show that H has a K3-tiling that covers all but at most 4εm of the vertices in H.
• Since this holds for every edge in M and |V0|+ (4εm)k/2 ≤ σm, this will prove the lemma.
• Assume T is a maximum K3-tiling of H subject to ||V (T ) ∩ Ui| − |V (T ) ∩ Uj || ≤ 1.
• Let Ui := Vi \ V (T ) and Uj := Vj \ V (T ).
• We can assume that |Uj |+ 1 ≥ |Ui| ≥ |Uj | and for a contradiction assume that |Uj | ≥ εm.
• Since H is ε-regular and |Ui| ≥ |Uj | ≥ εm, the density of G[Ui, Uj ] is at least d− ε.
• Therefore, there exists v ∈ Ui such that

deg(v, Uj) ≥ (d− ε)|Uj | ≥ (d/2) · εm ≥ (d/2) · ε · n
2k

> βn > α(G).

• Therefore, there exists a triangle with one vertex in Ui and two vertices in Uj which violates the
maximality of T . �

The following example shows that we cannot hope to build absorbers in the standard way.

Example 7.4. Let V1, V2, . . . , V2m+1 be a partition of [n] such that |V1| ≥ (1/2− γ)n, |V2i| = |V2i+1| for i ∈
[m] and |V2|, . . . , |V2m+1| ≥ 2γn. Let G be the graph on [n] in which G[V1, V1], G[V2, V3], . . . , G[V2m, V2m+1]
are complete bipartite graphs. Note that δ(G) ≥ (1/2 + γ)n. Let X ⊆ V (G) \ V1 be a 3-set. Since every
triangle in G has exactly one vertex in V1, there does not exist a set U ⊆ V (G) \X such that both G[U ] and
G[U ∪X] have a K3-factor. By Exercise 7.1, we can add o(n2) edges to G to form G′ so that α(G′) = o(n).
Since we only added o(n2) edges, for a fixed constant k, there are at most o(n3k) 3k-sets U in V (G′) such
that both G′[U ] and G′[U ∪X] have a K3-factor.

The following lemma is a simple exercise.

Lemma 7.5. Let 1
n � β � γ. If G is an n-vertex graph with δ(G) ≥

(
1
2 + γ

)
n and α(G) ≤ βn, then for

every 3-set {v1, v2, v3} ⊆ V (G) there exists a collection of at least 0.1γn vertex disjoint 9-sets such that for
each such 9-set A, both G[A] and G[A ∪ {v1, v2, v3}] have K3-factors.

Lemma 7.6. [Montgomery (Lemma 2.8 in [2])- Robustly Matchable Bipartite Graphs] There exists m0 such
that for every `,m such that m ≥ m0 and m ≥ ` ≥ 0, the following holds for disjoint sets X, Y , and Z with
|X| = m+ `, |Y | = 2m, and Z = 3m. There exists a bipartite graph H with partite sets X ∪ Y and Z such
that ∆(H) ≤ 40 and for any X ′ ⊆ X such that |X ′| = ` the graph H −X ′ has a perfect matching.
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Sketch proof of Theorem 7.1.

• Select ν, σ > 0 so β � σ � ν � γ.
• Let m := 3 bνnc and let ` = bνmc ≤ ν2n.
• Uniformly at random select a set X ⊆ V (G) of size m+ `.
• So, by the Chernoff and Union bounds, with high probability, for every v ∈ V , we have

(1) deg(v,X) ≥ m/2 ≥ νn.
• Arbitrarily select disjoint sets Y, Z1, . . . , Z3m ⊆ V (G) \X with |Y | = 2m and |Z1| = · · · = |Z3m| = 2

and let Z := {Z1, . . . , Z3m}.
• By Lemma 7.6, there exists a bipartite graph H with parts X ∪ Y and Z such that for any X ′ ⊆ X

with |X ′| = ` there is a perfect matching of H −X ′.
• Note that |E(H)| ≤ 40|Z| ≤ 120m ≤ 480νn and

∣∣∣X ∪ Y ∪ (⋃i∈[3m] Zi

)∣∣∣ ≤ (m+ `) + 2m+ 2 · 3m ≤
30νn.

• Therefore, Lemma 7.5 implies that, iteratively, for each edge {v, Zi} = e ∈ E(H) with v ∈ X ∪ Y
and Zi ∈ Z, we can construct an absorber Ae of {v} ∪ Zi disjoint from V (H) that is also disjoint
from all previously constructed absorbers.

• Let

A := X ∪ Y ∪

 ⋃
i∈[3m]

Zi

 ∪
 ⋃

e∈E(H)

Ae

 .

and note that |A| ≤ 0.5γn.
• Therefore, by Lemma 7.3 (with γ/2 playing the role of γ), there exists a K3-tiling T1 of G−A such

that if W := V (G−A) \ V (T ) we have |W | ≤ σn.
• So, since α(G) ≤ βn, (1) implies that there exists a K3-tiling T2 of G[W ∪X] such that |T2| = |W |

and W ⊆ V (T2).
• Since n ≡ m ≡ |Y ∪ Z| = 0 (mod 3), we have

0 ≡ n− |T1| − |T2| ≡ |(X ∪ Y ∪ Z) \ V (T2)| ≡ |X \ V (T2)| ≡ |X \ V (T2)| −m
• Therefore, α(G) ≤ βn (1) implies that there exists a K3-tiling T3 of G[X \ V (T2)] such that |X \
V (T2 ∪ T3)| = m. That is, if X ′ := X ∩ V (T2) ∩ V (T3), then |X ′| = bνmc.

• So there exists a perfect matching M of H −X ′.
• Recall that A \X ′ = V (G) \ V (T1 ∪ T2 ∪ T3).
• Since, for every {x, Zi} = e ∈M , there is a K3-factor of G[{v}∪Zi∪Ae] and for every e ∈ E(H)\M ,

there is a K3-factor of G[Ae], there is a K3-factor of G.

�

The argument above can be generalized in the follow way.

Lemma 7.7 (Nenadov & Pehova (Lemma 2.2 in [3])). Let 1
n � ν � ζ � 1

t . For every vertex graph H and
every n-vertex graph G the following holds. Suppose that for every |H|-set S ⊆ V (G) there exists at least ζn
vertex disjoint sets AS of order t such that both G[AS ] and G[AS ∪ S] contain H-factors. Then there exists
a set A ⊆ V (G) with |A| ≤ ζn such that for every W ⊆ V (G) \ A such that |H| divides |W | and |W | ≤ νn
there is an H-factor of G[A ∪W ].
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