7. Lecture 7

Exercise 7.1. Prove that if $G=G(n, p)$, then $\alpha(G) \leq \frac{3 \ln n}{p}+1$ with high probability. In particular, if $\omega\left(\frac{\ln n}{n}\right)=p=o(1)$ we have $\alpha(G)=o(n)$ and $e(G)=o\left(n^{2}\right)$ with high probability.

We will present a proof of the following result. The proof of the relevant absorbing lemma follows the argument of Nenadov \& Pehova in [3] and is significantly simpler than the argument originally given in [1].
Lemma 7.1 (Balogh, Sharifzadeh, \& Molla [1]). Let $\frac{1}{n} \ll \beta \ll \gamma$. If $3 \mid n, \delta(G) \geq\left(\frac{1}{2}+\gamma\right) n$, and $\alpha(G) \leq \beta n$, then G has a K_{3}-factor.

Example 7.2. Let G be a graph on n vertices consisting of two disjoint cliques of size $\lfloor(n-1) / 2\rfloor$ and $\lceil(n+1) / 2\rceil$. We have $\delta(G) \geq \frac{n-3}{2}$ and $\alpha(G) \leq 2$, but G has no K_{3}-factor.
Lemma 7.3. Let $\frac{1}{n} \ll \beta \ll \sigma \ll \gamma$. If $\delta(G) \geq\left(\frac{1}{2}+\gamma\right) n$, and $\alpha(G) \leq \beta n$, then G has a K_{3}-tiling that covers all but at most σn vertices.

Proof sketch.

- Let ε, d be such that

$$
\beta \ll \varepsilon \ll d, \sigma \ll \gamma \ll 1
$$

- There exists a ε-regular partition $V_{0}, V_{1}, \ldots, V_{k}$ for G.
- We can assume $\beta \ll 1 / k$ and that k is even.
- Let $m:=\left|V_{1}\right|=\cdots\left|V_{k}\right|$.
- Let R be the reduced graph on V_{1}, \ldots, V_{k} with parameter d.
- We have $\delta(R) \geq k / 2$, so R has a perfect matching M.
- Let $V_{i} V_{j} \in M$ and let $H=G\left[V_{i}, V_{j}\right]$, so H is ε-regular with density at least d.
- We will now show that H has a K_{3}-tiling that covers all but at most $4 \varepsilon m$ of the vertices in H.
- Since this holds for every edge in M and $\left|V_{0}\right|+(4 \varepsilon m) k / 2 \leq \sigma m$, this will prove the lemma.
- Assume \mathcal{T} is a maximum K_{3}-tiling of H subject to $\left\|V(\mathcal{T}) \cap U_{i}|-| V(\mathcal{T}) \cap U_{j}\right\| \leq 1$.
- Let $U_{i}:=V_{i} \backslash V(\mathcal{T})$ and $U_{j}:=V_{j} \backslash V(\mathcal{T})$.
- We can assume that $\left|U_{j}\right|+1 \geq\left|U_{i}\right| \geq\left|U_{j}\right|$ and for a contradiction assume that $\left|U_{j}\right| \geq \varepsilon m$.
- Since H is ε-regular and $\left|U_{i}\right| \geq\left|U_{j}\right| \geq \varepsilon m$, the density of $G\left[U_{i}, U_{j}\right]$ is at least $d-\varepsilon$.
- Therefore, there exists $v \in U_{i}$ such that

$$
\operatorname{deg}\left(v, U_{j}\right) \geq(d-\varepsilon)\left|U_{j}\right| \geq(d / 2) \cdot \varepsilon m \geq(d / 2) \cdot \varepsilon \cdot \frac{n}{2 k}>\beta n>\alpha(G)
$$

- Therefore, there exists a triangle with one vertex in U_{i} and two vertices in U_{j} which violates the maximality of \mathcal{T}.
The following example shows that we cannot hope to build absorbers in the standard way.
Example 7.4. Let $V_{1}, V_{2}, \ldots, V_{2 m+1}$ be a partition of $[n]$ such that $\left|V_{1}\right| \geq(1 / 2-\gamma) n,\left|V_{2 i}\right|=\left|V_{2 i+1}\right|$ for $i \in$ $[m]$ and $\left|V_{2}\right|, \ldots,\left|V_{2 m+1}\right| \geq 2 \gamma n$. Let G be the graph on $[n]$ in which $G\left[V_{1}, \overline{V_{1}}\right], G\left[V_{2}, V_{3}\right], \ldots, G\left[V_{2 m}, V_{2 m+1}\right]$ are complete bipartite graphs. Note that $\delta(G) \geq(1 / 2+\gamma) n$. Let $X \subseteq V(G) \backslash V_{1}$ be a 3-set. Since every triangle in G has exactly one vertex in V_{1}, there does not exist a set $U \subseteq V(G) \backslash X$ such that both $G[U]$ and $G[U \cup X]$ have a K_{3}-factor. By Exercise 7.1, we can add $o\left(n^{2}\right)$ edges to G to form G^{\prime} so that $\alpha\left(G^{\prime}\right)=o(n)$. Since we only added o(n^{2}) edges, for a fixed constant k, there are at most $o\left(n^{3 k}\right) 3 k$-sets U in $V\left(G^{\prime}\right)$ such that both $G^{\prime}[U]$ and $G^{\prime}[U \cup X]$ have a K_{3}-factor.

The following lemma is a simple exercise.
Lemma 7.5. Let $\frac{1}{n} \ll \beta \ll \gamma$. If G is an n-vertex graph with $\delta(G) \geq\left(\frac{1}{2}+\gamma\right) n$ and $\alpha(G) \leq \beta n$, then for every 3 -set $\left\{v_{1}, v_{2}, v_{3}\right\} \subseteq V(G)$ there exists a collection of at least $0.1 \gamma n$ vertex disjoint 9 -sets such that for each such 9-set A, both $G[A]$ and $G\left[A \cup\left\{v_{1}, v_{2}, v_{3}\right\}\right]$ have K_{3}-factors.
Lemma 7.6. [Montgomery (Lemma 2.8 in [2])- Robustly Matchable Bipartite Graphs] There exists m_{0} such that for every ℓ, m such that $m \geq m_{0}$ and $m \geq \ell \geq 0$, the following holds for disjoint sets X, Y, and Z with $|X|=m+\ell,|Y|=2 m$, and $Z=3 m$. There exists a bipartite graph H with partite sets $X \cup Y$ and Z such that $\Delta(H) \leq 40$ and for any $X^{\prime} \subseteq X$ such that $\left|X^{\prime}\right|=\ell$ the graph $H-X^{\prime}$ has a perfect matching.

Sketch proof of Theorem 7.1.

- Select $\nu, \sigma>0$ so $\beta \ll \sigma \ll \nu \ll \gamma$.
- Let $m:=3\lfloor\nu n\rfloor$ and let $\ell=\lfloor\nu m\rfloor \leq \nu^{2} n$.
- Uniformly at random select a set $X \subseteq V(G)$ of size $m+\ell$.
- So, by the Chernoff and Union bounds, with high probability, for every $v \in V$, we have

$$
\begin{equation*}
\operatorname{deg}(v, X) \geq m / 2 \geq \nu n \tag{1}
\end{equation*}
$$

- Arbitrarily select disjoint sets $Y, Z_{1}, \ldots, Z_{3 m} \subseteq V(G) \backslash X$ with $|Y|=2 m$ and $\left|Z_{1}\right|=\cdots=\left|Z_{3 m}\right|=2$ and let $Z:=\left\{Z_{1}, \ldots, Z_{3 m}\right\}$.
- By Lemma 7.6, there exists a bipartite graph H with parts $X \cup Y$ and Z such that for any $X^{\prime} \subseteq X$ with $\left|X^{\prime}\right|=\ell$ there is a perfect matching of $H-X^{\prime}$.
- Note that $|E(H)| \leq 40|Z| \leq 120 m \leq 480 \nu n$ and $\left|X \cup Y \cup\left(\bigcup_{i \in[3 m]} Z_{i}\right)\right| \leq(m+\ell)+2 m+2 \cdot 3 m \leq$ $30 \nu n$.
- Therefore, Lemma 7.5 implies that, iteratively, for each edge $\left\{v, Z_{i}\right\}=e \in E(H)$ with $v \in X \cup Y$ and $Z_{i} \in Z$, we can construct an absorber A_{e} of $\{v\} \cup Z_{i}$ disjoint from $V(H)$ that is also disjoint from all previously constructed absorbers.
- Let

$$
A:=X \cup Y \cup\left(\bigcup_{i \in[3 m]} Z_{i}\right) \cup\left(\bigcup_{e \in E(H)} A_{e}\right)
$$

and note that $|A| \leq 0.5 \gamma n$.

- Therefore, by Lemma 7.3 (with $\gamma / 2$ playing the role of γ), there exists a K_{3}-tiling \mathcal{T}_{1} of $G-A$ such that if $W:=V(G-A) \backslash V(\mathcal{T})$ we have $|W| \leq \sigma n$.
- So, since $\alpha(G) \leq \beta n,(1)$ implies that there exists a K_{3}-tiling \mathcal{T}_{2} of $G[W \cup X]$ such that $\left|\mathcal{T}_{2}\right|=|W|$ and $W \subseteq V\left(\mathcal{T}_{2}\right)$.
- Since $n \equiv m \equiv|Y \cup Z|=0(\bmod 3)$, we have

$$
0 \equiv n-\left|\mathcal{T}_{1}\right|-\left|\mathcal{T}_{2}\right| \equiv\left|(X \cup Y \cup Z) \backslash V\left(\mathcal{T}_{2}\right)\right| \equiv\left|X \backslash V\left(\mathcal{T}_{2}\right)\right| \equiv\left|X \backslash V\left(\mathcal{T}_{2}\right)\right|-m
$$

- Therefore, $\alpha(G) \leq \beta n(1)$ implies that there exists a K_{3}-tiling \mathcal{T}_{3} of $G\left[X \backslash V\left(\mathcal{T}_{2}\right)\right]$ such that $\mid X \backslash$ $V\left(\mathcal{T}_{2} \cup \mathcal{T}_{3}\right) \mid=m$. That is, if $X^{\prime}:=X \cap V\left(\mathcal{T}_{2}\right) \cap V\left(\mathcal{T}_{3}\right)$, then $\left|X^{\prime}\right|=\lfloor\nu m\rfloor$.
- So there exists a perfect matching M of $H-X^{\prime}$.
- Recall that $A \backslash X^{\prime}=V(G) \backslash V\left(\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup \mathcal{T}_{3}\right)$.
- Since, for every $\left\{x, Z_{i}\right\}=e \in M$, there is a K_{3}-factor of $G\left[\{v\} \cup Z_{i} \cup A_{e}\right]$ and for every $e \in E(H) \backslash M$, there is a K_{3}-factor of $G\left[A_{e}\right]$, there is a K_{3}-factor of G.

The argument above can be generalized in the follow way.
Lemma 7.7 (Nenadov \& Pehova (Lemma 2.2 in [3])). Let $\frac{1}{n} \ll \nu \ll \zeta \ll \frac{1}{t}$. For every vertex graph H and every n-vertex graph G the following holds. Suppose that for every $|H|$-set $S \subseteq V(G)$ there exists at least ζn vertex disjoint sets A_{S} of order t such that both $G\left[A_{S}\right]$ and $G\left[A_{S} \cup S\right]$ contain H-factors. Then there exists a set $A \subseteq V(G)$ with $|A| \leq \zeta n$ such that for every $W \subseteq V(G) \backslash A$ such that $|H|$ divides $|W|$ and $|W| \leq \nu n$ there is an H-factor of $G[A \cup W]$.

References

1. J. Balogh, T. Molla, and M. Sharifzadeh, Triangle factors of graphs without large independent sets and of weighted graphs, Random Structures Algorithms 49 (2016), no. 4, 669-693.
2. Richard Montgomery, Embedding bounded degree spanning trees in random graphs, arXiv preprint arXiv:1405.6559 (2014).
3. Rajko Nenadov and Yanitsa Pehova, On a Ramsey-Turán variant of the Hajnal-Szemerédi Theorem, SIAM Journal on Discrete Mathematics 34 (2020), no. 2, 1001-1010.
