7. Lecture 7

Exercise 7.1. Prove that if G = G(n, p), then $\alpha(G) \leq \frac{3 \ln n}{p} + 1$ with high probability. In particular, if $\omega(\frac{\ln n}{n}) = p = o(1)$ we have $\alpha(G) = o(n)$ and $e(G) = o(n^2)$ with high probability.

We will present a proof of the following result. The proof of the relevant absorbing lemma follows the argument of Nenadov & Pehova in [3] and is significantly simpler than the argument originally given in [1].

Lemma 7.1 (Balogh, Sharifzadeh, & Molla [1]). Let $\frac{1}{n} \ll \beta \ll \gamma$. If $3 \mid n, \delta(G) \geq (\frac{1}{2} + \gamma)n$, and $\alpha(G) \leq \beta n$, then G has a K₃-factor.

Example 7.2. Let G be a graph on n vertices consisting of two disjoint cliques of size $\lfloor (n-1)/2 \rfloor$ and $\lceil (n+1)/2 \rceil$. We have $\delta(G) \geq \frac{n-3}{2}$ and $\alpha(G) \leq 2$, but G has no K_3 -factor.

Lemma 7.3. Let $\frac{1}{n} \ll \beta \ll \sigma \ll \gamma$. If $\delta(G) \ge (\frac{1}{2} + \gamma) n$, and $\alpha(G) \le \beta n$, then G has a K₃-tiling that covers all but at most σn vertices.

Proof sketch.

• Let ε, d be such that

$$\beta \ll \varepsilon \ll d, \sigma \ll \gamma \ll 1.$$

- There exists a ε -regular partition V_0, V_1, \ldots, V_k for G.
- We can assume $\beta \ll 1/k$ and that k is even.
- Let $m := |V_1| = \cdots |V_k|$.
- Let R be the reduced graph on V_1, \ldots, V_k with parameter d.
- We have $\delta(R) \ge k/2$, so R has a perfect matching M.
- Let $V_i V_j \in M$ and let $H = G[V_i, V_j]$, so H is ε -regular with density at least d.
- We will now show that H has a K_3 -tiling that covers all but at most $4\varepsilon m$ of the vertices in H.
- Since this holds for every edge in M and $|V_0| + (4\varepsilon m)k/2 \leq \sigma m$, this will prove the lemma.
- Assume \mathcal{T} is a maximum K_3 -tiling of H subject to $||V(\mathcal{T}) \cap U_i|| |V(\mathcal{T}) \cap U_i|| \le 1$.
- Let $U_i := V_i \setminus V(\mathcal{T})$ and $U_j := V_j \setminus V(\mathcal{T})$.
- We can assume that $|U_j| + 1 \ge |U_i| \ge |U_j|$ and for a contradiction assume that $|U_j| \ge \varepsilon m$.
- Since H is ε -regular and $|U_i| \ge |U_j| \ge \varepsilon m$, the density of $G[U_i, U_j]$ is at least $d \varepsilon$.
- Therefore, there exists $v \in U_i$ such that

$$\deg(v, U_j) \ge (d - \varepsilon)|U_j| \ge (d/2) \cdot \varepsilon m \ge (d/2) \cdot \varepsilon \cdot \frac{n}{2k} > \beta n > \alpha(G).$$

• Therefore, there exists a triangle with one vertex in U_i and two vertices in U_j which violates the maximality of \mathcal{T} .

The following example shows that we cannot hope to build absorbers in the standard way.

Example 7.4. Let $V_1, V_2, \ldots, V_{2m+1}$ be a partition of [n] such that $|V_1| \ge (1/2 - \gamma) n$, $|V_{2i}| = |V_{2i+1}|$ for $i \in [m]$ and $|V_2|, \ldots, |V_{2m+1}| \ge 2\gamma n$. Let G be the graph on [n] in which $G[V_1, \overline{V_1}]$, $G[V_2, V_3], \ldots, G[V_{2m}, V_{2m+1}]$ are complete bipartite graphs. Note that $\delta(G) \ge (1/2 + \gamma)n$. Let $X \subseteq V(G) \setminus V_1$ be a 3-set. Since every triangle in G has exactly one vertex in V_1 , there does not exist a set $U \subseteq V(G) \setminus X$ such that both G[U] and $G[U \cup X]$ have a K_3 -factor. By Exercise 7.1, we can add $o(n^2)$ edges to G to form G' so that $\alpha(G') = o(n)$. Since we only added $o(n^2)$ edges, for a fixed constant k, there are at most $o(n^{3k})$ 3k-sets U in V(G') such that both G'[U] and $G'[U \cup X]$ have a K_3 -factor.

The following lemma is a simple exercise.

Lemma 7.5. Let $\frac{1}{n} \ll \beta \ll \gamma$. If G is an n-vertex graph with $\delta(G) \ge (\frac{1}{2} + \gamma) n$ and $\alpha(G) \le \beta n$, then for every 3-set $\{v_1, v_2, v_3\} \subseteq V(G)$ there exists a collection of at least $0.1\gamma n$ vertex disjoint 9-sets such that for each such 9-set A, both G[A] and $G[A \cup \{v_1, v_2, v_3\}]$ have K_3 -factors.

Lemma 7.6. [Montgomery (Lemma 2.8 in [2])- Robustly Matchable Bipartite Graphs] There exists m_0 such that for every ℓ , m such that $m \ge m_0$ and $m \ge \ell \ge 0$, the following holds for disjoint sets X, Y, and Z with $|X| = m + \ell$, |Y| = 2m, and Z = 3m. There exists a bipartite graph H with partite sets $X \cup Y$ and Z such that $\Delta(H) \le 40$ and for any $X' \subseteq X$ such that $|X'| = \ell$ the graph H - X' has a perfect matching.

Sketch proof of Theorem 7.1.

- Select $\nu, \sigma > 0$ so $\beta \ll \sigma \ll \nu \ll \gamma$.
- Let $m := 3 \lfloor \nu n \rfloor$ and let $\ell = \lfloor \nu m \rfloor \le \nu^2 n$.
- Uniformly at random select a set $X \subseteq V(G)$ of size $m + \ell$.
- So, by the Chernoff and Union bounds, with high probability, for every $v \in V$, we have

$$\deg(v, X) \ge m/2 \ge \nu n.$$

- Arbitrarily select disjoint sets $Y, Z_1, \ldots, Z_{3m} \subseteq V(G) \setminus X$ with |Y| = 2m and $|Z_1| = \cdots = |Z_{3m}| = 2$ and let $Z := \{Z_1, \ldots, Z_{3m}\}.$
- By Lemma 7.6, there exists a bipartite graph H with parts $X \cup Y$ and Z such that for any $X' \subseteq X$ with $|X'| = \ell$ there is a perfect matching of H X'.
- Note that $|E(H)| \le 40|Z| \le 120m \le 480\nu n$ and $|X \cup Y \cup \left(\bigcup_{i \in [3m]} Z_i\right)| \le (m+\ell) + 2m + 2 \cdot 3m \le 30\nu n$.
- Therefore, Lemma 7.5 implies that, iteratively, for each edge $\{v, Z_i\} = e \in E(H)$ with $v \in X \cup Y$ and $Z_i \in Z$, we can construct an absorber A_e of $\{v\} \cup Z_i$ disjoint from V(H) that is also disjoint from all previously constructed absorbers.
- Let

$$A := X \cup Y \cup \left(\bigcup_{i \in [3m]} Z_i\right) \cup \left(\bigcup_{e \in E(H)} A_e\right).$$

and note that $|A| \leq 0.5\gamma n$.

- Therefore, by Lemma 7.3 (with $\gamma/2$ playing the role of γ), there exists a K_3 -tiling \mathcal{T}_1 of G A such that if $W := V(G A) \setminus V(\mathcal{T})$ we have $|W| \leq \sigma n$.
- So, since $\alpha(G) \leq \beta n$, (1) implies that there exists a K_3 -tiling \mathcal{T}_2 of $G[W \cup X]$ such that $|\mathcal{T}_2| = |W|$ and $W \subseteq V(\mathcal{T}_2)$.
- Since $n \equiv m \equiv |Y \cup Z| = 0 \pmod{3}$, we have

$$0 \equiv n - |\mathcal{T}_1| - |\mathcal{T}_2| \equiv |(X \cup Y \cup Z) \setminus V(\mathcal{T}_2)| \equiv |X \setminus V(\mathcal{T}_2)| \equiv |X \setminus V(\mathcal{T}_2)| - m$$

- Therefore, $\alpha(G) \leq \beta n$ (1) implies that there exists a K_3 -tiling \mathcal{T}_3 of $G[X \setminus V(\mathcal{T}_2)]$ such that $|X \setminus V(\mathcal{T}_2 \cup \mathcal{T}_3)| = m$. That is, if $X' := X \cap V(\mathcal{T}_2) \cap V(\mathcal{T}_3)$, then $|X'| = \lfloor \nu m \rfloor$.
- So there exists a perfect matching M of H X'.
- Recall that $A \setminus X' = V(G) \setminus V(\mathcal{T}_1 \cup \mathcal{T}_2 \cup \mathcal{T}_3).$
- Since, for every $\{x, Z_i\} = e \in M$, there is a K_3 -factor of $G[\{v\} \cup Z_i \cup A_e]$ and for every $e \in E(H) \setminus M$, there is a K_3 -factor of $G[A_e]$, there is a K_3 -factor of G.

The argument above can be generalized in the follow way.

Lemma 7.7 (Nenadov & Pehova (Lemma 2.2 in [3])). Let $\frac{1}{n} \ll \nu \ll \zeta \ll \frac{1}{t}$. For every vertex graph H and every *n*-vertex graph G the following holds. Suppose that for every |H|-set $S \subseteq V(G)$ there exists at least ζn vertex disjoint sets A_S of order t such that both $G[A_S]$ and $G[A_S \cup S]$ contain H-factors. Then there exists a set $A \subseteq V(G)$ with $|A| \leq \zeta n$ such that for every $W \subseteq V(G) \setminus A$ such that |H| divides |W| and $|W| \leq \nu n$ there is an H-factor of $G[A \cup W]$.

References

- 1. J. Balogh, T. Molla, and M. Sharifzadeh, *Triangle factors of graphs without large independent sets and of weighted graphs*, Random Structures Algorithms **49** (2016), no. 4, 669–693.
- 2. Richard Montgomery, Embedding bounded degree spanning trees in random graphs, arXiv preprint arXiv:1405.6559 (2014).
- Rajko Nenadov and Yanitsa Pehova, On a Ramsey-Turán variant of the Hajnal-Szemerédi Theorem, SIAM Journal on Discrete Mathematics 34 (2020), no. 2, 1001–1010.