
3. Lecture 3

3.1. Introduction.

Definition 3.1 (Extremal graphs). Let G be an n-vertex graph and let β > 0. For every k ∈ N, we say
that G is (Kk, β)-extremal if there exists U ⊆ V (G) such that |U | ≥ (1/k − β)n and either e(G[U ]) ≤ βn2

or G[U,U ] ≤ βn2. Note when δ(G) is close to (k − 1)n/k, β > 0 is small, and |U | ≥ (1/k − β)n, we cannot
have G[U,U ] ≤ βn2 unless k ≤ 2.

The following two lemmas together imply the Corrádi-Hajnal Theorem [1], for large graphs.

Lemma 3.2 (Extremal lemma). There exists β > 0 and n0 such that for every n ≥ n0 the following holds
for every n-vertex graph G. If 3 divides n, G is (K3, β)-extremal, and δ(G) ≥ 2n

3 , then G has a K3-factor.

Lemma 3.3 (Non-extremal/stability lemma). For every β > 0, there exists γ > 0 and n0 such that for
every n ≥ n0 the following holds for every n-vertex graph G. If 3 divides n, G is not (K3, β)-extremal, and
δ(G) ≥ ( 2

3 − γ)n, then G has a K3-factor.

The next two lemmas imply Lemma 3.3.

Lemma 3.4. Let 1
n � γ � β. If δ(G) ≥

(
2
3 − γ

)
n and α(G) <

(
1
3 − β

)
n, then G has a K3-tiling that

covers all but at most 7 vertices.

Proof sketch. Let T be a maximum K3-tiling in G and let W := V (G) \ V (T ). Let M be a maximum
matching in G[W ]. We can assume that T was selected to maximize |M |. Let Z := W \ V (M).

We have |Z| ≤ 1. Indeed, assume for a contradiction that |Z| ≥ 2, and let u, v ∈ W be a pair of distinct
vertices. The following observations follow from the selection of T and M .

• Z is an independent set.
• For every e ∈M we have e(u, e), e(v, e) ≤ 1.
• For every T ∈ T , we have e({u, v}, T ) ≤ 4 and if e({u, v}, T ) = 4, then N(u, T ) = N(v, T ).

Let

U := {y ∈ V (G) : y ∈ V (T ) \N(u) for some T ∈ T such that e({u, v}, T ) = 4},
and note that

2

(
2

3
− γ
)
n ≤ d(u) + d(v) ≤ 4|U |+ 3(|T | − |U |) + 2|M | ≤ |U |+ 3|T |+ 2

(
n− 3|T |

2

)
= |U |+ n,

so |U | ≥ (1/3 − 2γ)n ≥ (1/3 − β)n > α(G) which mean there exists e ∈ G[U ]. This contradiction our
selection of T and M . (How?)

We also have |M | ≤ 3. Indeed assume for a contradiction that we have distinct e1, e2, e3, e4 ∈ M . And
for i ∈ [4], let Ni :=

⋂
v∈ei N(v) be the common neighbors of the endpoints of ei. The following observations

follow easily.

• For every i ∈ [4], |Ni| ≥ (1/3− 2γ)n.
• For every i ∈ [4], Ni ∩W = ∅.
• For every i ∈ [4] and every T ∈ T ,

∑
i∈[4] |Ni ∩ V (T )| ≤ 4 and if

∑
i∈[4] |Ni ∩ V (T )| ≤ 4 we have

N1 ∩ V (T ) = N2 ∩ V (T ) = N3 ∩ V (T ) = N∩V (T ).

Let T ′ := {T ∈ T :
∑
i∈[4] |Ni ∩ V (T )| = 4}. So,

4 (1/3− 2γ)n ≤ |N1|+ |N2|+ |N3|+ |N4| ≤ 4|T ′|+ 3(|T | − |T ′|) ≤ |T ′|+ n,

and |T ′| ≥ (1/3− 8γ)n. So, if U :=
⋃
T∈T ′ V (Ti) \N1, we have |U | ≥ (2/3− 16γ)n. Then, for every v ∈ U ,

we have |N(v, U)| ≥ δ(G) + |U | − n ≥ (1/3− β)n > α(G). So, there exists an edge e ∈ E(G[N(v, U)]). The
fact that ve is a triangle, contradicts the maximality of T . (How?) �

The following lemma implies that we can find a suitable absorbing set for Lemma 3.3. The proof follows
easily from the definitions.

Lemma 3.5. Let 1
n � γ � β. If δ(G) ≥

(
2
3 − γ

)
n and G is not (K3, β)-extremal, then for every distinct

pair of vertices x, y ∈ V (G) there exists at least βn2 edges e such that both xe and ye are triangles.
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We now collect a few lemmas we will need in the proof of Lemma 3.2.

Lemma 3.6. For 1
n � γ � β, the following holds for every n-vertex graph G. If G is not (K2, β)-extremal

and δ(G) ≥ ( 1
2 − γ)n, then

(a) G contains 0.1 · βn vertex disjoint copies of K3 and
(b) when n is even G contain a perfect matching.

Proof sketch. To see (a), note that, because G is not (K2, β)-extremal, for every u ∈ V (G) and every U ⊆
N(v) such that |U | ≥ (1/2−β)n, there exists vw ∈ E(G[U ]) and uvw is a triangle. To see (b), note that since
G is not (K2, β)-extremal, G is 2-connected and α(G) < (1/2−β)n. Therefore, δ(G) ≥ max{α(G), (n+2)/3}
and a result of Nash-Williams implies that G is Hamiltonian. �

Lemma 3.7. Every graph G has a matching of size at least min
{
δ(G),

⌊
|V (G)|

2

⌋}
.

Proof sketch. Let M be a maximum matching. For a contradiction, assume

|M | < min

{
δ(G),

⌊
|V (G)|

2

⌋}
.

Let U := V (G)\V (M). Notice that |M | < |V (G)|−1
2 , so |V (M)| = 2|M | < |V (G)|−1 and there exist distinct

u, u′ ∈ U . Since M is maximal and |M | < δ(G), we have

deg(u, V (M)) + deg(u′, V (M)) = deg(u) + deg(u′) ≥ 2δ(G) > 2|M |,
so the result follows. (Why?) �

While the following two lemmas might appear complicated, they actually follow easily from the minimum
degree condition and the definition of extremal graphs. We prove more general versions than we will need
for Lemma 3.2.

Lemma 3.8. For every k ≥ 2 and 1
n � γ � β � γ′ � ν3 � ν2 � ν1 � 1

r the following holds for every

n-vertex graph G. If G is (Kk, β)-extremal and δ(G) ≥
(
k−1
k − γ

)
n, then there exists a partition U1, U2,W

of V (G) and sets U ′1 ⊆ U1 and U ′2 ⊆ U2 such that the following conditions hold.

(A) Both |U1| ≥
(
1
k − γ

′)n and |U2| ≥
(
k−1
k − γ

′)n.
(B) For every w ∈W , degG(w,U ′2) ≥

(
k−2
k + ν2

)
n and degG(w,U ′1) ≥ ν2n.

(C) Either

(i) for every i ∈ [2], ∆(G[Ui, Ui]) ≤ ν1n and ∆(G[U ′i , U
′
i ]) ≤ ν3n, or

(ii) k = 2 and for every i ∈ [2], ∆(G[Ui, U3−i]) ≤ ν1n and ∆(G[U ′i , U
′
3−i]) ≤ ν3n.

Proof sketch. There exists U ⊆ V (G) such that |U | ≥ (1/k − β)n and either e(G[U ]) ≤ βn2 or k = 2 and
e(G[U,U ]) ≤ βn2. First assume e(G[U ]) ≤ βn2 and note that

e(G([U,U ]) ≤ |U |∆(G)− 2e(G[U ]) ≤ |U |(|U |+ γn+ βn)− 2

((
|U |
2

)
− βn2

)
≤ 4βn2

Therefore, if we let

U ′1 := {u ∈ U : degG(u, U) ≤ ν3n/2} and U ′2 := {u ∈ U : degG(u, U) ≤ ν3n/2},
and

U1 := U ′1 ∪ {v ∈ V (G) : degG(v, U ′1) < ν2n} and

U2 := U ′2 ∪
{
v ∈ V (G) : degG(v, U ′2) <

(
k − 2

k
+ ν2

)
n

}
.

and W := V (G) \ (U1 ∪ U2), then the result follows (since we can assume (γ′ − β)ν3/2 � 4β). The case
when k = 2 and e(G[U,U ]) ≤ βn2 is similar. �

Lemma 3.9. For every k ≥ 2 and 1
n � γ � β � γ′ � β′ � ν3 � ν2 � ν1 � 1

r the following holds. If

G is (Kk, β)-extremal and δ(G) ≥
(
k−1
k − γ

)
n, then there exists s ∈ {2, . . . , k}, a partition U1, . . . , Us,W of

V (G), and sets U ′i ⊆ Ui for every i ∈ [s] such that the following conditions hold.
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(A) For every i ∈ [s− 1], |Ui| ≥
(
1
k − γ

′)n and |Us| ≥
(
k−s+1
k − γ′

)
n.

(B) For every w ∈W , degG(w,U ′s) ≥
(
k−s
k + ν2

)
n and degG(w,U ′i) ≥ ν2n for every i ∈ [s− 1].

(C) Either

(i) For every i ∈ [s] we have ∆(G[Ui, Ui]) ≤ ν1n and ∆(G[U ′i , U
′
i ]) ≤ ν3n, or

(ii) s = k and if we let σ ∈ Sr be the transposition of k − 1 and k, then for every i ∈ [k],

∆(G[Ui, Uσ(i)]) ≤ ν1n and ∆(G[U ′i , U
′
σ(i)]) ≤ ν3n.

(D) If s < k, then G[Us] is not (Kk−s+1, β
′)-extremal.

Proof sketch. First note when k = 2 this lemma and Lemma 3.8 are equivalent. With this as the base case
and Lemma 3.8, the result follows by induction on k.

Indeed, for the induction step with k ≥ 3, let γ∗∗, γ∗, β∗, ν∗1 , ν∗2 , ν3 be such that

γ � β � γ∗∗ � β∗ � γ∗ � γ′ � β′ � ν∗3 � ν3 � ν2 � ν∗2 � ν∗1 � ν1

and Lemma 3.8 holds with n, γ, β, γ∗∗, ν∗3 , ν∗2 , ν∗1 , and k playing the roles of n, γ, β, γ′, ν3, ν2, ν1, and k,
respectively, and also Lemma 3.9 holds with n/3, 2γ∗∗, β∗, γ∗, β′, ν∗3 , ν∗2 , ν∗1 , and k − 1 playing the roles of
n, γ, β, γ′, β′, ν3, ν2, ν1, and k, respectively.

Assume that we have applied Lemma 3.8 to G in this way, so we have U1, U ′1, U2, U ′2, and W that satisfy
the conclusion with γ∗, ν∗3 , ν∗2 , ν∗1 , and k playing the roles of γ′, ν3, ν2, ν1, respectively. If G[U2] is not
(Kk−1, β

∗)-extremal, then these sets satisfy the conclusion of Lemma 3.9 and we are done. Otherwise, note
that δ(G) ≥

(
k−1
k − γ

)
n and |U2| ≥

(
k−1
k − γ

∗∗)n together imply that

δ(G[U2]) ≥ δ(G)− (n− |U2|) ≥
(

1−
1
k + γn

|U2|

)
|U2| ≥

(
k − 2

k − 1
− 2γ∗∗

)
|U2|.

Therefore, since G[U2] is (Kk−1, β)-extremal and |U2| ≥ n/3, we can apply Lemma 3.9 to G[U2] with 2γ∗∗,
β∗, γ∗, β′, ν∗3 , ν∗2 , ν∗1 , and k − 1 playing the roles of γ, β, γ′, β′, ν3, ν2, ν1, and k, respectively. This yields
the desired conclusion after an appropriate relabelling. �

Proof of Lemma 3.2. Pick ν1, ν2, ν3, β′, γ′, β, γ and n0 so that for n ≥ n0.

1

n
� γ � β � γ′ � β′ � ν3 � ν2 � ν1 �

1

3
.

Apply Lemma 3.9, so we have s ∈ {2, 3}, and sets W Ui, U
′
i for i ∈ [s] that satisfy the conclusion. For

i ∈ [s− 1], let ci := n/3− |Ui| and let cs := (4− s)n/3− |Us|. Note that

sγ′n ≥ |W | = c1 + · · ·+ cs ≥ 0.

We will now find a small K3-tiling T that covers all of W and is such that the graph G − V (T ) has a
K3-factor. In an attempt to make the argument more intuitive, we can think of moving vertices in V (T )
to “balance” the sizes of the sets U1, . . . , Us. That is, if ci > 0 we want to move ci vertices to Ui and if
ci < 0 we want to move −ci vertices from Ui to some other set Uj . Note that this is not quite true in Case
3 below. In this case, if c2 + c3 > 0 we need to move c2 + c3 vertices to U2 ∪U3 and if c2 + c3 < 0 we need to
move −(c2 + c3) vertices from U2 ∪ U3 to U1. On top of this, we need to ensure that both |U2 \ V (T )| and
|U3 \ V (T )| are even.

In what follows, we will use the following fact repeatedly. Suppose i ∈ [s], ci < 0, |Ui| = n/3 − ci, and
∆(G(Ui, Ui) ≤ ν3n. Then, because δ(G) ≥ 2n/3, we have δ(G[Ui]) ≥ −ci. Therefore, by Lemma 3.7, there
is a matching of size −ci in G[Ui]. Furthermore, with this matching and the fact that ∆(G(Ui, Ui) ≤ ν3n we
can easily find −ci disjoint triangles each with two vertices in Ui and one vertex in Uj for any j ∈ [s] \ {i}.
Case 1. (s = 2) Note that, in this case, because G[U2] is not (K2, β

′)-extremal, Lemma 3.6 implies that we
can easily find a small collection of disjoint triangles in G[U2]. While this fact, it is easy to find a K3-tiling
T that satisfies the following.

• If c1, c2 ≥ 0, then T contains
– (move c1 vertices from W to U1) exactly c1 triangles that each have one vertex in W and

two vertices in U ′2 and
– (move c2 vertices from W to U2) exactly c2 triangles that each have one vertex in each of
U ′1, U ′2, and W .
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• If c1 < 0 and c2 ≥ 0, then T contains
– (move −c1 vertices from U1 to U2) exactly −c1 triangles that each have two vertices in U1

and one vertex in U2 and
– (move c1 + c2 vertices from W to U2) exactly c1 + c2 triangles that each have one vertex in

each of U ′1, U ′2, and W .
• If c2 < 0 and c1 ≥ 0, then T contains

– (move −c2 vertices from U2 to U1) exactly −c2 triangles that each have three vertices in U2

and
– (move c1 + c2 vertices from W to U1) exactly c1 + c2 triangles that each have one vertex in
W and two vertices in U ′2.

In all cases, W \ V (T ) = ∅ and |U2 \ V (T )| = 2|U1 \ V (T )|. Furthermore, Lemma 3.6 implies that since
G[U2] is not (K2, β

′)-extremal, the graph G[U2 \V (T )] contains a perfect matching M . Now considering the
balanced bipartite graph with parts M and U1 in which u ∈ U1 is adjacent to vw ∈ M if uvw is a triangle.
Hall’s Theorem implies that this bigraph has a perfect matching and this corresponds to a K3-factor of G.

Case 2. (s = 3 and (C)(i) holds) We can assume without loss of generality that c1 ≥ c2 ≥ c3. In particular,
this implies that c1 ≥ 0. In a manner similar to Case 1, it is trivial to find a K3-tiling T that satisfies the
following.

• If c2, c3 ≥ 0, then T contains
– (move c1 vertices from W to U1) exactly c1 triangles that each have one vertex in each of
W , U ′2, and U ′3,

– (move c2 vertices from W to U2) exactly c2 triangles that each have one vertex in each of
W , U ′1, and U ′3, and

– (move c3 vertices from W to U3) exactly c3 triangles that each have one vertex in each of
W , U ′1, and U ′2.

• If c2, c3 < 0, then T contains
– (move c1 + c2 + c3 vertices from W to U1) exactly c1 + c2 + c3 triangles that each have one

vertex in each of W , U ′2, and U ′3,
– (move −c2 vertices from U2 to U1) exactly −c2 triangles that each have one vertex in U3,

and two vertices in U2, and
– (move −c3 vertices from U3 to U1) exactly −c3 triangles that each have one vertex in U2,

and two vertices in U3.
• If c2 ≥ 0 and c3 < 0, then for c′1 ≤ 0 and c′2 ≤ 0 such that c′1 +c′2 = c3 and c1 +c′1 ≥ 0 and c2 +c′2 ≥ 0

the collection T contains
– (move c1 + c′1 vertices from W to U1) exactly c1 + c′1 triangles that each have one vertex in

each of W , U ′2, and U ′3,
– (move c2 + c′2 vertices from W to U2) exactly c2 + c′2 triangles that each have one vertex in

each of W , U ′1, and U ′3,
– (move −c′1 vertices from U3 to U1) exactly −c′1 triangles that each have one vertex in U2

and two vertices in U3, and
– (move −c′2 vertices from U3 to U2) exactly −c′2 triangles that each have one vertex in U1

and two vertices in U3.

It is now trivial to find a K3-factor in G′ := G − V (T ), because G′ contains a nearly complete spanning
balanced 3-partite graph.

Case 3. (s = 3 and (C)(ii) holds) We can assume without loss of generality that c2 ≥ c3. Let z := 0 if c3
is even or z := 1 is c3 is odd. Recall that in this case G[U2] and G[U3] are almost cliques, so it is trivial
to find any desired small matching or small K3-tiling in both graphs. Also note that if c2 + c3 = 0, then
|U2|+ |U3| = 2n/3, so

δ(G[U2 ∪ U3]) ≥ δ(G)− n/3 ≥ n/3 > min{|U2| − 1, |U3| − 1},
so there are edges in G[U2, U3] and a triangle with one vertex in each of U1, U2, and U3. With this, and our
previous lemmas, we can find a K3-tiling T that satisfies the following.

• If c1 ≥ 0 and c2 + c3 = 0, then T contains
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– (move z vertices from U3 to U2) exactly z triangles that each have one vertex in each of U1,
U2, and U3, and

– (move c1 vertices from W to U1) exactly c1 triangles that each have two vertices in U ′2 and
one vertex in W .

• If c1 ≥ 0 and c2 + c3 > 1, then T contains
– (move c1 vertices from W to U1) exactly c1 triangles that each have two vertices in U ′2 and

one vertex in W ,
– (move c2 + c3 − z vertices from W to U2) exactly c2 + c3 − z triangles that each have one

vertex in each of U ′1, U ′2 and W , and
– (move z vertices from W to U3) exactly z triangles that each have one vertex in each of U ′1,
U ′3, and W .

• If c1 ≥ 0 and c2 + c3 < 0, then T contains
– (move c1 + c2 + c3 vertices from W to U1) exactly c1 + c2 + c3 triangles that each have two

vertices in U ′2 and one vertex in W ,
– (move −c2 − c3 − z vertices from U2 to U1) exactly −c2 − c3 − z triangles that each have

three vertices in U2, and
– (move z vertices from U3 to U1) exactly z triangles that each have three vertices in U3.

• If c1 < 0 and c2 + c3 ≥ 0, then T contains
– (move −c1− z vertices from U1 to U2) exactly −c1− z triangles that each have two vertices

in U1 and one vertex in U2,
– (move z vertices from U1 to U3) exactly z triangles that each have two vertices in U1 and

one vertex in U3, and
– (move c1 + c2 + c3 vertices from W to U2) exactly c1 + c2 + c3 triangles that each have one

vertex in each of U ′1, U ′2, and W .

In all cases, W \V (T ) = ∅ and | (U2 ∪ U3)\V (T )| = 2|U1\V (T )|. We also have |U3\V (T )| is even. These two
fact together imply that |U2 \ V (T )| is even. Therefore, there is a perfect matching of G[(U2 ∪ U3) \ V (T )].
As in Case 1, we can use Hall’s Theorem to then find a K3-tiling of G− V (T ).

�
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